
(19) United States
US 2001 OO18708A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0018708A1
Shisler et al. (43) Pub. Date: Aug. 30, 2001

(54) PLATFORM-INDEPENDENT
PROGRAMMABLE BATCH PROCESSING
ENGINE

(76) Inventors: Harry E. Shisler, Buena Vista, CO
(US); Kevin D. Reitz, Aurora, CO (US)

Correspondence Address:
FENWCK & WEST LLP
TWO PALOALTO SQUARE
PALO ALTO, CA 94.306 (US)

(21) Appl. No.: 09/758,565

(22) Filed: Jan. 11, 2001

Related U.S. Application Data

(63) Continuation of application No. 08/743,201, filed on
Nov. 5, 1996.

Server

Publication Classification

(51) Int. Cl." G06F 15/16; G06F 15/177

(52) U.S. Cl. 709/220; 709/201; 709/219

(57) ABSTRACT

A data processing System includes a multitude of client
computers and Server computers, of various platform types,
interconnected by a network. A batch processing engine
permits an application resident on a client computer to
Specify processing to be performed by one or more of the
computers connected to the network, regardless of the
platform type of Such computers. The batch processing
engine is implemented in part by middleware.

Print
Computer Server

21

Design Tool Server

Computer
124

Processing
Subsystem 210 Middleware Subsystem 218 I/O

Subsystem 213

Processing
Subsystem 211

Client
Middleware Database

Subsystem 212 Middleware
Subsystem 215

Database
Server

Computer
127

Client Computer
111

System 100

Middleware
Subsystem 214

Batch
Spec, Server Processing
Middleware Engine

Subsystem 219 200

Specification
El Server

Computer
126

US 2001/0018708 A1 Patent Application Publication Aug. 30, 2001 Sheet 1 of 43

|||||||| No.

92 || Je?nduloo

US 2001/0018708A1

001 uue?SÁS

Patent Application Publication Aug. 30, 2001 Sheet 2 of 43

uÐAuÐS

| | | Je?nduuoO quello
[E]

Patent Application Publication Aug. 30, 2001 Sheet 3 of 43 US 2001/0018708A1

30

SPECIFY REPORT
PROPERTIES

302

SPECIFY REPORT
SECTION

303

DESIGN SECTION

306
SPECIFY TABULAR

COLUMN
304 PROPERTIES

SPECIFY OBJECT
PROPERTIES

3O7

SPECIFY TABULAR
ROWS

305

IS THIS A
TABULAR SECTION 308

YES SPECIFY TABULAR
CELLOVERRIDES

YES
MORE SECTIONS

NO

31 O
DESIGN COMPLETE

Figure 3

Patent Application Publication Aug. 30, 2001 Sheet 4 of 43 US 2001/0018708A1

401

BUILD REPORT
STRUCTURES

402
FETCH REPORT

HEADER
SECTION SPECS

405 404
BUILD SECTION PRINT OBJECTS MESS
STRUCTURES YES

NO
406

DESTROY
SECTION
MEMORY 4O7

STRUCTURES FETCH FIRST
LEVELSECTION

412 SPECIFICATIONS
DESTROY
SECTION
MEMORY

STRUCTURES

411
FETCH SECTION
DATARECORDS

4.09
410 4.08

BUILD SECTION TERMINATE
MEMORY SUCCESS REPORT

STRUCTURES YES NO

Figure 4

Patent Application Publication Aug. 30, 2001 Sheet 5 of 43 US 2001/0018708 A1

501
FETCH REPORT
FOOTER SECTION

SPECS

504

PRINT OBJECTS

503
BUILD SECTION

MEMORY
STRUCTURES

505
DESTROY
SECTION
MEMORY 506

STRUCTURES DESTROY
REPORT
MEMORY

STRUCTURES

Figure 5

Patent Application Publication Aug. 30, 2001 Sheet 6 of 43 US 2001/0018708A1

601
FETCH

DATABASE
RECORDS

603

PROCESS LEVEL
BREAKS

62
RETURN 605

PROCESS LEVEL
BREAKS

6O7
ACCUMULATE
VALUES INTO
TABULAR CELLS YES

TABULAR
SECTION TYPE?

608
DATABASE
OUTPUT
REQ.?

609
PERFORM
DATABASE
OUTPUT
REQUESTS

611 60

PRINT OBJECTS C- ACCUMULATE
TOTALS

Figure 6

Patent Application Publication Aug. 30, 2001 Sheet 7 of 43 US 2001/0018708A1

70
DETERMINE

HIGHEST LEVEL
BREAK

702
709

RETURN LEVEL
BREAKO

NO

YES

703 704
PROCESS TABULAR

TABULARLEVEL SECTION TYPE?
BREAKS YES

705
710

RETURN

FETCHLEVEL BREAK
SPECIFICATIONS

711
RETURN

NO

THIS LEVEL
HAS BROKEN

708

PROCESS CHILD
SECTIONS

Figure 7

Patent Application Publication Aug. 30, 2001 Sheet 8 of 43 US 2001/0018708A1

801
FETCHLEVEL

BREAK
SPECIFICATIONS

THIS LEVEL <=
HIGHEST BREAK,

804

RESOLVE ALL CELLS
IN MATRIX sog

ZERO OUT CELLS FOR
CURRENTLEVEL

806

DATABASE
PERFORM DATABASE OUTPUT REQ?
OUTPUT REQUESTS 808

ROLLUPNUMERIC
CELLS TO NEXT
HIGHER LEVEL

BREAK

807

PRINT OBJECTS

Figure 8

Patent Application Publication Aug. 30, 2001 Sheet 9 of 43 US 2001/0018708A1

901
FETCH OBJECT
SPECIFICATIONS

903

BUILD PRINT OBJECT

904

CALL PRINT APTS

Figure 9

Patent Application Publication Aug. 30, 2001 Sheet 10 of 43 US 2001/0018708A1

1001
FETCH CHLD

SECTION
SPECIFICATIONS

1003

BUILD SECTION
MEMORY

STRUCTURES

OO4

FETCHSECTION
DATA RECORDS

1005

DESTROYSECTION
MEMORY

STRUCTURES

Figure 10

Patent Application Publication Aug. 30, 2001 Sheet 11 of 43 US 2001/0018708A1

Page Header
Section 112 Pye -

Levei Break
Hesde Section

1113

cit - 7|ans Accourt Balance Report

February

7. 05 334

7. S.

7 10

7. BL
7. r f 3, 5 ax fl. s

1C BBL 414, 24.84 2,562.78 -1088

7. C bel
7. 11C BEL(SBP E1E7.50 0370
7. 1C 99LC8 1882 77s

J 1. LGP bS4S5 241 U.d.
7. 1C Sid 101.97

7 1C SS

7 11 S.

Level Break
Footer Sector

115 Jeruay estuary Warch

Company 007C 428,41407 12,64308 4760.5

Page Rooher
Section 1116

Note - The armour ts published in this report are based on incomplete data

Figure 1 1A

Patent Application Publication Aug. 30, 2001 Sheet 12 of 43 US 2001/0018708A1

Page Header
Section 1122

Account Balance Report
Level Break 23

Tine - 1312:54 Header Section

Compary Coc

9.8 lies. Unt

Jeruary

Business Unt

January

Sut inct. Unt

Jafaly

issue ince Unt

Enviary

business Ul

irrillary

tueness Urt

scnuary

98iness Unt

January

9irince Unt

January

usiness Unt

January

Buxilitiss Uni

lani Ary

Business Unt

crusly

Object Accoun:

d4 ecouary

Object Accoun.

Factuary

Object Ascour:

aluay

objeot Accoun:

February

Oujev Auluviii.

1:---- / shliary

Ubject Account

111.21.81 FSolvay

Object Account

Factuary

object Ascours:

Febiuary

object Atooun:

Faolay

oujavi Auuv.

hailay

Object Accoun:

4C 7 Feously

- los

Subsiciary

8. Riis

X

St Caff

2s2.78

Subiciatf

Subsiciarr

o, so

Cube icief

8.8

6-trilid

3.13 -

Subicarf

Figure 11B

.41 at

Patent Application Publication Aug. 30, 2001 Sheet 13 of 43

a . SS

Accour.
Descripticn

Referules - Class 1

everles - Class 2

a Revenues

feet Cocle Clase 1

fact Cocis Class 2

tota dirce, cocta

is Pr'it finiss

NetProfit Report

cuaty

Revenues
73,2(O.CO

14,9C0.00

0C, CO.00

73220.20

1490.0

000000

Expenses

188CO.00

-83, SCOOO

S8,735.00

118920.20

-187 SBSO

Profits A CSS
SS 535 in

Figure 11C

US 2001/0018708A1

ision 132

Level Bres Header 33

Tabular
See or 13

701OD.CO

14,900.CO

OOOOO.CO

SM,80DCO

18,900.CO

- 83,7OD.CC

Patent Application Publication Aug. 30, 2001 Sheet 14 of 43

roop
...|R04305
: R04424

Roaszo

Suther edger inquiry Print O4
Woucher Journal 04

Accourts Payable Paymentoetail rep4
Create Payment Control Groups 04

Print Automatic Payments - Standara FO4.
Payment Analysis Report

FIGURE 2

s

s
g

s
Add Object

US 2001/0018708A1

Patent Application Publication Aug. 30, 2001 Sheet 15 of 43 US 2001/0018708A1

FIGURE 13

Patent Application Publication Aug. 30, 2001 Sheet 16 of 43 US 2001/0018708A1

J.D.Edwards Report Design

Report Footer.
Page Header.
Page Footer.
Group.
Columnar.

Select Business View.
Quick Section...
Data Selection Criteria
Sort Sequence...
Join Sections.

(Owerride Specifications.
Database Output...
Cascade Shift-i-F5

Shift-F4

1400

FIGURE 14

Patent Application Publication Aug. 30, 2001 Sheet 17 of 43 US 2001/0018708A1

J.D.Edwards Report Design. s
Edit Section Objects Associate Layout Help

Report Rendering
". . Untitled:

1500

FIGURE 15

Patent Application Publication Aug. 30, 2001 Sheet 18 of 43

File Edit Section
J.D.Edwards Report Design

Associate Layout Help

Alpha Variable
Numeric Wariable
Date Wariable

Report Time
Database ter.

. . . Report Rendering.

Page Header

FIGURE 6

1503

US 2001/0018708A1

Patent Application Publication Aug. 30, 2001 Sheet 19 of 43 US 2001/0018708A1
- - - - - - - J.D.Edwards Report Design:

Edit Section Objects Associate Layout Help File

Report Réndering
d.dwards & Company
Carstart

Page Header."

1702

FIGURE 17

Patent Application Publication Aug. 30, 2001 Sheet 20 of 43 US 2001/0018708A1

a J.D.Edwards Report Design
Eile Edit Section Objects Associate Layout Help
e Report Rendering

late - Xxxxx J.Edards. Copay - 1503
re. Supplierralyses Report s

EE

1800

FIGURE 18

Patent Application Publication Aug. 30, 2001 Sheet 21 of 43 US 2001/0018708A1

is... . . . - J.D.Edwards Report Design.
File Edit Section Objects Associate Layout Help

Spierstern Relationships update
Tax Area Report

ifax Areas
iTax detail Report

r "Tax ratefarea Report
z-ax Relies setup

FIGURE 19

Patent Application Publication Aug. 30, 2001 Sheet 22 of 43 US 2001/0018708A1

... "... ' '.... .". - - . . " J.D.Edwards Report Design.

File Edit Section Qbjects Associate Layout Help

Column Layout for Supplier Master Report

2001

2000

FIGURE 20

Patent Application Publication Aug. 30, 2001 Sheet 23 of 43 US 2001/0018708A1

J.D.Edwards Report Design.

Eassissary

x-iss

2100

FIGURE 21

Patent Application Publication Aug. 30, 2001 Sheet 24 of 43 US 2001/0018708A1

.", ... J.D.Edwards Report Design

File Edit Section Objects Associate Layout Help
e. ; : Select and Sequence Section Sort Objects

2203

2204

2002

2205

2200

FIGURE 22

Patent Application Publication Aug. 30, 2001 Sheet 25 of 43 US 2001/0018708A1

. . . . J.D.Edwards Report Design
File Edit Section Objects Associate Layout Help

2300

FIGURE 23

Patent Application Publication Aug. 30, 2001 Sheet 26 of 43 US 2001/0018708A1

J.D.Edwards Report Design

2402 1503

Align Middle
Align Bottom

Business AccreSS Al Argurt
Jnt Nurief Nar Align Database Voucheed YD

XXXXXXXXXXXX 99999999 oxodox -9999,999,999.99999 Grid Alignment.

— R- e 240
-

Total Wouchered e

2400
FIGURE 24

Patent Application Publication Aug. 30, 2001 Sheet 27 of 43 US 2001/0018708A1

File Edit Section Objects Associate Layout Help
s J.D.Edwards Report Design w

Report Rendering
J.D.Edwards & Company
Supplier Analysis Report

Page- xxxx

2501.
Business AireSS Arnor

Unit Nutter Woutered Yid

xxxxxxxxxxxx 99999999 XX -9999999.9999999

Total Wochered to for Businest -3,999,999,999,993.99

2303 i
2002

i
2503

FIGURE 25

Patent Application Publication Aug. 30, 2001 Sheet 28 of 43 US 2001/0018708A1

J.D.Edwards Report Design
File Objects Associate Layout Help

X

Properties.
Level Break Header Section

Sassassists
Destroy Ctri--F4 Connect level Break object

Select Business Wiew.
Quick Section.
Data Selection Criteria - 260l
Sort Sequence.
Join Sections.

Override Specifications.
Database Output.
Cascade Shift-F5

s Tile Shift-F4 th9 Ea
of 1 Report Rendering dwards contary

time. oo. 2 Page Header pier Analysis Report
page. xx 3 Supplier Master Report

4 Group Total Section
1503

Business Aress Alpha Armout
lift Nutter Narre Wochered Y 26O2

XXXXXXXXXXXX 99999999 XX -9,999,999,999,999.99

Totalianchered YTD for Business it 3.999999.ggsggggs

s
s

s

FIGURE 26

Patent Application Publication Aug. 30, 2001 Sheet 29 of 43 US 2001/0018708A1

J.D.Edwards Report Design
Objects Associate layout Help

Create d
Properties.
Lewe Break Header Section)

riterrest
Sir ... at assissis cavata - e

Destroy Ctrl+F4 Connect Level Break Object

Select Business Wiew.
Quick Section.
Data Selection Criteria
Sort Sequence.
Join Sections...

260

Owerride Specifications.

Database Output.
Cascade Shift-F5

Tie Shift:F4 ng
hate. xxx. 1 Report Rendering Edwards. Company
Time- xoo. 2 Page Header plief Analysis Report
Page. xx0 3 Supplier Master Report

4 Group Total Section
Business Address Alpha Arourt

Unit Nunner Nante vouchered YO

xxxxxxxxxxx 99.999999 XXXXXXXXXXXXxxxxx xxxxxxxxxxxxxxxxxxxxxxx -9999999999,999.99

2701

Total Wotacheted Yofessness at -9,999,999,999,999.99

s 2702

s

S-4

FIGURE 27

Patent Application Publication Aug. 30, 2001 Sheet 30 of 43 US 2001/0018708A1

J.D.Edwards Report Design
Eile Edit Section Objects Associate Layout Help

- Report Rendering . . .

usiness Address
Unit Nifer

XXXXXXXXxxxx gggg.9999

2801.

FIGURE 28

Patent Application Publication Aug. 30, 2001 Sheet 31 of 43 US 2001/0018708A1

2.902

- s it. '... . JBE Menus - ar e

Bertarian Asts is
. asses

specific business unts that are in

2900

FIGURE 29

Patent Application Publication Aug. 30, 2001 Sheet 32 of 43 US 2001/0018708A1

. . . . J.D.Edwards Report Design-Supplier Analysis (Domestic &
File Edit Section Objects Associate Layout Help

- Report Rendering 7
J.Edwards & compassy
Supplier Analysis Report

Business
Unit Numer Narine Where YTD

XXXxxxxxxxxx 99999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxx 9,999,999,999,999 99

-9,999,999,999,999.99
essessessessessessesses:- --al-ec.- seatsessess assesses asses assacrests

3000
FIGURE 30

Patent Application Publication Aug. 30, 2001 Sheet 33 of 43 US 2001/0018708A1

Eile Edit Section Objects Associate Layout Help

ggsgggggggg sts cox

FIGURE 31

Patent Application Publication Aug. 30, 2001 Sheet 34 of 43 US 2001/0018708A1

se J.D.Edwards Report Design - Supplier Analysis (Domestic)
File Edit Section Objects Associate Layout Help

Report Rendering

usiness Access Alpha Arourt
int Nurer Nane Wolthere

Xxxxxxxxxxxx 99999999 XX .9999999999,999.99

... --Supplierisaster Reportal: 3.
casts assertifr a narrower

3200

FIGURE 32

Patent Application Publication Aug. 30, 2001 Sheet 35 of 43 US 2001/0018708A1

letter 82x11 in m

Source: Upper Tray

FIGURE 33

Patent Application Publication Aug. 30, 2001 Sheet 36 of 43 US 2001/0018708A1

st

Ship to
Actress

Request
Nurther Cate

FGURE 34.
3400

Patent Application Publication Aug. 30, 2001 Sheet 37 of 43 US 2001/0018708A1

-
Extended Cost -99,999,999,999,999,999.99

Business Rules...
Calculations

hple Application - PO Detail - Revisi
its Extended Cast -99.999999999999,999.99

3500

FIGURE 35

Patent Application Publication Aug. 30, 2001 Sheet 38 of 43 US 2001/0018708A1

.
s

initialize pageheader
initialize page footer ist -99.99999999999999999
initiate resortheater
initialize report footer

3600

FIGURE 36

Patent Application Publication Aug. 30, 2001 Sheet 39 of 43 US 2001/0018708A1

-99,999,999,999,999,99999

Businessfiew Column Report Constart
RC ten Nurnber B. Sample Application.
RC Guantity
RC Unit Cost
RC Exteriest

w BC Line are

s 8C Sample Application -
BC Sanpie Application -

Ei - 8C Sarape Application -
Report Constant

FIGURE 37

Patent Application Publication Aug. 30, 2001 Sheet 40 of 43 US 2001/0018708A1

ciate Layout

3. BC Sample Application. Amount. Unit CostBC Sample Appli

BC line Number
BC Sampie Application. it

BC Sample Application. A
BC Sample Application -
BC Sample Application. R
BC Sample Application.
BC Sample Application

380.

FIGURE 38

Patent Application Publication Aug. 30, 2001 Sheet 41 of 43 US 2001/0018708A1

essara 35E,

GetcMaster Fields
Get Lot Number From Next Number

3Get Next Document Nurnber
Get NextEline Number

FIGURE 39

Patent Application Publication Aug. 30, 2001 Sheet 42 of 43 US 2001/0018708A1

a.
lie Edit section objects Associate layout Help

.

e

rhinneNurnber
is BC Sample Application-POStatus Code - Rwapna NamesznameAlpha

Report Wariable

FIGURE 40

Patent Application Publication Aug. 30, 2001 Sheet 43 of 43 US 2001/0018708A1

File Edit Section Objects Associate

Address Number 99999999

Event Rules Design - Sample Application - PO Header
Nurs - - - - - - - -----s - - -- a-- a-ga- --1-e

aggagssssssssssss

from
w R

Get Elaing Name : --

iEE

l, 100

FIGURE 41

US 2001/0018708 A1

PLATFORM-INDEPENDENT PROGRAMMABLE
BATCH PROCESSING ENGINE

BACKGROUND AND FIELD OF THE
INVENTION

0001. This invention relates generally to client/server
data processing Systems, and Specifically to Systems permit
ting applications prepared on a client computer to be Sub
mitted for processing on any of a variety of connected Server
computers, which Servers may be of different platform types.
0002 Modem data processing systems are often imple
mented in “client-Server” configurations in which a number
of "client computers, typically personal computers or
WorkStations, communicate with one or more "server” com
puters and request Such Server computers to perform pro
cessing tasks.
0003. In conventional client-server configurations, each
client computer is required to be compatible in Some manner
with each Server computer So that the client and Server
computers can understand one another. In Some environ
ments, this requirement is easily met, as each client and
Server computer is of the same platform type, e.g., UNIX,
Windows, Macintosh OS. In other environments, special
translation protocols are implemented to permit a particular
client platform type to communicate with a particular Server
platform type.

0004 AS client-server systems become larger and serve
entire enterprises, Such as large corporations or institutions,
conventional techniques for facilitating communication
between and among client and Server computers become
more difficult to use, while the need for processing that is
Seamlessly distributed among the Systems constituent client
and Server computers generally increases.
0005 For example, if a user of a particular client machine
creates a particular report application program that provides
a printed report of general value throughout the organiza
tion, it would be extremely valuable for other users, perhaps
working with clients and Servers of different platform types,
to be able to use the report application program.
0006 Some known systems restrict processing of the
user-created application to the user's client computer in
order to entirely avoid the problems caused by multiple
platform types. Other Systems process the user-created
application on the client computer but allow access to
databases Stored on other computers on the network, typi
cally by the use of a common database protocol Such as the
Standard known as SQL. Input-output Services are typically
restricted either to directly attached devices or devices Such
as printers shared at a workgroup or local area network
(LAN) level. These Solutions may be adequate in Some
environments, but for applications that make intensive use
of database or input-output facilities, Such implementations
result in Significant processing delayS.
0007 Recognizing the need to reduce dependency on
platform types in distributed processing Systems, a number
of known Schemes have been developed that employ a layer
of System Services and protocols commonly known as
“middleware” that operates at a level that is above each
computer's operating System and network facilities but
below each computer's Specific Set of application programs.
For an overview of Such known middleware techniques, See,

Aug. 30, 2001

e.g., P. Bernstein, Middleware. A Model for Distributed
System Services, 39 COMMUNICATIONS OF THE ACM 2
at 86-98 (February 1996), the contents of which are hereby
incorporated by reference as if fully set forth herein.
0008 Still absent from the known art, however, is a
System for allowing a user of a client computer to create an
application program locally and run that application, as
desired, either on the user's own client computer or any
other computer that is connected by a network to the user's
client computer.
0009. In addition, enterprise-wide data processing sys
tems commonly use a variety of databases and input-output
devices, and the need remains for a System to allow Such an
application, regardless of which machine executes the appli
cation, to acceSS any Such database or input-output facilities
that are connected to the network, again without regard to
the type of platform on which Such facilities are imple
mented.

SUMMARY OF THE INVENTION

0010. In accordance with the present invention, a batch
processing engine includes a design tool Subsystem operable
on a client computer that creates a set of Specifications in
response to user input. A processing Subsystem located
either on the client computer or on Some remote computer
performs processing in response to the Specifications. A
middleware Subsystem is used for communication of the
Specifications to the processing Subsystem.
0011. In another aspect of the invention, the specifica
tions are Sent from the client computer to a Server computer
for Storage, and are Sent from the Server computer to the
processing Subsystem for processing.

0012. In another aspect of the invention, the network
includes database facilities, and a database middleware
Subsystem directs access to the database facilities in accor
dance with the Specifications.

0013 Instill another aspect of the invention, the network
includes input-output facilities, and an input-output middle
ware Subsystem directs access to the input-output facilities.
0014. In yet another aspect of the invention, a remote
computer that is processing an application in accordance
with the Specifications Sends to the client computer comple
tion data in response to completion of processing of the
application.

0015. In a further aspect of the invention, a remote
computer processing an application in accordance with the
Specifications Sends to the client computer error data in
response to detection of an error in processing of the
application.

0016. In yet a further aspect of the invention, the input
output middleware Subsystem Selectively routes an input
output data Stream to one of a plurality of input-output
devices and converts the data Stream to a format Suitable for
the Selected one of the input-output devices.
0017. The features and advantages described in the speci
fication are not all-inclusive, and particularly, many addi
tional features and advantages will be apparent to one of
ordinary skill in the art in View of the drawings, Specifica
tion, and claims hereof. Moreover, it should be noted that the

US 2001/0018708 A1

language used in the Specification has been principally
Selected for readability and instructional purposes, and may
not have been Selected to delineate or circumscribe the
inventive Subject matter, resort to the claims being necessary
to determine Such inventive Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 is a block diagram of a system (100) for
data processing in accordance with the present invention.
0.019 FIG. 2 is a block diagram of a batch processing
engine (200), in accordance with the present invention.
0020 FIG. 3 is a flow diagram of processing for a design
tool Subsystem of the batch processing engine illustrated in
FIG. 2.

0021 FIG. 4 is a flow diagram of processing for a
processing Subsystem of the batch processing engine illus
trated in FIG. 2.

0022 FIG. 5 is a flow diagram of the terminate report
Subprocess shown in FIG. 4.

0023 FIG. 6 is a flow diagram of the Fetch Section Data
Records subprocess shown in FIG. 4.
0024 FIG. 7 is a flow diagram of the Process Level
Breaks subprocess shown in FIG. 6.
0025 FIG. 8 is a flow diagram of the Process Tabular
Level Breaks subprocess shown in FIG. 7.
0026 FIG. 9 is a flow diagram of the Print Objects
Subprocess shown in FIG. 4.

0027 FIG. 10 is a flow diagram of the Process Child
Sections subprocess shown in FIG. 7.
0028 FIGS. 11A, 11B, and 11C illustrate exemplary
reports produced by system 100.

0029 FIG. 12 illustrates a user interface object librarian
dialog Screen for adding a new object.

0030 FIG. 13 illustrates a user interface batch engine
librarian dialog Screen for working with version and tem
plates.

0.031 FIG. 14 illustrates a user interface pull-down menu
Screen for creating new Sections.

0032 FIG. 15 illustrates a user interface screen for
Setting page header Section properties.

0033 FIG. 16 illustrates a user interface screen for
inserting objects into reports.

0034 FIG. 17 a user interface screen for setting proper
ties for constants.

0035 FIG. 18 is a user interface screen for setting
properties for Sections.

0.036 FIG. 19 is a user interface screen for selecting
busineSS ViewS.

0037 FIG. 20 is a user interface screen for quick section
Selection.

0.038 FIG. 21 is a user interface screen for selecting and
Sequencing Section Sort objects.

Aug. 30, 2001

0039 FIG. 22 is another user interface screen for select
ing and Sequencing Section Sort objects.
0040 FIG. 23 is a user interface screen for group section
and variable properties.
0041)
objects.

FIG. 24 is a user interface Screen for aligning

0042 FIG. 25 is a user interface screen for report ren
dering.

0043 FIG. 26 is a user interface screen for connecting
accumulated objects.
0044 FIG. 27 is a user interface screen for connecting
level break objects.
004.5 FIG. 28 is a user interface screen for report prop
erties.

0046)
version.

FIG. 29 is a user interface screen for adding a

0047 FIG. 30 is a user interface screen for version
overrides.

0048 FIG. 31 is a user interface screen for data selection
in a Section.

0049 FIG. 32 is a user interface screen for a final version
of a report.
0050 FIG. 33 is a user interface screen for setting up
printing for a report.

0051)
Sections.

FIG. 34 is a user interface screen for joining

0052 FIG. 35 is a user interface screen for selecting
busineSS rules.

0053 FIG. 36 is a user interface screen for event rules
design.

0054 FIG. 37 is a user interface screen for designing a
calculation.

0055 FIG.38 is a user interface screen for an expression
manager.

0056 FIG. 39 is a user interface screen for a business
function Search.

0057 FIG. 40 is a user interface screen for passing
values in a busineSS function.

0058 FIG. 41 is a user interface screen for displaying an
event rule.

DESCRIPTION OF A PREFERRED
EMBODIMENT

0059. The figures depict a preferred embodiment of the
present invention for purposes of illustration only. One
skilled in the art will readily recognize from the following
discussion that alternative embodiments of the Structures
and methods illustrated herein may be employed without
departing from the principles of the invention described
herein.

0060 Referring now to FIG. 1, there is shown a system
100 for data processing in accordance with the present
invention. The operation of system 100 is illustrated by
discussion of the component parts illustrated in FIG. 1. As

US 2001/0018708 A1

illustrated in FIG. 1, system 100 includes a number of client
computers, e.g., 111, 112, and a number of Server computers,
e.g., 121-128, all of which are interconnected by a network
150.

0061. In a preferred embodiment, client computers 111,
112 are implemented using conventional personal computer
WorkStations, Such as conventional machines using the Win
dows operating environment. It should be noted that in an
alternate embodiment, not all of the client computers need
be of the same platform type. For instance, in Such an
embodiment client computer 111 may be a Windows-based
machine, while client computer 112 may be a UNIX-based
WorkStation.

0.062 Similarly, server computers 121-128 may be of a
variety of platforms. For example, in one embodiment Server
computerS 121 and 122 are conventional mid-range Server
computerS operating as UNIX platform machines, while
Server computer 123 is a mainframe host computer using the
MVS operating system.

0.063 Server computers 124 and 125 are conventional
print ServerS Specifically designed to provide certain types of
printing facilities. For instance, in one embodiment print
Server computer 124 is a conventional high Speed shared
access laser printer and print Server computer 125 is a high
Speed shared access line printer. It should be noted that these
devices may or may not operate according to a common
protocol.

0.064 Server computer 126 is a conventional server used
as a repository of report templates as described below.

0065. Server computers 127 and 128 are conventional
database Server computerS Specifically designed to provide
database facilities. In one embodiment, database server 127
is a UNIX-based server computer implementing an Oracle(R)
relational database facility, and database Server 128 is a
Windows-based server computer implementing a SQL
Server relational database facility.

0.066 Clients 111, 112 and servers 121-128 are intercon
nected by a conventional network 150. In a preferred
embodiment, network 150 is implemented by conventional
network hardware and Software for implementation of local
area networks (LANs) and wide area networks (WANs),
providing, for instance, conventional “intranet' connectivity
of computers 111, 112, and 121-128.
0067 Since the various computers connected using net
work 150 are of a variety of platform types, they cannot
interoperate in a conventional manner. Therefore, to provide
the features and advantages discussed above and referring
now also to FIG. 2, system 100 includes a batch processing
engine 200 implemented by the various components of
system 100 illustrated in FIG. 1. Specifically, batch pro
cessing engine 200 includes a design tool Subsystem 210, a
local processing Subsystem 211, a client middleware Sub
System 212, a Server middleware Subsystem 213, an input/
output middleware Subsystem 214, and a database middle
ware subsystem 215.
0068. Design tool subsystem 210 is an application soft
ware program operable on client computer 111. In a pre
ferred embodiment, design tool subsystem 210 provides a
user with facilities for requesting certain Services from
system 100, for instance a report of all customers whose

Aug. 30, 2001

names are stored in system 100 and who reside in the state
of Colorado. In response to user input, design tool Sub
System 210 generates a set of Specifications describing the
processing Services desired by the user of client computer
111. For purposes of illustration, the example of reports is
used for the description below, but other processing Services
are attainable in a similar manner as well.

0069 Client middleware subsystem 212 and server
middleware Subsystem 213 are used to Send messages to
other computers in system 100 through a high level appli
cation programming interface (API) that insulates a pro
grammer of system 100 from concerns about platform
differences among the various computers of system 100.
These conventional middleware Subsystems Send data files
and launch processes acroSS System 100 and also receive
messages back from these processes, Such as information
about proceSS completion or print files that can be viewed
locally, e.g., by client computer 111.
0070 I/O middleware subsystem 214 provides print job
management across system 100 through a high level API
that insulates a programmer of System 100 from concerns
about platform differences among the various computers of
system 100. Subsystem 214, which is conventional input/
output middleware, works in conjunction with a print Server
computer 124 to Spool print jobs requested by one or more
of the computers of system 100. Subsystem 214 ensures
delivery of print jobs and enables print jobs to be stopped,
started, and repositioned. Subsystem 214 further provides
for transformation of print job data Streams from one or
more formats Supported by batch processing engine 200 into
data Streams not Supported by batch processing engine 200
but available for use by print server computer 124.
0071 Database middleware subsystem 215 provides
access to a variety of databases, for instance implemented on
database Server computer 128 or other computers of System
100 through a high level API that insulates a programmer of
system 100 from concerns about platform differences among
the various computers of system 100. Subsystem 215 con
ventionally Supports relational database operations, reads
data from a database in a "logical view manner that is
independent of the physical organization of data; allows
Selection and Sequencing of data, provides the ability to
insert and update data, as well as commitment control (i.e.,
transaction processing) that allows a Series of related
changes to the database to be grouped together. These
changes can Subsequently be committed (i.e., applied) to the
database or rolled back (i.e., canceled).
0072 Specifically, and referring now to FIG. 3, there is
illustrated a flow diagram showing processing for design
tool Subsystem 210. In general, the report Specifications
generated by design tool Subsystem 210 are Stored initially
on the client computer of the user who designed the report,
e.g., 111. The Specifications are conventionally Stored in a
binary format in a data management portion of the design
tool subsystem 210. In a preferred embodiment, the data
management portion is implemented in portable C language
computer code that is executable on any of the client or
server computers of system 100.
0073. When a report is first designed, the specifications
for the report are initially Saved locally in design tool
Subsystem 210 of client computer 111 so that they may be
used as a template for use in creating other reports. The

US 2001/0018708 A1

Specifications of the template are also sent for Storage to
Specification Server 126 So that they may be accessible to a
second user of another computer in system 100. Specifically,
the template is copied, or “checked in,” to Specification
server 126 from the client computer on which the template
was created. The Second user Subsequently copies the tem
plate to the Second user, client, e.g., 112, and uses the
template as desired to create the Second user's own version
of the template for execution. In a preferred embodiment, it
is these versions created from templates that are actually
executed to generate the desired report rather than the
templates themselves.
0.074 Through use of Such versions, users are able to
tailor report templates to their own particular needs. If Such
versions are of direct use to others, the versions may also be
checked in to Servers and thereby be made accessible to
other users. In a preferred embodiment, versions that are
checked in to a Server may be executed directly on that
Server or may be executed remotely on any other computer
of System 100. A given report may Sort and Select data in a
particular way, may request certain output from a database,
may include parameters that affect the logic of how the
report is processed, may identify database Sources and target
locations for database outputs, use a particular layout, and
include other parameters.
0075 Through use of versions, a user may override such
Sorting, data Selection, database output, execution time
parameters, database Source/target identifiers, report layout,
and other parameters of a preexisting report that may not be
applicable or helpful for that user.
0.076 Specifically, processing for design tool subsystem
301 commences by Specifying properties that the user
desires for a report. In a preferred embodiment, these
properties include assignment of report defaults Such as the
font and color of text, numeric Scaling factors for numeric
quantities (e.g., writing numbers in terms of thousands or
millions) for the presentation of numerical data in the report,
a source database from which information for the report will
be obtained, and a target database to which the report's data
will be written. In addition, execution time report parameters
Such as user-defined options for Selecting different depre
ciation methods are also selected. Other properties defining
the report include the number of database records that are
desired to process (Such as the number of matches to Seek),
and whether numerical totals and grand totals are to be
printed. It should be evident that other parameters and
attributes of a report could also be specified. In addition,
report-level C-language program code to perform any par
ticular desired operation may also be selected by a user of
client computer 111 and attached to events constituting the
report, as detailed below.
0.077 Next, processing continues by specifying 302 sec
tion types for the report being designed. In a preferred
embodiment, the available Section types are a report header
Section, a page header Section, a group Section, a tabular
Section, a report footer Section, a page footer Section, and a
columnar section. Referring now also to FIGS. 11A-11C,
there are shown an exemplary report with various Sections.
Referring now specifically to FIG. 11A, there is shown a
columnar Section report 1111 having a page header Section
1112, a level break header section 1113, a columnar section
1114, a level break footer section 1115, and a page footer
Section 1116.

Aug. 30, 2001

0078. A page header section prints at the top of a page
whenever a page break event is issued. A page break event
occurs whenever a page overflow occurs or when a data
level break occurs and the user has specified that a page
break event be issued for this level break. This section is
free-form, meaning that objects can be arranged in any
manner within it.

0079 A level break header section is a section that prints
at a data level break event. In the example of FIG. 11A, this
Section is connected to a company number level break and
prints whenever the company number changes. It is used to
denote the beginning of a set of data sharing the same value
for a given data item. This Section is also free-form.
0080 A columnar section consists of data items arranged
in columns in a row. A column heading occurs above each
item to identify the item. A row is printed for each database
record retrieved. The level breaks that occur in this section
trigger the printing of level break Sections. In a preferred
embodiment this Section is not free-form, and objects are
arranged in a Single row with column headings above, as
shown in FIG. 11A.

0081. A level break footer section is a section that prints
at a data level break event. In this example, the Section is
connected to a company number level break and prints
whenever the company number changes. It is used to denote
the end of a Set of data sharing the same value for a given
data item and typically prints one or more totals for that
item. This section is free-form.

0082) A page footersection prints at the bottom of a page
whenever a page break event is issued. It prints before the
advance to the next page. It is typically used for a footnote,
as shown in FIG. 11A. This section is free form.

0083) Referring now to FIG. 11B, there is shown a group
Section report 1121 including a page header Section 1122, a
level break header section 1123, and a group section 1124.
The page header Section and level break header Section are
as described above.

0084. A group Section, unlike a columnar Section, is
free-form. Data item identifiers are typically placed to the
left of the data item, but can be oriented in any manner in
relation to the data item (e.g., to the right, above, below). A
row is printed for each database record retrieved. The level
breaks that occur in this Section trigger the printing of level
break sections. In the example of FIG. 11 B, the same data
from the columnar report is displayed in a free-form format.
Although the level break footer and page footer Sections do
not exist in report 1121, group Section reports can include
these Sections just as in columnar Section reports.
0085) Referring now to FIG. 11C, there is shown a
tabular Section report 1131 including a page header Section
1132, a level break headersection 1133, and a tabular section
1134. The page header section and level break header
Section are as described above.

0086 A tabular section is a variant on a columnar section,
and consists of data items arranged in columns in a finite Set
of rows that the user defines. a column heading occurs above
each item to identify the item. A row description is defined
by the user for each row to identify the data in that row.
Unlike a columnar Section, database records are not printed
as they are retrieved but rather are accumulated in the

US 2001/0018708 A1

individual cells (i.e., intersections of columns and rows) in
the section until a level break occurs. In the example of FIG.
11C, data are accumulated in the cells until the company
number value changes. If report 1131 was modified to level
break on busineSS unit as well as company number, the user
would define a level break header Section for each business
unit as well and the report would produce a printed page for
each busineSS unit and for each company. Four types of rows
are shown in FIG. 11C. Underline rows are placed before
Total Revenues and Total Direct Costs. The lines Revenues,
Expenses, and ProfitS/LOSS represent text rows. Revenues
Class 1, Revenues-Class 2, Direct Costs-Class 1 and
Direct Costs-Class 2 are inclusion-type rows. These rows
are associated with data Selection criteria that determine the
accumulation of database amounts into cells in the row. Total
Revenues, Total Direct Costs, and Net Profit/LOSS are cal
culation-type rows. A calculation associated with each of
these rows defines a calculation that is to be applied to each
cell in the row. For example, the row total revenues has a
Calculation Revenues-Class 1+Revenues-Class 2 that is
applied to the cells for January, February, and March.
0.087 Referring again to FIG. 3, once the various desired
Sections are specified 302 by the user, processing continues
by designing 303 one of those Sections. Specifically, a
database logical view is associated with the Section, or the
Section is designated as a Section to be printed out where
there is a level break in the data (e.g., information to be
printed out whenever a company name changes in a list of
data pertaining to many companies). For example, Selected
portions of a database table may be defined to be a view and
that view may then be associated with the current Section.
Furthermore, Section defaults are assigned, including in a
preferred embodiment the font and text color for the section
and the numeric Scaling factor if they differ from the values
globally Set for the report. Section print properties are also
assigned, including in a preferred embodiment whether there
is to be a page break after printing or otherwise displaying
the Section, whether a page header is to be printed, and
whether the section is to be visible at all in the printout (as
opposed to not being a portion of the report printout).
Additionally, Section level C-language program code is
Selected by a user of client computer 111 and attached to
events corresponding to the Section. Still further, the user
Specifies inter-Section relationships, Such as parent/child
relationships among Sections and whether to connect level
break headers and footers of the current Section to those of
another Section.

0088 For instance, a report may include company-spe
cific information for each of Several years and the yearly
information for a company may have a child relationship
with respect to the Overall company information. Finally,
database objects or user-defined objects are placed in the
Section by conventional graphical user interface "drag and
drop” techniques in which objects are moved to their desired
locations in the Section by user manipulation of a pointing
device Such as a mouse. For instance, a user may select an
object from a list of available database objects. Upon
Selecting an item, a rectangle appears at the cursor of the
mouse in the Section design window. This rectangle depicts
the dimensions of the object to be placed in the Section.
When the user moves the pointing device in the window, the
rectangle follows. In this manner, the user may visually
place the object in the desired location in the report Section.
By pressing the mouse button, the user creates the Selected

Aug. 30, 2001

object at the location of the rectangle in the Section. In a
preferred embodiment, Such objects include alphanumeric
variables, date-type variables, constants, bit-map images,
lines and other graphics.
0089. Once a section is designed 303, the object proper
ties for that section are specified 304. For each object,
display properties are first assigned, including the font and
text color for the object, a numeric Scaling factor, display
size, formatting, and the decimal presentation used for the
object, underlines, overlines, and boxes used in presentation
of the object, justification of display elements (e.g., text) for
the object, and whether the object is to be visibly displayed.
Other properties are then assigned, including whether the
object is to be treated as corresponding to a global variable
(available throughout the report), whether the object is to
cause printing only when a value corresponding to the object
changes (such as a company name), whether level break
totals for the object are to be printed, whether a grand total
for the object is to be printed, and whether printing of the
object is to be Suppressed for a row in which total values are
provided. For example, a table showing numbers of black &
white and color televisions would not print an object speci
fying “black & white' or “color” in a row providing a total
number of all television Sets. Next, object-level C-language
program code for performance of particular operations is
attached to an event corresponding to the object So that it is
processed with the object, calculation logic, if needed for the
processing of the object, is attached to an event correspond
ing to the object, and the object is mapped to columns in a
database by a dialog Screen asking the user to specify which
element of which database in system 100 corresponds with
the object.

0090. At this point, if the section is not a tabular section,
i.e., corresponding to a spreadsheet-type format, the design
of the section is complete, as indicated by routing 305, and
processing flows to 309 as discussed below. If the section is
a tabular Section, tabular column properties are assigned
306. Specifically, data inclusion properties are assigned as
needed, including attaching column inclusion C-language
program code to an event corresponding to the Section, data
Selection criteria, and column calculation logic. For
example, column inclusion C-language program code can
use an execution time, user-Supplied parameter that defines
the financial reporting period desired for a report. The
C-language program would calculate a year-to-date amount
based on the requested reporting period and this amount
would be accumulated in the column. Data inclusion in a
column could be further affected by adding data Selection
criteria to the column. For example, only budget amounts
could be Selected. This would result in the column accumu
lating only year-to-date budget amounts. A column's data
could also be obtained from calculation of data from other
columns. These other columns could derive their amounts
from column inclusion properties or could themselves result
from calculations.

0091 After assigning 306 tabular column properties,
tabular rows are specified 307. In a tabular section, data are
collected into columns (“horizontal” distribution of data)
through data inclusion properties as described above. These
data are then distributed to the various rows defined for the
table (“vertical” distribution of data). This process occurs for
each record fetched from the database. A data inclusion row
is a row that has data Selection criteria attached to it. The

US 2001/0018708 A1

data Selection criteria determine which amounts included in
each column will be accumulated in a given row. A calcu
lation row, like a column calculation described above,
derives its amounts from a calculation of data from other
rows. These other rows derive their amounts from a data
inclusion row or from calculations if they themselves are
calculation rows. A free-form text row is a row of text that
may be one or more lines in length. Text rows are usually
used for table notation in a tabular report. Underline rows
are lines drawn for each column in a row. They are typically
used for underlines preceding a total.
0092 Row display properties are then assigned, includ
ing row font and text color, numeric Scaling factor, display
size, formatting, and decimal place format, underlines, over
lines, boxes, justification, and visibility. Row level C-lan
guage program code may then optionally be attached to an
event corresponding to the row, and data inclusion properties
are assigned by attaching row data Selection criteria or row
calculation logic to the row.
0093 Processing then flows to specifying 308 tabular cell
overrides. First cell display properties are assigned, includ
ing cell font and text color, numeric Scaling factor, display
size, formatting, decimal places, underlines, overlines,
boxes, justification, and visibility. Cell level program code is
then attached to the cell override, and data inclusion prop
erties are assigned as needed, including attaching cell data
Selection criteria, and cell calculation logic to the cell
override.

0094. At this point, processing flows to a check 309 to
determine whether there are more Sections. If So, the next
section is designed 303 as discussed above. Otherwise, the
design is complete 310, and the Specifications for the report
are Stored on client computer 111 or transferred to Specifi
cation server 127 as directed by the user of client computer
111.

0.095 Processing subsystem 211 directs client computer
211 to perform the processing corresponding to the Speci
fications produced by design tool subsystem 210 when the
user has requested Such processing to be performed locally
(i.e., by client computer 111). Specifically, and referring now
to FIG.4, processing Subsystem 211 performs processing on
report applications designed as discussed above in connec
tion with FIG. 3. Should the user direct a report to be
processed on another computer, e.g., Server computer 121, a
processing Subsystem 218 on that computer Similarly per
forms processing based on the Specifications for the report.
0.096 Traditionally, batch processing includes database
manipulation and report generation. The processes illus
trated in FIG. 4 provide both of these capabilities. Com
bining file processing with reports provides most of the
aspects of traditional batch process jobs. FIG. 4 illustrates
how local processing Subsystem 211 of system 100, or a
processing Subsystem (e.g., 218) of another computer of
System 100, performs Such file and report processing.
0097 Processing Subsystem 211 processes, or “renders,”
reports from the top to bottom for Sections and for top to
bottom and left to right for objects within a section. In
addition, Sections are arranged hierarchically, with Sections
that do not depend on other Sections (i.e., "level one Sec
tions”) being processed before Sections that depend on other
Sections (i.e., "level break header Sections, level break footer

Aug. 30, 2001

Sections, total Sections that provide totaled quantities when
a specified event occurs, children, and custom Sections). All
dependent Sections are processed as if they were objects of
the level one Section upon which they depend. Thus, pro
cessing commences first for level one Sections, top to
bottom, and then for dependent Sections and objects, top to
bottom and left to right, as applicable. The general flow for
each Section being processed is to perform an “initialize
Section” event, a "do Section” event, and an “end Section'
event, as more fully described below. An additional
“advance Section” event is used for Sections that include a
business view attached before the “do section” event; the
“advance Section” event reads the next record of the Speci
fied busineSS View. In a preferred embodiment, local pro
cessing Subsystem 211 allocates memory for each level one
Section and its dependent objects at the time that the Section
is processed, and de-allocates memory when processing for
that Section is complete. In a preferred embodiment,
memory for dependent Sections and objects is not de
allocated until processing for the corresponding level one
Section is complete.
0098. With specific reference now to FIG. 4, if a report
header Section is present, processing of a report by building
401 report-level memory structures. Specifically, memory is
allocated for data Structures to hold report-wide parameters
Such as text font, text color, and numeric Scaling factors.
Next, report header section specifications are fetched 402. A
check is made 403 to see whether such specifications were
found. If So, the memory Structures for holding Section
information are built and populated based on the specifica
tions. This information includes Section-wide information
Such as text font, text color, and numeric Scaling factors
where those are to differ from their report-level counterparts.
Every object in the Section is also constructed in memory at
this point, and custom program logic, known as event rules,
may be executed at this point if custom code has been
provided for this event; otherwise a flag is Set So that when
this event occurs again no Search will be made for Such
non-existent custom code.

0099. In general, an event is an action performed by a
user or System 100 in the processing of a computing task. An
event can be as Simple as tabbing out of a quantity field,
which can initiate a calculation for a “total” column; or it can
be as complex as a change to a database record that initiates
a Series of events. In event rules programming, busineSS
functionality can be attached to particular events according
to the needs of the organization. Changing application
procedures is accomplished by changing the busineSS rules
executed at particular event points, which in many cases
may be accomplished without writing programming code.
Thus, the event rules allow system 100 to operate as a
programmable batch engine.

0100. The business rules mentioned above are reusable,
encapsulated objects that are attached to the event points
described above and initiated when the appropriate event
occurs. For example, a Sales order entry application consists
of a number of busineSS rules and procedures, Such as check
credit history, check inventory availability, commit inven
tory, determine pricing, Select a freight carrier, and So forth.
Because busineSS rules are implemented as polymorphic and
encapsulated objects rather than lines of code in a procedural
program, they can be changed and rearranged independently
of the other objects constituting the application. These

US 2001/0018708 A1

objects are obtained from an object repository or “librarian”
and are attached to event points through a graphical user
interface as described herein. New objects can be conven
tionally created by programmerS in conventional computer
languages that Support dynamically linked libraries, includ
ing C, C++, COBOL, Fortran, and PL/1.
0101 A print objects Subprocess, more fully detailed
below in connection with FIG. 9, is then called 405. After
printing for the report header Section has completed, the
memory structures for the report header are destroyed 406
by de-allocating the memory used for them So that this
memory may be used again for other purposes.

0102 At this point, or if check 403 indicated that there
was no report header Section to process, an attempt is made
407 to fetch report specifications for a first level section, i.e.,
a Section that is not Subordinate to any other "parent
Section. AS described herein, Sections may be hierarchically
arranged So that one Section is nested within another in a
parent/child relationship, and this nesting may be an arbi
trary number of layerS deep. AS first level Sections are
processed, they spawn child Sections based on level breaks
in the data retrieved into the Section. AS previously
described, first level Sections are processed from top to
bottom Spatially in the report, the placement having been
determined through use of the design tool Subsystem 210.

0103) A check is made 408 to determine whether a first
level Section was Successfully fetched, and if So, memory
structures for the section are built 410 and populated based
on the Specifications. This information includes Section
wide information Such as text font, text color, and numeric
Scaling factors, where different from the corresponding
report-level information. Every object in the Section is also
constructed in memory. Database request Strings are con
Structed for data Selection and Sequencing. Event rules may
also be processed at this time if custom code has been
provided for this event; otherwise a flag is Set So that when
this event occurs again no Search will be made for Such
non-existent custom code.

0.104) Next, section data records are fetched 411, as more
fully detailed in connection with FIG. 6, and data for the
Section is printed. When processing of data for the Section is
completed, the memory Structures for the Section are
destroyed 412, and an attempt is made to fetch 407 another
set of first level section specifications. When check 408
indicates that there are no more first level Section Specifi
cations, a terminate report Subprocess 409 is invoked.

0105 Referring now to FIG. 5, there is illustrated a flow
diagram for the terminate report subprocess 409. First, an
attempt is made to fetch 501 report footer section specifi
cations. If a check 502 indicates that specifications for a
footer Section were Successfully fetched, the memory Struc
tures for information pertaining to the footer Section are
constructed 503 and populated based on the specifications.
AS previously explained, this information includes text font,
color, and numeric Scaling factors where they differ from
Superordinate values. Every object in the Section is also
constructed in memory, and event rules are executed at this
time if custom code has been provided for this event;
otherwise a flag is Set So that when this event occurs again
no Search will be made for Such non-existent custom code.
Then, the footer section objects are printed 504 as detailed

Aug. 30, 2001

below in connection with FIG. 9. When footer section
printing is complete, all memory Structures for this footer
section are destroyed 505.
0106 After footer section processing is complete, or if
check 502 indicated that there were no footer sections, all
memory structures for the report are destroyed 506, and
processing for the report is complete.
0107 Referring now to FIG. 6, there is shown a flow
diagram for the fetch section data Subprocess 411 of FIG. 4.
First, an attempt is made to fetch a database record corre
sponding to the Section. Prior to fetching a record, event
rules are executed if custom code has been provided for this
event; otherwise a flag is Set So that when this event occurs
again no Search will be made for Such non-existent custom
code. If an end of data indication is encountered 602, a
process level breaks Subprocess is run, as further described
in connection with FIG. 7, to process all level breaks before
terminating the Section and returning 612 to the previous
process. In one embodiment, a user may specify a maximum
number of records to be processed and the end of data
indication will be triggered once the Specified maximum
number of records has been processed.
0108). If no end of data indication is encountered, a check
is made 604 to determine whether a level break has been
detected. A level break indicates a change in processing from
one Section to another in the hierarchy of nested parent/child
Sections as described above. Prior to testing for a level break,
event rules may be processed if custom code has been
provided for this event; otherwise a flag is set So that when
this event occurs again no Search will be made for Such
non-existent custom code. If a level break is detected, the
process level breaks Subprocess is run 605. In any event, a
check 606 is then made to determine whether the current
Section is a tabular Section type. If So, the values of the
columnar objects in the Section are accumulated into appro
priate tabular rows and cells as determined by the Specifi
cations. Each tabular row and cell of a type known as
TYPE INCLUSION has associated with it data selection
criteria. These are evaluated on a cell-by-cell basis in each
row to determine if the columnar object value should be
added to the cell. Tabular Sections accumulate data and do
not print until a level break or end of data indication occurs.
Once tabular Section processing 607 is completed, proceSS
ing returns to fetch 601 additional database records.
0109) If the section type was not a tabular section as
determined by check 606, a check is made 608 to see
whether database output requests have been made, Such as
an update of an existing record or an insertion of a new
record into the database. If So, the requests are processed
609. If a section is not tabular, it may produce database
output based on database output mapping Specifications.
These specifications determine which objects in the Section
have their current values Sent as output to database items.
This output may be in the form of a record inserted into the
database or Selected values in the record may be updated
from object values in the Section.
0110. In any event, any objects in the section that are
designated to produce totals then have their current values
added to corresponding accumulators for printing upon
occurrence of a data level break. Finally, the print objects
Subprocess is executed 611 to print the objects in the Section,
and processing returns to fetch 601 another database record.

US 2001/0018708 A1

0111 Referring now to FIG. 7, there is illustrated a flow
diagram for the level break Subprocess. First, a determina
tion is made 701 as to the highest level break that has
occurred by comparing prior to current database values that
are designated as level break items. A check is then made
702 to determine whether any level breaks have occurred. If
not, processing returns 709 to the calling process. Other
wise, a check is made 703 to determine whether the current
Section is a tabular Section type. If So, a process tabular level
breaks Subprocess is executed 704 as detailed in connection
with FIG. 8, and processing then returns 710 to the calling
process. If the current Section is not a tabular Section type,
a level break specification is fetched 705. A level break
Specification identifies the object in the report that is being
monitored for a data break and the level at which it occurs.
The level break Specification also carries the current and
previous value for the object to determine when a break
occurs. A flag in the Specification indicates if a report page
break should occur when a break is processed.
0112 A check is then made 706 to determine whether a
level break Specification has been fetched. If no specification
is retrieved, processing returns 711 to the calling process.
Otherwise, a check is made 707 to determine whether the
current level being processed is at a data break. If not,
processing returns to fetch 705 another level break specifi
cation. If the current level being processed is determined to
be at a data break, child Section processing 708 takes place
as detailed in connection with FIG. 10, and processing then
fetches 705 the next level break specification.
0113) Referring now to FIG. 8, there is illustrated a flow
diagram for the tabular level break Subprocess 704. Process
ing commences by fetching 801 level break specifications. A
check is made 802 to determine whether specifications have
Successfully been retrieved. If no specification is received,
processing returns 810 to the calling process. Otherwise, a
check is made 803 to determine whether the current level is
subordinate to the highest level that has had a level break. If
not, processing returns 811 to the calling process. Otherwise,
processing continues by resolving 804 all cells in the current
matrix of the lowest level tabular section. Specifically,
column calculations, followed by row calculations, and
finally cell calculations are performed for this matrix. Tabu
lar Sections print a Section for every level break defined,
starting with the lowest level break that has been defined and
going up through every level including the highest level that
has had a level break. For example, three level breaks may
be defined: Company (the highest), Division, and Cost
Center (the lowest). If a level break occurs for Cost Center
only, then the Section (matrix) is printed only for Cost Center
and the values in the Cost Center matrix are accumulated
into the Division matrix. If the highest level break occurs for
Division, the section is printed for Cost Center and the
values in the Cost Center matrix are accumulated into the
Division matrix. The section is also printed for Division and
the values in the Division matrix are accumulated into the
Company matrix.

0114) Next, a determination is made 805 to see whether
any database output requests have been made, Such as an
update of an existing record or an insertion of a new record
into the database from the rows in the matrix. If so, the
requests are processed 806 based on the corresponding
Specifications. In any event, the print objects Subprocess is
then invoked 807 to print the objects in the section for the

Aug. 30, 2001

current level break. Next, Numeric cells in the current level
break are added 808 to corresponding cells in the next higher
level break. For example, if the current level provides totals
for a division of a company, these values are added to overall
company totals for the next higher level break in the report.
All numeric cells at the current level are then initialized 809
to, Zero in anticipation of Subsequent data, the current level
number is incremented by 1, and the next set of Specifica
tions are fetched 801 as described above.

0115 Referring now to FIG. 9, there is shown a flow
diagram of the print objects Subprocess, e.g., 405. ProceSS
ing commences by fetching 901 the specifications for the
object to be printed. Prior to this fetching, event rules may
be processed if custom code has been provided for this
event; otherwise a flag is Set So that when this event occurs
again no Search will be made for Such non-existent custom
code. If retrieval of the Specifications is not Successful,
processing returns 905 to the calling process. Otherwise, a
print object is built. Specifically, coordinates for the object
on the print page are determined relative to the position of
the last section that was printed. Any object that will not fit
on the page is Suspended from printing until a page advance
occurs and any page header Section or other Section desig
nated to print on a page break has printed. Space is also
reserved at the bottom of the page for a page footer Section
if one is defined. Prior to determining theses print coordi
nates, event rules for the object may be executed if custom
code has been provided for this event; otherwise a flag is Set
So that when this event occurs again no Search will be made
for Such non-existent custom code. After determining the
print coordinates, event rules for the object may be executed
if custom code has been provided for this event; otherwise
a flag is Set So that when this event occurs again no Search
will be made for Such non-existent custom code. The object
is then converted into a printable character String based on
display properties, e.g., edit codes, formatting rules, display
length, display decimals, and the Stored value which may not
be in a printable format. This is done because numeric
matrix cells are Stored in an internal non-printable math
ematical format, i.e., floating point, and call for conversion
to a printable String formattable with commas, decimal
points, credit Signs, and the like prior to printing. When a
page break occurs, event rules corresponding to the page
break are executed if custom code has been provided for this
event; otherwise a flag is Set So that when this event occurs
again no Search will be made for Such non-existent custom
code.

0116. Next, a set of application programming interfaces
(APIs) are called 904 to implement the actual printing. The
APIs call Software code portions appropriate for the type of
computing and printing hardware being used. An I/O
middleware subsystem 214 is used to provide the platform
Specific code to drive the actual printer being used. In this
manner, batch processing engine 200 operates with the same
program code on each Supported platform, with the excep
tion of a small amount of platform-specific middleware 214.
The same approach is used for database accesses using
database middleware system 215. A common set of APIs are
thus used to access a variety of databases for both input and
output of data. These APIs are then implemented in Separate
program code as appropriate for each database. After print
ing the object, event rules corresponding to the end of the
object processing are executed if custom code has been
provided for this event; otherwise a flag is Set So that when

US 2001/0018708 A1

this event occurs again no Search will be made for Such
non-existent custom code. Processing then once again
fetches 901 object specifications.
0117 Referring now to FIG. 10, there is shown a flow
diagram of the process child sections Subprocess 708. Pro
cessing commences by fetching 1001 a child Section Speci
fication for the current parent Section. AS described above,
child Sections may represent a level break header or footer
Section, or they may represent detail information A check is
then made 1002 to determine whether specifications were
indeed retrieved. If not, processing returns 1006 to the
calling process. Otherwise the memory Structures for infor
mation about the child section are constructed 1003 and
populated according to the Specifications. This information
includes Section-wide information Such as text font and
color, and numerical Scaling factors, if different from that
Specified for the report or Superordinate Sections. Every
object in the Section is also constructed in memory, and
database request Strings are constructed for data Selection
and Sequencing. Event rules are also executed at this time if
custom code has been provided for this event; otherwise a
flag is Set So that when this event occurs again no Search will
be made for Such non-existent custom code. Next, Section
data records are fetched 1004 as described above in con
nection with FIG. 6 to retrieve and print data for the child
Section. Since this child section could itself have child
Sections, data level breaks could occur in connection with
processing of this child Section that would cause recursive
child Section processing for Such Subordinate child Sections.
Processing for a parent Section is Suspended while process
ing for Subordinate child Sections takes place.
0118 When all data have been processed for the current
Section, the memory Structures for the Section are destroyed
1005. Event rules for the current section are executed prior
to destroying the data Structures if there is custom code for
the event, and if not a flag is Set So that when this event
occurs again no Search will be made for Such non-existent
custom code. A new child Section Specification is then
fetched 1001, and processing continues as previously
described.

0119 FIGS. 12 through 41 illustrate user interface
Screens that are displayed on a user's computer, e.g., client
computer 111, in connection with operation of system 100.
0120 Referring now to FIG. 12, there is shown an object
librarian user interface screen 1200 illustrating how a new
report is added using system 100. An object librarian win
dow 1201 displays to a user of a client computer, e.g., 111,
a list of previously made report templates. Screen 1200
permits specification of an object type, for example “UBE”
for universal batch engine indicating that the object is a
report template for use with batch processing engine 200.
Other identifying information, Such as System codes, object
names, descriptions, use codes, and the like, are also pro
vided. System 100 includes conventional search facilities to
locate report templates based on Searches for templates that
match any of these criteria Selected by the user.
0121 Referring now to FIG. 13, there is shown a user
interface batch engine librarian dialog Screen for working
with versions and templates. In addition to windows 1201
and 1202 described above, screen 1300 includes a UBE
librarian window 1301 for storing and retrieving templates.
A new template is “checked in” using window 1301; check

Aug. 30, 2001

ing in a template causes the Specifications corresponding to
the template to be stored on specification server 126. Exist
ing templates are “checked out” using window 1301; check
ing out a template causes a copy of it to be retrieved from
specification server 126. Window 1301 also includes a
button labeled “Design' that commences operation of design
tool Subsystem 210 to allow the user to begin designing a
new template or making changes to an existing template. A
“Versions List” button brings the user to a window that
allows the user to add or change report versions. A “Copy
button copies a highlighted template into a new template.
0.122 Referring now to FIG. 14, there is shown a menu
screen 1400 for creating sections. The highlighted “Create”
Selection brings up a Submenu to allow creation of a report
header that prints at the beginning of a report, a report footer
that prints at the end of a report, a page header that prints at
the top of every page, a page footer that prints at the bottom
of every page, a group Section in which fields can be
arranged in any order and position, and a columnar Section
in which fields are automatically arranged across the page
with column headings at the top and detailed information
below. Screen 1400 also permits the user to select properties
of a Section through a Section properties Screen, to connect
level break objects through a Level Break Header Section
Selection, to connect level break or accumulated objects
through a Total Section Selection, to delete a Section through
the Destroy Selection, to Select a busineSS View to associate
with a Section, to Select fields from the busineSS View and
order them on the report through the Quick Section Selec
tion, to select Data Selection Criteria, to select a Sort
Sequence, to joint a child to a parent Section based on fields
common to both Sections using a Join Sections Selection, to
selectively determine which parts of a template will be
overridden in the version created from the template, and to
permit file creation and update using a Database Output
Selection. Thus, various pieces of the template can be
overridden at the Section level, and each piece that the user
wishes to override can be designation through Section over
rides.

0123 Referring now to FIG. 15, there is shown a user
interface Screen 1500 for Setting page header Section prop
erties. This Screen allows Section overrides and attributes to
be set. Window 1501 includes an objects box displaying
objects or fields that the user has Selected and allowing the
user to get to an object properties Screen for any particular
object that is displayed. A “Description” area of window
1501 permits the user to type in a title to describe the
function of this Section, Such as page header or report footer.
Alternatively, if a business view is selected for the current
Section, the DeScription defaults to the name of the business
view. An "Override' area of window 1501 allows the user to
override the properties that have been Set for the report So
that different properties can be used for the current Section.
Properties that can be overridden are font, color, positioning
and Scaling factor. An "Attributes' area allows the user to
indicate whether the Section is a level break header Section,
a total or grand total Section, whether the Section will reprint
on a page break, will cause a page break after it prints, will
not have a page header, or will not be visible (but instead be
used only for intermediate calculations). Screen 1500 also
includes an untitled window 1502 that is used to show the
contents of the current Section and a report rendering win
dow 1503 that is used to show the user what the report being
designed will look like when it is printed.

US 2001/0018708 A1

0.124 Referring now to FIG. 16, there is shown a user
interface screen 1600 for inserting objects into reports.
Screen 1600 includes a pull down menu 1601 allowing the
user to Select different types of objects for insertion into a
report. A constant is an object that can be used to hold text
that does not change; an alpha variable is an object used to
hold alphanumeric information that may change based on
fetched database information, a calculation, or event rules
that assign a value to it; a numeric variable is an object used
to hold numbers, and a date variable is an object used to hold
dates. A Run Time Selection permits the user to add Report
Date, Report Time, and Report Page Number objects. Data
base Item and Dictionary Item Selections allow correspond
ing items to be inserted into a section. Screen 1600 as shown
on FIG. 16 includes a page header window 1602, indicating
that the current section for which objects are to be inserted
is a page header Section and showing the contents of that
section. Screen 1600 further includes report rendering win
dow 1503 as discussed above.

0125 Referring now to FIG. 17, there is shown a user
interface Screen for Setting properties for constants. Screen
1700 includes a constant properties window 1701 allowing
a user to define properties for each constant object that is to
be used in a report. These properties are a title and overrides
for the font and color for the constant object. Screen 1700
further includes a page header window 1702 showing the
contents of the current Section, including the Selected con
stant object. Screen 1700 also includes report rendering
window 1503 as previously discussed.

0.126 Referring now to FIG. 18, there is shown a user
interface screen 1800 for setting properties for sections.
Screen 1800 includes a page header section properties
window 1801 permitting the user to select one or more
objects of a particular Section and redefine properties of
those objects, Such as font, as previously discussed. In the
example illustrated in screen 1800, the user has selected to
override the original font properties for the report by click
ing on a “Font” button, which has resulted in font window
1802 being displayed. Window 1802 permits text font, style,
size, color, and effects (i.e., Strikeout, underline) to be set,
and displays a Sample of text with the Selected properties.
Screen 1800 also includes a report rendering window 1503
and a page header window 1702 as previously discussed.

0127. Referring now to FIG. 19, there is shown a user
interface screen 1900 for selecting business views. Screen
1900 includes a select business object window 1901 that
permits the user to populate a Section with information from
a specific table by associating a business view with that
Section. Window 1901 includes a list of available business
Views, which may be limited by the user entering a particular
System code or business view code. For instance, a busineSS
view code of “400” is used in system 100 to indicate
busineSS ViewS that are of particular relevance to reports, as
opposed to having different primary uses. Available busineSS
ViewS may include joined busineSS ViewS in which two or
more files have been linked together to acceSS fields from the
joined files. Untitled window 1902 displays the contents of
the Selected Section, and the title of this window changes to
the name of the busineSS View as Soon as one of the listed
business view objects in window 1901 is selected. Screen
1900 also includes the page header and report rendering
windows 1702, 1503 previously discussed.

Aug. 30, 2001

0128 Referring now to FIG. 20, there is shown a user
interface screen 2000 for quick section selection. Screen
2000 includes a column layout for Supplier master report
window 2001 and a supplied master report window 2002.
Selection of Quick Section from the menu on Screen 1400 of
FIG. 14 results in display of window 2001 to allow the user
to Select which columns or fields will appear on the report.
The window is entitled “Column Layout . . .” for columnar
Sections, “Quick Section Layout...' for group Sections, and
“Data Dictionary for Quick Section Layout if no
business view has been associated with the section. Window
2001 includes a “Columns not in row” area and a “Columns
in row” area. The former lists the various database items that
are available from the business view attached to the Section;
the latter lists columns that the user has selected from the
former to appear in the report. Once columns have been
Selected to appear in the report, the window also allows the
user to arrange the listed columns in the order that they are
to appear. An “OK” button on window 2001 is used to
populate the current Section with the Selected columns.
Window 2002 displays the layout that has been selected by
the user.

0129 Referring now to FIGS. 21 and 22, there are
shown a user interface screens 2100, 2200 for selecting and
Sequencing Section Sort objects. Screen 2100 is displayed
when a user activates the “close” button on window 2001 of
FIG. 20, and allows the user to indicate which columns or
fields are to be used for Sorting in the current Section. A
Select and Sequence Section Sort objects window 2102 allows
the user to choose and order objects to be Sorted from a list
of objects not Sorted, using the same mechanism as
described in connection with window 2001. In addition,
window 2102 includes a “Properties” button which, when
Selected after highlighting an object in the list of objects to
be sorted, causes a sort properties window 2101 to be
displayed. Window 2101 allows the user to select an ascend
ing or descending Sort order, and to Select whether the
current object is to be used as a level break indicator. AS
discussed previously, Sections can be joined at a level break,
totals can be evaluated at a level break, and level break
header Sections can be triggered at a level break. Window
2101 also allows the user to select whether the current object
is to be used as a page break indicator. Screen 2100 also
includes supplier master report window 2002 as previously
discussed.

0130. Whereas screen 2100 of FIG. 21 illustrates sort
properties for a BusineSS Unit that is a level break data item
Sorted in ascending order, Screen 2200 illustrates Sort prop
erties for a YTD Vouchered Amount that is not a level break
item and that is Sorted in descending order. Specifically, in
FIG. 21, window 2102 shows the selection of “Business
Unit', and window 2101 shows indicates both an ascending
Sort order and a level break. In FIG.22, window 2202 shows
the selection of YTD Vouchered Amount, and window 22.01
shows a descending Sort order and no level break.
0131 Referring now to FIG. 23, there is shown a user
interface screen 2300 for group section and variable prop
erties. Screen 2300 includes a variable properties window
2301 that is displayed when a user double-dicks on a
variable object displayed in another window. Window 2301
lists the title of the variable, as well as its properties. These
properties can be set or changed by the user through window
2301. For example, window 2301 shows a variable object

US 2001/0018708 A1

with a display length of 15 characters, two decimal places,
and an edit code governing display characteristics. Font,
color, Scaling factor, and justification can also be over-ridden
as previously described via this window. In addition,
attributes can be set to determine whether the object is to be
visible or hidden, whether it is to be the result of a calcu
lation (i.e., "derived'), whether it is to be a total or a grand
total, whether it is to be invisible on a line having totals,
whether it is to be of variable length, whether it will only
print when its value changes, and whether it is to be a global
variable available for use in all sections. Screen 2300 also
includes a group total section window 2302 that includes the
variable object for which the user desired to view/set/change
properties, and windows 1502, 2002, and 2204 as previously
discussed.

0132 Referring now to FIG. 24, there is shown a user
interface screen 2400 for aligning objects. When database
items are placed in a Section, they include two objects: a
label that is a constant object type and a variable portion that
holds the database value, e.g.,

Comp any Name XXXXXXXXXXXXXXXXXXXXXXXXXXXX

0.133 where Company Name is the label and the X's
represent a 30 character alphanumeric variable that holds the
name of the company from the database.
0134 Screen 2400 includes a group total section window
2401 and a layout menu 2402. To align objects in a row or
column, a user Selects the objects needing alignment, for
instance here by Selecting items in group total Section
window 2401 for which alignment is desired, selecting a
particular one of those to which the others will be aligned,
and then using the layout menu 2402 to select the type of
alignment desired, i.e., left, center, right, top, middle, bot
tom. The “align database' menu Selection aligns a Series of
the object pairS Such as shown above that are placed verti
cally. For example, the following database items may ini
tially be placed in a Section:

Company Number XXXX
Company Name XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cost Center Number XXXXXXXXXXXX
Cost Center Description XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0135 By drawing a rectangle around these items to group
them together, and then Selecting the constant company
Number as the point of reference for aligning the other
object, the Align database menu Selection from menu 2402
provides the following results:

Company Number XXXX
Company Name XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cost Center Number XXXXXXXXXXXX
Cost Center Description XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0.136 Similarly, the “grid alignment' selection of menu
2402 sets a grid to which objects may be “snapped” when
the user initially designs a report.

Aug. 30, 2001

0137 Referring now to FIG. 25, there is shown a user
interface screen 2500 for report rendering. Screen 2500
includes a report rendering window 2501 that provides a
user with an indication of what the report currently being
designed will look like when it is printed. Window 2501 is
similar to window 1503 previously shown, but in addition
includes a portion 2502 that is highlighted, indicating that
the highlighted Section is currently being worked on by the
user. In this example, highlighting of cells in Supplier master
report window 2002 labeled “Business Unit”, “Address
Number”, “Alpha Name", and “Amount Vouchered YTD"
indicate that this window is currently being worked on by
the user, and the portion 2502 of window 2501 correspond
ing to window 2002 is therefore highlighted by small
squares. Where report rendering window 2501 is displayed
for a report having a new Section with no components yet,
the section is indicated by a small box at the left side of the
report rendering window 2501. Screen 2500 also includes
windows 2303 and 2503 for the other Sections illustrated in
report rendering window 2501.

0.138 Referring now to FIG. 26, there is shown a user
interface screen 2600 for determining which objects in a
main Section are to be accumulated into which objects in a
total section. Screen 2600 includes report rendering window
1503 and a section menu 2601. To connect sections at a level
break, as exemplified in FIG. 26 a user highlights an object
in a total Section representing an amount being totaled, as
indicated by the box 2603(2) surrounding the value in
window 1503. The user then selects the section menu 2601
and the total section choice provided by menu 2601, which
permits a connect accumulated object choice and a connect
level break object choice. The user then Selects the accu
mulated object choice, and after that Selects in report ren
dering window 1503 the object(s) that the user wants totaled,
in this case the object 2602. In a preferred embodiment,
object 2602 is then displayed in a red box to indicate that it
is connected to object 2603.

0139 Referring now to FIG. 27, there is shown a user
interface screen 2700 for connecting level break objects so
as to determine which level break in a main Section triggers
the printing of a total section. Screen 2701 includes menu
2601 as previously described and report rendering window
2701. The user selects the total Section 2702 which becomes
highlighted as indicated by Small Squares, and then Selects
the connect level break object selection from menu 2601.
The user then Selects an object in the main Section, for
example BusineSS Unit that has been designated for a level
break. When the report executes, the total section will be
produced whenever the value for the level break object
changes.

0140 Referring now to FIG. 28, there is shown a user
interface screen for report properties. Screen 2800 includes
a report properties window 2801 and allows the user to set
properties that will affect the entire report. Window 2801
permits the user to Select text font, Style and size; to have
text printed with underline or overStrike; to Scale numeric
values, to print totals only, to allow/SuppreSS the printing of
grand totals at the end of the report; to limit the number of
primary table rows So that only a few records rather than all
records will print; to Select Special forms as desired; to Set
default printing options, and to Select among a number of
available processing options, which are presented in the

US 2001/0018708 A1

form of a list in window 2801. Screen 2800 also includes
windows 1503, 2002, and 2503 as previously discussed.
0141 Referring now to FIG. 29, there is shown a user
interface screen 2900 for adding a version. Screen 2900
includes a version add window 2901 that permits a user to
add a version of a template. The user Selects a versions list
button from UBE librarian window 1201 to cause a versions
list window 2902 to be displayed. The versions list window
2902, as well as the version add window 2901, are displayed
with the group name of the current template. Version add
window 2901 provides areas for providing a version name,
a version title, a number (either 1 or 0) to indicate whether
processing options are to be displayed when the report is
Submitted, and description in free-form text to describe in
greater detail the purpose of the report. Screen 2900 also
includes previously discussed window 1202.
0142 Referring now to FIG. 30, there is shown a user
interface Screen 3000 for version overrides. Screen 3000
includes a section specification window 3001 that allows a
user to Select which specifications of a version the user
wishes to override. A version is an exact copy of the template
from which it was made, So Such overrides allow a user to
make Slight changes as desired when working with versions.
Section specification window 3001 allows the user to select
Section layout, if the user wishes to change the arrangement
of objects in the Section or add/delete objects. Section
specification window 3001 also permits the user to make
changes to the Section Sort and Sequence, Section data
Selection, and Section database output as discussed above.
Screen 3000 also includes previously discussed windows
1503, 2303, 2002, and 2503.
0143 Referring now to FIG. 31, there is shown a user
interface Screen 3100 for data selection in a section. Screen
3100 includes a criterion design window 3101 and a literal
window 3102. To have data selection in a section, the user
Selects that Section and Selects a pull down menu choices for
data Selection and defining Section criteria. Criterion design
window 3101 presents the user with a number of items to
Select, Such as "Amount-Vouchered YTD', a number of
comparison operations, e.g., = or >, and a number of items
against which the previously Select item is to be compared.
Alternatively, window 3102 allows the user to compare the
previously selected item to a literal value provided by the
user, a range of Such values, or a list of Such values. Thus,
the user can use Screen 3100 to direct the selection, for
instance, of all entries having Vouchered year-to-date
amounts between 45,000 and 60,000. Screen 3100 also
includes previously discussed windows 1503, 2002, and
2503.

0144. Referring now to FIG. 32, there is shown a com
pleted report design. All three Sections of the report are
shown in a report rendering window 3201 at the top of the
design, followed by individual windows 3202-3204 for each
Section.

0145 Referring now to FIG. 33, there is shown a print
Setup dialog that appears when the user Submits a report for
execution. The user can Select a printer on the network,
paper orientation (portrait or landscape), and size and type
of paper. An options button provides printer features that
typically do not require changing, Such as dot resolution and
color/monochrome Selection. A network button allows the
user to explore a network for a printer.

Aug. 30, 2001

0146 Referring now to FIG. 34, there is shown a user
interface screen 3400 for joining sections. Screen 3400
includes a join child section to parent window 3401 that
allows a user to associate a child Section with a parent
section. Window 3401 provides the user with choices to
show only joined child objects, to join on a level break, and
to show all the objects in the child and parent Sections that
are available to be joined or unjoined. Screen 3400 also
includes other windows 3402-3404, examples of which have
been previously discussed.

0147 Referring now to FIG. 35, there is shown a user
interface screen 3500 for selecting business rules. Screen
3500 includes an edit menu 3501 that permits the user to
select a business rules choice. Referring now also to FIG.
36, there is shown a user interface Screen 3600 for event
rules design. Screen 3600 includes an event rules design
window 3601 in which the user may initiate the process of
attaching custom code to an event. Window 3601 further
provides a menu 3602 in which the user may select at what
event during processing the custom code should be
executed. In the example of FIG. 36, the DO SECTION
event is Selected. This event occurs at the Start of printing a
Section, before any objects in the Section have been printed.

0148 Referring now to FIG. 37, there is shown a user
interface screen 3700 for designing a calculation. Screen
3700 includes an assignment window 3701 that allows a
user to connect custom code to an event. In the example of
FIG. 37, the user has Selected an assignment by pressing an
"assign' button. Performing an assignment involves Select
ing a target from a left-hand listing box and a Source from
a right-hand listing box. The left-hand box shows all objects
that are available to the Section for assignment. The right
handbox shows only those objects that are valid for assign
ment to the Selected target object. Thus, a user connects Such
custom code without resorting to any C-language program
ming. Pressing a “sysfunc' button of window 3601 allows
the user to perform certain System level functions Such as
hiding or showing a Section or Skipping a database record,
again without the need for any C-language programming.
The user can also add conditional Statements to the custom
code Such as if/else logic or while loops without writing
C-language code by pressing an if/while button of window
3601. The user can also perform complex calculations
without writing C-language code by pressing an “f(x)'
button on window 3701. Where additional functionality is
desired beyond the capabilities already mentioned, the user
can press the functions button and Select a business function,
i.e., custom C-language code for a desired task.

0149 Referring now to FIG. 38, there is shown a user
interface screen 3800 for an expression manager. Screen
3800 includes an expression manager window 3801 that
allows a user to define complex expressions by Selecting
objects from a list of available objects and pressing opera
tion buttons. Advanced functions, Such as trigonometric
functions, are also Selectable from a separate Submenu.
0150 Referring now to FIG. 39, there is shown a user
interface Screen 3900 for a business function search. Screen
3900 includes a PO header event rules design window 3901
and a business function search window 3902. Business
function search window 3902 appears when a user selects a
“functions” button from event rules design window 3901.
Window 3902 permits a user to find and connect C-language

US 2001/0018708 A1

custom code to a particular event (in this case DO SEC
TION) during the processing of the report. These program
modules, known as busineSS functions, are categorized by a
System code, a category code, and a use code. This catego
rization, along with a textual description, facilitates location
of a desired busineSS function in a repository that may
include hundreds of Such busineSS functions.

0151 Referring now to FIG. 40, there is shown a user
interface screen 4000 for passing values in a business
function. Screen 4000 includes a business function-values to
pass window 4001 that appears after Selecting a busineSS
function. Most busineSS functions require certain parameters
to be provided. For example, a function that performs
depreciation calculations requires a depreciation method
parameter So that the function can perform the appropriate
calculation. Window 4001 allows the user to map objects
available to the Section to the parameters required by the
business function. Screen 4000 also includes previously
described window 3901.

0152 Referring now to FIG. 41, there is shown a user
interface screen 4100 for displaying an event rule. Screen
4100 includes an event rules design window 4101 that
shows the entire custom code definition connected to an
event after completing the processing described in connec
tion with FIGS. 37-40. In the example illustrated in FIG. 41,
a business function will be called.

0153. From the above description, it will be apparent that
the invention disclosed herein provides a novel and advan
tageous system for enterprise-wide data processing using a
batch processing engine. The foregoing discussion discloses
and describes merely exemplary methods and embodiments
of the present invention.
0154 As will be understood by those familiar with the
art, the invention may be embodied in other Specific forms
without departing from the Spirit or essential characteristics
thereof. Accordingly, the disclosure of the present invention
is intended to be illustrative, but not limiting, of the Scope of
the invention, which is set forth in the following claims.
What is claimed is:

1. A programmable batch processing engine, comprising:
a design tool Subsystem operable on a first computer that

creates a Set of Specifications in response to user input;
a processing Subsystem adapted to perform processing in

response to the Specifications, and
a middleware Subsystem providing communication of the

Specifications from the design tool Subsystem to the
processing Subsystem.

2. An engine as in claim 1, wherein the processing
Subsystem is implemented using the first computer.

3. An engine as in claim 1, wherein the processing
Subsystem is implemented using a Second computer.

4. An engine as in claim 1, further comprising a Second
computer, wherein the Specifications are Sent from the first
computer to the Second computer for Storage, and are sent
from the Second computer to the processing Subsystem for
processing.

Aug. 30, 2001

5. An engine as in claim 1, further comprising a network
having database facilities and further comprising a database
middleware Subsystem adapted to direct access to the data
base facilities in accordance with the Specifications.

6. An engine as in claim 1, further comprising a network
having input-output facilities and further comprising an
input-output middleware Subsystem adapted to direct access
to the input-output facilities in accordance with the Speci
fications.

7. An engine as in claim 1, wherein Said processing
Subsystem is implemented using a Second computer adapted
to Send to the first computer completion data in response to
completion of processing in accordance with the Specifica
tions by the Second computer.

8. An engine as in claim 1, wherein Said processing
Subsystem is implemented using a Second computer adapted
to Send to the first computer error data in response to
detection of an error in processing according to the Speci
fications by the Second computer.

9. An engine as in claim 6, wherein the input-output
middleware Subsystem is adapted to Selectively route an
input-output data Stream to one of a plurality of input-output
devices and to convert the data Stream to a format Suitable
for the Selected one of the plurality of input-output devices.

10. A data processing method, comprising:

defining a set of Specifications for an application;

Storing the set of Specifications on a specifications server,
the Specifications thereby being available to a plurality
of users,

Sending the Set of Specifications to a processing Subsystem
for processing, and

Sending the results of the processing to one of Said
plurality of users.

11. A method as in claim 10, further comprising directing
access to database facilities in accordance with the Specifi
cations by using database middleware.

12. A method as in claim 10, further comprising directing
access to input-output facilities in accordance with the
Specification by using input-output middleware.

13. A method as in claim 10, further comprising Sending
completion data from the processing Subsystem in response
to completion of processing in accordance with the Speci
fications by the processing Subsystem.

14. A method as in claim 10, further comprising Sending
error data from the processing Subsystem in response to
detection of an error in processing in accordance with the
Specifications by the processing Subsystem.

15. A method as in claim 12, further comprising Selec
tively routing, by the input-output middleware, an input
output data Stream to one of a plurality of input-output
devices and converting the data Stream to a format Suitable
thereto.

