WO 2005/078681 A2 || 0000 000 0 000 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
25 August 2005 (25.08.2005)

AT OO R

(10) International Publication Number

WO 2005/078681 A2

(51) International Patent Classification’: G09B
(21) International Application Number:
PCT/IE2005/000014

(22) International Filing Date: 17 February 2005 (17.02.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/544,558 17 February 2004 (17.02.2004) US
60/626,920 12 November 2004 (12.11.2004) US
(71) Applicant (for all designated States except US):

THRU-U.COM LIMITED
Rutland Street, Cork (IE).

[IE/IE]; Granary House,

(72) Inventors; and

(75) Inventors/Applicants (for US only): CAREY, Tadhg,
Martin [IE/IE]; Hazelgrove, Well Road, Cork (IE).
LYNCH, Thomas, Noel [IE/IE]; 147 Beech Park, Call-
incollig, Cork (IE). MADDEN, Anne-Marie [IE/IE];

(74)

(81)

(84)

Newtown, Rathangan, County Kildare (IE). FLYNN,
Emmett, Edward [IE/IE]; 9 Glasheen Road, Glasheen,
Cork (IE). CAREY, Carole [IE/IE]; Hazelgrove, Well
Road, Cork (IE).

Agents: O’BRIEN, John, A. et al.; c/o John A. OBrien
& Associates, Third Floor, Duncairn House, 14 Carysfort
Avenue, Blackrock, County Dubin (IE).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: AN E-LEARNING SYSTEM AND METHOD

4

XML Files,
Engine

.

Server

nterne\

Student
Computers

(57) Abstract: A control engine
(12) downloaded by a server (1) to
a student computer (2) instantiates
panel objects (16) and multiple media
objects (15) linked to each panel object
(16). At any one time multiple media
objects (15) operate simultaneously
and in synchronism to generate
multiple display and sound outputs
for comprehensive learning output and
student interaction. The media objects
(15) operate autonomously, without
even knowing their places in their
respective hierarchies, thus allowing
dynamic updates from the server
(either server-driven or student-driven).
Synchronization is achieved by the
panel object activating the multiple
relevant media objects for a panel and
the media objects using time value
attributes to control activation and
termination times. The media objects
access (84)a stacking mechanism
(82) in real time to determine a linked
panel or media object to implement
an operation in response to an event
such as progression to a next panel. In
addition to distributing objects in real
time, the stacking mechanism (82) also
dynamically modifies some objects by
scripting or method invocation.

Course
Requests

WO 2005/078681 A2 I} N1 NDVYH0 A0 000 0 000

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — without international search report and to be republished
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, upon receipt of that report

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-1-

“An e-learning system and method”

INTRODUCTION

Field of the Invention

The invention relates to e-learning or “computer based learning” systems in whichh

there is dynamic interaction in real time between the system and the student.

Prior Art Discussion

At present, e-learning systems have evolved to the stage of utilizing audio and visual
media to convey information. However the student experience still in many cases falls

short of the learning experience in a real class environment.

US6155840 describes a system and method for distributed learning. This system
creates a graphical display representative of a classroom, and allows selection of data
streams which are displayed simultaneously on different computers. A video camera
provides a real time video feed from a presenter. However, the need for live data

streams imposes limitations.

In systems which output content from storage rather than live feeds, the general
approach has been to emulate physical books or instruction manuals. For example, fox
technical expertise learning such as oil industry training the approach has been to
emulate the instruction manuals and indeed there is often a tendency for students to

simply print out the content rather than engage interactively with a learning system.

The invention is therefore directed towards providing a learning system and operating

method for improved content output and student interaction.

SUMMARY OF THE INVENTION

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

2D

The invention provides a method of operation of a computer-based learning system,

the method comprising the steps of:

a student computer executing control engine code to instantiate a plurality of
media objects in real time to launch a course, each media object having code

and attributes for autonomously outputting content from a content source;

the control engine, in response to an event, activates a plurality of said media
objects for simultaneous and synchronized operation to provide the plurality of

content outputs together as a panel in a student interface; and

the control engine dynamically maintains relationships between the media

objects according to real time updates from a server.

By having multiple media objects operating as described there is a very rich learning
experience, with conveyance of information via multiple channels and many

opportunities for student interaction.

In one embodiment, the control engine instantiates a panel object for each panel.

In one embodiment, the panel object executes control engine code to activate the

media objects for its panel.

In one embodiment, a media object responds to a real-time event by accessing a stack

mechanism to determine its links to other media objects or the panel object.

In one embodiment, the stacking mechanism is dynamically updated in response to
download of updates by the server. These updates may be student-driven or server-

driven.

In one embodiment, the update comprises a mark-up language file, and the student

computer parses the mark-up language files to perform an update.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

23

In one embodiment, each media object makes a request to the stacking mechanism

using a generic method call.

In another embodiment, the stacking mechanism recognizes the calling media object

by its identifier transmitted with the request.

In one embodiment, the stacking mechanism returns an object, and the requesting
media object uses the returned object to perform an interactivity operation in

synchronism with the other objects.

In one embodiment, the stacking mechanism stores media and panel objects associated

with identifiers of linked objects.

In one embodiment, progression from one display panel to another display panel on
the student computer is in response to an event generated by student input at a button
controlled by a media object associated with a first panel object, said media object
accesses the stacking mechanism to retrieve a second panel object, and the second
panel object activates linked media objects to render panel visual displays and

generate output sound.

In a further embodiment, direction of a course is dynamically modified by on-the-fly
modification of the stacking mechanism in response to an event raised by the student

interface.

In one embodiment, the media objects automatically poll the stacking mechanism to

determine relationships in real time.

In one embodiment, the stacking mechanism performs dynamic modification of media

objects.

In one embodiment, the stacking mechanism comprises scripting objects, each of

which is programmed to dynamically modify the code of a requesting media object, by

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

_4-

modifying a primitive object and inserting it as a contained object in the requesting

media object.

In one embodiment, the stacking mechanism performs method invocation on media

objects stored in the stacking mechanism.

In a further embodiment, the group of media objects linked with a panel object self-

synchronize for co-ordinated output of content for a panel.

In one embodiment, each media object has as an attribute an activation time value

counted from a base reference.

In one embodiment, each media object has a termination time value attribute counted

from the activation time.

In one embodiment, the base reference time is time of linking of the media objects for

a panel in response to an event.

In one embodiment, each media object comprises a plurality of groups of attributes, at
least one of said groups including display screen positional and dimensional values,

and time data}.

In one embodiment, at least one media object contains a contained object.

In one embodiment, said media object has an attribute acting as a root for the

contained object, followed by contained object attributes.

In one embodiment, said contained object attributes include synchronization time
parameters, based on time references within a time range of time attributes of the

containing object.

In one embodiment, the control engine launches a course by dynamically instantiating

the media objects in response to an instantiation file received from the server.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-5-

In one embodiment, the instantiation file comprises mark-up language tags, including
a root tag for each media object to be instantiated, each root tag being followed by
parameter values, and the control engine parses the instantiation file to identify the

root tags and use the parameters to apply the media object’s attributes.

In one embodiment, a media object generates interlude entertainment not directly

related to learning content of a course.

In one embodiment, said media object includes a timer for self-activation at random

intervals.

In one embodiment, a media object generates a video of a presenter presenting course

content.

In one embodiment, a media object generates graphics and dynamic animations.

In one embodiment, the animations are synchronised with the presentation.

In one embodiment, a media object generates bullet points synchronised with a video

presentation.

In one embodiment, a media object generates a summary of bullet points of a full

chapter.

In one embodiment, a media object maintains a database of evaluation questions, and

generates an evaluation set of questions for response by the student.

In one embodiment, the media object applies a time limit on each question.

In one embodiment, a media object generates simulations.

In one embodiment, a media object controls the level at which a simulation is

generated according to student progress.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-6 -

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of the Drawings

The invention will be more clearly understood from the following description of some
embodiments thereof, given by way of example only with reference to the

accompanying drawings in which:-

Fig. 1 is a diagram showing operation of an e-learning system of the invention

at a high level;

Figs. 2 and 3 are flow diagrams showing launching of a system on a student’s

computer;

Fig. 4 is a diagram showing the structure of a media object for real time

synchronized content output and interaction;

Fig. 5 is a time-line diagram for synchronization of operation of objects during

a course;

Fig. 6 is representation of structure of a panel object for controlling multiple

media objects for a single panel;
Fig. 7 is a diagram showing progression from one panel to another;

Fig. 8 is a flow diagram showing real time interfacing between objects for

synchronised media output and student interaction; and
Fig. 9 is a diagrammatic representation of a panel as viewed by a student.

Description of the Embodiments

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-7 -

Referring to Fig. 1 an e-learning server 1 receives requests from student computers 2
for e-learning courses. To satisfy such requests it downloads XML instantiation files
for a control engine. The XML files contain text content and references to other
content such as video sequences. The network is in this embodiment the Internet,
however, it may alternatively be an intranet or other suitable network. As described in
more detail below, there is full download to allow the student computer to operate
autonomously with synchronized execution of media objects to recreate a real class
environment because each object generates a different output which is co-ordinated in
real time with the other objects. This is achieved without need for live data streams
from cameras or other devices. The system thus presents a course to a student in a
manner which engages, even entertains the student. This is very important as it means
the student looks forward to the next unit of the course and often will complete it more

quickly and more completely retain the information.

Technical Architecture: Launch

Referring to Fig. 2 XML documents 10 and media-rich content files 11 are processed
by a control engine 12 when resident on a student computer. The engine 12 includes
object oriented classes for instantiating content/presentation/interactivity (“widget” or
“media”) objects, as well as its core control code. The control engine 12 uses the
XML documents 10 to instantiate the media object classes in real time at launch to
provide media objects for the course to be executed on the student’s computer 2. In
Fig. 2, each media object 15 is linked to a panel object 16. Thus, the system when

launched on the student computer 2 has a high level architecture as shown in Fig. 2.

Each panel object 16 is linked with multiple media objects 15, each having code and
attributes. The media objects are instantiated directly from the XML documents 10
which are downloaded. The media objects 15 are polymorphic, and thus allow
excellent versatility in course presentation and interactivity. As described in more
detail below there is ongoing dynamic instantiation and termination of media objects
and modification of the links between them to cater for varying learning requirements

in real time, as in a real class setting.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

8-

The control engine code which is downloaded may be executed by a control engine
object, or by a panel object. Also, a panel object may perform the role of a media

object in addition to the role of activating multiple media objects for a panel.

The course which is played on the student computer 2 is driven at any one time by a
panel object 16 and multiple media objects 15. These operate in an autonomous
manner to the extent that they include all required code to output content, receive any
student inputs, and importantly co-ordinate their operations among each other under
overall control of the current panel object 16. Furthermore, because the student
computer 2 only requires an XML file 10 to re-instantiate media and/or panel objects
the course may be dynamically modified in real time through interaction between the

student computer 2 and the server 1.

Referring to Fig. 3, in more detail the XML file 10 is loaded by the student computer
in step 21 and is parsed in step 22. Parsing reads an object tag in step 23 which is an
instruction to instantiate a new object. In step 24 it reads an object type, which
provides sufficient information to allow it to choose a class from which to instantiate
the object 15 or 16, and this occurs in step 25. It should be noted that a panel is really
also a media object, being so referred because it also has the role of assisting with
synchronization of all media objects for simultaneous execution. The computer 2 then
uses data read during parsing to determine object parameters and write them as
attributes to the objects. As indicated by step 27, this is repeated for each object tag
detected during parsing of the XML file 10. When all objects have been instantiated
they are all linked in a batch to establish a hierarchy as shown diagrainmatically in
Fig. 2. This step establishes a time reference time t0 The launch method then ends, as

indicated at 29.

Referring to Fig. 4 the structure of a particular media object 40, called a “movie

widget”, is shown. The attributes are shown as linked to a root 41, and include:

42: Physical display and synchronization parameters such as left co-ordinate and
display height, and a time attribute. These control where on the screen the

content frame occurs. The identifier ID is used by other objects to link with it.

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

43:

44.

45:

-9.

This group of attributes also includes a time increment t1-t0, before start of the
execution of the object, counted from the linking step 28 (time t0). This
attribute allows the object 40 to self-activate without need for an instruction

from its panel object.

Colour attributes for image display.

Header attributes. These also include a time increment t4-t1 counted from
object activation for termination. Again, this allows a large degree of

autonomous co-ordination.

A root, “videoBullet”, for a contained object having various attributes as set
out in this group. Again, the sub-object has an identifier ID, and a
synchronization time interval t3-t2 counted from the (arbitrary) time when a
user interactive input is made to activate it to termination of activity. The
dimensional and positional attributions in the group 45 are with respect to

those of the group 43 of the containing object 40.

The various synchronization times are shown on a single time-line in Fig. 5. The

primary reference in object linking followed by activation of the object 40, and during

its activation a user interactive input can be made at any time, t2. The contained object

then renders a display at t3, a pre-set interval t3-12 after this input. The object 40

ceases executing at time t4.

It will be appreciated from the above that the various media objects are largely self-

synchronized, the role of the panel object being to activate them and to play a role

during user interaction, as described in more detail below.

Referring to Fig. 6 the structure of a panel object 60 is shown, again by way of its

attributes which are coupled with the relevant methods in real time. There is a root

node 61 linked with a panel source XML document. This example is very simple,

however some panel objects include content output attributes.

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-10-

Referring to Fig. 7 there is a simple user-driven progression from one panel, 70, to the
next, 75. A “NEXT” button, controlled by a media object, is pressed. This causes the
object 15 for the NEXT button to link with the panel object 16 for the next panel. The
link to the next panel object can be dynamically modified by XML downloads to a

stacking mechanism described below.

In more detail on this feature, referring to Fig. 8, a group 81 of one panel object and
four media objects operate in a synchronized manner to generate outputs and handle
interactivity for comprehensive learning. One of the media objects receives an event
generated by the student interface. To operate in response to this instruction the object
needs to “know” its place in the object hierarchy and indeed the identity of the
controlling panel object. The server 1 downloads code for the student computer 2 to
generate a stack 82, called a “REX (Runtime Execution) Stack”. The REX Stack 82 is
dynamically updated in real time in response to received XML files 83. An object 81
makes a request 84 to the REX Stack 82 for the identity of the linked panel object.
This request is made using a generic REX Stack call method:

1. get object with identifier <name>

2. search stack for object with matching identifier

3. return underlying object to caller

The REX Stack sees what media object 81 is making the request 84 and, using its
table automatically determines the correct panel or media object to return with the

response 85. The table is dynamically updated by XML from the server.

Thus, with this object interfacing mechanism each media object does not need to
know its place in the object hierarchy, and so very little modification 83 with low
bandwidth communication can dynamically modify the grouping of synchronized

objects.

The REX Stack 82 comprises a table of objects 15 and 16, each linked with other
object identifiers. The REX stack 82 is a simple container of objects. These objects
have two members, an object and an ID. The object is the instance of the object itself.

The ID is a unique identifier that is used to reference the object. Objects can be

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-11 -

pushed onto the stack by specifying either to push the object onto the stack in the
XML file or by simply using the following code within the REX Stack;

RexObject Icl_obj = new RexObject(lcl_object, "object1");

The REX stack allows for objects not to be reloaded/re-instantiated from XML file
updates. This is useful in cases when the object's previous state needs to be
maintained. For example: if a radio button state in a panel needs to be maintained then
push the radio button object onto the stack. The next time that panel is displayed the
radio button will have the state it last had. When objects are loaded they are
initialised, however objects on the stack have already been initialised and may not
need to be initialised again so it is important that the object's re-initialise themselves

correctly. This is especially true when attaching mouse listeners.

Retrieving Objects from the REX Stack

To retrieve an object from the REX stack the requesting object uses the following

code;

Object 1cl_object;
RexObject 1cl rexObject;

lcl_rexObject = RexStackAndCommandController.getObjectByID("object1");
lcl_object = (Object)lcl_rexObject.getUnderlyingObject();

in which the retrieved object is “object1”.

Purging Objects from the REX Stack

Sometimes it is necessary to remove objects from the REX stack. The following code

is used by the REX Stack in response to an XML instruction;

RexStackAndCommandController.removeObjectByID("object1™);

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-12-

Examples of Media Objects

The following are examples of media object attributes

Container Media Object

XML Parameters

left . left position of the display

top . top position of the display

width : width of display

height . height of display

type : class name of the display to be created

id : identifier for the display

readOnly : flag indicating whether this display is read only
disabled . flag indicating whether this display is disabled
widgetStyle . the rendering style to use for this display

time (t1-t0) : the time from initialisation that this object should be displayed

pushToRexStack : flag indicating that this object should be pushed to the REX stack

WidgetStyle

Description

WidgetStyle contains information on the rendering parameters for a object’s display.

Attributes

font . the font to use

fontSize . the font size to use

fontUnderline . flag indicating whether this font should be underlined
fontBold . flag indicating whether this font should be displayed in bold
antiAliasOff : indicates that anti-alias rendering be turned off

fontFeature : what type of special feature should be applied to the font
drawAlign : indicates how drawing should position itself

foreColour : the foreground colour for painting

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

213 -
backColour : the background colour for painting
backGroundType : the type of background that should be used, i.e. the type of

border and fill
backGroundOpacity : the opacity that the background should be painted with

ShapeWidget
Description
ShapeWidget draws the shape specified by the rendering information contained in

WidgetStyle.

Operation

Draws a shape.

A “StaticTextWidget” is a media object which displays a string on the screen.

Attributes

textX . the x offset from the left position to draw the text
textY . the y offset from the top position to draw the text
text . the actual text to display

textColour : the colour to draw the text

Panel Object

The PanelWidget loads an XML object file and places all objects in itself using the

control engine code.

Attributes
panelSource : the XML file to use

ListOfPanelsObject

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-14-

Description
The ListOfPanelsWidget contains a list of XML files. It is possible to navigate

between panel objects by clicking on the next and previous arrows provided with it.

At the time t0 the first XML file is loaded and added to the panel. When the user
clicks on either the next of previous button the objects are detached and the newly

loaded objects are added. The ListOfPanelsWidget does no actual drawing.

Attributes

panelSources : an XML file to use for a panel

Movie Media Object

This loads a movie, and the movie cann also have associated bullets.

At time t0 the movie is loaded. The control of playback of the movie must be done by

other media objects associated with the same panel object.

Attributes

movieSource . path to the mo-vie file to use
movieTitle . title of the mowvie
movieDescription : description of the movie
videoBullet : the video bullet

videoBulletChild : the child of the video bullet

Video Bullets
Video bullets are displayed one at a titme. However, if a video bullet has children these
are displayed on the screen with it although not all at the same. Also note that video

bullets have the following tags; left, top, width, height, time, text, textX, textY.

Movie Panel Media Object

This is a movie player that has a number of buttons that implement the video chapter

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-15-

screen functionality of a thru-u.com application. It executes when the full screen is

verified by the movie.

This object consists of a number of buttons which implement the video chapter screen
functionality. The bullets, help, full text and evaluation all launch in a separate frame.

Once the movie is loaded the object synchronises the playback of the video and the

display of bullets.

Attributes

movieSourceFile : path to the movie object XML file

movieBulletsFile : path to an XML file for the bullets

movieFull TextFile : path to an XML file containing the full text of the chapter
movieEvaluatonFile : path to an XML file containing the evaluation

Circuit Diagram Media Object

The circuit diagram object is a drawing area for any type of circuit. It is intended as a

base class for specific circuits. It contains circuit information and draws it if needed.

Attributes

circuitCellWidth : width of a cell in the circuit
circuitCellHeight : height of a cell in the circuit
numCircuitCellsX : the number of columns in the circuit
numCircuitCellsY : the number of rows in the circuit

drawCircuitGrid : draws the actual grid

Timed Evaluation Media Object

This provides the functionality of an evaluation object with a timer. The object
presents Questions as in EvaluationWidget but with a limited time to answer as set in

XML file (t4-t1).

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-16 -

Attributes
numSeconds : the number of seconds (t4-t1) the user will get to answer each

Question

Scripting Media Object

This displays a button on the screen. This button is scriptable so therefore a REX

script can be written in it’s XML that when it is clicked it will execute the REX script.

Button

— on Click

For i — # commands

executecommand

REX Stack

Referring again to Fig. 7 the REX Stack provides the ability to be able to create
objects and call methods from an XML file. It does this because some objects can
have generic functionality, i.e. they will behave differently based on what context they
are used in. For example a “ThruuButton” when clicked should be able to carry out
any number of operations. Therefore the REX Stack 82 provides a set of objects and a
method of calling functions within these objects so that this generic operation can be

coded in the XML files rather than adding specific code to objects.

The REX Stack has three object types; rexString, rexInteger, rexObject. All rex
objects must be constructed using the newRex command tag. All constructors must
take an ID as one of the arguments. The other arguments are dependent on what type
of object is required. A rexString takes a string as a constructor argument, a rexInteger
takes a numeric value as a constructor argument and a rexObject can take a rexString,
a rexInteger, a RexObject, no arguments or any combination of rex object types. All

newly created rex objects are automatically placed on the REX stack.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-17 -

The newly created RexObjects will have two members; an ID and an object. The
object type is dependent on what the XML writer specifies at the construction of the
object. However the construction of rex objects is more sophisticated in XML than in

java.

rexString

Construction

The rexString constructor takes two arguments, an object ID and a string. The object
ID is the ID used to identify this new string. The next parameter is the value of the
rexString which is itself a string. The following XM 1. shows how rexString object is

created;

<newRexString>
<rexObjectID>string1 </rexObjectID>
<rexStringValue>this is a test string</rexStringValue>

</newRexString>

The newRexString command will now create a RexObject with the following

members;
D . stringl
Object : type =java.lang.String. value = "this is a test"

rexInteger

Construction

The rexInteger constructor takes two arguments, an object ID and a numeric value.
The object ID will be the ID used to identify this new integer. The next parameter is
the value of the rexInteger which is a numeric value. There is no Boolean rex object
type for the time being so rexInteger can be used to represent false (0) and true (1).

The following XML shows how to create a rexInteger object;

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-18 -

<newRexInteger>
<rexObjectID>number1</rexObjectID>
<rexIntegerValue>40</rexIntegerValue>

</newRexInteger>

The newRexInteger command will now create a RexObject with the following

members;

D : numberl

Object . type =java.lang.Integer. value = 40

rexObject

Construction

A RexObject needs an object ID, an object type and then can have constructor
arguments. Because a RexString and a RexInteger have pre-defined types, i.e.
java.lang.String and java.lang.Integer, they do not an object type parameter. However
because a RexObject can be anything the type must be defined at construction. Also,
the object can be constructed using a number of arguments or it can be created with no

arguments. The following shows how to construct RexObjects

No arguments

<newRexObject>
<rexObjectID>image1</rexObjectID>
<rexObjectType>Image Widget</rexObjectType>

</newRexObject>

The newRexObject command will now create a RexObject with the following

members;

D : imagel

Object : type=ImageWidget

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-19-

It is important to note that the construction of an object must match the existing
constructors in code, e.g. for the above there must be the following constructor in

ImageWidget;

public
ImageWidget()
{

Otherwise REX will fail.
Constructor with arguments

<newRexObject> ‘
<rexObjectID>image1</rexObjectID>
<rexObjectType>Image Widget</rexObjectType>
<ctorList>
<stackID>string1</stackID>
<stackID>number] </stackID>
</ctorList>

</newRexObject>

The newRexObject command will pull the objects referred to as stringd and number1
off the REX stack, retrieve the underlying object and pass these parameters to the
constructor of ImageWidget. Again the constructor must match the parameters being

supplied by REX. In this case the constructor would be;

public

ImageWidget(String str_name, Integer cl_number)

{

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

220 -

Invoking Methods in an Object from REX

It is possible to invoke methods in an object by using REX in an XML file. The rex
command is invokeMethod. It takes as its parameters the REX stack ID of the object
to invoke the method of, the name of the method to invoke and argurments to the
method (if any). Again the REX arguments must match the arguments that the method

would use. The following shows how to invoke methods in REX.

No arguments

<invokeMethod>
<rexObjectID>imagel</rexObjectID>
<methodName>initWidget</methodName>

</invokeMethod>

Arguments

<invokeMethod>
<rexObjectID>image! </rexObjectID>
<methodName>setLeftPos</methodName>
<args>
<stackID>number1</stackID>
</args>

</invokeMethod>

Dynamic XML 83 for the REX Stack 82

For certain objects such as “ThruuButton” and “ClickyText” it is possible to add a rex
block into the object. The rex commands will be parsed and added to the rex
command list for that object. Once that object is clicked the commands ira the list are

executed one by one, first in first out.

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

_21 -

Dynamic Modification of Media Objects

It is possible for a media object's functionality to be extended beyond the scope of the
compiled code. This can be achieved b scripts in the object's XML definition. A
number of objects exist that are unique to the REX stack. These objects all
communicate directly with the REX stack, thes control engine, and a media or pamel
object's inner methods and attributes. The scripts consist of commands that are used in
conjunction with the REX stack and the control engine to allow for extended
functionality of a media or panel object. The commands can be divided into two typ es;
constructors and method invocation. Some prigmitive object types must exist to allow
objects to be created at run time via the scripting mechanism. In the script
implementation three basic object types exist; rexString, rexInteger and rexObject. By
using these REX objects media and control o bjects can be constructed dynamically
based on user input. These can be either instantiated as stand-alone media or pamel
objects or inserted as contained objects within existing media objects. The second
command type is method invocation. This conramand type allows for an object on the
REX stack to have its methods invoked. By wrriting the scripts in the XML definition
of an object it allows for an objects functionality to be unique or dependent on the

context in which that object is being used

Operation of System as Seen by Student

Multiple media objects 15 are synchronized at the same time to provide a rich
educational experience. A simple example is shown in Fig. 8, in which one media
object 15 generates a video sequence 100 of a lecturer speaking, another object 15
generates a text box 101 with summary text timed slightly in advance of it being
spoken by the lecturer. Also, another media object 15 generates a display 102 of, for
example, a triangle and a dot, and allows the usser to move the dot closer to one cormer
of, for example, a cost-time-performance (in yproject management terms) triangle in
order to demonstrate a learning concept. Other media objects simultaneously generate
buttons for selection of full text display (button 103) and of return to start of topic
(button 44). This is only one example. The control engine allows the student to

activate a media object to output a humorous (““brain break™) video sequence such as a

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

-22 .

clip of a cartoon caricature of the lecturer dancing. This may alternatively be activated

autonomously by the media object itself, according to a timer, (set by a time attribute).

A combination of media objects 15 operating in synchronism are activated by a panel

object 16 receiving an event, typically from the student interface.

Thus, the panel objects 16 simultaneously activate various widgets to help clearly
communicate the information, allow interactivity, and provide engaging entertainment
diversions. Also, because of the software architecture, there is a very fast
(instantaneous as perceived by the student) response to a user input at a particular
display. To give an example, for a Gantt chart output the processor executes media
objects in synchronism to generate the overall display, the plot background, and the

individual bars.

It has been found that the entertainment media objects provide passive entertainment
in a similar manner to “crashing out” in front of a TV, without the student leaving the

computer. They provide a “brain-break”, to help maintain student’s concentration.

It will be appreciated that it is very simple for the course provider to generate a fresh
course product. Once the content is provided, an operator simply generates XML
instantiation files to specify how to instantiate the various objects and modify the

REX Stack. The courses are thus modular and extensible.

It will be clear from the above that all content, presentation, and interactivity is
handled by the media and panel objects. These are all similar in general struéture, and

are polymorphic for versatility.

Referring again to Fig. 9 the combination of outputs shown is very effective for both
conveying the necessary information and at the same time entertaining the student and
capturing his/her attention. In general, the following features have been found to be

very advantageous in a combination of some or all.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-23-

Video presentation of course material. The material is presented in a video
presentation. The presenter is on screen throughout the chapter presentation to
create the perception of human contact and a ‘hand holding” mentor
throughout the presentation of the core course material in the chapters. The
other outputs below are generated in synchronism for very effective
communication with the student. At least some of these outputs allow student

inputs.

Graphics and dynamic animations. Graphics and dynamic animations are
presented during the video presentation to help with visualisation of the

concepts being presented in the chapters.

Bullet Points 1: Bullet points summarising the chapter content appear on the
computer screen and are timed to coincide with when the presenter makes the

particular point in the video presentation.

Bullet Point 2: pop-up feature: There is a facility to bring up on screen all of
the bullet points from a chapter by pressing an icon - to assist speedy revision

of the key points in the chapter.

Full Text. The full text of the chapter is available at any time while viewing a

chapter by clicking on an icon.

Examples: Examples relevant to the subject matter are available in the e-
learning/ e-training product to help bring relevance and further understanding

of the e-learning/e-training course material/subject matter.

Evaluation: an evaluation of each chapter is incorporated into the product. This
evaluation places a time limit on each question. The questions are pulled from
a random database, to help ensure that if the e-learner fails to pass the
evaluation on a chapter, the participant will be presented with a different range,
or partially different range questions on a subsequent sitting of the evaluation.

This puts pressure on the participant to re-study the material to get a better

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

_24-

understanding of the material rather than simply trying a random re-sit of the

evaluation.

- Simulator. The products will have a simulator, whicka simulates scenarios,
which help the participant use the principles and knowleclge contained in the e-
learning/e-training course. The simulators will function -to help the participant
learn by simulating real life circumstances in computer game type environment
to assist learning/training by doing and by ‘playing’. The simulators will
typically progress from one level to another in ascending degrees of difficulty.
So that once a participant has mastered the scenarios/problem solving/tasks on
one level to a satisfactory degree, they are permitted by the simulator to
progress to the next level, which presents them with a higher level of

scenario/problem solving/tasks to complete.

- Brain Break. This is a short cartoon/interlude which is available during the use
of the product and which serves the purpose of distracting the participant
temporarily to give them a break from the e-learning/e-training task without
them having to disengage from the e-learning/e-training product. For example,
it may be a cartoon sketch showing the tutor of the video presentation making

a mistake in doing what he or she is teaching the student to do.

These features allow e-learning to much more closely achieve the “seeing and doing”
- training in a real training environment. This is recognized as being a particularly
effective mechanism for learning, as demonstrated by the fact that young children
learn naturally in this manner. Heretofore, computer based learning has not been

particularly successful at recreating this learning approach.

The invention is not limited to the embodiments described but may be varied in
construction and detail. For example, the entertainment (“brain break”) output may be
generated other than by objects as described, such as by bein.g incorporated in the

control engine or by a hand-coded program.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

-25.

A method of operation of a computer-based learning system, the method

comprising the steps of:

a student computer executing control engine code to instantiate a plurality
of media objects in real time to launch a course, each media object having
code and attributes for autonomously outputting content from a content

source;

the control engine, in response to an event, activates a plurality of said
media objects for simultaneous and synchronized operation to provide the

plurality of content outputs together as a panel in a student interface; and

the control engine dynamically maintains relationships between the media

objects according to real time updates from a server.

A method as claimed in claim 1, wherein the control engine instantiates a panel

object for each panel.

A method as claimed in claim 2, wherein the panel object executes control

engine code to activate the media objects for its panel.

A method as claimed in claims 2 or 3, wherein a media object responds to a
real-time event by accessing a stack mechanism to determine its links to other

media objects or the panel object.

A method as claimed in claim 4, wherein the stacking mechanism is

dynamically updated in response to download of updates by the server.

A method as claimed in claim 5, wherein the update comprises a mark-up
language file, and the student computer parses the mark-up language files to

perform an update.

10

15

20

25

30

WO 2005/078681 PCT/IE2005/000014

10.

11.

12.

13.

14.

226 -

A method as claimed in any of claims 4 to 6, wherein each me=dia object makes

a request to the stacking mechanism using a generic method call.

A method as claimed in claim 7, wherein the stacking mechanism recognizes

the calling media object by its identifier transmitted with the request.

A method as claimed in claim 8, wherein the stacking mech.anism returns an
object, and the requesting media object uses the returned object to perform an

interactivity operation in synchronism with the other objects.

A method as claimed in any claims 4 to 9, wherein the stacking mechanism

stores media and panel objects associated with identifiers of limmked objects.

A method as claimed in any of claims 4 to 10, wherein progxession from one
display panel to another display panel on the student computer- is in response to
an event generated by student input at a button controlled by a media object
associated with a first panel object, said media object accesses the stacking
mechanism to retrieve a second panel object, and the second panel object
activates linked media objects to render panel visual displays and generate

output sound.

A method as claimed in claim 11, wherein direction of a course is dynamically
modified by on-the-fly modification of the stacking mechanism in response to

an event raised by the student interface.

A method as claimed in any of claims 4 to 12, wherein thhe media objects
automatically poll the stacking mechanism to determine relationships in real

time.

A method a claimed in any of claims 4 to 13, wherein the stacking mechanism

comprises means for dynamic modification of media objects.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

15.

16.

17.

18.

19.

20.

21.

22.

23.

227 -

A method as claimed in claim 14, wherein the stacking mechanism comprises
scripting objects, each of which is programmed to dynamically modify the
code of a requesting media object, by modifying a primitive object and

inserting it as a contained object in the requesting media object.

A method as claimed in claims 14 or 15, wherein the stacking mechanism
performs method invocation on media objects stored in the stacking

mechanism.

A method as claimed in any of claims 2 to 16, wherein the group of media
objects linked with a panel object self-synchronize for co-ordinated output of

content for a panel.

A method as claimed in claim 17, wherein each media object has as an

attribute an activation time value counted from a base reference.

A method as claimed in claim 18, wherein each media object has a termination

time value attribute counted from the activation time.

A method as claimed in claims 18 or 19, wherein the base reference time is

time of linking of the media objects for a panel in response to an event.

A method as claimed in any preceding claim, wherein each media object
comprises a plurality of groups of attributes, at least one of said groups

including display screen positional and dimensional values, and time data.

A method as claimed in any preceding claim, wherein at least one media object

contains a contained object.

A method as claimed in claim 22, wherein said media object has an attribute
acting as a root for the contained object, followed by contained object

attributes.

WO 2005/078681 PCT/IE2005/000014

10

15

20

25

30

24.

25.

26.

27.

28.

29.

30.

31.

32.

.08 -

A method as claimed in claim 23, wherein said contained object attributes
include synchronization time parameters, based on time references within a

time range of time attributes of the containing object.

A method as claimed in any preceding claim, wherein the control engine
launches a course by dynamically instantiating the media objects in response to

an instantiation file received from the server.

A method as claimed in claim 25, wherein the instantiation file comprises
mark-up language tags, including a root tag for each media object to be
instantiated, each root tag being followed by parameter values, and the control
engine parses the instantiation file to identify the root tags and use the

parameters to apply the media object’s attributes.

A method as claimed in any preceding claim, wherein a media object generates

interlude entertainment not directly related to learning content of a course.

A method as claimed in claim 27, wherein said media object includes a timer

for self-activation at random intervals.

A method as claimed in any preceding claim, wherein a media object generates

a video of a presenter presenting course content.

A method as claimed in any preceding claim, wherein a media object generates

graphics and dynamic animations.

A method as claimed in claim 30, wherein the animations are synchronised

with the presentation.

A method as claimed in any preceding claim, wherein a media object generates

bullet points synchronised with a video presentation.

10

15

20

WO 2005/078681 PCT/IE2005/000014

33.

34.

35.

36.

37.

38.

39.

.29 .

A method as claimed in any preceding <laim, wherein a media object generates

a summary of bullet points of a full chapter.

A method as claimed in any preceding claim, wherein a media object
maintains a database of evaluation questions, and generates an evaluation set

of questions for response by the student.

A method as claimed in claim 34, wherein the media object applies a time limit

on each question.

A method as claimed in any preceding claim, wherein a media object generates

simulations.

A method as claimed in any preceding claim, wherein a media object controls

the level at which a simulation is generaxted according to student progress.

A computer based learning system for performing a method as claimed in any

preceding claim.

A computer program product comprising software code for performing
operations of a method of any preceding claim when executing on one or more

digital computers.

WO 2005/078681 PCT/IE2005/000014

A

XML Files,

Engine
2 /

Student
Computers

1/8

Server

Course
Requests

Internet

S

@;

:

Fig. 1

WO 2005/078681 PCT/IE2005/000014

2/8
11
K XML Documents
Content Files ___“Eli___

(e.g. video)
Content, & Media
Classes.
Core Controllimg Code

ﬂnstant'ate\
16

Panel Object

WO 2005/078681 PCT/IE2005/000014

3/8
21— N Load XML Run Time Instantiation
By Panel Object
y Implementing
22— Parse XML Control Engine

A 4

Read Object Tag — "\ 23

y

A 4

Read Object Type T 4

A 4

Retrieve Class & L T~ 55

Instantiate

y

Read Parameters, Write as L 26
Attributes

Another
Object Tag
?

28— (| Linkall media objects | _ time ref t0
To panel object

End 29

l Fig.3

WO 2005/078681

41

] type

— left

— ID

——Time t1-t0

4/8

—1 top 42

—— width AJ

— height

PCT/IE2005/000014

40

J

font

43

— frontsize \

- drawAlign

—backGroundOpacity

red

widgetE:]—(4—0—-—IZ]~

widgetStyle [;]—(4—H—jj—

>

Movie Source

movieTitle

— Time t4-t1

movieDescription

videoBullet [;j——(4—-4—)3———

1..00

Green

foreCoIou@—(anjt

blue

red

“backCoIour[;‘]—(e |

Green

blue

L backGroundType

| type

— left

[top

45

— width

L1 height

— 1D

— Time t3-t2

— text Fig.4

— Text X

PCT/IE2005/000014

WO 2005/078681

5/8

S
Aejdsig Aeldsig
Palqo pauleuo) P2[q0 ndug SSIBARY Bunjury
SjeuIuLa | PaUIBIUOD) D1RAIDY SAIPRISIU] teClltle 19[q0
< I _ | _ |
b3 o €1 awp e T3 owp 01 o

WO 2005/078681

6/8

PCT/IE2005/000014

&
62
51\/ Panel Panel J
: > Source
Obiject (XML)
Fig. 6
70
L} 1]
[1 [] First Panel
[Next |
75
L) [1 []
|:| ’:| Second Panel

Fig. 7

WO 2005/078681

Run Time

Interactivity

Panel

Object
Request

=

7/8

81

84

REX Stack

82

.

PCT/IE2005/000014

<+— Student Interaction

P.O
Selected by REX

85

Dynamic XML

Fig.8

L83

WO 2005/078681

PCT/IE2005/000014
8/8

101
Summary Text >

\
Cost 102

100—) 0 /
Performance Time
Full Text Return
/ / Next

103

Fig. 9

L 104

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

