wO 2008/018962 A 1 |0 00 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I
International Bureau

(43) International Publication Date
14 February 2008 (14.02.2008)

(10) International Publication Number

WO 2008/018962 Al

(51) International Patent Classification:
GOGF 9/45 (2006.01) GOGF 9/00 (2006.01)

(21) International Application Number:
PCT/US2007/015404

(81)
(22) International Filing Date: 3 July 2007 (03.07.2007)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
11/499,191 4 August 2006 (04.08.2006) US
(71) Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052-6399 (US).
(34)

(72) Inventors: DUFFY, John, Joseph; c/o Microsoft Corpo-
ration, One Microsoft Way, Redmond, WA 98052-6399
(US). MAGRUDER, Michael, M.; c/o Microsoft Corpo-
ration, One Microsoft Way, Redmond, WA 98052-6399

(US). GRAEFE, Goetz; c/o Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052-6399 (US).
DETLEFS, David; c/o Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: SOFTWARE TRANSACTIONAL PROTECTION OF MANAGED POINTERS

START
200

(57) Abstract: Various technologies
and techniques are disclosed that provide
software transactional protection of man-
aged pointers. A software transactional
memory system interacts with and/or

PROVIDE A COMPILER (E.G. THAT EMITS CALLS TO A SOFTWARE
TRANSACTIONAL MEMORY SYSTEM AS APPROPRIATE) 202

includes a compiler. At compile time, the
compiler determines that there are one or
more reference arguments in one or more

code segments being compiled whose
source cannot be recovered. The compiler

PASSED BY REFERENCE TO SEPARATELY COMPILED CODE SEGMENT

CALLED CODE SEGMENTS
204

AT COMPILE TIME, THE COMPILER DETERMINES THAT, IN ONE OR MORE CODE|
SEGMENTS BEING COMPILED, THERE ARE ONE OR MORE VARIABLES BEING

THAT THE SOURCE OF THE VARIABLE CANNOT BE RECOVERED iN THE

executes a procedure to select one or more
appropriate techniques or combinations
thereof for communicating the sources
of the referenced variables to the called
code segments to ensure the referenced

S, 80

'

variables can be recovered when needed.

VARIABLES TO THE CALLED CODE SEGMENTS
206

THE COMPILER EXECUTES A PROCEDURE TO SELECT ONE OR MORE
APPROPRIATE TECHNIQUES OR COMBINATIONS THEREOF (E.G. FATTENED
BY-REFS, FATTENED BY-REFS WITH ENUMERATIONS/STRUCTURES, STATIC

FATTENING, ETC.) FOR COMMUNICATING THE SOURCES OF THE REFERENCED

Some examples of these techniques
include a fattened by-ref technique, a static
fattening technique, a dynamic ByRefInfo
type technique, and others. One or more
combinations of these techniques can be
used as appropriate.

,

THE COMPILER MODIFIES THE CODE SEGMENT(S) AS APPROPRIATE
IMPLEMENT THE SELECTED TECHNIQUE(S) AND CREATES AN EXECUT

208
I

TO
ABLE

END
210

WO 2008/018962 A1 | DA 00 0000010000

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, P, — asto the applicant’s entitlement to claim the priority of the
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, earlier application (Rule 4.17(iii))
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Published:
— with international search report
Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of

patent (Rule 4.17(ii)) amendments

10

15

20

25

30

WO 2008/018962 PCT/US2007/015404

SOFTWARE TRANSACTIONAL PROTECTION
OF MANAGED POINTERS
BACKGROUND

[001] Software transactional memory (STM) is a concurrency control mechanism
analogous to database transactions for controlling access to shared memory in concurrent
computing. A transaction in the context of transactional merﬁow is a piece of code that
executes a series of reads and writes to shared memory. A data value in the context of
transactional memory is the particular segment of shared memory being accessed, such as
a single object, a cache line (such as in C++), a page, a single word, etc.

[002] A software transactional memory system must implement transactional
semantics for all memory operations, otherwise atomicity and isolatioh are compromised.
Object-based STMs use a per-object concurrency control mechanism: each object contains
“metadata” used by the STM for concurrency control (a kind of lock). This requires that,
at the point of invoking a transactional operation on a field of an object, the .obj ect’s
identity can be discovered. But even object-based systems have data not stored in objects:
e.g., static and local variables. STMs may transct such data in a different fashion.
Unfortunately, in a software system that permits taking an address of a data item and
passing this address to separately compiled functional units, often the source of the data
item cannot be recovered. As an example, consider this C# code:

class Clss {

int m_fld;

static int s_fld;

}

void a() {
intj=7;
Data d = new Clss();
int[] arr = new int[1];
b(ref j);
b(ref d.m_fld);
b(ref Clss.s_f1d);

10

15

WO 2008/018962 PCT/US2007/015404

b(ref arr[0]);
}

void b(ref int x) {
atomic {
X++;
}

}

[003] This code examples above illustrate the classic problem. When method b is
compiled, the runtime argument that will be supplied for the parameter x is not known.
Yet the caller, a, calls b with four different types of values, each of which refers to a type
of location which utilizes different concurrency control mechanisms. Generally, object-
based STM systems ensure transactional semantics for static variables, local variables

(locals and arguments), and instance fields or array elements in different ways, meaning b

must somehow recover the source of the argument x.

10

15

WO 2008/018962 PCT/US2007/015404

SUMMARY

[004] Various technologies and techniques are disclosed that provide software
transactional protection of managed pointers. A software transactional memory system
interacts with and/or includes a compiler. At compile time, the compiler determines that
there are one or more reference arguments in one or more code segments being compiled
whose source cannot be recovered. The compiler executes a procedure to select one or
more appropriate techniques or combinations thereof for communicating the sources of the
referenced variables to the called code segments to ensure the referenced variables can be
recovered when needed. Some examples of these techniques inclﬁde a fattened by-ref
technique, a static fattening technique, a dynamic ByRefInfo type technique, and others.
One or more combinations of these techniques can be used as appropriate.

[005] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the

claimed subject matter.

10

15

20

25

WO 2008/018962 PCT/US2007/015404

BRIEF DESCRIPTION OF THE DRAWINGS

[006] Figure 1 is a diagrammatic view of a computer system of one
~ implementation.
[007] Figure 2 is a high-level process flow diagram for one implementation of the

system of Figure 1.

[008] Figure 3 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in using a fattened by-ref technique to allow the
identity of the object(s) to be recovered.

[009] Figure 4 is a diagram that includes a code segment illustrating a code
segment typed by a developer in av programming language.

[010] Figure 5 is a diagram that includes a code segment of one implementation
that illustrates how the code segment of Figure 4 is modified in the called function using
the fattened by-ref technique described in Figure 3

[011] Figure 6 is a diagram that includes a code segment of one implementation
that illustrates how the calling function is modified using the fattened by-ref technique
described in Figure 3.

[012] Figure 7 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in using a fattened by-ref with
enumerations/structures technique to allow the identity of the object(s) to be recovered.

[013] Figure 8 is a diagram that includes a code segment illustrating a definition
of a by-ref argument descriptor for one implementation as used in the technique described
in Figure 7.

[014] Figure 9 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in using a static fattening technique to allow the

identity of the object(s) to be recovered.

10

15

WO 2008/018962 PCT/US2007/015404

[015] Figure 10 is a diagram of one implementation that illustrates some
exemplary values that can be included in an enumeration for a StaticByRefInfo structure.

[016] Figure 11 is a diagram that of one implementation that illustrates exemplary
stack frame contents when the techniques in Figure 9 are used.

[017] Figure 12 is a process flow diagram for one implementation of the system
of Figure 1 that illustrates the stages involved in using a dynamic ByRefInfo type
technique to allow the identity of the object(s) to be recovered for unusual control flow
situations.

[018] Figure 13 is a diagram that includes a code segment illustrating a code
segment typed by a developer in a programming language.

[019] Figure 14 is a diagram that includes a code segment of one implementation
that illustrates how the code segment of Figure 13 is modified using the dynamic
ByRefInfo type technique described in Figure 12.

[020] Figure 15 is a process flow diagram for one implementation of the system
of Figure 1 that illustrates the stages involved in using a combination of techniques to

allow the identity of the two objects to be recovered when needed.

10

15

20

25

WO 2008/018962 PCT/US2007/015404

DETAILED DESCRIPTION
[021] For the purposes of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the drawings and
specific language will be used to describe the same. It will nevertheless be understood that
no limitation of the scope is thereby intended. Any alterations and further modifications in
the described embodiments, and any further applications of the principles as described

herein are contemplated as would normally occur to one skilled in the art.

[022] The system may be described in the general context as a software
transactional memory system, but the system also serves other purposes in addition to
these. In one implementation, one or more of the techniques described herein can be
implemented as features within a framework program such as MICROSOFT® .NET
Framework, or from any other type of program or service that provides platforms for
developers to develop software applications. In another implementation, one or more of”
the techniques described herein are implemented as features with other applications that

deal with developing applications that execute in concurrent environments.

[023] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100 typically
includes at least one processing unit 102 and_memory 104. Depending on the exact
configuration and type of computing device, memory 104 may be volatile (such as RAM),
non-volatile (such as ROM, flash memory, etc.) or some combination of the two. This

most basic configuration is illustrated in Figure 1 by dashed line 106.

[024) Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or non-

removable) including, but not limited to, magnetic or optical disks or tape. Such

10

15

20

25

WO 2008/018962 PCT/US2007/015404

additional storage is illustrated in Figure 1 by removable storage 108 and non-remdvable
storage 110. Computer storage media includes volatilé and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or
other data. Memory 104, removable storage 108 and non-removable storage 110 are all
examples of computer storage media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other medium which can be used to
store the desired information and which can accessed by device 100. Any such computer

storage media may be part of device 100.

[025] Computing device 100 includes one or more communication connections

114 that allow computing device 100 to communicate with other computers/applications

" 115. Device 100 may also have input device(s) 112 such as keyboard, mouse, pen, voice

input device, touch input device, etc. Output device(s) 111 such as a display, speakers,
printer, etc. may also be included. These devices are well known in the art and need not be
discussed at length here. In one implementation, computing device 100 includes software
transactional memory application 200 and compiler application 202. In one
implementation, compiler application 202 uses the software transactional memory

application 200 to generate properly transacted code.

[026] Tuming now to Figures 2-14 with continued reference to Figure 1, the
stages for implementing one or more implementations of software transactional memory
application 200 are described in further detail. In one form, the process of Figure 2 is at
least partially implemented in the operating logic of computing device 100. The

procedure begins at start point 200 with providing a compiler (e.g. that emits calls to a

10

15

20

WO 2008/018962 PCT/US2007/015404

software transactional memory system as appropriate) (stage 202). At compile time, the
compiler determines that, in one or more code segments being compiled, there are one or
more variables being passed by reference to separately compiled code segments, which
prevents the source of those references from being identified or recovered in the called
code segments (stage 204). The compiler executes a procedure to select one or more
appropriate techniques or combinations thereof (e.g. fattened by-refs, fattened by-refs
with enumerations/structures, static fattening, etc.) for communicating the sources of these
references from the calling code segments to the called code segments (stage 206). The
compiler modifies the code segment(s) as appropriate to implement the selected
technique(s) and creates an executable (stage 208). The process ends at end point 210.
[027] Figure 3 illustrates one implementation of the stages involved in using a
fattened by-ref technique to allow the identity of the object(s) to be recovered. In one
form, the process of Figure 3 is at least partially implemented in the operating logic of
computing device 100. The procedure begins at start pf)int 230 with determining that a
fattened by-ref technique should be used to allow the sources of the reference arguments
to be recovered when needed (stage 232). A new type (e.g. struct ByRefArgDesc{. ..})is
created that contains sufficient information to distinguish the different kinds of actual
arguments and to provide the transactional memory system sufficient information to
employ appropriate methods of implementing transactional semantics for accesses to the
reference argument in the called code function or method (stage 234). For each function
or method that has at least one by-ref argument, change each by-ref argument [e.g.
foo(...reftt t,...)] to a pair that includes the new type [e.g. foo(...ref ByRefArgDesc
brifor t, refttt,...)] (stage 236). At the call site for each function or method that was

changed to the pair, insert code to assign the appropriate value(s) to the new type, and add

10

15

20

25

WO 2008/018962 PCT/US2007/015404

the type as a parameter to the call to the function or method (stage 238). The process ends
at end point 240.

[028] Turning now to Figure 4-6, some exemplary code segments are illustrated
to show how the code typed by the developer is modified based upon the fattened by-ref
techniques discussed in Figure 3. Figure 4 is a diagram that includes a code segment
illustrating a code segment 260 typed by a developer in a programming language. Figure
5 is a diagram that includes é code segment 262 of one implementation that illustrates how
the code segment of Figure 4 is modified in fhe called function using the fattened by-ref
technique described in Figure 3. Note how the extra argument (ref ByRefArgDesc
briFor _t) is inserted in the call to foo. Turning now to Figure 6, the calling function 264
for foo is shown as modified using the fattened by-ref technique described in Figure 3.
Note how a value is assigned to the ByRefArgDesc bri_t variable 266, and the value is
then passed as an argument to foo 268.

[029] Figure 7 illustrates one implgmentation of the stages involved in using a
variant of the fattened by-ref technique described above, with enumerations/structures
technique to allow the sources of the reference arguments to be recovered. In this variant,
when a function or method has several by-ref arguments, their respective ByRefArgDesc
descriptors are gathered together into a single composite data structure (a
ByReflnfoHolder), and this data structure is passed by reference to the called function or
method, adding only a single extra argument instead of one extra argument for each
reference argument.

[030] In one form, the process of Figure 7 is at least partially implemented in the
operating logic of computing device 100. The procedure begins at start point 290 with
determining that a fattened by-ref with enumeratioﬂs/stmcmres technique should be used

to allow the source (e.g. identity) of reference arguments to be recovered when needed

10

15

20

25

WO 2008/018962 PCT/US2007/015404

(stage 292). At each call site that invokes the particular function or method that has by-ref
arguments whose sources require identification, allocate a ByRefInfoHolder of a size
sufficient to hold the information for all the by-ref arguments of the invoked functiox'l
(stage 294). The ByRefInfoHolder is an instance of one of several pre-defined value
types, one for several different numbers of by-ref arguments, up to some maximum (stage
296). If the number of by-ref arguments in a method exceeds this maximum, several such
ByRefInfoHolders may be allocated, and passed as multiple arguments, or each
ByRefInfoHolder can refer to the next in turn. The ByRefInfoHolder is passed by
reference, and used when transacting accesses to the argument in the callee, or it is ignored
in non-transactional code (stage 298). If a first function calls a second function with a by-
ref argument, and the second function passes that argument along in a call to a third
function, then the second function will stack-allocate a ByRefInfoHolder for the number
of reference arguments in the second call, and copy into it, at that the appropriate
argument position, the information that the first function passed it (stage 300). The
process ends at end point 302.

[031] Figure 8 is a diagram that includes a code segment illustrating a definition
of a by-ref argument descriptor for one implementation as used in the techniques described
in Figure 7. The code segment includes an enumeration called ByRefArgkind 310, a
structure called ByRefArgDesc 312, and a structure called ByRefInfoHolder2 314. In the
ByRefArgDesc, the contents of the corresponding m_data field depend on the kind. For
BRAK_Obj, the by-ref argument is an interior pointer into some heap object, and the field
contains the offset of the by-ref in the object. This case covers object fields and array
elements (of any dimension). For the BRAK_TMW, the field contains a Transactional
Memory Word (TMW), which is used for concurrency control. In one implementation,

the TMW contains a version, a count of pessimistic readers, and an exclusive writer

10

10

15

20

25

WO 2008/018962 PCT/US2007/015404

indicator. This covers (at least) statics. For the BRAK_NoTMW, the contents of the field
are irrelevant, since the by-ref does not require transactional primitives. This covers
locals, and may also cover by-refs in calls from unmanaged code back to managed.

[032] Figure 9 illustrates one implementation of the stages involved in using a
static fattening technique to allow the identity of the object(s) to be recovered. In one
form, the process of Figure 9 is at least partially implemented in the operating logic of
computing device 100. The procedure begins at start point 350 with determining that a
static fattening technique should be used to allow the source of reference arguments to be
recovered when needed (stage 352). fhe runtime maintains a global table associating
addresses of procedure calls and reference argument positions with information about the
source of that argument in the calling method; such information is called a
StaticByRefInfo (stage 354). Entries in this table are created at compile time; when
compiling a call to a method with by-ref arguments, for each such by-ref argument, the
compiler creates a StaticByRefInfo describing the source of the actual argument at this
argument position, and stores this StaticByRefInfo into the global table (indexed by the
address of the call sites and the argument position) (stage 356). When a method is being
executed, and an acceés involving a by-ref argument is encountered, the system knows
which of the method’s arguments are being accessed, and the address of the instruction
that invoked the currently-executing method (via that method’s return address) (stage
360). The system can use these two pieces of informatic;n to index the global table to
discover the StaticByRefInfo that describes the source of the reference argument (stage
362). The process ends at end point 364.

[033] Figure 10 is a diagram of one implementation that illustrates some
exemplary values that can be included in an enumeration for a StaticByRefInfo structure.

In one implementation, a StaticByRefInfo structure contains two arguments: the first one

11

10

15

20

WO 2008/018962 PCT/US2007/015404

being just an identifier that is used to indicates the type of argument (e.g. local, heap,
static, etc.), and the second one being the auxiliary data that describes the argument in
further detail. For example, if the argument was a local variable, then the structure 380
might contain <1,0>. In that example, the 1 indicates that it is a local variable (e.g. 1 =
local variable), and the O is just auxiliary data that is not really needed in this particular
scenario. If the argument was a field of a heap object, then the structure 382 might
contain the number two for the first position (e.g. 2 = heap object), and the second position
might contain the offset value of the field within the object. If the argument was a static,
then the structure might contain a number three for the first position (e.g. 3 = static), and
the second position might contain the TMW address. If the argument was an array
element, then the structure 386 might contain a number 4 for the first position (e.g. 4 =
array element), and the second position might contain a stack frame offset value,
indicating a location in the caller’s stack frame that will contain the array reference. If the
argument was itself a by-ref argument, then the structure 390 might contain a five (e.g. 5 =
by-ref argument) for the first position, and the second position might contain the by-ref
argument position.

[034] Figure 11 is a diagram 400 of one implementation that illustrates exemplary
stack frame contents when the techniques in Figure 9 are used. A caller method 402 calls
a callee 404. The caller method has a local variable a containing a reference to an array of
integers. The variable a is held in a stack slot (406) located 48 bytes above the stack
pointer in the caller stack frame. The caller passes a reference to the 4™ element of that
array to the callee. In compiling the caller, the compiler puts an entry <4, 48> in the
global table to describe this reference argument. This indicates that the reference is to an

element of an array, and that a reference to the head of the array (required by the

12

10

15

20

25

WO 2008/018962 PCT/US2007/015404

transactional memory implementation), may be found by looking 48 bytes above the
bottom of the caller’s stack frame.

[035] Figure 12 illustrates one implementation of the stages involved in using a
dynamic ByRefArgDesc type technique to allow the identity of the object(s) to be |
recovered for unusual control flow situations. In one form, the process of Figufe 12 is at
least partially implemented in the operating logic of computing device 100. The
procedure begins at start point 410 with determining that a dynamic ByRefArgDesc type
technique should be used to allow the sources of reference variables to be recovered when
needed (such as when value of an object is not known until runtime since it is contained in
a code segment inside an IF statement that changes its reference type) (stage 412). The
system modifies the code segment to create an instance of ByRefArgDesc type fo describe
each of the values assigned to the object (e.g. in the IF statement), and “flow” them with
the object (stage 414). The system records in the global table that the by-ref info for the
method’s argument at this call site is held in a dynamic ByRefArgDesc structure in the
stack frame of the caller of the method, and records in the global table the offset of that
dynamic ByRefArgDesc structure (stage 416). By creating dynamic by-ref inforrﬁation in
this way, unusual control flow problems can be_ solved (stage 418). The process ends at
end point 420.

[036] Turning now to Figures 13-14, code examples are shown that illustrate how
code typed by a developer is modified based upon the techniques described in Figure 12 to
allow the object(s) to be recovered in unusual control flow situations. Figure 13 isa
diagram that includes a code segment 440 typed by a developer in a programming
language. The code segment 440 includes an IF statement that changes the value of t1 to
two different types of values depending on the outcome (442 and 444, respectively).

Figure 14 shows how the code segment 440 is modified according to the techniques of

13

10

15

20

WO 2008/018962 PCT/US2007/015404

Figure 12. For example, a dynamic ByRefArgDesc object is declared in the beginning of
the procedure (called dbri4tl). The kind and val properties are then set for the object
depending on the direction taken in the IF statements (448, 450, 452, and 454,
respectively). |

[037] Figure 15 is a process flow diagram for one implementation of the system
of Figure 1 that illustrates the stages involved in using a combination of techniques to
allow the identity of the two objects to be recovered when needed. In one form, the
process of Figure 15 is at least partially implemented in the operating logic of computing
device 100. The procedure begins at start point 470 determining at compile time that there
is a first argument and a second argument referenced in at least one code segment being
compiled whose source (identity) cannot be recovered (stage 472). The system selects at
least one technique for communicating with a source of the first argument (stage 474), and
selects at least one technique for communicating with a source of the second argument
(stage 476). The system modifies the at least one code segment to implement the first
technique (e.g. a static fattening technique, etc.) for the first argument, and the second
technique (e.g. a dynamic by-ref info type technique, etc.) for the second argument (stage
478). The second argument has a problem because its value is not known until runtime
(stage 478). An executable is created using the modified code segment (stage 480). The
process ends at end point 482.

[038] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the sﬁbj ect matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims. All equivalents, changes, and modifications

14

WO 2008/018962 PCT/US2007/015404

that come within the spirit of the implementations as described herein and/or by the
following claims are desired to be protected.

[039] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, and/or data layouts as described in
the examples discussed herein could be organized differently on one or more computers to

include fewer or additional options or features than as portrayed in the examples.

15

10

15

20

WO 2008/018962 PCT/US2007/015404

What is claimed is:

1. A method for providing software transactional protection of managed pointers

comprising the steps of:

at compile time, determining that there are one or more variables being passed by
reference to separately compiled code segments in at least one code segment being
compiled (204);

selecting at least one technique for communicating the sources of the variables being
passed by reference (206);

modifying the at least one code segment to implement the selected technique (208);
and

creating an executable using the modified code segment (208).

2. The method of claim 1, wherein the at least one technique is a fattened by-ref

technique (232), and wherein the technique comprises:

creating a new by-ref info type that contains information necessary to distinguish
different kinds of actual arguments (234);

for a method that has at least one by-ref argument, change the by-ref argumént to
include an additional argument for a variable using the new by-ref info type (236); and

at a call site for the method that has the at least one by-ref argument, inserting code to
assign an appropriate one or more values to the new by-ref info type, and adding the type

as a call site argument to the call to the method (238).

3. The method of claim 1, wherein the at least one technique is a modified
fattened by-ref technique that uses enumerations and structures (292), and wherein the

technique comprises:

16

10

15

WO 2008/018962 PCT/US2007/015404

at each call site that invokes a particular method that has reference arguments needing
identified, allocating a by-ref information holder (294); and

passing the by-ref information holder by reference (298).

4. The method of claim 3, wherein the by-ref information holder is an instance of

one of a plurality of pre-defined value types (296).

5. The method of claim 1, wherein the at least one technique is a static fattening
technique (352), and wherein the technique comprises:
creating a global table for storing static by-ref information (354); and
when compiling a call to a method accepting one or more by-ref arguments, adding
static by-ref information entries to the global table describing the actual arguments to the

one or more by-ref arguments, for later retrieval (356).

6. The method of claim 5, further comprising;:
at runtime, when a method is being executed and an access involving a by-ref

argument is encountered, indexing a global table to discover the static by-ref information

(360).

7. The method of claim 6, wherein the indexing of the global table is achieved by

using knowledge of an address of an instruction that invoked the method (360).

8. The method of claim 1, wherein the at least one technique comprises a plurality

of techniques that are used in combination (296).

17

10

15

20

WO 2008/018962 PCT/US2007/015404

9. The method of claim 1, wherein technique is selected from the group consisting
of a fattened by-ref technique, a modified fattened by-ref technique, and a static fattening

technique (206).

10. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 1.

11. A method for provid_irig software transactional protection of managed pointers

comprising the steps of:

determining that a static fattening technique should be use(i to allow a source of a
particular reference argument to be recovered when needed (352);

at compile time, creating a static data structure for storing static by-ref information
about the particular reference argument (356);

.creating a global table for storing static by-ref information (354); and °

when compiling a call to a method accepting the particular reference argument,
adding static by-ref information entries to the global table describing the actual arguments

to the particular reference argument, for later retrieval (356).

12. The method of claim 11, further comprising:
at runtime, when a method is being executed, and an access involving the particular
reference argument is encountered, determining an address of the call site that invoked the

method by a return address of the method (360).

13. The method of claim 12, wherein the return address is used to index a global

table in which static by-ref info is stored (360).

14. The method of claim 13, further comprising:

18

10

15

20

WO 2008/018962 PCT/US2007/015404

locating a calling stack frame in which a caller recorded an actual reference or other

information describing a by-ref argument at a fixed known offset in that stack frame (386).

15. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 11.

16. A computer-readable medium having computer-executable instructions for

causing a computer to perform steps comprising:

at compile time, determine that there is a first argument and a second argument
referenced in at least one code segment being compiled whose source cannot be recovered
(472);

select at least one technique for communicating a first source of the first argument
(474);

select at least one technique for communicating a second source of the second
argument, the second technique solving a problem that is only present with the second
argument and not the first argument (476); and

modify the at least one code segment to implement the first technique for the first

argument and the second technique for the second argument (478).

17. The computer-readable medium of claim 16, wherein the first technique is

implemented using a static fattening technique (478).

18. The computer-readable medium of claim 16, wherein the problem that is only
present with the second argument is that a value of the second argument is not known until

runtime (478).

19

WO 2008/018962 PCT/US2007/015404

19. The computer-readable medium of claim 18, wherein the problem is solved

using a dynamic by-ref info type technique (478).

20. The computer-readable medium of claim 16, further having computer-
executable instructions for causing a computer to perform the step comprising:

create an executable using the modified code segment (480).

20

PCT/US2007/015404

WO 2008/018962

1/12

SNOILVOIddV
/S¥3LNdNOD
d3H10

Gl

00— NOILYOIddV |
NOILYOI1ddV AHOWAN
| (SINOILO3NNOD 4371dWO9 TYNOILOVSNYYL /
/N NOILVOINNININOD . JHYMLI0S 00z
v ¥3HIO | |
g g)
2111 (§)30IA30 LnaNI JULVIOANON | |
LINN ONISSI00Yd FILYI0A
AN
(S)301A30 LndLNO
AYOWNIN NILSAS
afth aw 5
/A 39VHOLS Va
JIGVAONTY-NON | | b0l
Mwe/_ 39VHO0LS e
J19YAONIY 301A30 ONILNGNOD

/

001

901

WO 2008/018962 PCT/US2007/015404

2/12

START
200

A

PROVIDE A COMPILER (E.G. THAT EMITS CALLS TO A SOFTWARE
TRANSACTIONAL MEMORY SYSTEM AS APPROPRIATE) 202

\
AT COMPILE TIME, THE COMPILER DETERMINES THAT, IN ONE OR MORE CODE
SEGMENTS BEING COMPILED, THERE ARE ONE OR MORE VARIABLES BEING
PASSED BY REFERENCE TO SEPARATELY COMPILED CODE SEGMENTS, SO
THAT THE SOURCE OF THE VARIABLE CANNOT BE RECOVERED IN THE
CALLED CODE SEGMENTS
204

A

THE COMPILER EXECUTES A PROCEDURE TO SELECT ONE OR MORE
APPROPRIATE TECHNIQUES OR COMBINATIONS THEREOF (E.G. FATTENED
BY-REFS, FATTENED BY-REFS WITH ENUMERATIONS/STRUCTURES, STATIC

FATTENING, ETC.) FOR COMMUNICATING THE SOURCES OF THE REFERENCED
VARIABLES TO THE CALLED CODE SEGMENTS
206

A

THE COMPILER MODIFIES THE CODE SEGMENT(S) AS APPROPRIATE TO
IMPLEMENT THE SELECTED TECHNIQUE(S) AND CREATES AN EXECUTABLE
208

A

END
210

FIG. 2

WO 2008/018962 PCT/US2007/015404

3/12

START
230

A

DETERMINE THAT A FATTENED BY-REF TECHNIQUE SHOULD BE USED TO
ALLOW THE SOURCES OF THE REFERENCE ARGUMENTS TO BE RECOVERED
WHEN NEEDED
232

\

CREATE A NEW TYPE (E.G. STRUCT BYREFARGDESC { ...}) THAT CONTAINS
SUFFICIENT INFORMATION TO DISTINGUISH THE DIFFERENT KINDS OF
ACTUAL ARGUMENTS AND TO PROVIDE TO THE STM INFORMATION
SUFFICIENT TO PROPERLY “TRANSACT" ACCESSES TO THE REFERENCE
ARGUMENT IN THE CALLED CODE FUNCTION OR METHOD
234

Y
FOR EACH FUNCTION OR METHOD THAT HAS AT LEAST ONE BY-REF
ARGUMENT, CHANGE EACH BY-REF ARGUMENT [E.G. FOO(... REFTTT, ...)] TO
A PAIR THAT INCLUDES THE NEW TYPE [E.G. FOO(...REF BYREFARGDESC
BRIFOR_T,REFTT T, ...)]

236

l

AT THE CALL SITE FOR EACH FUNCTION OR METHOD THAT WAS CHANGED TO
THE PAIR, INSERT CODE TO ASSIGN THE APPROPRIATE VALUE(S) TO THE NEW
TYPE, AND ADD THE TYPE AS A PARAMETER TO THE CALL TO THE FUNCTION
OR METHOD A

238

END

FIG. 3 240

PCT/US2007/015404

WO 2008/018962

4/12

9 "Old

(" ‘dxa7) Jod ‘Y 1q Joud **)00) «

<dx@ 1 4o} 9seb.yjeyAg sjeudoiddes

=} 1q 9saqbiyioyAg.

™ g9z

99¢

- §'OId

¥9¢

(""" 1 L 181 'y 104uq 9seqbiyjeyAg Jau7)oo)

¥ Old

TAVT4

092

WO 2008/018962 PCT/US2007/015404

5/12

START
290

DETERMINE THAT A FATTENED BY-REF WITH ENUMERATIONS/STRUCTURES
TECHNIQUE SHOULD BE USED TO ALLOW THE SOURCE OF REFERENCE
ARGUMENTS TO BE RECOVERED WHEN NEEDED
292

v

AT EACH CALL SITE THAT INVOKES THE PARTICULAR FUNCTION OR METHOD
THAT HAS REFERENCE ARGUMENTS WHOSE SOURCES REQUIRE
IDENTIFICATION, ALLOCATE A BY-REF INFORMATION HOLDER
204

v

THE BY-REF INFORMATION HOLDER IS AN INSTANCE OF ONE OF SEVERAL
PRE-DEFINED VALUE TYPES, ONE FOR EACH DIFFERENT NUMBER OF BY-REF
ARGUMENTS
296

Y

THE BYREF INFORMATION HOLDER IS PASSED BY REFERENCE, AND USED
WHEN TRANSACTING ACCESSES TO THE ARGUMENT IN THE CALLEE, ORIT IS
IGNORED IN NON-TRANSACTIONAL CODE 298

Y

IF A FIRST FUNCTION CALLS A SECOND FUNCTION WITH A BY-REF ARGUMENT,
AND THE SECOND FUNCTION PASSES THAT ARGUMENT ALONG IN A CALL TO
A THIRD FUNCTION, THEN THE SECOND FUNCTION WILL STACK-ALLOCATE A

BY-REF INFORMATION HOLDER FOR THE NUMBER OF REFERENCE
ARGUMENTS IN THE SECOND CALL, AND COPY INTO IT, AT THE APPROPRIATE
ARGUMENT POSITION, THE INFORMATION THAT THE FIRST FUNCTION PASSED

IT 300

\
END
FIG. 7 302

WO 2008/018962 PCT/US2007/015404

310

314

6/12

\

enum ByRefArgKind {
BRAK Obj,
BRAK_TMW,
BRAK_NoTMW

}

struct ByRefArgDesc {
ByRefArgKind m_kind;
int32 m__data;
}

" struct ByReflnfoHolder?2 {
ByRefArgDesc m_argO0;
ByRefArgDesc m_arg1,;

%

T~

FIG. 8

WO 2008/018962 PCT/US2007/015404

712

START
350

DETERMINE THAT A STATIC FATTENING TECHNIQUE SHOULD BE USED TO
ALLOW THE SOURCE OF REFERENCE ARGUMENTS TO BE RECOVERED WHEN
NEEDED 352

Y
THE RUNTIME MAINTAINS A GLOBAL TABLE ASSOCIATING ADDRESSES OF
PROCEDURE CALLS AND REFERENCE ARGUMENT POSITIONS WITH
INFORMATION (E.G. CALLED STATICBYREFINFO) ABOUT THE SOURCE OF THAT
ARGUMENT IN THE CALLING METHOD, THIS GLOBAL TABLE BEING CREATED
AT COMPILE TIME 354

ENTRIES IN THE GLOBAL TABLE ARE CREATED AT COMPILE TIME; WHEN
COMPILING A CALL TO A METHOD WITH BY-REF ARGUMENTS, FOR EACH
ARGUMENT, THE COMPILER CREATES A STATICBYREFINFO DESCRIBING THE
SOURCE OF THE ACTUAL ARGUMENT AT THIS ARGUMENT POSITION, AND
STORES THIS STATICBYREFINFO INTO THE GLOBAL TABLE (INDEXED BY THE
ADDRESS OF THE CALL SITES AND THE ARGUMENT POSITION) 356

WHEN A METHOD IS BEING EXECUTED, AND AN ACCESS INVOLVING A BY-REF
ARGUMENT IS ENCOUNTERED, THE SYSTEM KNOWS WHICH OF THE
METHOD'S ARGUMENTS ARE BEING ACCESSED, AND THE ADDRESS OF THE
INSTRUCTION THAT INVOKED THE CURRENTLY EXECUTING METHOD (VIA
THAT METHOD'S RETURN ADDRESS)

' 360

Y

THE SYSTEM CAN USE THESE TWO PIECES OF INFORMATION TO INDEX THE
GLOBAL FILE TO DISCOVER THE STATICBYREFINFO THAT DESCRIBES THE
SOURCE OF THE REFERENCE ARGUMENT
362

FIG. 9 364

PCT/US2007/015404

WO 2008/018962

8/12

0l "OId

<uonisod juawnbuy JjaiAg ‘6>
1uawinbJie Jjai-Aq e jjasy sem bBie ay|

P ——

<18SJO Bwelq YIEelS p> _ |
uswa|e Aeie ue sem bie syl

B

<SS8Ippy PJop\ Alowa |euoijoesuel] ‘€>
:onels e sem bie ay|

<}08[qO UIYHM PIBId JO AN[BAJSSHOT> |
109(qo deay e Jo p|alj e sem bie ay |

<0l >~
‘9|qelleA |eao] e sem Blie ay)

06€

98¢t

8t

8t

08¢

PCT/US2007/015404

WO 2008/018962

9/12

AVHYY 3HL 40
QV3H 3HL OL ¥3INIOd ¥ NI
TLNOA '8 + 3SVE MOVLS LV

L1 "Old

<y >

14014
3310

—e—r

d3.NIOd

—

MOVLS

[€lv3 Oy

—3SVEMOVLS

7

S31A88¥
0¥

~» ANTVA

Ly

AVHHY
40
d3av3H

//Nov
§ITIVO

00y

WO 2008/018962 PCT/US2007/015404

10/12

START
410

DETERMINE THAT A DYNAMIC BYREFARGDESC TECHNIQUE SHOULD BE USED
TO ALLOW THE SOURCES OF REFERENCE VARIABLES TO BE RECOVERED
WHEN NEEDED (SUCH AS WHEN VALUE OF OBJECT NOT KNOWN UNTIL
RUNTIME SINCE CONTAINED IN CODE SEGMENT INSIDE AN IF STATEMENT
THAT CHANGES ITS REFERENCE TYPE)

- 412

MODIFY THE CODE SEGMENT TO CREATE AN INSTANCE OF A BYREFARGDESC
TYPE TO DESCRIBE EACH OF THE VALUES ASSIGNED TO THE OBJECT (E.G. IN
THE IF STATEMENT), AND “FLOW" THEM WITH THE OBJECT

414

A

RECORD IN THE GLOBAL TABLE THAT THE BY-REF INFO FOR THE METHOD'S
ARGUMENT AT THIS CALL SITE IS HELD IN A BYREFARGDESC STRUCTURE IN
THE STACK FRAME OF THE CALLER OF THE METHOD, AND RECORD IN THE
GLOBAL TABLE THE OFFSET OF THAT BYREFARGDESC STRUCTURE
416

BY CREATING DYNAMIC BY-REF INFORMATION IN THIS WAY, SOLVE UNUSUAL
CONTROL FLOW PROBLEMS
418

END
FIG. 12 420

WO 2008/018962 PCT/US2007/015404

440

442
~

444

446

~a

448
450

452 __

| 7™ dbri4t1.m_kind = BRAK_TMW;

454

11/12

int& t1;

if (<some-predicate>) {

T~ t1 = &o.f;

} else {

' t1 = &Clss.someStatic; }

foo(t1);

FIG. 13

int& t1;

ByRefArgDesc dbri4t1;

if (<some-predicate>) {
t1 = &o.f;

[~ dbri4t1.kind = BRAK_Obj;

"~ dbri4t1.val = offsetof(o.f);
-~ Yelse{
t1 = &Clss.someStatic;

"~ dbri4t1.m_val = TMW address
for Clss.someStatic;
}

foo(t1);

FIG. 14

WO 2008/018962 PCT/US2007/015404

12/12

START
470

AT COMPILE TIME, DETERMINE THAT THERE IS A FIRST ARGUMENT AND A
SECOND ARGUMENT REFERENCED IN AT LEAST ONE CODE SEGMENT BEING
COMPILED WHOSE SOURCE (IDENTITY) CANNOT BE RECOVERED
472

v

SELECT AT LEAST ONE TECHNIQUE FOR COMMUNICATING THE SOURCE OF
THE FIRST ARGUMENT
474

v

SELECT AT LEAST ONE TECHNIQUE FOR COMMUNICATING THE SOURCE OF
THE SECOND ARGUMENT
476

!

MODIFY THE AT LEAST ONE CODE SEGMENT TO IMPLEMENT THE FIRST
TECHNIQUE (E.G. A STATIC FATTENING TECHNIQUE, ETC.) FOR THE FIRST
ARGUMENT, AND THE SECOND TECHNIQUE (E.G. A DYNAMIC BY-REF INFO

TYPE TECHNIQUE, ETC.) FOR THE SECOND ARGUMENT, THE SECOND
ARGUMENT HAVING A PROBLEM BECAUSE ITS VALUE IS NOT KNOWN UNTIL
RUNTIME
478

CREATE AN EXECUTABLE USING THE MODIFIED CODE SEGMENT
480

END
FIG. 15 482

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/015404

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/45(2006.01)i, GOGF 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975
Japanese utility models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(Kipo Internal), Google, YesKisti
keywords: software transactional memory, compile, call*, variable, reference, object

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US2004/0205740 A1 (LAVERY, D. M. et al.) 14 OCTOBER 2004
X See figure 5; claims 1-11. 1-15
Y See figures 1,2A~6,7A.7B; paragraphs [26]~[30]; claim 8. 16-20
US06718542 B1 (KOSCHE, N. et al.) 06 APRIL 2004
X See tigure 2; claim 1. 1,10
Y See figure 5; column 5, lines 51-67. 16-20
A See figures 2,5 and their descriptions; Summary. 2-9.11-15
A US2002/0010911 A1 (CHENG, B.C. et al.) 24 JANUARY 2002 1-20
See paragraphs [25],[27].
A US2003/0237077 A1 (GHIYA, R. et al.) 25 DECEMBER 2003 1-20
See tigure 4; paragraph [28].
A US2004/0003278 A1 (CHEN, Y. et al.) 01 JANUARY 2004 1-20
See Summary; claim 10.
|:| Further documents are listed in the continuation of Box C. IE See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
02 JANUARY 2008 (02.01.2008) 02 JANUARY 2008 (02.01.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YOON, Hye Sook
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8370

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/015404

Patent document Publication Patent family Publication
cited in search report date member(s) date
US20040205740A1 14.10.2004 NONE

US06718542B1 06.04.2004 NONE

US20020010911A1 24.01.2002 NONE

US20030237077A1 25.12.2003 NONE

US20040003278A1 01.01.2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

