wo 2010/135696 A1 I 0K OO0 AR OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intelectual Peoperty Organization /g3 | 1IN AN G 00001 A 0 O
International Bureau W Uy
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
25 November 2010 (25.11.2010) PCT WO 2010/135696 Al

(51) International Patent Classification: (74) Agent: ZILKA, Kevin J.; Zilka-Kotab, PC, P.O. Box
GO6F 3/00 (2006.01) 721120, San Jose, California 95172 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2010/035843 kind of national protection available). AE, AG, AL, AM,

. . AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
21 May 2010 (21.05.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(26) Publication Language: Enghsh ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
61/180,368 21 May 2009 (21.05.2009) US SE, G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
12/784,668 21 May 2010 (21.05.2010) Us TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): SALES- (84) Designateq States (unle.ss othem ise indicated, for every
FORCE.COM, INC. [US/US]; The Landmark @ One kind of regional protection available): ARIPO (BW, GH,
Market, Suite 300, San Francisco, California 94105 (US). GM, KE, LR, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG,

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

(72) Inventors; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(75) Inventors/Applicants (for US only): WEISSMAN, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Craig [US/US]; 2838 Sacramento Street, San Francisco,
California 94115 (US). SMITH, Andrew [US/US]; 1
Jordan Avenue, Apt. 3, San Francisco, California 94118

(US).

LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT FOR VERSIONING COMPONENTS OF AN AP-

PLICATION

(57) Abstract: In accordance with embodiments, there are

nents of an application. These mechanisms and methods

QI)D provided mechanisms and methods for versioning compo-

RECEIVING A REQUEST TO ACCESS AT LEAST A 102
PORTION OF AN APPLICATION FROM CALLING |~
CODE
¥
IDENTIFYING A VERSION PROVIDED BY THE 104
CALLING CODE Y
¥
IN RESPONSE TO THE REQUEST, PROVIDING TO
THE CALLING CODE ACCESS TO COMPONENTS 106
OF THE APPLICATION CORRESPONDING TO THE
VERSION PROVIDED BY THE CALLING CODE

FIGURE 1

for versioning components of an application can ensure
that an updated application maintains backwards compati-
bility, such that the application developer may maintain a
single application while supporting multiple prior versions
of the application.

WO 2010/135696 A1 I 00000)00 T N RAE AR T

Published:
— with international search report (Art. 21(3))

WO 2010/135696 PCT/US2010/035843

SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT FOR VERSIONING
COMPONENTS OF AN APPLICATION

COPYRIGHT NOTICE
{001} A portion of the disclosure of this patent document contains material which is subject
to copyright projection. The copyrighi owner has no objection to the facsinule reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark

(Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION
{0002} The current nvention relates geoerally lo updating an application, and more

particularly to supporting multiple versions of an application.

BACKGROUND

{003} The subject matter discussed i the background section should not be assumed to be
prior art mierely as a resualf of its mention in the background section. Simnlarly, 4 problem
mentioned in the background section or associated with the subject matter of the background
section shoudd not be assumed to have been previousty recognized in the prior art. The subject
matter in the background scction merely reprosents different approaches, which i and of
themselves may also be mventions.

{8004} Typically, applications are periodically updated by the respective application
developer for various purposes, For example, an application 1s generally updated for providing
fixes 1o crrors {e.g. bugs) within the application, providing new functionality within the
apphication, ete. The result of applving an update (o an application 1s the existence of a new
version of the appheation,

0003 Unfortunately, the exastence of different application versions generally requires the
application developer {o maintain and conlinue support for all of the avatlable versions or o
foree users of the application to iastall the Jatest version. In many cases the application

developers desires to force the users of the application {o mstall the latest version in order to

WO 2010/135696 PCT/US2010/035843

aveid having to maintain and suppori cach individual version of the application. However, this
oftentimes humits the apphication developer with respect 1o the changes that can be included in a

particular update {e.g. such thal the user’s use or infegraiion of the application is not destroyed).

WO 2010/135696 PCT/US2010/035843

BRIEF SUMMARY

{8006} In accordance with embodiments, there are provided mechanisims and methods for
versioming components of an application. These mechanisms and metheds for versioning
components of an application can ensure that an spdaled application maintains backwards
compatibility, such that the application developer may maintain a single application while
supporting maltiple prior versions of the application.

{0067} In an embodiment and by way of example, a method is provided for versioning
components of an application. In use, a request to access at least a portion of an application 18
received from calling code. Additionally. a version for the application Is provided by the calling
code. Furthermore, m response to the request, the calling code is provided access (o components
of the apphcation corresponding to the version provided.

{0008} While the present invention is described with reference 1o an embodiment i which
technigues for versioning components of an application are implemented in an application server
providing a front end for a mulit-ienant database on-demand service, the present invention is not
himited to mulii-tenant databases or deployvment on apphication servers. Embodiments may be
practiced using other database architectures, Lo, ORACLER, DB2® and the ike without
departing from the scope of the embeodiments claimed.

{0009} Any of the above embodiments may be used alone or together with one another in
any combinghion. Inventions encompassed within this specification may also include
embodiments that are only partially mentioned or alfuded 1o or are not mentioned or alluded to at
all in this brief summary or i the abstract. Although various embodiments of the invention may
have been motivated by varions deflictencies with the prior art, which may be discussed or
alluded to in one or more places in the specification, the embodinments of the invention do not
necessarily address any of these deficiencies. In other words, difforent eabodiments of the
invention may address ditferent deficicncies that may be discussed in the specification. Some
embodiments may only partially address some deficiencies or just one deficiency that may be

discussed m the specification, and some embodiments may not address any of these deficiencies.

WO 2010/135696 PCT/US2010/035843

BRIEF DESCRIPTION OF THE DRAWINGS
{60104 FIG. 1 shows a method for versiong components of an application, in accordance
with one embodiment.
{0011} F16. 2 shows a system for versioning components of an application, in accordance
with another embodiment.
{8012} FIG. 3 shows a method for providing calling code with access to components of an
application having versions within an accessible range for the calling code, in accordance with
vel another embodiment,
{0013} ¥16. 4 tlustrates a block diagram of an example of an environment wheretn an on-
demand database service might be used,
[HoL4] FIG 5 ilfustrates a block diagram of an embodiment of elements of FIG. 4and various

possible inlerconnections between these elements.

WO 2010/135696 PCT/US2010/035843

DETAILED DESCRIPTION

General Overview

j0015] Systems and methods are provided for versioning components of an application.
{6016} To date, application developers have been Hmited to versioning appheations,
whereby each updaie {0 an application miroduces a new version of the application. As a result,
application developers have been himited to maintaining and sapporting each version of the
application

{017} Thus, mechanisms and methods are provided for versioning components of an
application. These mechanisms and methods are provided for versiomng componenis of an
application can ensure that an updated application maintains backwards compatibility, such that
the application developer may mantain a single application while supporting multiple prior
versions of the application in the latest version

{6018} Next, mechanisms and methods Tor versioning components of an apphcation wall be
described with reference to exemplary embodiments.

{80194 FI1G. 1 shows a method 100 for versioning components of an application, in
accordance with one embodiment. As shown in operation 302, a request 1o access at least a
portion of an application is received from calling code. With respect o the present description,
the application (e.g. package, ele) may mclude any package, computer code, ete. of which at
least a portion may be requested 1o be accessed by calling code. To this end, the portion or more
of the application that 1s reguested to be accessed may include a particular method, interface (e
application program interface, user interface, eic.), table, field, data, oo, of the application.
{60204 In one embodiment, the appflicatimx may include computer code that is developed,
matntained, published, efe. utihizing a multi-tenant on-demand database service. 1t should be
noted that such multi-tenant on-demand database service may include any service that rehies on a
database svstem that is accessible over a network, in which various elements of hardware and
sottware of the database system may be shared by one or more customers (e.g. tenants). For
instance, a given application server may simultanconsly process requests for a great number of
customers, and a given database table may store rows for a potentially nnuch greater number of
customers. Vartous examples of such a multi~ienant on-demand database service wall be sel
forth in the context of different emboduments that will be described durmg reference to

subsequent figores.

WO 2010/135696 PCT/US2010/035843

{6021} In another embaodiment, the application may be developed by a tenant of the
aforementioned multi-tenant on~demand database service, For example, the application may be
developed by the tenani for use by other tenants of the mulii-tenant on-demand database service.
Thus, the molti~tenant on-demand database service may sfore the application upon receipt by the
tenant that developed the apphecation for allowing the application to be accessed by the other
tenanis.

00221 Addittonally, the calling code from which the request is received may include an
application program interface {e.g. of the multi-tenant on-demand daiabase service), g user

-

mierface, such as a graphical wser interface (e.g. of the multi-tenant on-demand database

i

ervice), or any other code capable of reguesting access 1o the portion of the application. For
example, the calling code may include a portion of another application developed by one of the
other tenanis of the multi-lenant on-demand database service described above. Thus, the calling
code may be utilized for integrating the application with another application developed by
ancther tenant of the multi-tenant on-demand database service,

{0023] Optionally, the request received from the calling code may include a call to the
porfion of the application. As other options, the request may be to read the portion of the
application, write to the portion of the application, ete. Of course, however, the reqoest may be
for any type of access to the portion of the apphication.

{6024} Further, a version provided by the calling code is identified, as shown i operation
104, The version provided by the calling code may include any indicator (e.g. identifier, et¢.) of
a version of the application. For example, the version may indicate a particular state of an
application among a phlurality of exisiing states of the apphication, where cach state differs based
on an update {¢.g. patch, efe.) applied to the application,

{8025} In one embodiment, the version provided by the calhing code may be determined from
a header of the request. For example, the header of the request may specify the version provided
by the calling code. In another embodiment, the version provided by the calling code may be
determined from a untform resource locator {URL) associated with the request (e.g. from which
the request ortgmated).

{026} In yet another embodiment, the version provided by the calling code may be

determined from a default version spectfied by a setting assoctated with a developer of the

calling code. For example, a version may not necessarily be configured specifically for the

WO 2010/135696 PCT/US2010/035843

calling code, but instead a defanlt version may be specilied with respect o the developer of the
calling code. Accordingly, the defanlf version may be applied {o all applications (including
calling code) with a verston anspeciiied by the developer of such applications. It should be
noted that such default version may optionally include an installed version ol the apphcation
melnding the calling code.

{8027} In siill vet another embodiment, the version may be an yaspecified version. For
example, 1f the default version described above it aot emploved, enabled, ete., and the version
provided by the calling code has not been specified, the version may be identified gs being an
unspectiied version {e.g. may be identified as “unspecified™). The unspecified version may be
automatically determined according {0 a latest version mstalled by the tepant associated with the
catling code. Of counrse, while various embodiments have been described above regarding the
manaer in which the version provided by the calling code may be wdentifted, it should be noted
that the version provided by the calling code may be identified i any desired manner.

[0028] Stll vet, as shown in operation 106, the calling code 1s provided access to
components of the application corresponding 1o the version provided by the calling code, in
response to the request. With respect o the present deseription, such components may include
any subparts of the portion of the application requested to be accessed that correspond o the
varsion provided by the calling code, For example, the components may inelude an object, field,
class, method, identifier, table, etc. Thus, providing access to the components of the application
coaresponding 10 the version provided by the calling code may include fulfifling the request to
aceess the portion of the application by providing access to the components associated with the
portion of the apphication that correspond o the version of the application (e.g. by allowing a
read of the components of the application, a write 1o the conponeats of the application, calling
the components of the application, ctc.).

{8029} In one embodiment, the components of the application corresponding to the version
provided by the calling code may be determined in order to provide the calling code with access
thereto. It should be noted that the components may correspond with the version provided by
the calling code by bemg spectfie to the version provided by the calling code, by bemng allowed
to be accessed by the version provided by the calling code according {o predetermined rules, ele.,

such az in the manner described below,

WO 2010/135696 PCT/US2010/035843

{6030} Optionally, such components may be determined from a plurality of components of
the application, and thus may encompass only a subset of all components associated with the
requested portion of the application. For example, muliiple versions of the portion of the
application requested {o be accessed may exist within {e.g. be supported by) the application by
providing an indication of a version for cach of the components of the application. Thus, as an
option, multiple components may provide similar functionality but may be assoctated with
different versions {e.g. a fist component providing a first function may include an original
component of the application and thus associated with a first version of the application, a second
component providing the first function may include an updated version of the first component
and thus associated with an updated version of the application, etc.). To this end, the calling
code may be provided aceess o the components with versions corresponding to the version
provided by the calling code, in response to the ealling code’s above described request.

[0031] For example, the application may be a latest version of an application, which includes
a superset of all components that have ever been released with respect to the application, along
with the versioning anpotation associated with each component. In this way, the latest version of
the application may utihize such anotations o emulate previous {e.

g. older) versions in shape

and behavior. In one embodiment, the application may determine {e.g. 8t runtime) the
components of the application corresponding 1o the version provided by the calling code. and
may provide the calling code with access to those determined components. In this way, the
application may be capable of switching procedural fogic within the application based on which
components are deternuned to correspond with the version provided by the calling code

{0032} I one embodiment, the components of the application corresponding to the version
provided by the calling code may be determined based on predeternsined rules. As an option, the
predetermined rules may be specific to a type of the calling code. Such tvpe of the calling code
may include an application program interface, a user mterface, ete., such that a first set of
predeternuned rales appliceble to an application program interface that requested access to the
portion of the application may be different from a second set of predefermined rules applicable to
a user interface that requested access o the portion of the application,

{033} In another embodiment, the predetermimed rules may be specic to a type of the
portion of the application (requested to be accessed by the calling code). The type of the portion

of the application may include, for example, standard components managed by the moli-tenant

WO 2010/135696 PCT/US2010/035843

on~demand database service, custom components created by a developer of the application, or
components installed as part of the application. Optionally, the predetermined rules may be
specilic 1o both the type of the calling code and the type of the portion of the application.

{0034} Just by way of example, tor cach of the components of the application, the component
may be annotated with a version of the component, as described above. The annotation may
optionally melode a minumum version of the apphication and a maxumum version of the
application indicating a range of versions of the application {0 which the component corresponds,
Of course, however, the annotaiion may imnclude any indicator of 8 version of the component, for
use in determining whether the component corresponds with the version provided by the calling
code.

{035} In one embodiment, the predetermined rules may indicate that the components of the

application corresponding to the version provided by the calling code only include components

of the application each anmnotated with a version matching the version provided by the calling
code, Thus, for example, the rules predetermined to be applicable to calling code of a
predetermined type that is requesting to aceess a portion of an application of a predetermined
type may indicate that the components of the application corresponding to the version provided
by the calling code {to which the calling code 1s allowed access) only include components of the
application each annotated with a version exactly matching the version provided by the calling
code.

{8036} In another embodiment, the predetermined rules may indicate thal the components of
the application corresponding to the version provided by the calling code only include
componenis of the application cach annotated with g version matching or later than the version
provided by the calling code. For example, the rules pradetermingd to be applicable to calling
code of @ predetermined type that is requesting to access a portion of an application of a
predetermined type may indicate that the components of the application corresponding 1o the
version provided by the calling code (1o which the calling code is allowed access) only include
components of the application each annotated with a version exactly matchmg or later than the
version provided by the calling code.

{037} I1 shoold be noted that numerous examples of determining the components of the
application corresponding to the version provided by the catling code, for providing the calling

code with access thercto will be deseribed in more detail below with respect {o Figure 3. By

WO 2010/135696 PCT/US2010/035843

providing an indication of versions of calling to which cach individual component of an
application corresponds {e.g. by versioning the components as described above), backwards
compatibility for the application may be maintained. Providing backwards compatibility in the
aforementioned manner may allow the developer of the application to maintain a single
application while supporting multiple prior versions of the application.

{038} FIG. 2 shows g system 200 for versioning components of an apphication, in
accordance with another emmbodiment. As an option, the present system 200 may be
implemented in the context of the functionality of FIG. 1. Of course, however, the system 200
may be implemented i any destred eavironment, The aforementioned definitions aay apply
during the present desceription.

{039} As shown, a client module 202 13 i comnunication with a developer module 206 via
a broker module 204, With respect to the present embodinient, the chient module, 202, developer
module 206, and broker module 204 may each include applications (e.g. interfaces) of a multi-
tenant en-demand database service. For example, the client modale 202 may be managedf,
maintained for use by, ole. a first tenant (e.g. the client tenant) of the mulii-tenant on-demand
database service, the developer module 206 may be managed, maintained for use by, elc. a
second tenant (¢.g. the developer tenant) of the multi-lenant on-demand database service, and the
broker moduie 204 may be provided by the multi-lenant on-demand database service for use by
gach of the first onant and the second tenant.

{0040} Thus, the broker module 204 may be employed by the mult-{enant on-demand
database service tor brokering a request by the client modute 202 to access a portion of an
application of the developer module 206, 1 should be noted that sach brokering may inclode nay
mediating, processing, ete. As specifically shown in the present embodiment, the client module
202 may include calling code that calls an application {the called application) of the developer
module 206.

0041} In one embodiment, the chient module 202 requests acoess (0 @ portion of an
application of the developer module 206, The request may be to read the portion of the
application, write to the portion of the application, call the portion of the application, ¢te. In
response Lo the cliend module 202 1ssuing the request, the broker module 204 receives {e.g.
intercepts) the request, such that the request 18 at least temporarily prevented from being sent to

the developer module 206,

10

WO 2010/135696 PCT/US2010/035843

{6042} In response {o the request, the broker module 204 identifics a vorsion provided by the
calling code 202. For example, the broker module 204 may identify the version provided by the
calling code 202 from a header of the request, from g default version set Tor the chient module
202, ete. In one embodiment, the broker module 204 may invoke code to determine such version
provided by the calling code 202,

{043} The broker modale 204 then provides an indicator of the version provided by the
cathing code 202 to the developer module 206, In this way, the developer module 206 may
utihze the version provided by the calling code 202 to determine componenis of the called
application 206 that correspond to the version provided by the calling code 202, Based on the
determination of the components of the called application 206 that correspond to the version
provided by the calhing code 202, the developer module 206 provides the calling code 202 with
access to the determined components. For example, the developer module 206 fulfills the
request issued by the client module 202 using the determined components,

{0044} FIG. 3 shows g method 300 for providing calling code with access {o components of
an application having versions within an accessible range for the calling code, in accordance
with yet another embodiment. As an option, the method 300 may be carried out in the context of
the functionality of FIGS. 1-2. Of course, however, the method 300 may be carnied out in any
destred environment. Agam, the aforementioned definitions may apply during the present
description,

jH045] As shown in operation 302, a request 1o access al feast a portion of an application 18
recetved from calling code. Further, a version provided by the calling code s determined, as
shown in operation 304, For example, the version provided by the calling code may be
determined in response to the request.

{046} Optionally, the version provided by the calling code may be determined in a
predetermined manner that is dependent on a type of the calling code. For example, where the
calling code is in the form of @ web service definition language (WSDL) used by a tenant of the
mulii-tenant on~demand database service to build an application for use by nuultiple other tenands
of the multi-tenant on-demand database service, the version provided by the calling code may be
wdentified in the order shown in Table 1. For example, if the verston cannot be identified using

the first shown option, the version may be attempied to be identified using the second shown

11

WO 2010/135696 PCT/US2010/035843

option, and so forth. Of course, it should be noted that the order shown m Table 1 1s set forth for
illustrative purposes only, and thus should not be construed as limiting i any maoner.
Table |
. Identidy version spectficd i the header of the request
2. Identily version spectiied m the defandt version setting for the calling code
3, Identtfy the version as unspecified(i.c. the latest version installed by the {enant

assoctated with the calling code.

{00471 As another example, where the calling code s in the form of a WSDL used by a
tenant of the multi-tenant on-demand database service to build an application for use by only the
tenant, the version provided by the calling code may be identified in the order shown in Table 2.
For example, if the version cannot be identified using the first shown option, the version may be
attempted to be wdentified using the second shown option, and so forth. Of course, i shoald be
noted that the order shown in Table 2 s set Torth for Hlustrative purposes only, and thus should
not be constroed as miting in any manner,
Table 2
. Identity version specified in the header of the request

2. ldentify version specified in the endpoint URL

23

. Identity version specificd iy the defaudt version setting for the calling code

La2

. Identify the version as unspecified

{0048 With respect to the endpoint URL shown in Table 2, the user that generated the
calling code WSDL may be required to specify a version to be used for each installed
apphication. The default selection may optionally always be the latest. An 1D may be embedded
1 the endpomt URL that may allow a determination of which verstons to use for calls from that
catling code WSDL {e.g. hitps://www-blitz03 soma salesforce comvservices/Soap/e/ 16.0/1d]}
HO049] As noted above, the version provided by the calling code may be wdentified via a
default version setting for the calling code. The default version may include the version
provided by the calling code ai the ttime the calling code 15 originally mstalled {e.g. and thus may

not reflect any updates to the calling code). As an option, the defaalt version may only be

12

WO 2010/135696 PCT/US2010/035843

automatically set for calling code developed by a tenant for use only by that tenant. Calling code
developed by a tenant for use by other tenants may be automatically set {o being unspecilied.
{0050} As another option, the manner in which the version of calling code wiitlen using
Apex code {provided by Salestorce.com™ ;) is defermined may be different from that described
above. For example, for execate anonvinous, the verston may be assumed o be paspecified. As
another example, the Apex cathing code may reference another fenant’s application {1.e. ong or
more mstalled applications), such that the reference application may be used as a basis for
determuning the version provided by the calling code, Table 3 show examples of the various
types of references that may be included in the calling code. Of course, it should be noted that
such references are set forth tor tusirative purposes only, and thas should not be construed as
limiting in any manner,
Table 3
1. Explicit Reference: Code explicitly references schema or code from another mstalled
application. These references may be detected at compile time. Apex tests will depend
o the schema or code and must always pass,

[o)

Dynaniic Apex Acting as Explicit: Code using dynanyie Apex in place of expheit
referencing. The scope of the referenced schemafcode 15 fimtte and known to {he
developer at compile time. There 15 no way o detect these dependencies at compile time.
Tests may be written using dynamic and are always expected o pass.

s

Dyvnamic Apex: This is the true dynamic use case where at compile time the developer
doesn’t know the fintte set of schema that may be referenced.
{0051} Table 4 shows exemplary use cases of the types of references shown in Table 3.

Again, it should be noted that such use cases are st forth for itlustrative purposes only, and thus

should not be construed as Hmiting I any manner.

b Partner {Le. tenant) BExtends Another Partner’s Package (1.¢. application)

Partner B 15 extending the functionality of partner A's package. Partner B has installed
partner A’s package in their development org. Partner B depends on schema and glebal
classes/methods from the base package (explicit and dynamic apex acting as explicit
references). la cerfain cases, partner B is catching validation errors thrown by an Apex
trigger from partner A's package. Partner Bs tests are written to expect these errors.
When pariner A makes changes to their package and pushes a new version, partner B
expects their apphication 1o keep working and fests continue to pass.

2. Independent Software Vendor (ISV) Builds Find/Replace Application

13

WO 2010/135696 PCT/US2010/035843

ISV creates g utility that can perform find/replace on any object (ideally they would have
a hook to scope to business objects only). This utility s written using Visualforce™ and
dynamic Apex. The customers using this ool expect that it hag sccess to all standard and
custom obijects i their org regardless of when they were installediereated, this would
even include deprecated schema. Ideally, any behavior bebind these objects would
emulate what 1s experienced in the user interface (Ul (Iatest version of the package).
Typreally the customer and ISV do not want to take any action m order {or the tool ©
consume newly added schema by other packages, including Salesforce.com™ (SFDO).
The ISV does understand though that to consume new data types, eie, they mught have (o
update their code to a later version of the SFDC application program interface (AP

Customer Integrates with Multiple Packages

Customer creates an Apex rigger that performs data manipulation {DML) on vanous
other objects from multiple installed packages. Even though the customer knows what
objeets they are referencing, the customer stifl wants to code with dynamic Apex since
that’s what they are most comfortable with., Customer expects their code {o continee to
work even i the various publishers of the packages deprecate schema and change
hehavior.

L

{0052} In one embodiment, upon first exphicit reference, the version of the mstatled
apphication the class/trigger references may be recorded. The recorded version may be the last
mstalled version. The developer may be prevented from removing the binding {o that version
until all explicit references for that application are deleted. The developer can freely change the
recorded version to any other version installed. The code may opiionally be required to be
recompiled when this occurs. There is a chance the apex/schema attempted to be referenced has
been deprecated {(made inactive, as will be deseribed i more detat below) bal was available {o
the application previously {installed as active). An error message may be thrown in this case
telling the developer that this wdentifier 1s not available i the carrent version, but mnclude the
versionf s} for which 1t is available.

{0053] As an option, the developer may also manually bind the version provided by the
calling code to versions of additional insialled applications, even though no explicit reference is
detectad. The use of dvnamic apex may not cause a version binding © be record since these
references may not be detected at compile time.

{0054} [another emboediment, where a developer creates a managed extension application
{e.g. an application where lunited changes are allowed), the application may depends on a
spectfic version of a base. In this case, even dynamic apex may be required to bind to a version

of the base. To address this issue, when creating apex/vl in the extension org, version binding

14

WO 2010/135696 PCT/US2010/035843

formation may be recorded on save for all installed apphestions. This may include
applications the code is not referencing. At the time of extension upload, the version binding
information may be omitted for applications that are not 8 base for the extension. This may
ensure an extension application has a specified version binding for the base at all times. Binding
information for exasting code may optionally not be extended when a new application 1s installed
w1 the extension, The code may be required to be edited and saved for a version binding to be
recorded.

jO05S] It should be noted that Visualforee™ code may be treated the same as Apex code, as
descrtbed above. For example, upon first explicit reference, the Visualtforce™ calling code may
be bound to the currently installed application version. In another embodiment, when clonimg g
Visuatforce™ or Apex component, all related versioning information may be copied in the clone,
{8056} Upon determination of the version provided by the calling code, a range of
component versions predefermined to be allowed to be accessed by the version provided by the
calling code is identified. Note operation 306. It should be noted that the component versions
may refer o versions specilic for g particular component. For example, the component may be
annotated with the range of versions fo which i is accessible.

j0057] I one embodiment, the component may be annotated with a minimum application
version to which the component 15 accessible and a maximum application version (o which the
gomponent is accesstble, The minunuwm application version may be recorded when the
component is released (e.g. published for use, activated, efe.) in the application. The maximum
application version may be recorded once the component 15 uploaded as deprecated (e.g. an
indicator {o allow the developer {0 remove the existing released component), More mlormation
on such deprecation will be provided below.

0S8} In the present embodiment, the range of component versions predetermined to be
allowed to be accessed by the varsion provided by the calling code may be identified based on
predetermined rules. The sot of predetermined roles utilized to wWentify the range of component
versions aflowed {o be accessed by the version provided by the calling code may be wdentilied
based on several factors. In one embodiment, the sot of predetermined rules may be specific to a
type of the calling code {e.g. whether the calling code wan APHora Ul In another
entbodiment, the set of predetermined rufes may be specific to a8 type of the portion of the

application requested to be accessed {e.g. whether the portion of the application requesied to be

15

WO 2010/135696 PCT/US2010/035843

accessed includes standard components managed by a mulii-tenant on-demand database service
custom components created by a developer of the application, or components installed as part of
the application).

{0059 Table 5 shows examples of which set of predetermined rules may be wtthzed o0
identify the range of component versions allowed to be accessed by the version provided by the
calling code {e.g. based on the tvpe of the calling code and the {vpe of the portion of the
application requested to be accessed). In Table §, strict binding refers to only allowing the
verston provided by the calling code to access components with a matching version, and loose
binding refers to only allowing the version provided by the calling code to access components
with a matching or later version. 1t should be noted that the examples shown i Table 5 are sel

forth for tlustrative purposes only, and thus should not be construed as limiting in any manner,

dh;t, 5
R RN N X
‘\\\\\‘ R \\\‘\ \ RSk

M\\\\\\\\\\\\\\\\\\\\

SFoc Ul N
W\\\M .

RS

Loose Loose loose

064 As shown, only standard Salesforce.com™ schema may take a strict binding
approach. With strict binding, & developer may have to change an AP endpoint access 1o any
new objects exposed i a fater AP version is desired. Thiz may altow a developer to hide an
existing entity when a replacement is introdaced, so that only one entity al 8 tme may be scen
when running a describe call. With respect to the UL, however, if a new business object is
introduced, then reports, workflow, list views, cte. may be antomatically built agamst it

jobe1} As also shown, schema created by customers or installed as part of' a package may
only be toosely bound, such that a developer may alimost never have to change an AP version to
access new entities. This may allow generie utilities to interact with any piece of schema using
the API describe call (.e. Dataloader).

{0062} In another embodiment, the factors upon which the set of predetermined rules utilized
to dentifly the range of component versions allowed 10 be accessed by the version provided by

the calling code s identified may inchude whether the calling code is of a specified version (e.g.

16

WO 2010/135696 PCT/US2010/035843

identifiable via g header of the request, via g defaalt version set for the calling code, etc.) oris of
an unspeciied version,

{0063} Optionally, with respect o the APL, only objecis and methods exposed in that APE
version may be available. For example, any now components added i a later version may not be
available in an earbier version. Note component availability may not apply o local custom
objects and fields since these may not have a specitic tie {o an AP version, as shown i Table §
above. In particular, they may be available in all AP versions that support the enderlying data
types for those objects and fields,

{0064} If the calling code version 1s specified, the predetermined rules may indicate that all
components available as of the version or added n a later version will be available. This may
include components deprecated in a future version. Optionally, only apex wdentifiers available at
that version may be exposed, and Apex behavior may be as of that version.

jO065] If the calling code version 18 unspecified, when the application including the calling
code is instalied, the latest version installed may be recorded. All components available as of the
version or added in a later version may be gvatlable. The component avatlabibity may tmpact
static references and describe calls. The only exception may be schema that cannot be supported
by the pairing API version ased in the call {c.g. where a new data tvpe 18 introdaced). In general,
the application API may be loosely bound compared {o the Salesforce.com™ APL

{6066} In vet another embodiment, the factors upoen which the set of predetormined rules
utifized 1o identify the range of component versions allowed to be accessed by the version
provided by the calling code 15 dentitied may include whether the calling code is included in an
application available {or use by maltiple tonanis of the on-demand datgbase service {referred to
as a partner AP or 1s avatlable for use only by the tenant that developed the application
{referved to as an enterprise API). The predetermined rules applied o a partner AP may inclade
the loosely bound ruleset desceribed above, The predetermined rules apphed to an enterprise AP
may inchude the strictly bound ruleset described above.

HO067] A describe call ssued by calling code included i an enterprise application may
return all components available at that specific application version. For example, the describe
call for a component {e.g. object, field, ete)) may return the namespace prefix and an indication

of the whether the conmponent 15 deprecated. Conmponents deprecated in an earhier version may

17

WO 2010/135696 PCT/US2010/035843

not be exposed even 111 1s present in the application. Schema introduced 1n a later application
version may not be available. Behavior may exhibit the specific version specilied.

{00068] Thus, the predeienmined rules deseribed above may be utilized to detenmine whether
the calling code 1§ o be strictly bound {o components with the same version as the calling code
or 1s to be loosely bound to components with the same or later version as the calling code. Based
on such determination, the range of component versions predetermined o be allowed to be
aceessed by the version provided by the calling may be wdentified. For example, o the former
case the range of component versions may be limited to those matching the version provided by
the calling code. I the latter case, the range of component versions may be Himited o those
matching or later than the version provided by the calling code.

{8069 Once the range of component versions predetermined to be allowed to be accessed by
the version provided by the calling code is identilied, components of the portion of the
application requesied to be accessed by the calling code with versions within the range are
identified. Note operation 30¥. In one embodiment, ¢ mathematical formula may be utilized to
compare the versions of components of the porlion of the application with the range of
component versions predeternined fo be allowed 1o be accessed by the version provided by the
calling code. In this way, only components of the portion of the application falling within the
range may be identified.

{6070} Moreover, the calling code 15 provided with access to the identified components, as
shown in operation 310, For example, the reguest issued by the calling code may be fulfilled
utihizing the identified components, To this end, versioning of componenis of the application
may be aiilized for providing fanctionality of the application that is associated with a version
provided by the calling code.

{8071} As noted above, components of the application may be annotated for determining the
verstons provided by the apphication to which they correspond, and thus the versions of calling
code that to which they are accessible. As also brietly noted above, such annotation may mclude
a maximuom application version that 1s configured upon deprecation of the component. For
example, tenants of the multi-tenant on-demand database service may desire to have thewr
developed application evolve, including the ability {o remove existing released components. Just
by way of example, the tenant may be moving to Visualforce™ and may want to remove all the

scontrols from thewr application, the {enant may discover they selected an meorrect field type and

18

WO 2010/135696 PCT/US2010/035843

wani 1o migrate to g new field of a differeni type, elc. Deprecaling a component may allow the
tenant to evolve their application without introducing an immediate change {or tenants already
utihizing the application.
{0072} Deprecation may be provided for various categories of components. Table 6
Hhustrates some examples of the categories of componeats for which deprecation may be
provided. It should be nofed that the examples shown in Table 6 are set forth for lustrative
purpoeses only, and thus should not be construed as limiting in any nmanner.

Table 6

s Non-Upgradeable Components
Both developer and subscriber {1Le. user) can freely make changes or delete.
Developer must delete the component to remove i from a package after 1t is released.
The developer can undelete the component from the package delad page op antif it 1s
refeased in the deleted state.

o Upgradeable Components
Both the developer and subscriber cannot delete these components after they are
released. A developer can continue to updaie the component, Values for developer
controtled attributes of a component will be updated in the subsceriber’s organization.
Other attributes will not.

+ Protected Components
This 13 a small subsel of upgradeable components such as custom labels and
worktlow actions. They behave similar (o an apgradeable component. A subsceriber
can see these components 1n their organization, but not reference them. This allows
the developer to delele these components af any tune. The developer can undelele the
component from the package detatl page up until the component is released mn the
defeted state. Once uploaded in 8 managed-released package and that package
version s installed mto an exasting subscriber’s organtzation, the deleted components
will be removed from a subsceriber’s orgamzation.

« Pyublic/Private Apex Class/Trigger
Any apex class with an access modifier of public or private can be deleted, similar to
a protected component. This component s not “deleted” from the developer’s
organization. It still appears m the U Only the status s marked as deleted. Whena
suhseriber recetves an upgrade with the deleted code, i 1s removed from their org.

19

WO 2010/135696 PCT/US2010/035843

~

{60734 Furthermore, the components may have a particular lifecyele, as shown in Table 7 by
way of example oalv.
Table 7

s Component created

o Component added to package

« Component uploaded as beta; ne manageability restrictions enforced in dev org:
component dev name cannot be changed; developer can remove components from
package

« Component uploaded as released; manageability restrictions enforced; developer
cannot remove components from package — must delete the component 1o remove
from package, if possible

s Component deprecated/deleted from package

{0074} With deprecation of components {Le. schema), the tepant’s intent with the
deprecation may be ascertamed. The mtent may alter how the tenant wants the deprecated
component to behave for existing users of an application including the covaponent. Table §
tlustrates three exemplary use cases, Again, the examples shown in Table 8 are set forth for
illustrative purposes only, and thus should not be construed as limiting i any maoner.

Table &

o Core Schema: Partner (e, developer) wants to deprecate a feld actively used in thew
apphication (i.e. Qpportunity Stage). Maybe they are replacing it with a new field of a
ditferent data type or sphitting i into multiple fields, At the time of upgrade, they
would run an upgrade script to migrate the data to the schema. They would add
triggers to handle inpat into the deprecated field for backwards compatibility.

Alter the field s deprecated, the partner wanis to encourage their existing customers
(c.g. users) to stop using the field. They want o prevent subscribers from ereating
new references o the field (workflow, approval processes, ete). Soft refercnces like
reports, email templates, ete. are fine so long as they degrade gracefully upon
removal. New customers would never receive the deprecated field.

I & perfect world, the field would be imuncdiately deleted for all subscribers. Since
this isn't possible, the partner wanis to offer ¢ grace period where they will maintain
hackwards compatibility for existing subscribers, After that time, they want to force
remove the Deld from all customer orgs. At that time, they would remove all
references in their application and fully delete the ficld from their footprint.

20

WO 2010/135696 PCT/US2010/035843

19675

Non-Core Schema: Partner added an object 1o their application with the wdea they
nmight enhance the object in the future {think about us with Assets — big plans, but
hittle dehivery). As the partner finds their place in the market, they discover these
objects no longer make sense for thewr product. They want {o remove ths schema on
a go forward basis, but for existing costomers they should continue to be able to ase
the obiject hike any other.

i

In this case, deprecation has an entirely different meaning. Exasting customers should
be able to use them hike any other schema. The partner doesn 't infend to delete the
schema fron existing customer orgs. The partper’s goal is to provent new custamers
from receiving the schema. The partner also wants to remove the schema from their
development footprint,

Template Schema: Partner wants to offer a fow template objects/hields with thewr
application. They have uo plans of upgrading them — they are simply & template.
They would be [100% subscriber controlled. At some point in the future, partner
decides they no longer want this schema to be part of thewr application. New
customers would then not receive this schema. Existing customers would continue to
be able to use this schema uniil they are ready to delete it. The partner would delete
the schema in thetr development environment.

b

To this end, the user’s and developer’s experience with a deprecated component may

be different depending on the developer’s intent, For each of the above scenarios shown in

Table &, the lifecyele and behavior for each party 15 shown in Table 8, by way of example only.

Tahle 9

Core Schemea:
Developer deprecates an objoct/field:

i

2

N

¢ The developer can use the “where is this used™ feature to identify the remaining
references. This mclades gl non-upgradeable components.

o References m all non-upgradeable components are removed automatically (except
the ones typically are left around during a delete operation). This 1s prmarily
reports, list views, page fayouts, ete.. This may also cause same componenis to
be deleted.

Subseriber upgrades to a version of the application with the deprecated schema:

o No change other than the rules mentioned around versionimg and schema
EXpOsUre.

Developer releases notification in next upgrade that version with deprecated schema will
be end of lile (deleted) in 9 monihs:

21

WO 2010/135696 PCT/US2010/035843

o There is a chance someone could pull upgrade to @ version where the component
15 completely deprecated. They may be notificd on nstall of upgrade?,

¢ omay be a requirement that vou are using push upgrades to rekease this
notification,

o Subscriber s warmned about pending deletion. The subseriber can force end of fife

{(EOL) of that version in their org {roll org package mimimum forward a version).
o Developer can use partner to understand which orgs still contain references to old

VOrsion
4. All org munumums for all customers are now greater than deprecated version:

Developer now can “delete” those deprecated components in their dev org. The
traditional delete blocking logic is used.
3. What if an extension depends on an EOL version?

i

o The extension will continue to function up untif end of hife date.

¢ Block installfupgrade if extension depends on EOL version. May break if
developer removes apex code after that.

o Optionally warn exteasion providers on upload when releasing @ version that uses

deprecated components.
¢ There is a chance an installed extension may not function due to EOL.

P

Non-Core Scheme:
1. Developer wanis to allow existing subscribers to take control of schema:
o Developer uses instance level manageability to change schema from dev
controtled to sub controlled.
No dey controtied components can reference the now sub controlied schema.
o Should cascade change related components that are referencing now sub
controtled schema to also being sub controlied.

O

2. Sabscriber upgrades to a version of the application with the now sub-controlied schema:
o Subscriber can change anyvthing except dev name and NS,
= [fcomponent is referenced by installed extension, of course impacting
changes are bincked.
3. Developer wants to remove schema now from their dev org, prevent new installs from

receiving:
Developer deletes schema and related components from dev org
o Uploads package with deleted schema
> No new installs receive schema
4. What f extension depends on the now sab-controlied schema?
¢ Existing customers gre fing
o New mstalls of extenston may be blocked
o Extension upgrades may need to be blocked. Could newly reference now sub-
controtled schema m base.

7y

22

WO 2010/135696 PCT/US2010/035843

Template Schema:

i

=

Lad

Developer mtroduces new schema that is always under subscriber controlied:

o No dev controlled components can reference the sub controlied schema.
Subscriber fnstalis/upgrades to a version of the application with the sub-controlied
schema:

¢ Devname s still tocked. Component is still namespaced.

Developer wants to remove schema now from their dev org, prevent now installs from
FeCeIving:

o Developer deletes schema and related components from dev org
¢ Uploads package with deleted schema

¢ No new installs receive schema
Extensions may nol reference this type of schema

23

WO 2010/135696 PCT/US2010/035843

{6076} Optionally, when deprecating a component, the developer may continue to be allowed
i0 use the component. The developer may be notified at time of deprecation of the other
components that are referencing it. The developer may use the “Where is this used”™ button to
determine all references. The potification and where used may be identrcal hists. In the case of
non-upgradeable componenis, the references may be hidden. As another option, a component
may be un-deprecated prior to upload m an application, which may result in un-deprecation of all
related components.
{0077} When deprecating an object, there may be certain related components that may be
required o alse be deprecaied in the same release. For those components, there may be no way
to remove the reference to the deprecated component. The only option may be to also deprecate
the component. The following components shown in Table 10 as referencing the object must be
deprecated in the same upload, for example.
Table (0

» Custom tab for object

¢ Reports with object as core reference

o Clustom repori types with object as top level ohject

« Fields on object

» Validation rules on object

» Page layvouts on object

« List views on object

« Custom buttons/links on object

» Apex sharing reasonsirecale on object

» Triggers on object

¢ Record types on object

« VI pages using standard controller or tab style of object

» Workflow rules for object

» Workflow ficld updates for object

¢ Workflow outbound messaging for object

¢ Workflow alerts for object

24

WO 2010/135696 PCT/US2010/035843

» Workflow tasks for object

gt

bos

« Analytic snapshot where object is tar

{0078} As an option, the following subseriber-controlied components can continue to exist,
but may be required to be updated to reflect the deletion: (1) Reports with abject as non-core
object {(detai] object in a master detail report); and (2) Custom report types with object notl used
as core object.
{0079] When deprecating fields, the following shown in Table 11 may be required to be
deprecated in the same upload, for example.
Table 11
+ Custom report types {removing lookup feld would canse report type to be
deprecated)
» Workflow ficld updates (cross ohject may be updated to point to a

different object)

0080 When deprecating a field, there may be certamn related components that muost also be
deprecated in the same release. For those components, there may be no way o remove the
reference to the deprecated schema, The only option may be o also deprecate the component.
Furthermore, the following subscriber-controlled components may continue 1o exist, but may be
required to be updated 1o reflect the defetion: (1) Reports: (2) List Views; (3) Page layouts. The
upload of an unmanaged application may be blocked if code contains apex using an indication of
deprecation.

{6081} With respect to package extension, a fenant may be allowed {o safely nstall an
extension so fong as all the components it references in the base are present in the customer org.
I a base object or code is no fonger present {deprecated), this could pose problems for
extensions. Thus, the installfupgrade may be allowed even i the extension component refers to a
deprecated component. This may melade component that were deprecated prior to the first
install w the subscriber org. This means the subsceriber may not even see 4 field the extension
USES.

{0082} When the base package mclades a deprecated object that s the master for a detail

object in the extension, the mstalifupgrade of the extension may be blocked if the deprecated

25

WO 2010/135696 PCT/US2010/035843

object 1s below the org’s nunimum version (e.g. (o prevent the exiension from breaking at

runtirae). Extensions calling into the partner AP may be allowed {o reference package versions

carher than the org’s minimum. However, doing the same via the enterprise AP may be

disallowed, Extensions may be revisited to support full EOL for schema and code.

Various user interfaces may be provided to suppost the aforementioned functionality.

Table 12 tHustrates various examples of the user inferfaces that may be implemented {e.g. by the

multi-tenant on-demand database service). Of course, it should be noted that the examples

described w1 Table 12 are st forth for iHustrative purposes ondy, and thus should not be

construed as miting i any manner,

Table 12

Apex Code/VF/VE Emait Templates
o Ability 1o set version info on class/trigger/page/component
o View version info in prototype mode for subscribers/developers
o constder hiding “deleted” apex code/vi (umrelated item)

o Select version info for enterprise WSDL generation
o Set version info defaults for enterprise and partner WSDL
Fields/Objects
o Inosubsceriber, show version range information, e.g.
* Available in Versions: 1.2.6-3.50
* Available i Versions: 3.0.0 -~ Current
* show that component is now deprecated
o developer, when deprecating @ component, st out all the places the component
is used. Deprecation may oceur through a button with a confirmation page.

)2

Setup
¢ identify deprecated components from a list.
Package Upload
¢ Developer will be blocked i1 package contains apes using (@deprecated or
Schema Version, siee these may make no sense once instatled i an unmanaged
package.
Dev Package Detail Page
o Show version range for cach component
Once a component is deprecated, highlight that deprecation i the list
Sub Package Detail Page
Show first instatled and current version for package
 Highlight components that are now deprecated
> List what versions a component is avatiable in

[

i

I

-

26

WO 2010/135696 PCT/US2010/035843

* Package Insiall
o Block extension package install if extension package refers to deprecated master
object below org’s base package min. See extension section above for more
details.

{0084} Swvsrem Qverview

HIG85] FIG. 4 illustrates a block diagram of an environment 410 wherein an on-demand
database service might be used. As an option, any of the previously described embodiments of
the foregoing figures may or may not be maplemented in the context of the environment 410,
Environment 410 may wnchude user systems 412, network 414, system 416, processor system
417, apphication platform 418, network interface 420, tenant data storage 422, system data
storage 424, program code 426, and process space 428, In other embodiments, environment 410
may not have all of the components Hsted andfor may have other elements instead of, or in
addition to, those Hsted above.

{0086] Enviromment 410 is an environment in which an on-demand database service exists.
Liser system 412 may be any machine or system that 1s used by a user to access a database user
system. For example, any of user svstems 412 can be a handheld computing device, a mobide
phone, a laptop computer, @ work station, andfor a network of compating devices. As illustrated
in FIG. 4 {and in more detal in FIG. 5) user systems 412 might inderact via a nebwork with an
on-demand database service, which is system 416.

{0087} An on-demand database service, such as svstem 416, is a database system that s
made available to outside users that do not need {o necessarily be concerned with building andfor
matntaining the database system, but instead may be avadable for ther use when the psers need
the database system {e.g., on the demand of the gsers). Some on-demand database services may
store information from one or more tenants stored into tables of a common database image to
form a multi-tenant database system (MTS) Accordingly, “on-demand database service 4167
and “systen 4167 will be used interchangeably herein. A database image may include one or
more database objects, A relational database management system (RDMS) or the equivalent
may execule storage and refrieval of information against the database object(s). Application
patform 418 may be a framework that allows the applications of svstent 416 to run, such as the
hardware anddor software, e.g., the operating system. Io an embodiment, on~demand database

TR

service 416 may include an application platform 418 thai cnables creation, managing and

27

WO 2010/135696 PCT/US2010/035843

gxecuting one or more applications developed by the provider of the on~demand database
service, users accessing the on~demand database service via user systems 412, or third party
application developers accessing the on-demand database service via user systems 412

{OU88] The users of user systems 412 may differ in their respective capacities, and the
capacity of a particular user system 412 might be entirely determined by pormissions {permission
levels) for the currenf user. For example, where a salesperson s using a particolar user system
412 to mteract with system 416, that user system has the capacities atlotted o that salesperson.
However, while an administrator is using that user system to inferact with system 416, that user
system has the capacities aliotted to that administrator, In systems with a lderarchical role
model, users at one permission level may have access to apphications, dala, and database
information accessible by a lower permussion fevel user, but may not have access to certain
applications, database information, and data accessible by a user at a higher permussion level.
Thus, different osers will have different capabilities with regard to accessing and modifying
application and database information, depending on a user’s seeurity or permission level.

{60891 Network 414 is anv network or combination of networks of devices that commuonicate
with one another. For example, network 414 can be any one or any combmation of a LAN (local
area notwork), WAN (wide area network), welephone network, wireless network, point-to-point
network, star network, token ring nefwork, hub network, or other appropriate configuration. As
the most common tvpe of computer network in current ase is 8 TCPAP (Transfer Control
Protocol and Internet Protocol) network, such as the global interneiwork of networks often
referred to as the “Internet” with a capital 17 that network will be used in many of the examples
herein. However, it should be anderstood that the networks that the present invention might use
are 1ot 5o hmited, although TCPAP 18 a frequently mplemented protocol.

{6090} User systems 412 might communicate with system 416 using TCP/AP and, at a agher
network level, use other common Infernet profocols to communicate, such as HTTP, FTP, AFS,
WAP, ¢te. In an example where HTTP is used, user system 412 might include an HTTP chient
commaonly referred 1o as a “browser™ for sendimg and recetving HTTP messages to and frow an
HTTP server at system 416, Sach an HTTP server might be implemented as the sele network
mterface bebween system 416 and network 414, but other technigues mmght be used as well ¢r
nstead. In sonw implementations, the interface between system 416 and network 414 includes

load sharing functionality, such as round-robin HTTP request distributors 10 balance loads and

28

WO 2010/135696 PCT/US2010/035843

distribute inconung HTTP requests evenly over g plurality of servers. At least as for the users
that are accessing that server, cach of the plurality of servers has access to the MTS data;
however, other alternative conligurations may be used mstead.

{0091} In one emabodivent, system 416, shown in FIG. 4, implements g web-based customer
relationship management (CRM) system. For example, In one embodiment, system 416 meludes
apphication servers configured to implement and execute CRM software applications as well as
provide related data, code, forms, webpages and other mformation to and from user svstems 412
and {o store {o, and retrieve from, a database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be stored i the same physical
database object, however, ienant data typreally 18 arranged so that dats of one tonani s kept
logically separate from that of other fenants so that one tenant does not have access to another
tenant’s data, onless such data is expressly shared. In certain embodiments, system 416
implements applications other than, or in addition to, a CRM application. For example, system
416 may provide tenant aceess to multiple hosted {standard and custom) applications, including a
CRM application. User {or third parly developer) apphications, which may or may not include
CRM, may be supported by the application platform 418, which manages creation, storage of the
applications infe one or more database objects and executing of the apphcations in a virtoal
machine m the process space of the system 416.

{00921 One arrangement for clements of system 416 is shown in FIGL §, including a network
interface 420, apphcation platform 418, tonant data storage 422 for fenant data 423, svsiem dala
storage 424 for system data accessible o system 416 and possibly muliiple tenants, program

ode 426 for implementing various functions of system 416, and a process space 428 for
execnting MTS system processes and tenant-specitfic processes, such as ronping apphications as
part of an application hosting service. Additional processes that may execute on system 416
mclude database mdexng processes.

j0093] Several elements in the system shown in FIG. 4 include conventional, well-known
elements that are explamed only briefly here. For example, cach aser system 412 coudd include a
desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access
protocel {WAP) enabled device or any other computing device capable of intertacing duectly or
ndirectly to the Internet or other network connection. User system 412 typically runs an HTTP

chient, e.g.. a browsing program, such as Microsoft’s Internet Explorer browser, Netscape's

29

WO 2010/135696 PCT/US2010/035843

Navigator browser, Opera’s browser, or @ WAP-gcnabled browser in the case of a cell phone,
PDA or other wireless device, or the fike, alfowmg a user {e.g. subscriber of the multi-tenant
database svstem) of user system 412 to access, process and view information, pages and
applications available to 1t from system 416 over network 414, Each aser system 412 also
typrcally includes one or more user interface devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the Bike, Tor iteracting with a graphical user interface (GUTD)
provided by the browser on a display (e.g. a monitor sereen, LCD display, ete.) m conjuaction
with pages, torms, applications and other information provided by system 416 or other systems
or servers. For example, the user interface device can be used to aceess data and applications
hosted by system 416, and © perform searches on stored data, and otherwise allow a user to
interact with various GUT pages that may be presented 1o @ user. As discussed above,
embodiments are suitable for use with the Internet, which refers 1o 4 specific global internetwork
of networks., However, 1t should be undersiood that other networks can be used instead of the
internet, such as an infranet, an extranet, a virtual private network {(VPN), a non-TCPAP based
network, any LAN or WAN or the like.

{H094] According to one embodiment, cach user system 412 and all of #3 components are
operator configurable using apphications, such as a browser, including computer code run asing a
central processing unit such as an Intel Penbium® processor or the like. Similarly, system 416
{and additional instances of an MTS, where more than one is present) and all of their
components might be operator configurable using application(s) including computer code (o run
ustig a contral processing vt such as processor system 417 of FIG. 4, which may include an
inte]l Pentiom® processor or the hke, and/or multiple processor units. A computer program
product embodiment inchudes a machine-readable storage medium (media) having instructions
stored thereon/in which can be used {0 program a computer to perform any of the processes of
the embodiments described herein, Computer code for operating and configuning system 416 {o
infercommunicate and to process webpages, applications and other data and media content as
described herewn are preferably downloaded and stored on a hard disk, but the entire program
code, or portions thereof, may also be stored in any other volatile or non-velatile memory
medium or device as is well known, such as a ROM or RAM, or provided on any media capable
of storing program code, such as any type of rotating media cluding floppy disks, optical dises,

digital versatile disk (DVD), compact disk (U}, microdrive, and magneto-optical disks, and

30

WO 2010/135696 PCT/US2010/035843

magnetic or optical cards, naposystems (including molecular memory 10s), or any type of media
or device suitable for storing instructions andior data. Additionally, the entire program code, or
portions thereof, may be ransmutied and downleaded from a sollware source over @ ransmission
medium, e.g., over the Interaet, or from another server, as s well known, or transmitted over any
other conventional network connection as 1s well known (e.g. extranef, VPN, LAN, ¢tc.) using
any commuanication medium and protocols fe.g. TCPAP, HTTP, HTTPS, Ethernet, efc.) as are
well known. It will also be appreciated that computer code for implemienting embodumenis of
the present invention can be implemented in any programming language that can be executed on
a client system andfor server or server system such as, for example, C, C++, HTML, any other
markup language, Java™, JavaScript, ActiveX, any other scripling langaage, such as VBScoript,
and many other programming languages as are well known may be vsed. (Java™ iy a frademark
of Sun Microsystems, In¢.).

00951 According to one embodiment, cach system 416 is configured {o provide webpages,
forms, applications, data and media content to user {client) systems 412 (o support the access by
user systems 412 as tenants of system 416, As such, system 416 provides security mechanisms
to keep each tenant’™s data separate unless the data 1s shaved. Wmore than one MTS 15 used, they
may be located 1 close proximity to one another {¢.g. 1 a server farm located in a single
building or campus), or they may be distributed at locations remote from one another {e.g. ong or
more servers focated in oty A and one or more servers located ity B As used herein, gach
MTS could include one or more logically andfor physically comnected servers distributed locally
OF gCress one or more geographic locations. Additionally, the torm “server™ 15 meant © include a
computer system, including processing hardware and process space(s), and an associated storage
system and database apphication {e.g. OODBEMS or RDEBMS) as i3 well known in the art. it
should also be anderstood that “server system™ and “server”™ are ofien used inferchangeably
herein. Similarly, the database object described herem can be implemented as single databases, a
distributed database, a collection of distributed databases, a database with redundant online or
offline backups or other redundancies, ete., and might include a distribuded database or storage
network and associated processing intelligence.

{6096} FIG. 3 also tlusirates environment 410, However, in FIG. § elements of system 416
and vartous interconnections in an embodiment are further tlustrated. FIG. 5 shows that user

system 412 may include processor system 412A, memory system 4128, inpuf system 412C, and

31

WO 2010/135696 PCT/US2010/035843

output system 412D, FIGL S shows network 414 and svstem 416, FIG. 5 also shows that system
416 may include {enant data storage 422, tenant data 423, system data storage 424, system data
425, User Interface (U 330, Application Program Interface (AR 532, PL/SOQL 534, save

routines 536, application setup mechanism 538, apphications servers 300,-300y, system process

b

space 302, tenant process spaces 504, tenant management process space 310, enant storage area
S12, user storage S14, and apphication metadata 516, In other embodiments, environment 410
may not have the same elements as those histed above andfor may have other clements 1nstead of,
or in addition to, those listed above.
{097} User system 412, network 414, system 416, {enant data storage 422, and system data
storage 424 were discussed above i FIG, 4. Regarding aser sysiem 412, processor system 412A
may be any combination of one or more processors. Memory system 4128 may be any
combination of one or more memory devices, short tenm, and/or long term memory. Input
system 412C may be any combination of input devices, such as one or more kevboards, mice,

-

trackballs, scanners, cameras, andfor interfaces to networks. Quiput system 4121 may be any
combination of output devices, such as one or more moniors, printers, andfor interfaces to
networks, As shown by FIG. §, system 416 may mchude a nevwork interface 420 (of FIG. 4)
implemented as a set of HUTP apphcation servers 500, an application platform 418, tenant dala
storage 422, and system data storage 424, Also shown 18 system process space 302, including
individual tenant process spaces 504 and a enant management process space 510, Each
apphication server 500 may be configured o tenant data storage 422 and the tenant data 423
theretn, and system data storage 424 and the svstem data 425 therein fo serve roquests of user
systems 412, The tenant data 423 might be divided mto individual tenant storage areas 512,
which can be cither a physical arrangement and/or a logical arrangement of data. Within each
tenant storage area 512, user storage 314 and apphication metadata 516 might be simdarty
allocated for each user. For example, a copy of a user’s most recently used (MRU) ttenms might
be stored to user storage S14. Similarly, a copy of MRU items for an entire organization that 1s a
tenant might be stored to {enant storage area 312, A U 530 provides a pser mterface and an AP
532 provides an application progravumer interface o system 416 resident processes o users
andfor developers at oser systems 412, The tenant data and the system data may be stored

various databases, such as one or more Oracle™ databases.

32

WO 2010/135696 PCT/US2010/035843

{6098} Application plattorm 418 wcludes an apphication setap mechanism 538 that supports
application developers” creation and management of applications, which may be saved as
metadata into tenant data storage 422 by save routines 336 for execution by subscribers as one or
more tenant process spaces 504 managed by tenant management process 510 for example.
Invocations o such applications may be coded using PLASOQL 334 that provides a programming
language style interface extension {o AP 332, A delatled description of some PL/SOQL
Jangnage embodinients 18 discussed in conymonly owned LS, Provisional Patent Application
60/828,192 entitled, “PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR
EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS,” by Craig
Weissman, filed Qclober 4, 2006, which is incorporated in its entwety berein for all purposes.
Invocations to applications may be detected by one or more system processes, which manage
retrieving application metadata 516 for the subscriber making the invocation and executing the
metadata as an apphication i a virtual machine.

{0099} ach application server 300 miay be communicably coupled to database systems, e.g.,
having access to svstem dala 425 and tonant data 423, via a ditferent network connection. For
example, one application server S00; might be coupled via the network 414 {e.g., the Internet),
another application server 500w, might be coupled via a direct network fink, and another
application server 300y, might be coupled by vet a different network connection. Transfer
Control Protocet and Internet Protocol (TCP/AP) are tvpical protocols for communicating
between application servers 500 and the database system. However, it will be appareni o one
skilied in the art that other transport protocols may be used to optimiize the system depending on
the network interconnect used.

[0100] 1o certain erabodiments, each application server 500 is configured to handle requests
for any user associated with any organization thal 18 g tenand. Because #1s desirable 1o be able to
add and remove application servers from the server pool af any time for any reason, there s
preferably ne server affinity for a user anddor organization to a specific application server 500.

in one embodiment, therefore, an inferface system implementing a load balancing function (e.g.,
an S Big-IP load balancer) s communicably coupled between the application servers 500 and
the user systems 412 1o disiribute requests to the application servers 300, In one embodiment,
the load balancer uses a least connections algorithn to route pser requests to the application

servers 500, Other examples of toad balancing algorithms, such as round robin and observed

33

WO 2010/135696 PCT/US2010/035843

response time, also can be used. For example, in cortain embodiments, three consecutive
requests from the same user could hit three different apphication servers 300, and three requests
from different users could hit the same application server 500, In this manner, sysiem 416 is
mulii-tenant, wherein system 416 handles storage of, and access Lo, different objects, data and
applications across disparate users and organizations,

0101} As an example of storage, one tenant might be a company that enaploys a sales force
where each salesperson uses system 416 to manage their sales process, Thus, a user might
maintain contact daty, leads data, customer follow~-up data, performance dala, goals and progress
data, ete., all applicable to that user’s personal sales process {o.g., in {enant data storage 422). In
an example of @ MTS arrangement, since all of the data and the apphcations 1 access, view,
modify, report, transmit, calculale, etc., can be maintained and accessed by & vser system having
nothing more than network access, the user can manage his or her sales efforts and cycles from

any of many different user systems. For example, if a salesperson 1s visiting a customer and the

3
customer has Internet access in their lobby, the salesperson can obtain critical updates as to that
customer while waiting for the customer 1o armive in the lobby,

{0102} While each user’s data might be separate from other nsers” data regardless of the
cmplovers of each user, some data nught be organization~wide data shared or accessible by a
plurality of users or all of the users for a given organization that 1s a tenant. Thus, there might be
some data structures managed by system 416 that are allocated at the tenaat level while other
data structures might be monaged af the user level. Because an MTS might support maltiple
tenants mcluding possible competitors, the MTS should have security protocols that keep data,
applications, and application use separate. Also, because many tenants may opl for access to an
MTS rather than maintain thelr own system, redundancy, up-time, and backup are additional
functions that may be implemenied in the MTS. In addiion © user-specitic data and {enant-
spectfic data, system 416 mught also maintain system level data asable by multiple tenants or
other data. Such system level data might include mdustry reports, news, postings, and the hike
that are sharable among tenants.

{0103] o cortatn embodiments, user systems 412 {which may be chient systems)
gommumeate with application servers 300 to request and update system-level and tenant-level
data from system 416 that may require sending one or more quetics 1 tenant data storage 422

and/or system data storage 424, Svstenmy 416 (e.g.. an apphcation server 300 m system 416)

34

WO 2010/135696 PCT/US2010/035843

automatically generates one or more SQL statements {¢.g., one or more SQL. queries) that are
designed to access the desired information. System data storage 424 may generate query plans (o
aceess the requested data from the database.

{00104] Each database can generally be viewed as a collection of objects, such as a set of
logical tables, contaming data fitted into predefined categories. A “table™ is one representation
of a data object, and may be used herein to simplify the conceptual deseription of objects and
custom objects according 1o the present invention. 1t should be understood that “table™ and
“'ub;cct” may be used interchangeably herein. Each table generally contains one or more data
categories logically arranged as columns ot fields 11 a viewable schema, Each row ot record of a
table contains an instance of data for each category delined by the fields. For example, a CRM
database may include a table that describes a customer with fields for basic contact information
such as name, address, phooe number, fax number, ete. Another table might deseribe a purchase
order, inclading fields for information such as customer, product, sale price, date, ete. In some
multi-tenant database systems, standard entity tables might be provided for use by all tenants.
For CRM database applications, such standard entities might include tables for Account,
Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood
that the word “entity™ may also be used interchangeably herein with “object” and “table™
[O0105] In some multi-tenant database sysiems, fenants may be allowed to create and store
custom objects, or they may be allowed to customize standard entitics or objects, for example by
creating custom fields for standard objects, including custom index fields. US. Patent
application Serial No, HR17, 161, filed Aprd 2, 2004, entitled “CLUSTOM ENTITIES AND
FIELDS IN A MULTI-TENANT DATABASE SYSTEM,” which is hereby incorporaied herein
by reference, teaches systems and methods for creating custom objects as well as customizing
standard objects in a multi-lenant database system. In ceriain embodiments, for example, all
custom entity dala rows are stored in a single multi-tenant physical table, which may contain
maultiple logical tables per organization. 1 is transparent to customers that their multiple “tables™
are in fact stored 1 one large table or that thew data may be stored 1 the same table as the data
of other customers,

[80106] i shoold be noted that any of the ditferent embodiments described heren may or may
not be equipped with any one or more of the features set forth in one or more of the following

published applications: US2003/0233404, ttled "OFFLINE SIMULATION OF ONLINE

35

WO 2010/135696 PCT/US2010/035843

SESSION BETWEEN CLIENT AND SERVER,” filed 11/04/2002; US2004/0210909, titled
“JAVA OBIECT CACHE SERVER FOR DATABASES.™ filed 04/17/2003, now issued U.8.
Patent Number 7,200 929, US2005/0063925, ttled “QUERY OPTIMIZATION IN A MULTI-
TENANT DATABASE SYSTEM,™ filed 09/23/2003; US2005/0223022, titled “CUSTOM
ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM,™ filed 04/02/2004;
LIS2005/0283478, titled “SOAP-BASED WEB SERVICES IN A MULTETENANT
DATABASE SYSTEM,™ filed 06/16/2004; US2006/0206834, titled "SYSTEMS AND
METHODS FOR IMPLEMENTING MULTEAPPLICATION TABS AND TAB SETS,” filed
(3/08/2003; andfor US2008/0010243, tided "METHOD AND SYSTEM FOR PUSHING DATA
TO A PLURALITY OF DEVICES IN AN ON-DEMAND SERVICE ENVIRONMENT,” filed
06/01/2007; which are cach incorporated hercin by reference in their entirety for all purposes.
{B0107] While the mvention has been described by way of example and in terms of the
specific embodiments, it 18 to be understood that the invention is not hmited to the disclosed
embodiments. To the contrary, it is intended to cover various modifications and similar
arrangements as would be apparent to those skilled i the art. Therefore, the scope of the
appended claims should be accorded the broadest interpretation so as o encompass all such

modifications and similar arrangements,

36

WO 2010/135696 PCT/US2010/035843

In the Claims:

i, A compuder program product embodied on a fangible computer readable medinm,
comprising:

computer code for receiving a request o access at least a portion of an application from
calling code;

computer code for wdenttfving a version provided by the calling code; and

compuier code for providing to the calling code access to components of the application

corresponding to the version provided by the calling code, 1 response to the regquest.

2. The computer program product of claim [, wherein the apphication includes computer

code that 1s at feast one of developed and maintained wtilizing a multi-tenant on-demand database

service.
3. The computer program produact of claim 1, wherein the calling code mclodes one of an

application program interface of a multi-tenant on-demand dafabase service and user inferface of

the multi-tenant on-demand database service.

4. The computer program prodact of ¢laim 1, wherein the computer program prodact is
operable such that the version provided by the calling code is determined from @ header of the

request,
5. The computer program product of claim 1, wherein the computer program produgt s
operable such that the version provided by the calling code 1s determined from a default version

specified by a setfing associated with a developer of the calling code.

6, The computer program product of clam 1, wherein the version that is determined

inclundes an unspecified version.

37

WO 2010/135696 PCT/US2010/035843

-

7. The computer program prodact of claim 1, further comprising computer code for
determining the components of the application corresponding to the version provided by the

catling code.

&, The computer progran: praduact of claim 7, wherein the computer program product is
operable such that the components of the application corresponding to the version provided by

the calling code are determuned based on predetermined rules,

9, The computer program product of claim K, wherein the predetermuned rules are specific

to a type of the calling code.

0. The computer program product of claim 9, wherein the tvpe of the calling code includes

one of an application program interface and a user interface.

11, The computer program product of claim 8, wherein the predetermined rules are specific

to a type of the portion of the application.

12, The computer program product of claim 11, wherein the type of the portion of the
application includes one of standard components managed by a multi-tenant en-demand database
service, cusiom components created by a developer of the application, and components installed

as part of the application.

13, The computer program product of clain ¥, wherein for cach of the components of the

application, the component 15 annofated with a version of the component.

{4, The computer program product of claim 13, wheremn the predetermined rules indicate that
the components of the application corresponding to the version provided by the calling code only
mclnde components of the application cach annotated with a version matching the version

provided by the calling code.

38

WO 2010/135696 PCT/US2010/035843

15, The computer program pradoct of claim 13, wherein the predetermined rules indicate that
the components of the appheation corresponding to the version provided by the calling code only
include components of the apphcation each annotated with a version matching or later than the

version provided by the calling code,

th. The computer program prodoct of claim 13, wherein the annotation includes a mininum

version of the application and & maximum version of the application indicating 8 vange of

versions of the apphication 1o which the component corresponds.

17, The computer program product of claim 13, wherein the maxyam version 1s recorded
once the component is uploaded as deprecated, the deprecation including an indicator to allow

the developer to remove the component).

18, The met computer program product of claim 17, wherein deprecating the component
allows the application to be evolved without introducing an imunediate change for existing users

of the application.

19 A method, comprising:
FOCEIVIRG A request fo access at least a portion of an application fron calling code;
identifving a version provided by the calling code; and
in response o the request, providing to the calling code aceess to components of the

application corresponding fo the version provided by the calling code.

20, An apparatus, comprising:

a processor for receiving a request fo access at least a portion of an application from
catling code, identifying a version provided by the calling code, and in response to the request,
providing o the callimg code access to components of the application corresponding to the

version provided by the calling code.

21 A method for transmitting code for use i1 a mult-tenant database system on a

fransmission mediom, the method comprising:

39

WO 2010/135696 PCT/US2010/035843

transmuiting code for receiving a request (o access at least a portion of an application
from calling code;

fransmitting code for identilying a version provided by the calling code; and

fransmitting code for providing to the calling code access {o components of the

application corresponding o the version provided by the calling code, in response to the request.

40

WO 2010/135696 PCT/US2010/035843

%‘mo

1/5

RECEIVING A REQUEST TO ACCESS AT LEAST A 102
PORTION OF AN APPLICATION FROM CALLING TN/
CODE

l

IDENTIFYING A VERSION PROVIDED BY THE 104
CALLING CODE N

l

IN RESPONSE TO THE REQUEST, PROVIDING TQ

THE CALLING CODE ACCESS TO COMPONENTS 106

OF THE APPLICATION CORRESPONDING TO THE | \./
VERSION PROVIDED BY THE CALLING CODE

FIGURE 1

WO 2010/135696 PCT/US2010/035843

2/5
200
202 204 206
CLIENT MODULE BROKER | ONOBULE
(CALLING CODE)} ™" MODULE [~™ (CALLED
| APPLICATION)

FIGURE 2

WO 2010/135696 PCT/US2010/035843

3/5

300

302 RECEIVE A REQUEST TO ACCESS AT LEASTA
_~—| PORTION OF AN APPLICATION FROM CALLING
CODE
304 _ DETERMINE A VERSION PROVIDED BY THE
W CALLING CODE

:

DETERMINE A RANGE OF COMPONENT VERSIONS
306 PREDETERMINED TO BE ALLOWED TO BE
_~" | ACCESSED BY THE VERSION PROVIDED BY THE
CALLING CODE
308 IDENTIFY COMPONENTS OF THE PORTION OF THE
_~" | APPLICATION WITH VERSIONS WITHIN THE RANGE

l

310 PROVIDE THE CALLING CODE WITH ACCESS TO
N THE IDENTIFIED COMPONENTS

FIGURE 3

WO 2010/135696

4/5

PCT/US2010/035843

/_4‘ 422

S
Tenant

Data
Storage

ecomerrasrrie ™

//418

Application
Platform

e’
Systemn
Data
Storage

/\(‘ 424

w/417

/-* 426

Program
Code

//* 428

Processor
System

Process Space

/‘ 420

User

412

System

Network

System 418

Interface

Network
414

aaaaaaaaaaa

Environment 410

User
System
412

FIGURE 4

WO 2010/135696

PCT/US2010/035843

5/5
P 422
< A
' 1 423
[TenantSpace p— | | 512
User Storage | | |~ 514
| Application MetaData {™ | T~ 516
Search System 540
Application Tenant Management System
Setup Process Process
Mechanism 538 510 502
Save
Routines 536 1 Tenant 1 |} Tenant 2 Tenant N
"""""""""""""""""""""" i Process || Process | "7 7" | Process
PL/SOQL %
‘ L
534 N sos " 428
418 1}
AP 532 Ut 530
- e I -
S -
. —
N —
. e
- o
\‘ o -
Aol 200 Appl. -~ 500
 Server Server
420y
Environment
410
Netwark
414
412
- 412
Processor Memory Hr—™—
System 412A1 | System 4128
Input Qutput
System 412C | | System 412D

FIGURE 5

416

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/35843

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 3/00 (2010.01)
USPC - 719/317

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 719/317

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 719/313, 317; 709/201, 202, 204, 206; 717/100, 114; 705/1.1, 26 (keyword limited; terms below)

PubWEST (USPT, PGPB, EPAB, JPAB); GoogleScholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms Used: rule criteria parameter version determination detection identified identifying annotation marking header OH
overhead calling requesting accessing modifying max maximum min minimum range match older newer unspecified specifying interface

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Abstract; para [0005], [0024), (0026), [0047], [0056), [0103]

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2009/0049288 A1 (WEISSMAN) 19 February 2009 (19.02.2009) entire document, especially | 1-5, 7, 19-21
- Abstract; para [0005], [0008], [0008], [0012], [0031], [0048], [0053], [0059], [0060), [0062), | ---emeemereemens
Y [0078], [0079), [0086], [0087), [0104], [0110), [0111], [0114]-{0118], [0121)}, [0122], [0126], 6, 8-18
[0129], [0136), [0155], [0158), [0163], [0167]; Fig. 1
Y US 2009/0055809 A1 (CAMPBELL) 26 February 2009 (26.02.2009) entire document, especially | 6, 8-18

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or other
means

“P" document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apglication but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

09 July 2010 (09.07.2010)

Date of mailing of the intenational search report

21 JUL 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report

