
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/083486 Al
13 June 2013 (13.06.2013) W P O P C T

(51) International Patent Classification: (72) Inventors: DAWSON, Michael; IBM Canada, M/d
G06F 9/46 (2006.01) 02/qwm/770, 770 Palladium Drive, Kanata, Ontario K2V

1C8 (CA). JOHNSON, Graeme; IBM Canada, M d
(21) International Application Number: 02/wao/770, 770 Palladium Drive, Kanata, Ontario K2V

PCT/EP2012/074066 1C8 (CA).

(22) International Filing Date: (74) Agent: WILLIAMS, Julian; IBM United Kingdom Lim
30 November 2012 (30.1 1.2012) ited, Intellectual Property Law, Hursley Park, Winchester

(25) Filing Language: English Hampshire S021 2JN (GB).

(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
13/3 12,246 6 December 201 1 (06. 12.201 1) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(71) Applicant: INTERNATIONAL BUSINESS MA¬ DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

CHINES CORPORATION [US/US]; New Orchard HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

Road, Armonk, New York 10504 (US). KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(71) Applicant (for MG only): IBM UNITED KINGDOM NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
mouth Hampshire P06 3AU (GB). TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

ZM, ZW.

[Continued on nextpage]

(54) Title: HIDDEN AUTOMATED DATA MIRRORING FOR NATIVE INTERFACES IN DISTRIBUTED VIRTUAL MA-
CHINES

(57) Abstract: An initial request for a reference to a data container is
sent from a distributed enhanced remote execution container native
interface component of a distributed virtual machine to a distributed
enhanced virtual machine native interface component of the distrib -
uted virtual machine in response to receipt of the initial request from
a remote execution container. A data mirror data structure including
immutable data and the reference to the data container is received.
The received data mirror data structure including the immutable data
and the reference to the data container is stored within a local
memory storage area. A reference to the locally-stored data mirror
data structure is returned to the remote execution container in re
sponse to the initial request for the reference to the data container.

00

© FIG. 3

o
o

w o 2013/083486 A i llll I I I I 11III III III III III III III II I II

(84) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

kind of regional protection available): ARIPO (BW, GH, GW, ML, MR, NE, SN, TD, TG).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Published:

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (Art. 21(3))
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

HIDDEN AUTOMATED DATA MIRRORING FOR NATIVE INTERFACES IN

DISTRIBUTED VIRTUAL MACHINES

BACKGROUND

[0001] The present invention relates to distributed virtual machines. More particularly,

the present invention relates to hidden automated data mirroring for native interfaces in

distributed virtual machines.

[0002] Java™ Virtual Machine (JVM®) implementations support the Java™ Native

Interface (JNI). The JNI allows Java™ programming language code to call methods written

in the C and C++ (native code) programming languages and vice versa. Both the code

written in the Java™ programming language and the native code may be executed in the

same process and by the same thread as execution transitions between the two code sections.

BRIEF SUMMARY

[0003] A method includes sending, from a distributed enhanced remote execution

container native interface component of a distributed virtual machine in response to receipt

of an initial request for a reference to a data container from a remote execution container, the

initial request for the reference to the data container to a distributed enhanced virtual

machine native interface component of the distributed virtual machine; receiving a data

mirror data structure comprising immutable data and the reference to the data container in

response to the initial request for the reference to the data container; storing the received data

mirror data structure comprising the immutable data and the reference to the data container

within a local memory storage area; and returning a reference to the locally-stored data

mirror data structure to the remote execution container in response to the initial request for

the reference to the data container.

[0004] An alternative method includes receiving, at a distributed enhanced virtual

machine native interface component of a distributed virtual machine from a distributed

enhanced remote execution container native interface component of the distributed virtual

machine, an initial request for a reference to a data container; identifying immutable data

within the data container in response to receipt of the initial request for the reference to the

data container; constructing a data mirror data structure that comprises the identified

immutable data and the requested reference to the data container; and sending the data

mirror data structure comprising the identified immutable data and the requested reference to

the data container in response to the initial request for the reference to the data container to

the distributed enhanced remote execution container native interface component of the

distributed virtual machine.

[0005] A system includes a memory and a processor programmed to execute a

distributed enhanced remote execution container native interface component of a distributed

virtual machine configured to send, in response to receipt of an initial request for a reference

to a data container from a remote execution container, the initial request for the reference to

the data container to a distributed enhanced virtual machine native interface component of

the distributed virtual machine; receive a data mirror data structure comprising immutable

data and the reference to the data container in response to the initial request for the reference

to the data container; store the received data mirror data structure comprising the immutable

data and the reference to the data container within a local memory storage area of the

memory; and return a reference to the locally-stored data mirror data structure to the remote

execution container in response to the initial request for the reference to the data container.

[0006] An alternative system includes a communication module and a processor

programmed to execute a distributed enhanced virtual machine native interface component

of a distributed virtual machine configured to receive, via the communication module, an

initial request for a reference to a data container from a distributed enhanced remote

execution container native interface component of the distributed virtual machine; identify

immutable data within the data container in response to receipt of the initial request for the

reference to the data container; construct a data mirror data structure that comprises the

identified immutable data and the requested reference to the data container; and send, via the

communication module, the data mirror data structure comprising the identified immutable

data and the requested reference to the data container in response to the initial request for the

reference to the data container to the distributed enhanced remote execution container native

interface component of the distributed virtual machine.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE

DRAWINGS

[0007] Figure (FIG.) 1 is a block diagram of an example of an implementation of a

system for hidden automated data mirroring for native interfaces in distributed virtual

machines according to an embodiment of the present subject matter;

[0008] Figure (FIG.) 2 is a block diagram of an example of an implementation of a core

processing module capable of performing hidden automated data mirroring for native

interfaces in distributed virtual machines according to an embodiment of the present subject

matter;

[0009] Figure (FIG.) 3 is a message flow diagram of an example of an implementation of

a message flow for hidden automated data mirroring for native interfaces in distributed

virtual machines with a data mirror constructed at a distributed virtual machine component

in response to a request for a class reference according to an embodiment of the present

subject matter;

[001 0] Figure (FIG.) 4 is a block diagram of an example of an implementation of a data

mirror data structure stored within a data mirror storage area of a memory according to an

embodiment of the present subject matter;

[001 1] Figure (FIG.) 5 is a flow chart of an example of an implementation of a process

for hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced remote execution container (REC) native interface module according to

an embodiment of the present subject matter;

[0012] Figure (FIG.) 6 is a flow chart of an example of an implementation of a process

for hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced virtual machine (VM) native interface module according to an

embodiment of the present subject matter;

[001 3] Figure (FIG.) 7A is a flow chart of an example of an implementation of initial

processing within a process for hidden automated data mirroring for native interfaces in

distributed virtual machines at a distributed enhanced remote execution container (REC)

Java Native Interface (JNI) module according to an embodiment of the present subject

matter;

[0014] Figure (FIG.) 7B is a flow chart of an example of an implementation of additional

processing within a process for hidden automated data mirroring for native interfaces in

distributed virtual machines at a distributed enhanced remote execution container (REC)

Java™ Native Interface (JNI) module according to an embodiment of the present subject

matter; and

[001 5] Figure (FIG.) 8 is a flow chart of an example of an implementation of a process

for hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced virtual machine (VM) Java™ Native Interface (JNI) module according

to an embodiment of the present subject matter.

DETAILED DESCRIPTION

[001 6] The examples set forth below represent the necessary information to enable those

skilled in the art to practice the invention and illustrate the best mode of practicing the

invention. Upon reading the following description in light of the accompanying drawing

figures, those skilled in the art will understand the concepts of the invention and will

recognize applications of these concepts not particularly addressed herein. It should be

understood that these concepts and applications fall within the scope of the disclosure and

the accompanying claims.

[001 7] The subject matter described herein provides hidden automated data mirroring for

native interfaces in distributed virtual machines. A native interface of a distributed virtual

machine is split into an enhanced remote execution container (REC) native interface

component and an enhanced virtual machine (VM) native interface component. The

distributed enhanced REC native interface component interfaces with a remote execution

container module of the distributed virtual machine. The distributed enhanced VM native

interface component interfaces with a virtual machine module of the distributed virtual

machine. These distributed native interface components are executed in separate processes,

either on the same or on different devices, with the remote execution container and the

virtual machine, respectively. In response to requests originating in the remote execution

container, the distributed enhanced REC native interface component generates initial

requests to the distributed enhanced VM native interface component for references to data

containers (e.g., classes). The distributed enhanced VM native interface component

responds to the initial requests for references to data containers by providing the requested

reference and immutable data associated with the data container encapsulated within a data

mirror data structure that represents the data container. For purposes of the present

description, "immutable data" includes data that does not change (e.g., method identifiers

(IDs) and/or names, field identifiers (IDs) and/or names, and static final field identifiers

(IDs) and/or field values that are marked as "final" data values). The enhanced remote

execution container native interface component stores the data mirror data structure and

responds to requests for immutable data by retrieving the requested immutable data from the

data mirror data container. As such, additional inter-process communications to retrieve

immutable data may be eliminated. Additionally, portions of available immutable data may

be initially encapsulated within the data mirror data structure and the immutable data may be

augmented over time. As such, the interactive processing between the two enhanced native

interface components operates to improve efficiency of inter-process communications.

[001 8] The present subject matter is applicable, for example, to a distributed Java™

Native Interface (JNI) in a distributed Java™ Virtual Machine (JVM®). However, the

present subject matter may be applied to any native interface in any distributed virtual

machine as appropriate for a given implementation. It is understood that the JNI is an

application programming interface (API), and as such the JNI may be referred to herein as a

"JNI client" or a "JNI application" interchangeably, and may be referred to for brevity as

"JNI" within the context of this understanding and the distributed nature of the interfaces

described herein.

[001 9] The present subject matter utilizes patterns that occur between the Java™ Native

Interface (JNI) client and a Java™ Virtual Machine (JVM®) in distributed virtual machines

to improve efficiency of inter-process communications. For example, the present subject

matter applies to situations such as where a JNI issues a first request to a JVM® for a

reference (reference request) to a data container, and issues a subsequent request for data

(data request) within that data container using the reference returned from the JVM® in

response to the initial reference request. In cases such as these, the device/process executing

the JVM® portion of the distributed virtual machine operates in response to the initial

reference request to identify immutable data related to the data container (e.g., all immutable

data or a portion as described in more detail below) and returns the immutable data to the

device/process executing the remote execution container portion of the distributed virtual

machine in response to the reference request. The immutable data is stored within local

storage associated with the device/process executing the remote execution container portion

of the distributed virtual machine as a data mirror data structure and the locally-stored data

of the data mirror data structure is made available for subsequent requests directed to the

data container of the other distributed process. When subsequent requests are made for data

using the reference returned in response to the initial request, if that data is immutable, it is

returned from the data mirror data structure within the local storage. As such, delays,

processing, and bandwidth associated with round-trip inter-process communications to

retrieve the immutable data may be eliminated.

[0020] Because immutable data is used within JNI constructs and multiple immutable

values may be requested from a single container, the number of remote calls that are

eliminated may be significant. The present technique utilizes recognition of the lifecycles of

the references returned through the JNI interface without requiring complicated cache

management for the data that is mirrored for the remote execution container process.

[0021] The JNI returns opaque handles for many of the data elements that are returned in

the sequences requiring multiple remote calls. For purposes of the present description,

"opaque handles" represent a contract in the application programming interface (API), such

that whatever the handle points to is not visible to call directly and a reference has to be

handed back in a subsequent call. For example, if a "jclass" is handed back, the jclass

cannot be treated like a pointer and the data within the object/class cannot be inspected

directly. For such a situation, the reference to the jclass is handed to another function to

retrieve the requested data. As such, an opaque handle may be viewed as an indirect

reference for purposes of the present description. These opaque handles allow a reference to

be returned to the JNI that includes more information than that which is returned in a

traditional JVM® without affecting the operation of existing applications. The present

subject matter leverages the use of opaque handles to improve distributed JVM® operations,

as described above and in more detail below.

[0022] The opaque handles are "local references" that have a lifetime limited to the

current JNI method call. Further, there is a defined procedure for upgrading opaque handles

to "global references" that have a lifetime beyond the single call. Given the reference

returned in the first call, the present technology identifies a set of immutable data related to

that reference that may be requested in subsequent calls. The cost of getting/returning more

data than was requested in the first call may be considerably lower, perhaps by one or more

orders of magnitude depending upon the implementation, than incurring even one additional

round trip between the JVM® and the remote execution container.

[0023] Two examples of container objects to which the present technology may be

applied are "jclass" and "jobject" containers. However, it should be noted that other

container objects exist and the present subject matter may be applied to any such container

without departure from the scope of the present subject matter.

[0024] A "jclass" represents a Java™ programming language-implemented class. Once

a reference to the jclass is obtained, subsequent calls may be made to obtain data that does

not change for the life of the class (i.e., immutable data). Examples of such data that does

not change for the life of the class that may be obtained in subsequent calls include method

identifiers (IDs) and/or names, field identifiers (IDs) and/or names, and static final field

identifiers (IDs) and/or field values.

[0025] A "jobject" represents a Java™ programming language-implemented object

instantiated using a jclass. Once a reference to the jobject is obtained, subsequent calls may

be made to obtain data that does not change for the life of the object (i.e., immutable data).

Examples of such data that does not change for the life of the object that may be obtained in

subsequent calls include final field values (e.g., data values).

[0026] It should be noted that for purposes of certain debugging platforms, such as

Java™ virtual machine tool interface (JVMTI), some of this data may not be immutable

when the JVMTI is enabled for a JVM®. In such cases, the optimization may be disabled

for data that would otherwise be immutable during normal operations. As such, the

operations described herein may further be configurable based upon whether the immutable

data remains immutable during debug operations to allow flexibility of use for debugging

purposes, while preserving efficiency during normal operational mode for the JVM®.

[0027] The present technology includes three techniques that improve efficiency of

native interfaces in distributed virtual machines. Initially, when the first call is made to

obtain an initial reference to a data container, as the TNI call is processed in the JVM®,

instead of returning the reference alone, an additional operation is performed to also extract

the immutable data (all or a portion as a configuration option) from the data container and

package this immutable data together with the reference into a data mirror (DataMirror).

The data mirror is then returned to the remote execution container and a reference to the data

mirror is returned to the JNI instead of the reference returned by the JNI call in the JVM®.

[0028] Second, an inspection is performed within the JNI implementation (transparent to

JNI clients) for all cases were a reference is passed in for processing through the JNI by a

native interface to determine whether the references are regular references or references to a

data mirror. This may be performed, for example, using low bit tagging or other techniques

as appropriate for a given implementation. In cases were the call is passed over to the

remote execution container, such as where the request was for non-immutable data or for a

non-data related request, the reference is extracted and returned in the data mirror so that it

may be used in the request forwarded to the JVM®. In cases were the data that is requested

is immutable and stored within the data mirror, the immutable data is extracted from the data

mirror and returned without making a call back to the remote execution container.

[0029] As noted above and described in more detail below, immutable data may be

obtained over time, such as in response to a first request for each item of immutable data, to

reduce processing loads associated with collection of immutable data that is not requested.

Other configuration options are possible to configure a collection of immutable data within a

data mirror other than at the initial reference request and all such options are considered

within the scope of the present subject matter.

[0030] A third aspect of the present technology is data mirror lifetime management. The

lifetime of immutable data within a data mirror may also be configured and managed. For

example, if a method/procedure called "DeleteLocalReference" is called with a reference to

a data mirror passed in as a parameter, the memory for the entire data mirror may be freed

independently of a lifetime of the respective data in the JVM® object. Additionally, in

response to completion and return of a JNI method, the memory for all remaining non-global

data mirrors may be freed. Further, if a method/procedure called "NewGlobalRef ' is called

and a reference to a data mirror is passed in as a parameter, a new "global" data mirror may

be created that encapsulates the global reference returned from the remote execution

container and the information from the original data mirror. As an additional example, if a

method/procedure called "DeleteGlobalRef ' is called and a reference to a data mirror is

passed in as a parameter, the global reference may be extracted and a call to the remote

execution container may be made to delete the global reference and then free the memory for

the global data mirror. Many other possibilities exist for lifetime management and all are

considered within the scope of the present subject matter.

[0031] The techniques described herein may be further optimized in several ways. For

example, instead of sending all of the immutable data back with the first request for the

reference, the data requested over time may be recorded so that the system learns what data

to include within the data mirror initially returned. As such, the most-used data or a subset

of the most-used data may be included within the initial data mirror. Additionally, a data

mirror may be built over time by only sending back a portion of the immutable data on the

first call, with subsequent calls filling in the data mirror as appropriate for a given

implementation. The amount of data sent for each request may be based on available data

space within a packet on the given network to utilize the available payload area without

requiring an additional transmission initially. Then on subsequent requests, an additional

packet may be filled to capacity and the data mirror may be built over time while efficiently

utilizing packet payloads and network bandwidth. Further, instead of sending all of the data

back on the first call, an empty or only partially- filled in data mirror may be initially sent

and populated as subsequent calls for immutable data are made such that on the second

request for any piece of immutable data, the data request may be satisfied locally from the

data mirror. This may be particularly useful if the original reference is upgraded to a global

reference and cached, which may be used, for example, with frequently used classes. Many

other optimizations to the present subject matter are possible and all are considered within

the scope of the present subject matter.

[0032] It should be noted that conception of the present subject matter resulted from

recognition of certain limitations associated with native interfaces in distributed virtual

machines. For example, it was observed that it is possible to construct a distributed virtual

machine (e.g., a distributed JVM®) such that the native code (e.g., code writing in the C or

C++ programming languages) is executed in one or more remote execution containers that

may be hosted in separate processes on the same or different computing devices from where

the Java™ programming language code is executed (e.g., a split virtual machine). It was

further observed that for a split virtual machine, the native code is unaware that it is

executing separately from the JVM® and that this separation prevents misbehaved native

code from destabilizing the JVM® and enables execution of the native code in a different

environment (e.g., security context, pointer width, endian, etc.) from the main JVM®.

However, it was also observed that in such a split virtual machine, the cost of the

method/procedure calls between the Java™ programming language code and the native code

(e.g., cross-process/cross-machine calls) have greater overhead and latency relative to non-

distributed virtual machines, of a potential one or more orders of magnitude depending upon

the implementation, and round-trip communications between the distributed code sections

consumed time, consumed bandwidth, and delayed processing. It was also observed that

with the standardized Java™ Native Interface (JNI), an application often has to make

multiple calls to get the information needed to complete an action. For example, in order to

get the contents of a field within an object, the application first makes a call to get the class

for the object, then makes a call to get an identifier (ID) for the field of the class, and then

makes the call to get the contents of the field itself, resulting in six (6) inter-process

messages. It was additionally observed that in a distributed JVM®, each of these six

messages/steps will incur a time-consuming round trip. In view of these several

observations, it was recognized that data mirroring may be used to reduce communication

latency, bandwidth, and processing time, and that the data mirroring may be hidden from

application-level constructs without requiring a change to the application programming

interface (API) for an application to make the data mirroring transparent to future and

existing applications that utilize such an API. The present subject matter improves overhead

and latency associated with such processing within distributed virtual machines by providing

hidden automated data mirroring for native interfaces in distributed virtual machines, as

described above and in more detail below. As such, improved operations for distributed

virtual machines may be obtained through use of the technology described herein.

[0033] The hidden automated data mirroring for native interfaces in distributed virtual

machines described herein may be performed in real time to allow prompt data mirroring

between distributed processes of virtual machines. For purposes of the present description,

real time shall include any time frame of sufficiently short duration as to provide reasonable

response time for information processing acceptable to a user of the subject matter

described. Additionally, the term "real time" shall include what is commonly termed "near

real time" - generally meaning any time frame of sufficiently short duration as to provide

reasonable response time for on-demand information processing acceptable to a user of the

subject matter described (e.g., within a portion of a second or within a few seconds). These

terms, while difficult to precisely define are well understood by those skilled in the art.

[0034] Figure 1 is a block diagram of an example of an implementation of a system 100

for hidden automated data mirroring for native interfaces in distributed virtual machines. A

computing device l 102 communicates via a network 104 with a computing device_2 106

through a computing device N 108. The computing device l 102 executes a remote

execution container 110 that interfaces with a virtual machine 112 executed by one of the

computing device l 102 through the computing device N 108 to form a distributed virtual

machine. The virtual machine 112 may include, for example, a Java™ Virtual Machine

(JVM®) or other Java™ programming language process, as appropriate for a given

implementation. The remote execution container 110 and the virtual machine 112 are

operated by different processes/threads, whether collocated within the single computing

device l 102 or physically distributed across different computing devices.

[0035] The remote execution container 110 includes native code (e.g., C and/or C++

programming language code) executing in one process/thread that interfaces with Java™

programming language code within the virtual machine 112 executing in a different

process/thread (or device as appropriate for a given implementation). It should be noted that

code written in any language that may support C/C++ programming language calling

conventions may be utilized for native code implementation. As such, C and C++ are used

for ease of reference herein and any references herein to native code, including any to the C

and/or C++ programming language, are considered to include references to any such other

language(s). It should also be noted that the virtual machine 112 within each of the

computing device_2 106 through the computing device N 108 is illustrated with dashed-

lines to illustrate flexibility with respect to location of the virtual machine 112. It should

also be noted that the remote execution container 110 may also be operated within one or

more of the computing device_2 106 through the computing device N 108 without departure

from the scope of the present subject matter.

[0036] It should be noted that the respective computing devices 102 through 108 may be

portable computing devices, either by a user's ability to move the computing devices to

different locations, or by the respective computing device's association with a portable

platform, such as a plane, train, automobile, or other moving vehicle. It should also be noted

that the respective computing devices may be any computing device capable of processing

information as described above and in more detail below. For example, the computing

devices may include devices such as a personal computer (e.g., desktop, laptop, etc.) or a

handheld device (e.g., cellular telephone, personal digital assistant (PDA), email device,

music recording or playback device, watch, etc.), server devices, or any other device capable

of processing information as described in more detail below.

[0037] The network 104 may include any form of interconnection suitable for the

intended purpose, including a private or public network such as an intranet or the Internet,

respectively, direct inter-module interconnection, dial-up, wireless, or any other

interconnection mechanism capable of interconnecting the respective devices.

[0038] Figure 2 is a block diagram of an example of an implementation of a core

processing module 200 capable of performing hidden automated data mirroring for native

interfaces in distributed virtual machines. The core processing module 200 may be

associated with each of the computing device l 102 through the computing device N 108,

as appropriate for a given implementation. Further, the core processing module 200 may

provide different and complementary processing of data mirroring in association with each

implementation, as described in more detail below.

[0039] As such, for any of the examples below, it is understood that any aspect of

functionality described with respect to any one device that is described in conjunction with

another device (e.g., sends/sending, etc.) is to be understood to concurrently describe the

functionality of the other respective device (e.g., receives/receiving, etc.). Further, for a

distributed virtual machine implementation using different processes/threads on a single

device, the sending and receiving is understood to operate between processes/threads.

[0040] A central processing unit (CPU) 202 provides computer instruction execution,

computation, and other capabilities within the core processing module 200. A display 204

provides visual information to a user of the core processing module 200 and an input device

206 provides input capabilities for the user.

[0041] The display 204 may include any display device, such as a cathode ray tube

(CRT), liquid crystal display (LCD), light emitting diode (LED), electronic ink displays,

projection, touchscreen, or other display element or panel. The input device 206 may

include a computer keyboard, a keypad, a mouse, a pen, a joystick, or any other type of input

device by which the user may interact with and respond to information on the display 204.

[0042] It should be noted that the display 204 and the input device 206 are illustrated

with a dashed-line representation within Figure 2 to indicate that they may be optional

components for the core processing module 200 for certain implementations. Accordingly,

the core processing module 200 may operate as a completely automated embedded device

without direct user configurability or feedback. However, the core processing module 200

may also provide user feedback and configurability via the display 204 and the input device

206, respectively.

[0043] A communication module 208 provides interconnection capabilities that allow

the core processing module 200 to communicate with other modules within the system 100.

The communication module 208 may include any electrical, protocol, and protocol

conversion capabilities useable to provide the interconnection capabilities. Though the

communication module 208 is illustrated as a component-level module for ease of

illustration and description purposes, it should be noted that the communication module 208

may include any hardware, programmed processor(s), and memory used to carry out the

functions of the communication module 208 as described above and in more detail below.

For example, the communication module 208 may include additional controller circuitry in

the form of application specific integrated circuits (ASICs), processors, antennas, and/or

discrete integrated circuits and components for performing communication and electrical

control activities associated with the communication module 208. Additionally, the

communication module 208 may include interrupt-level, stack-level, and application-level

modules as appropriate. Furthermore, the communication module 208 may include any

memory components used for storage, execution, and data processing for performing

processing activities associated with the communication module 208. The communication

module 208 may also form a portion of other circuitry described without departure from the

scope of the present subject matter.

[0044] A memory 210 includes the remote execution container 110 and the virtual

machine 112. Each of the remote execution container 110 and the virtual machine 112

interface with a distributed enhanced Java™ Native Interface (JNI) module 212. The

distributed enhanced Java™ Native Interface (JNI) module 212 includes two interface

components, a distributed enhanced remote execution container (REC) JNI component 214

and a distributed enhanced virtual machine (VM) JNI component 216, that interact with one

another to provide the functionality of the distributed enhanced JNI module 212. The

distributed enhanced REC JNI component 214 further interfaces with the remote execution

container 110, and the distributed enhanced VM JNI component 216 further interfaces with

the virtual machine 112.

[0045] The distributed enhanced JNI module 212 operates to implement the present

subject matter by responding to reference and/or data requests with additional immutable

data. The distributed enhanced JNI module 212 operates to implement the present subject

matter by creating a data mirror for immutable data to reduce communication interactions

between the remote execution container 110 and the virtual machine 112. A data mirror

storage area 218 stores created data mirrors, as described above and in more detail below.

[0046] It is understood that the memory 210 may include any combination of volatile

and non-volatile memory suitable for the intended purpose, distributed or localized as

appropriate, and may include other memory segments not illustrated within the present

example for ease of illustration purposes. For example, the memory 210 may include a code

storage area, an operating system storage area, a code execution area, and a data area without

departure from the scope of the present subject matter.

[0047] A distributed enhanced JNI module 220 is also illustrated as an alternative

implementation of the distributed enhanced JNI functionality described herein. The

distributed enhanced JNI module 220 represents a hardware module implementation of the

distributed enhanced JNI module 212. As such, the remote execution container 110 and the

virtual machine 112 may interface via the distributed enhanced JNI module 220 to perform

the respective processing associated with each of the respective modules, or the distributed

enhanced JNI module 212 may be implemented at the process level without departure from

the scope of the present subject matter.

[0048] The distributed enhanced JNI module 220 may implement both the distributed

enhanced REC JNI component 214 and the distributed enhanced VM JNI component 216 for

single platform implementations. Alternatively, multiple and complementary distributed

enhanced JNI modules 220 that each implement one of the distributed enhanced REC JNI

component 214 and the distributed enhanced VM JNI component 216 may be utilized on

different devices to implement the distributed enhanced JNI module 220 across multiple

platforms.

[0049] Though the distributed enhanced JNI module 220 is illustrated as a component-

level module for ease of illustration and description purposes, it should be noted that the

distributed enhanced JNI module 220 may include any hardware, programmed processor(s),

and memory used to carry out the functions of this module as described above and in more

detail below. For example, the distributed enhanced JNI module 220 may include additional

controller circuitry in the form of application specific integrated circuits (ASICs),

processors, and/or discrete integrated circuits and components for performing

communication and electrical control activities associated with the respective devices.

Additionally, the distributed enhanced JNI module 220 may include interrupt-level, stack-

level, and application-level modules as appropriate. Furthermore, the distributed enhanced

JNI module 220 may include any memory components used for storage, execution, and data

processing for performing processing activities associated with the module.

[0050] It should also be noted that the distributed enhanced JNI module 220 may form a

portion of other circuitry described without departure from the scope of the present subject

matter. Further, the distributed enhanced JNI module 220 may alternatively be implemented

as an application stored within the memory 210, such as described above. In such an

implementation, the distributed enhanced JNI module 220 may include instructions executed

by the CPU 202 for performing the functionality described herein. The CPU 202 may

execute these instructions to provide the processing capabilities described above and in more

detail below for the core processing module 200. The distributed enhanced JNI module 220

may form a portion of an interrupt service routine (ISR), a portion of an operating system, a

portion of a browser application, or a portion of a separate application without departure

from the scope of the present subject matter.

[0051] The CPU 202, the display 204, the input device 206, the communication module

208, the memory 210, and the distributed enhanced JNI module 220 are interconnected via

an interconnection 222. The interconnection 222 may include a system bus, a network, or

any other interconnection capable of providing the respective components with suitable

interconnection for the respective purpose.

[0052] While the core processing module 200 is illustrated with and has certain

components described, other modules and components may be associated with the core

processing module 200 without departure from the scope of the present subject matter.

Additionally, it should be noted that, while the core processing module 200 is described as a

single device for ease of illustration purposes, the components within the core processing

module 200 may be co-located or distributed and interconnected via a network without

departure from the scope of the present subject matter. For a distributed arrangement, the

display 204 and the input device 206 may be located at a point of sale device, kiosk, or other

location, while the CPU 202 and memory 210 may be located at a local or remote server.

Many other possible arrangements for components of the core processing module 200 are

possible and all are considered within the scope of the present subject matter. Accordingly,

the core processing module 200 may take many forms and may be associated with many

platforms.

[0053] For purposes of the present description, the following pseudo code examples

represent actions originating at a native interface, such as the distributed enhanced TNI

module 212 or the distributed enhanced JNI module 220, operating in conjunction with a

remote execution container, such as the remote execution container 110. The first example

pseudo code below represents a query to a virtual machine from a remote execution

container to find a class associated with the virtual machine.

jclass cls = (*env) -> FindClass(env, "com/company/example/TestClass");

[0054] This first example pseudo code may be used to retrieve a class reference to a

class named "TestClass." The variable "cls" is assigned the class reference.

[0055] The following second example pseudo code represents a request to obtain a field

identifier (ID) associated with a data element of the class referenced by the "cls" variable.

jfieldID a = (*env) -> GetFieldID(env, cls, "a", "I");

[0056] This second example pseudo code may be used to retrieve a field identifier (ID)

of a data element of the class referenced in the "cls" variable. As described above, a field

identifier (ID) is considered immutable data as it will not change over a given instantiation

of a class. Within the present example, it is assumed that the data element referenced by the

field identifier (ID) is of type integer and has not been marked "final," such that the value of

the actual data element is not immutable and may change over time.

[0057] The following third example pseudo code represents a request to obtain a value

assigned to the integer data element represented by the obtained field identifier.

jint avalue = (*env) -> GetIntField(env, allValues, a);

[0058] As described above, based upon the observations that lead to the conception of

the present subject matter, each of these three operations would result in one round-trip

communication between the remote execution container and the virtual machine. However,

based upon the present subject matter, the number of round-trip communications may be

reduced, as described in association with Figure 3 below.

[0059] Figure 3 is a message flow diagram of an example of an implementation of a

message flow 300 for hidden automated data mirroring for native interfaces in distributed

virtual machines with a data mirror constructed at a distributed virtual machine component

in response to a request for a class reference. The distributed enhanced JNI module 212 (or

the distributed enhanced JNI module 220 as appropriate for a give implementation) is shown

to include the distributed enhanced REC JNI component 214 and the distributed enhanced

VM JNI component 216 that operate to allow the remote execution container 110 to interact

with the virtual machine 112, respectively.

[0060] Due to crowding within the drawing figure, certain interface communications are

described without explicit depiction. However, it is understood that these interface

communications form a part of the drawing figure. For purposes of the present examples, it

is assumed that a processing sequence, such as the sequence described above in the example

pseudo code segments, is processed by the respective elements depicted within Figure 3 . It

is further assumed that processing within Figure 3 is initiated by native code in the remote

execution container 110 issuing a request to identify a class (e.g., a "FindClass" request)

associated with the virtual machine 112 to the distributed enhanced REC JNI component 214

as described above in association with the first example pseudo code.

[0061] At block 302, the distributed enhanced REC JNI component 214 associated with

the remote execution container 110 receives a request from the remote execution container

110 for a reference to a class associated with the virtual machine 112 (e.g., a "Find Class" or

"FindClass" request) and initiates processing to issue a query to identify a class associated

with the virtual machine 112. As described above, the virtual machine 112 may be

distributed either within a separate process on the same computing device or as a separate

process executing on a different computing device from the remote execution container 110.

[0062] The distributed enhanced REC JNI component 214 issues a "Find Class" request

(line 1). The distributed enhanced VM JNI component 216 associated with the virtual

machine 112 receives the request and identifies the class, and additionally retrieves

immutable data associated with the class at block 304. At block 306, the distributed

enhanced VM JNI 216 builds a data mirror data structure for the class referenced within the

request within a memory, such as the data mirror storage area 218 of the memory 210

associated with a device that is executing the distributed enhanced VM JNI 216, that

includes all immutable data identified and retrieved from the identified class. The data

mirror storage area 218 may form a portion of a packet processing area associated with inter

process or inter-device communications. The distributed enhanced VM JNI component 216

returns the data mirror data structure with the immutable data and the class reference (line 2)

to the distributed enhanced REC JNI component 214 associated with the remote execution

container 110.

[0063] It should be noted that the distributed enhanced VM JNI component 216 may

alternatively use data packet payload filling to return a data mirror data structure that

includes a portion of the immutable data, as appropriate for the given implementation, and a

data mirror data structure may be built to include more data over time as additional data is

requested. Within the present example, it is assumed that at least the field identifiers for data

elements of the class are returned within the data mirror with the reference to the class. For

example, method names/identifiers, field names/identifiers, and static final field values/field

identifiers may be returned.

[0064] In response to receipt of the data mirror data structure, the data mirror data

structure is stored by the distributed enhanced REC JNI component 214, such as within the

data mirror storage area 218 of the memory 210. A reference to the data mirror is returned

to the remote execution container 110 (not shown).

[0065] At block 308, the distributed enhanced REC JNI component 214 receives a

request from the remote execution container 110 for a data field identifier (e.g., "Get Field

Identifier") associated the class for which the data mirror data structure was previously

received and stored. However, instead of directly issuing a request to the distributed

enhanced VM JNI component 216 associated with the virtual machine 112, the distributed

enhanced REC JNI component 214 looks into the stored data mirror data structure for the

class to determine whether the field identifier associated with the request is already stored

within the data mirror data structure. Within the present example, as described above, all

field identifiers were returned and stored to the data mirror data structure in response to the

initial request. As such, the data field identifier (ID) is identified within and extracted from

the stored local data mirror data structure and returned to the remote execution container 110

at block 310. Accordingly, the distributed enhanced REC JNI component 214 uses the local

data mirror data structure to eliminate a request to the distributed enhanced VM JNI

component 216 associated with the virtual machine 112 and to eliminate an entire round-trip

delay associated with the request for the field identifier.

[0066] For purposes of the present example, it is assumed that the requested field ID

represents an integer value and that the integer was not marked "final" at a time of the initial

request for the reference to the class. As such, the integer value was not immutable data and

was not returned within the data mirror created by the distributed enhanced VM JNI

component 216. However, it should be noted that any values or identifiers that are marked

"final" may be considered immutable and may be added to the data mirror data structure to

reduce inter-process communications associated with requests for these final values or

identifiers.

[0067] At block 312, the distributed enhanced REC JNI component 214 receives a

request from the remote execution container 110 for the integer field value (e.g., "Get

Integer Field") associated with the field identifier retrieved from the stored local data mirror

data structure. The distributed enhanced REC JNI component 214 issues a "Get Integer

Field" request to the distributed enhanced VM JNI component 216 associated with the

virtual machine 112 (line 3). The distributed enhanced VM JNI component 216 processes

the request for the integer value and retrieves the integer data value at block 314. The

distributed enhanced VM JNI component 216 returns the integer data to the distributed

enhanced REC JNI component 214 (line 4). The distributed enhanced REC JNI component

214 returns the integer data to the requesting remote execution container 110 at block 316.

[0068] As such, the message flow diagram 300 shows that immutable data may be

returned within a data mirror data structure in response to a first request for a class reference

and that subsequent request for immutable data may be processed from the locally-stored

data mirror data structure. Accordingly, separate inter-process requests for immutable data

may be eliminated. As described above, a data mirror may be filled in over time to optimize

inter-process bandwidth usage, such as for example, as data identifiers are requested and/or

data values are finalized.

[0069] Figure 4 is a block diagram of an example of an implementation of a data mirror

data structure 400 stored within the data mirror storage area 218 of the memory 210. The

data mirror data structure 400 includes a local class reference 402 that references the class

associated with the particular data mirror data structure represented by the data mirror data

structure 400. A field identifier (ID l) 404 through a field identifier (ID N) 406 each

include a field identifier and field name/type data pair that represent data fields within the

referenced class. A method identifier (ID l) 408 through a method identifier (ID N) 410

each include a method identifier and method name/type data pair that represent methods

within the referenced class. As described above, additional immutable data values may be

stored within a data mirror data structure and all such fields are considered within the scope

of the present subject matter. The data mirror data structure 400 may be used, as described

above and in more detail below, to access immutable data locally and to reduce round-trip

communications between processes.

[0070] Figure 5 through Figure 8 described below represent example processes that may

be executed by devices, such as the core processing module 200, to perform the hidden

automated data mirroring for native interfaces in distributed virtual machines associated with

the present subject matter. Many other variations on the example processes are possible and

all are considered within the scope of the present subject matter. The example processes

may be performed by modules, such as the distributed enhanced JNI module 220 and/or

executed by the CPU 202 or one or both of the subcomponents of the distributed enhanced

JNI module 212, associated with such devices. It should be noted that time out procedures

and other error control procedures are not illustrated within the example processes described

below for ease of illustration purposes. However, it is understood that all such procedures

are considered to be within the scope of the present subject matter. Further, the described

processes may be combined, sequences of the processing described may be changed, and

additional processing may be added without departure from the scope of the present subject

matter.

[0071] Figure 5 is a flow chart of an example of an implementation of a process 500 for

hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced remote execution container (REC) native interface module. At block

502, the process 500 sends, from a distributed enhanced remote execution container native

interface component of a distributed virtual machine in response to receipt of an initial

request for a reference to a data container from a remote execution container, the initial

request for the reference to the data container to a distributed enhanced virtual machine

native interface component of the distributed virtual machine. At block 504, the process 500

receives a data mirror data structure comprising immutable data and the reference to the data

container in response to the initial request for the reference to the data container. At block

506, the process 500 stores the received data mirror data structure comprising the immutable

data and the reference to the data container within a local memory storage area. At block

508, the process 500 returns a reference to the locally-stored data mirror data structure to the

remote execution container in response to the initial request for the reference to the data

container.

[0072] Figure 6 is a flow chart of an example of an implementation of a process 600 for

hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced virtual machine (VM) native interface module. At block 602, the

process 600 receives, at a distributed enhanced virtual machine native interface component

of a distributed virtual machine from a distributed enhanced remote execution container

native interface component of the distributed virtual machine, an initial request for a

reference to a data container. At block 604, the process 600 identifies immutable data within

the data container in response to receipt of the initial request for the reference to the data

container. At block 606, the process 600 constructs a data mirror data structure that

comprises the identified immutable data and the requested reference to the data container.

At block 608, the process 600 sends the data mirror data structure comprising the identified

immutable data and the requested reference to the data container in response to the initial

request for the reference to the data container to the distributed enhanced remote execution

container native interface component of the distributed virtual machine.

[0073] Figures 7A-7B illustrate a flow chart of an example of an implementation of a

process 700 for hidden automated data mirroring for native interfaces in distributed virtual

machines at a distributed enhanced remote execution container (REC) Java™ Native

Interface (JNI) module, such as the distributed enhanced REC JNI component 214. Figure

7A illustrates initial processing within the process 700. It should be noted that, as described

above, processing of immutable data may be disabled during certain debugging operations,

such as in association with the Java™ virtual machine tool interface (JVMTI). Due to

crowding within the drawing space of Figures 7A and 7B, this debugging determination for

enablement and disablement of immutable data processing has been omitted from the

drawing figures. However, it is understood that this processing forms a portion of the

process 700. Example processing for debug enablement determination is described below in

association with Figure 8 for reference.

[0074] At decision point 702, the process 700 makes a determination as to whether an

initial request for a reference to a data container has been detected as being received from a

remote execution container, such as from the remote execution container 110. The initial

request may be, for example, an initial request for a class reference (e.g., a Find Class

request as described above). In response to determining that an initial request for a reference

to a data container has been detected, the process 700 sends the initial request for the

reference to the data container to a distributed enhanced virtual machine native interface

component of the distributed virtual machine, such as the distributed enhanced VM JNI

component 216, at block 704.

[0075] At block 706, the process 700 receives a data mirror data structure including

immutable data and the reference to the data container in response to the initial request for

the reference to the data container. It should be noted that the reference to the data container

may be embedded within the data mirror data structure. Additionally, as described above,

the data mirror data structure may include all immutable data or the initial response may be

optimized for bandwidth consumption by the distributed enhanced virtual machine

component to use packet payload filling to send as much immutable data as may be

delivered within a single packet, for example, to build the data mirror data structure over

time without consuming partial packet payloads. As such, if certain portions of immutable

data are not requested and are not initially sent by the distributed enhanced virtual machine

native interface component, then these portions are not sent or stored within the locally-

stored data mirror data structure.

[0076] At block 708, the process 700 stores the received data mirror data structure

including the immutable data and the reference to the data container within a local memory

storage area, such as the data mirror storage area 218 of the memory 210. At block 710, the

process 700 returns a reference to the locally-stored data mirror data structure to the remote

execution container in response to the initial request for the reference to the data container.

As such, the remote execution container now has a reference to the locally-stored data mirror

data structure that may be used for subsequent requests for data associated with the data

container and any immutable data within the data mirror data structure may be retrieved

from local storage without requiring an additional round-trip communication to retrieve the

immutable data from the data container.

[0077] Returning to the description of decision point 702, in response to determining that

an initial request for a reference to a data container has not been detected as being received

from a remote execution container or in response to completion of returning the reference to

the locally-stored data mirror data structure to the remote execution container at block 710,

the process 700 makes a determination at decision point 712 as to whether a request from the

remote execution container for an additional item of data associated with the data container

has been detected. In response to determining that a request from the remote execution

container for the additional item of data associated with the data container has been detected,

the process 700 begins processing the request for the additional item of data associated with

the data container and makes a determination at decision point 714 as to whether the

requested additional item of data is for immutable data. In response to determining that the

requested additional item of data is a request for immutable data, the process 700 makes a

determination at decision point 716 as to whether the requested immutable data is available

within the locally-stored data mirror data structure.

[0078] In response to determining that the request for the additional item of data

associated with the data container comprises a request for immutable data that is available

within the locally-stored data mirror data structure at decision point 716, the process 700

extracts the requested immutable data from the locally-stored data mirror data structure at

block 718. It should be noted that this immutable data is extracted from the locally-stored

data mirror data structure without making a call back to the distributed enhanced virtual

machine native interface component when the requested data is immutable and the

immutable data is stored in the data mirror data structure. At block 720, the process 700

returns the requested immutable data to the remote execution container in response to the

request for the additional item of data. Additional processing within the process 700 after

block 720 is described in more detail below.

[0079] Returning to the description of decision point 714, in response to determining that

the requested additional item of data is not a request for immutable data or in response to

determining at decision point 716 that the requested immutable data is not available within

the locally-stored data mirror data structure, the process 700 extracts the reference to the data

container returned with the data mirror data structure from the locally-stored data mirror data

structure at block 722. At block 724, the process 700 sends the request for the additional

item of data associated with the data container with the extracted reference to the data

container to the distributed enhanced virtual machine native interface component of the

distributed virtual machine. At block 726, the process 700 receives the requested additional

item of data and additional immutable data from the distributed enhanced virtual machine

native interface component of the distributed virtual machine. The additional immutable

data may include immutable data that was not initially received with the data mirror data

structure and may also include other immutable data items, such as variables that have been

marked as "final" data values.

[0080] At block 728, the process 700 stores the additional immutable data to the locally-

stored data mirror data structure. At block 730, the process 700 returns the requested

additional item of data to the remote execution container. It should be noted that the

requested additional item of data may be immutable or non-immutable data, but that the

response bandwidth may be utilized to send additional immutable data to fill in the locally-

stored data mirror data structure if all immutable data was not initially sent with the initial

data mirror data structure.

[0081] Returning to the description of decision point 712, in response to determining that

a request from the remote execution container for an additional item of data associated with

the data container has not been detected, or in response to returning the requested additional

item of data to the remote execution container at blocks 720 and/or 730, the process 700

makes a determination at decision point 732 as to whether a request to perform lifetime

management of any locally-stored data mirror data structure has been detected, such as via a

detection of a procedure, routine, or method call invocation. In response to determining that

a request to perform lifetime management of any locally-stored data mirror data structure has

been not detected, the process 700 returns to decision point 702 and iterates as described

above. In response to determining that a request to perform lifetime management of any

locally-stored data mirror data structure has been detected, the process 700 transitions to the

processing shown and described in association with Figure 7B to begin performing the

requested lifetime management of the locally-stored data mirror data structure.

[0082] Figure 7B illustrates additional processing associated with the process 700 for

hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced REC JNI module. At decision point 734, the process 700 makes a

determination as to whether the detected request to perform lifetime management was a

detection of an invocation of a call to a DeleteLocalReference routine that includes a

reference to the locally-stored data mirror data structure as a parameter. In response to

determining that an invocation of a call to a DeleteLocalReference routine has been detected,

the process 700 frees memory allocated to the data mirror data structure using the reference

to the data mirror data structure at block 736. The process 700 returns to the processing

described in association with Figure 7A at decision point 702 and iterates as described

above.

[0083] Returning to the description of decision point 734, in response to determining that

the detected request to perform lifetime management was not an invocation of a

DeleteLocalReference routine, the process 700 makes a determination at decision point 738

as to whether the detected request to perform lifetime management was a detection of

completion of execution of a native method in the remote execution container. In response

to determining that completion of execution of the native method in the remote execution

container was detected, the process 700 frees memory for all remaining non-global locally-

stored data mirror data structures in the scope of that method at block 740. The process 700

returns to the processing described in association with Figure 7A at decision point 702 and

iterates as described above.

[0084] Returning to the description of decision point 738, in response to determining that

the detected request to perform lifetime management was not a detection of completion of

execution of the native method in the remote execution container, the process 700 makes a

determination at decision point 742 as to whether the detected request to perform lifetime

management was detection of an invocation of a call to a NewGlobalRef routine including a

reference to the locally-stored data mirror data structure as a parameter. In response to

determining that an invocation of a call to a NewGlobalRef routine was detected, the process

700 creates a new global data mirror data structure within the local memory storage area at

block 744. Creation of the new global data mirror data structure involves several sub-steps

that are represented within block 744 due to space limitations in the drawing figure. These

sub-steps include a remote call to the virtual machine (VM) side of the distributed virtual

machine (via the distributed enhanced virtual machine native interface) to obtain/get a global

reference, and creating the new global data mirror data structure in response to receipt of the

new global reference from the VM side. This remote call may be added to other JNI traffic,

which may remove a round-trip communication between the respective processes. Further,

this processing to create the new global data mirror data structure includes creating the new

global data mirror data structure from the local data mirror data structure. Several

alternatives exist for creating the global data mirror data structure from the local data mirror

data structure. For example, the local data mirror data structure may be copied to the newly-

created global data mirror data structure. Alternatively, the local data mirror data structure

may be promoted to a global data mirror data structure, such as by replacing the local

reference with the global reference. Additionally, the promoted global data mirror data

structure may be moved to a global list in association with replacing the local reference with

the global reference to create the global data mirror data structure. As such, many

alternatives exist and all are considered within the scope of the present subject matter.

Regardless of implementation, it is understood that the created global data mirror data

structure encapsulates the reference to the data container returned from the distributed

enhanced virtual machine native interface component of the distributed virtual machine and

the immutable data from the locally-stored data mirror data structure. At block 746, the

process 700 returns a global reference to the new locally-stored global data mirror data

structure to the remote execution container. The process 700 returns to the processing

described in association with Figure 7A at decision point 702 and iterates as described

above.

[0085] Returning to the description of decision point 742, in response to determining that

the detected request to perform lifetime management was not detection of an invocation of a

call to a NewGlobalRef routine, the process 700 makes a determination at decision point 748

as to whether the detected request to perform lifetime management was detection of an

invocation of a call to a DeleteGlobalRef routine, including a reference to the new locally-

stored global data mirror data structure as a parameter. In response to determining that an

invocation of a call to a DeleteGlobalRef routine was detected, the process 700 extracts the

global reference from the new locally-stored global data mirror data structure at block 750.

At block 752, the process 700 makes a call to the virtual machine to delete the global

reference and deletes the locally-stored global data mirror data structure. At block 754, the

process 700 frees memory allocated to the locally-stored global data mirror data structure.

The process 700 returns to the processing described in association with Figure 7A at

decision point 702 and iterates as described above. It is assumed for purposes of the present

example that at least one of the described lifetime management actions will result in an

affirmative determination and processing. As such, it is assumed that the negative branch of

decision point 748 may not be executed, but in the event that the determination at decision

point 748 is negative, the process 700 also returns to the processing described in association

with Figure 7A at decision point 702 and iterates as described above.

[0086] As such, the process 700 receives and locally stores data mirror data structures in

response to sending initial requests for references to data containers to a distributed

enhanced virtual machine native interface component of the distributed virtual machine. The

process 700 also examines the locally-stored data mirror data structure in response to

subsequent requests for immutable data and retrieves the requested immutable data from the

locally-stored data mirror data structure if the data is locally available. Accordingly, the

process 700 may reduce round-trip communications for immutable data. The process 700

also performs lifetime management of locally-stored data mirror data structures to manage

local memory allocations.

[0087] Figure 8 is a flow chart of an example of an implementation of a process 800 for

hidden automated data mirroring for native interfaces in distributed virtual machines at a

distributed enhanced virtual machine (VM) Java™ Native Interface (JNI) module, such as

the distributed enhanced VM JNI component 216. At decision point 802, the process 800

makes a determination as to whether an initial request for a reference to a data container has

been detected as being received from a distributed enhanced remote execution container

native interface component of the distributed virtual machine, such as the distributed

enhanced REC JNI component 214. The initial request may be, for example, an initial

request for a class reference (e.g., a Find Class request as described above). In response to

determining that an initial request for a reference to a data container has been detected, the

process 800 makes a determination at decision point 804 as to whether debugging, such as

via a Java™ virtual machine tool interface (JVMTI), is enabled. As noted above, this

example processing is shown within Figure 8 for reference in only one location at decision

point 804. However, such processing may be implemented at any appropriate location

associated with the processing as appropriate for the given implementation. In response to

determining that debugging is enabled, the process 800 extracts and sends the requested

reference at block 806. Additional processing associated with the process 800 after

completion of sending the requested reference is deferred and described in detail further

below.

[0088] Returning to the description of decision point 804, in response to determining that

debugging is not enabled, the process 800 identifies immutable data within the data

container at block 808. At decision point 810, the process 800 makes a determination as to

whether to send all available immutable data or whether to send a portion of the available

immutable data, such as for packet payload filling to conserve bandwidth. As such, the

portion of the immutable data may include an amount of the immutable data selected based

upon inter-process data packet payload size. In response to determining to send a portion of

the available immutable data, the process 800 determines an available inter-process data

packet payload size at block 812. At block 814, the process 800 selects immutable data to

fill as much of the available payload as possible with minimal empty payload space to

improve bandwidth usage. This processing may be performed, for example, in consideration

of data type sizes. In situations with larger arrays or data structures within data containers,

multiple packets may be used to send the data mirror data structure. In such situations, a

second or subsequent packet may be processed to send additional immutable data to fill the

available payload within the last packet to be sent with minimal empty payload space.

[0089] In response to completion of selecting the immutable data to be sent at block 814

or in response to determining to send all immutable data at decision point 810, the process

800 constructs a data mirror data structure that includes the identified/selected immutable

data and the requested reference to the data container at block 816. This processing may

include constructing the data mirror data structure of a size sufficient to fill the available

inter-process data packet payload size of one or more data packets with minimal empty

payload space. Additionally, the reference to the data container may be included/embedded

within the data mirror data structure or may be packaged with the data mirror data structure

for transmission. At block 818, the process 800 sends the data mirror data structure

including the identified/selected immutable data and the requested reference to the data

container to the requesting distributed enhanced remote execution container native interface

component of the distributed virtual machine.

[0090] In response to completion of sending the data mirror data structure to the

requesting distributed enhanced remote execution container component at block 818, in

response to determining that an initial request for a reference to a data container has not be

detected at decision point 802, or in response to extracting and sending the requested

reference at block 806 (if in debug mode), the process 800 makes a determination at decision

point 820 as to whether a request for an additional item of data within the data container has

been detected. It should be noted that an additional determination regarding debug

enablement may be made in response to an affirmative determination at decision point 820

and that this additional determination has been omitted from the drawing figure due to space

limitations within the drawing sheet. In response to determining that a request for an

additional item of data within the data container has not been detected, the process 800

returns to decision point 802 and iterates as described above.

[0091] In response to determining at decision point 820 that a request for an additional

item of data within the data container has been detected, the process 800 extracts the

requested additional item of data from the data container at block 822. It should be noted

that the requested additional item of data from the data container may be immutable or non-

immutable data.

[0092] At decision point 824, the process 800 makes a determination as to whether

additional immutable data is available to send with the requested additional item of data

from the data container. The additional immutable data may include, for example,

immutable data that was not sent in response to the request for the initial reference to the

data container, immutable data that was not sent in response to a previous request for

additional data from the data container (e.g., due to packet payload optimizations), data

variables that have been marked as "final" data values, and other forms of immutable data.

[0093] In response to determining that additional immutable data is available to send

with the requested additional item of data, the process 800 identifies the additional

immutable data and extracts the additional immutable data from the data container at block

826. In response to determining that no additional immutable data is available to send with

the requested item of additional data at decision point 824, or in response to identifying and

extracting the additional immutable data at block 826, the process 800 sends the requested

additional item of data and any extracted additional immutable data to the distributed

enhanced remote execution container native interface component of the distributed virtual

machine in response to the request for the additional item of data within the data container at

block 828. The process 800 returns to decision point 802 and iterates as described above.

[0094] As such, the process 800 responds to initial requests for references to a data

container by identifying immutable data associated with the data container, generating a data

mirror data structure, and sending the data mirror data structure with the reference to the data

container to the requesting distributed enhanced remote execution container native interface

component of the distributed virtual machine. The process 800 may package a portion of the

available immutable data and may send any remaining immutable data in response to one or

more requests for additional data items from the data container.

[0095] As described above in association with Figure 1 through Figure 8, the example

systems and processes provide hidden automated data mirroring for native interfaces in

distributed virtual machines. Many other variations and additional activities associated with

hidden automated data mirroring for native interfaces in distributed virtual machines are

possible and all are considered within the scope of the present subject matter.

[0096] Those skilled in the art will recognize, upon consideration of the above teachings,

that certain of the above examples are based upon use of a programmed processor, such as

the CPU 202. However, the invention is not limited to such example embodiments, since

other embodiments could be implemented using hardware component equivalents such as

special purpose hardware and/or dedicated processors. Similarly, general purpose

computers, microprocessor based computers, micro-controllers, optical computers, analog

computers, dedicated processors, application specific circuits and/or dedicated hard wired

logic may be used to construct alternative equivalent embodiments.

[0097] As will be appreciated by one skilled in the art, aspects of the present invention

may be embodied as a system, method or computer program product. Accordingly, aspects

of the present invention may take the form of an entirely hardware embodiment, an entirely

software embodiment (including firmware, resident software, micro-code, etc.) or an

embodiment combining software and hardware aspects that may all generally be referred to

herein as a "circuit," "module" or "system." Furthermore, aspects of the present invention

may take the form of a computer program product embodied in one or more computer

readable medium(s) having computer readable program code embodied thereon.

[0098] Any combination of one or more computer readable medium(s) may be utilized.

The computer readable medium may be a computer readable signal medium or a computer

readable storage medium. A computer readable storage medium may be, for example, but

not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor

system, apparatus, or device, or any suitable combination of the foregoing. More specific

examples (a non-exhaustive list) of the computer readable storage medium would include the

following: an electrical connection having one or more wires, a portable computer diskette, a

hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable

programmable read-only memory (EPROM or Flash memory), a portable compact disc read

only memory (CD-ROM), an optical storage device, a magnetic storage device, or any

suitable combination of the foregoing. In the context of this document, a computer readable

storage medium may be any tangible medium that can contain, or store a program for use by

or in connection with an instruction execution system, apparatus, or device.

[0099] A computer readable signal medium may include a propagated data signal with

computer readable program code embodied therein, for example, in baseband or as part of a

carrier wave. Such a propagated signal may take any of a variety of forms, including, but

not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer

readable signal medium may be any computer readable medium that is not a computer

readable storage medium and that can communicate, propagate, or transport a program for

use by or in connection with an instruction execution system, apparatus, or device.

[001 00] Program code embodied on a computer readable medium may be transmitted

using any appropriate medium, including but not limited to wireless, wireline, optical fiber

cable, RF, etc., or any suitable combination of the foregoing.

[001 01] Computer program code for carrying out operations for aspects of the present

invention may be written in any combination of one or more programming languages,

including an object oriented programming language such as Java™, Smalltalk, C++ or the

like and conventional procedural programming languages, such as the "C" programming

language or similar programming languages. The program code may execute entirely on the

user's computer, partly on the user's computer, as a stand-alone software package, partly on

the user's computer and partly on a remote computer or entirely on the remote computer or

server. In the latter scenario, the remote computer may be connected to the user's computer

through any type of network, including a local area network (LAN) or a wide area network

(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

[001 02] Aspects of the present invention have been described with reference to flowchart

illustrations and/or block diagrams of methods, apparatus (systems) and computer program

products according to embodiments of the invention. It will be understood that each block

of the flowchart illustrations and/or block diagrams, and combinations of blocks in the

flowchart illustrations and/or block diagrams, can be implemented by computer program

instructions. These computer program instructions may be provided to a processor of a

general purpose computer, special purpose computer, or other programmable data processing

apparatus to produce a machine, such that the instructions, which execute via the processor

of the computer or other programmable data processing apparatus, create means for

implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.

[001 03] These computer program instructions may also be stored in a computer-readable

storage medium that can direct a computer or other programmable data processing apparatus

to function in a particular manner, such that the instructions stored in the computer-readable

storage medium produce an article of manufacture including instructions which implement

the function/act specified in the flowchart and/or block diagram block or blocks.

[00104] The computer program instructions may also be loaded onto a computer, other

programmable data processing apparatus, or other devices to cause a series of operational

steps to be performed on the computer, other programmable apparatus or other devices to

produce a computer implemented process such that the instructions which execute on the

computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[001 05] The flowchart and block diagrams in the Figures illustrate the architecture,

functionality, and operation of possible implementations of systems, methods and computer

program products according to various embodiments of the present invention. In this regard,

each block in the flowchart or block diagrams may represent a module, segment, or portion

of code, which comprises one or more executable instructions for implementing the specified

logical function(s). It should also be noted that, in some alternative implementations, the

functions noted in the block may occur out of the order noted in the figures. For example,

two blocks shown in succession may, in fact, be executed substantially concurrently, or the

blocks may sometimes be executed in the reverse order, depending upon the functionality

involved. It will also be noted that each block of the block diagrams and/or flowchart

illustration, and combinations of blocks in the block diagrams and/or flowchart illustration,

can be implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

[001 06] A data processing system suitable for storing and/or executing program code will

include at least one processor coupled directly or indirectly to memory elements through a

system bus. The memory elements can include local memory employed during actual

execution of the program code, bulk storage, and cache memories which provide temporary

storage of at least some program code in order to reduce the number of times code must be

retrieved from bulk storage during execution.

[001 07] Input/output or I/O devices (including but not limited to keyboards, displays,

pointing devices, etc.) can be coupled to the system either directly or through intervening I/O

controllers.

[001 08] Network adapters may also be coupled to the system to enable the data

processing system to become coupled to other data processing systems or remote printers or

storage devices through intervening private or public networks. Modems, cable modems and

Ethernet cards are just a few of the currently available types of network adapters.

[001 09] The terminology used herein is for the purpose of describing particular

embodiments only and is not intended to be limiting of the invention. As used herein, the

singular forms "a," "an" and "the" are intended to include the plural forms as well, unless

the context clearly indicates otherwise. It will be further understood that the terms

"comprises" and/or "comprising," when used in this specification, specify the presence of

stated features, integers, steps, operations, elements, and/or components, but do not preclude

the presence or addition of one or more other features, integers, steps, operations, elements,

components, and/or groups thereof.

[001 10] The corresponding structures, materials, acts, and equivalents of all means or step

plus function elements in the claims below are intended to include any structure, material, or

act for performing the function in combination with other claimed elements as specifically

claimed. The description of the present invention has been presented for purposes of

illustration and description, but is not intended to be exhaustive or limited to the invention in

the form disclosed. Many modifications and variations will be apparent to those of ordinary

skill in the art without departing from the scope and spirit of the invention. The embodiment

was chosen and described in order to best explain the principles of the invention and the

practical application, and to enable others of ordinary skill in the art to understand the

invention for various embodiments with various modifications as are suited to the particular

use contemplated.

CLAIMS

1. A method, comprising:

sending, from a distributed enhanced remote execution container native interface

component (214) of a distributed virtual machine in response to receipt of an initial request

for a reference to a data container from a remote execution container (110), the initial

request for the reference to the data container to a distributed enhanced virtual machine

native interface component (216) of the distributed virtual machine;

receiving a data mirror data structure comprising immutable data and the reference to

the data container in response to the initial request for the reference to the data container;

storing the received data mirror data structure comprising the immutable data and the

reference to the data container within a local memory storage area; and

returning a reference to the locally-stored data mirror data structure to the remote

execution container in response to the initial request for the reference to the data container.

2 . The method of claim 1, further comprising processing a request for an additional

item of data associated with the data container using the locally-stored data mirror data

structure.

3 . The method of claim 2, where processing the request for the additional item of data

associated with the data container using the locally-stored data mirror data structure

comprises:

receiving the request for the additional item of data associated with the data container

from the remote execution container;

determining whether the request for the additional item of data associated with the

data container comprises a request for immutable data that is available within the locally-

stored data mirror data structure; and

in response to determining that the request for the additional item of data associated

with the data container comprises the request for immutable data that is available within the

locally-stored data mirror data structure:

extracting the requested immutable data from the locally-stored data mirror

data structure; and

returning the requested immutable data to the remote execution container in

response to the request for the additional item of data.

4 . The method of claim 3, further comprising:

one of determining that the request for the additional item of data associated with the

data container does not comprise the request for immutable data and determining that the

requested immutable data is not available within the locally-stored data mirror data structure;

extracting the reference to the data container returned with the data mirror data

structure from the locally-stored data mirror data structure;

sending the request for the additional item of data associated with the data container

with the extracted reference to the data container to the distributed enhanced virtual machine

native interface component of the distributed virtual machine;

receiving the requested additional item of data and additional immutable data from

the distributed enhanced virtual machine native interface component of the distributed

virtual machine;

storing the additional immutable data to the locally-stored data mirror data structure;

and

returning the requested additional item of data to the remote execution container.

5 . The method of claim 1, further comprising performing lifetime management of the

locally-stored data mirror data structure.

6 . The method of claim 5, where performing the lifetime management of the locally-

stored data mirror data structure comprises:

detecting an invocation of a call to a DeleteLocalReference routine comprising a

reference to the locally-stored data mirror data structure as a parameter; and

freeing memory allocated to the locally-stored data mirror data structure in response

to the invocation of the call to the DeleteLocalReference routine using the reference to the

locally-stored data mirror data structure.

7 . The method of claim 5, where performing the lifetime management of the locally-

stored data mirror data structure comprises:

detecting completion of execution of a native method executing in the remote

execution container; and

freeing memory for all remaining non-global locally-stored data mirror data

structures within a context of the native method in response to detecting the completion of

execution of the native method.

8. The method of claim 5, where performing the lifetime management of the locally-

stored data mirror data structure comprises:

detecting an invocation of a call to a NewGlobalRef routine comprising a reference

to the locally-stored data mirror data structure as a parameter;

sending a request to the distributed enhanced virtual machine native interface

component for a new global reference;

receiving the new global reference from the distributed enhanced virtual machine

native interface component;

creating a new global data mirror data structure within the local memory storage area

that encapsulates the new global reference returned from the distributed enhanced virtual

machine native interface component of the distributed virtual machine and the immutable

data from the locally-stored data mirror data structure in response detecting the invocation of

the NewGlobalRef routine; and

returning a global reference to the new locally-stored global data mirror data

structure to the remote execution container.

9 . The method of claim 8, where performing the lifetime management of the locally-

stored data mirror data structure comprises:

detecting an invocation of a call to a DeleteGlobalRef routine comprising the

reference to the new locally-stored global data mirror data structure as a parameter; and

in response to detecting the invocation of the DeleteGlobalRef routine:

extracting the global reference from the new locally-stored global data mirror

data structure;

making a call to the remote execution container to delete the global reference to

the new locally-stored global data mirror data structure; and

freeing memory allocated to the new locally-stored global data mirror data

structure.

10. A method, comprising :

receiving, at a distributed enhanced virtual machine native interface component (216)

of a distributed virtual machine from a distributed enhanced remote execution container

native interface component (214) of the distributed virtual machine, an initial request for a

reference to a data container;

identifying immutable data within the data container in response to receipt of the

initial request for the reference to the data container;

constructing a data mirror data structure that comprises the identified immutable data

and the requested reference to the data container; and

sending the data mirror data structure comprising the identified immutable data and

the requested reference to the data container in response to the initial request for the

reference to the data container to the distributed enhanced remote execution container native

interface component of the distributed virtual machine.

11. The method of claim 10, where constructing the data mirror data structure that

comprises the identified immutable data and the requested reference to the data container

comprises constructing the data mirror data structure with a portion of the immutable data.

12. The method of claim 11, where constructing the data mirror data structure with the

portion of the immutable data comprises:

determining an available inter-process data packet payload size;

selecting immutable data to fill a data packet payload with minimal empty payload

space based upon the determined inter-process data packet payload size; and

constructing the data mirror data structure of a size sufficient to fill the data packet

payload with minimal empty payload space.

13. The method of claim 10, further comprising:

receiving a request for an additional item of data from the data container;

extracting the requested additional item of data from the data container; and

sending the requested additional item of data in response to the request for the

additional item of data from the data container.

14. The method of claim 13, where sending the requested additional item of data in

response to the request for the additional item of data within the data container comprises

sending an additional item of non-immutable data from the data container.

15. The method of claim 13, where sending the requested additional item of data in

response to the request for the additional item of data within the data container comprises

sending an additional item of immutable data.

16. The method of claim 13, further comprising:

determining, in response to receiving the request for the additional item of data from

the data container, whether additional immutable data is available to send with the requested

additional item of data;

in response determining that the additional immutable data is available to send with

the requested additional item of data:

identifying the additional immutable data; and

extracting the additional immutable data from the data container; and

where sending the requested additional item of data in response to the request for the

additional item of data within the data container comprises sending the extracted additional

immutable data and the requested additional item of data in response to the request for the

additional item of data within the data container.

17. A system comprising means adapted for carrying out all the steps of the method

according to any preceding method claim.

18. A computer program comprising instructions for carrying out all the steps of the

method according to any preceding method claim, when said computer program is executed

on a computer system.

A. CLASSIFICATION OF SUBJECT MATTER
INV. G06F9/46
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2002/038301 Al (ARIDOR YARIV [IL] ET 1-18
AL) 28 March 2002 (2002-03-28)
paragraph [0024] - paragraph [0025]

paragraph [0036]

paragraph [0089] - paragraph [0096]

paragraph [0142] - paragraph [0145]

US 6 901 588 Bl (KRAPF ALEXANDER R [US] ET 1-18
AL) 31 May 2005 (2005-05-31)
the whole document

□ Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" documentwhich may throw doubts on priority claim(s) orwhich is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

27 February 2013 07/03/2013

Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016 Dewyn, Torkild

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2002038301 Al 28-03-2002 NONE

US 6901588 Bl 31-05-2005 5389701 A 30- 10-2001
6901588 Bl 31- 05-2005

2005149914 Al 07-07-2005
0179997 Al 25-10-2001

	abstract
	description
	claims
	drawings
	wo-search-report

