(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2005220174 A1

(54) Title
Method and system for caching remote files locally
(51)8 International Patent Classification(s)
GOBF 17700 (2006.01)20060101AFI2006010
GO6F 17/00 1BHAU
21 Application No: 2005220174 (22) Application Date: 2005.10.04
(30) Priority Data
(31) Number (32) Date (33) Country
109499380 2004.11.30 us
(43) Publication Date : 2006.06.15
(43) Publication Journal Date : 2006 .06.15
71) Applicant(s)
Microsoft Corporation
(72) Inventor(s)
Thind, Ravinder 5.; Eller, Alexis J.. Christiansen, Neal R.
(74) Agent/Attorney

Davies Collison Cave, 1 Micholson Street, MELBOURME, VIC, 3000

2005220174 04 Oct 2005

ABSTRACT

A method and system for caching remote objects locally.

A request to access an object is received. A determination is

made as to whether the
cached and the request

an existing object, or

object is cached. 1If the object is

is not to create a new object, modify

open

a directory, the request is

directed to a local file system. Otherwise, the request is

directed to a remote file system. Information about which

objects are requested may be used to copy objects stored

remotely to a local server as specified by a caching policy.

2

2005220174 04 Oct 2005

711
FIG. 7
605
CONTENT SERVER
APPLICATION
i P 215
1/O MANAGER
i ~ 610 T
FILTER -
A
v 710 i Y 625
REDIRECTOR LocCAL FILE SYSTEM

A

y ,~ 615

REMOTE FILE SYSTEM

-3-

L4

2005220174 04 Oct 2005

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Microsoft Corporation

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Method and system for caching remote files locally

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

-4-

’

2005220174 04 Oct 2005

wn

20

FIELD OF THE INVENTION

The invention relates generally to computers, and more

particularly to file systems.

BACKGROUND

A set of content servers in a datacenter, e.g., a server
farm, may serve content to many clients at various locations.
Previously, the total set of content hosted by a given server
farm was relatively small and could ke transmitted to and
stored on each of the content servers in the farm without
excessive costs. Now, however, the amounﬁ of content
available from a server farm is often in excess of several
hundred gigabytes. Buying large capacity hard drives for
servers, provisioning them with all the content of a
datacenter, and keeping the content on them up-to-date so that
they can sexrve any content requested is expensive both in
storage and transmission costs. This is particularly true
when more than one datacenter is used to serve the content.

What is needed is a method and system of effectively
caching remote data locally such that the entirety of the

content set can be stored in separate dedicated storage while

- 1a -

-5

’

2005220174 04 Oct 2005

20

a subset of the content is cached on the content server hard
disk. Ideally, such a method and system would be mostly or
completely transparent to any applications requesting the
data.

SUMMARY

Briefly, the present invention provides a method and
system for caching remote objects locally. A request to
access an object is received. A determination is made as to
whether the object is cached. If the object is cached and the
request is not to create a new object, modify an existing
object, or open a directory, the request is directed to a
local file system. Otherwise, the request is directed to a
remote file system.

In one aspect of the invention, a filter monitors
requests and reports to a caching service names of objects
accessed on the local and remote file systems. The caching
sexvice may apply a policy to this information to determine
which remote objects to cache locally and which locally cached
objects to purge.

In another aspect of the invention, the filter monitors

requests to local and remote file systems and the filter

-6-

.

2005220174 04 Oct 2005

20

itself may apply a policy to determine which remote objects to
cache locally and which locally cached objects to purge.

In another aspect of the invention, the filter receives a
notification that an object has changed remotely and deletes a
local cached copy of the object.

Other aspects will become apparent from the following
detailed description when taken in coqjunction with the

drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representing a computer
system into which the present invention may be incorporated;
FIG. 2 is a block diagram representing an exemplary
arrangement of components of a system in which the present
invention may operate in accordance with various aspects of

the invention;

FIG. 3 is a block diagram representing another exemplary
arrangement of components of a system in which the present
invention may operate in accordance with variocus aspects of
the invention;

FIG. 4 is a block diagram representing another exemplary

arrangement of components of a system in which the present

-7-

z

2005220174 04 Oct 2005

20

invention may operate in accordance with various aspects of
the invention;

FIG. 5 is a block diagram representing an exemplary
environment in which the present invention may be practiced in
accordance with various aspects of the invention;

FIG. 6 is a block diagram representing an exemplary
arrangement of components of a system in which the present
invention may be practiced in accordance with various aspects
of the invention;

FIG. 7 is a block diagram representing an exemplary
arrangement of components of a system in which the present
invention may be practiced in accordance with various aspects
of the invention;

FIG. 8 is a flow diagram that generally represents
actions that may occur when determining whether to redirect an
I/0 operation to a local cache in accordance with various
aspects of the invention;

FIG. 9 is a flow diagram that generally represents
actions which correspond to block 835 of FIG. 8 that may occur
when determining whether to redirect an I/0 operation to a
local cache in accordance with various aspects of the

invention;

-8-

’

2005220174 04 Oct 2005

20

FIG. 10 is a flow diagram that generally represents
actions that may occur when a remote object changes in
accordance with various aspects of the invention; and

FIG. 11 is a block diagram representing another exemplary
arrangement of components of a system in which the preéent
invention may be practiced in accordance with various aspects

of the invention

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENT

Figure 1 illustrates an example of a suitable computing
system environment 100 on which the invention may be
implemented. The computing system environment 100 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components
illustrated in the exemplary operating environment 100.

The invention is operational with numerous other general
purpose or special purpose computing system environments or

configurations. Examples of well known computing systems,

-9-

.

2005220174 04 Oct 2005

i

20

environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to,
personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microcontroller-based »
systems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above systems
or devices, and the like.

The invention may be described in the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data
structures, and so forth, which perform particular tasks or
implement particular abstract data types. The invention may
also be practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located in both
local and remote computer storage media including memory
storage devices.

With reference to Figure 1, an exemplary system for

implementing the invention includes a general-purpose

-10-

.

2005220174 04 Oct 2005

20

computing device in the form of a computer 110. Compcnents of
the computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121
that'couples various system components including the system
memory to the processing unit 120. The system bus 121 may be
any of several types of bus structures including a memory bus
or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. By way of example, and
not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanine bus.

Computer 110 typically includes a variety of computer-
readable media. Computer-readable media can be any available
media that can be accessed by the computer 110 and includes
both volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation,
computer-readable media may comprise computer storage media
and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media

implemented in any methed or technology for storage of

-11-

.

2005220174 04 Oct 2005

20

information such as computer-readable instructions, data
structures, program modules, or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can accessed by the computer
110. Communication media typically embodies computer-readable
instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other
;ransport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
a manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of the any of the
above should also be included within the scope of computer-

readable media.

-12-

2005220174 04 Oct 2005

20

The system memory 130 includes computer storage media in
the form of volatile and/or.nonvolatile memory such as read
only memory (ROM) 131 and random access memory (RAM) 132. A
basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements
within computer 110, such as during start-up, is typically
stored in ROM 131. RAM 132 typically contains datg and/or
program modules that are immediately accessible to and/or
presently being operated on by processing unit 120. By way of
example, and not limitation, Figure 1 illustrates operating
system 134, application programs 135, other program modules
136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, Figure 1 illustrates a hard disk drive
140 that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM or
other optical media. Other removable/non-removable,

volatile/nonvolatile computer storage media that can be used

13-

.

2005220174 04 Oct 2005

20

in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is
typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and magnetic
disk drive 151 and optical disk drive 155 are typically
connected to the system bus 121 by a removable memory
interface, such as interface 150.

The drives and their associated computer storage media,
discussed above and illustrated in Figure 1, provide storage
of computer-readable instructions, data structures, program
modules, and other data for the computer 110. In Figure 1,
for example, hard disk drive 141 is illustrated as storing
operating system 144, application programs 145, other program
modules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136, and
program data 137. Operating system 144, application programs
145, other program modules 146, and program data 147 are given
different numbers herein to illustrate that, at a minimum,

they are different copies. A user may enter commands and

-14-

I3

2005220174 04 Oct 2005

20

information into the computer 20 through input devices such as
a keyboard 162 and pointing device 161, commonly referred to
as a mouse, trackball or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, satellite
dish, scanner, a touch-sensitive screen of a handheld PC or
other writing tablet, or the like. These and other input
devices are often connected to the processing unit 120 through
a user input interface 160 that is coupled to the system bus,
but may be connected by other interface and bus structures,
such as a parallel port, game port or a universal serial bus
(USB). A monitor 191 or other type of display device is also
connected to the system bus 121 via an interface, such as a
video interface 190. 1In addition to the monitor, computers
may also include other peripheral output devices such as
speakers 197 and printer 196, which may be connected through
an output peripheral interface 190.

The computer 110 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 180. The remote computer 180 may be
a personal computer, a server, a router, a nepwork PC, a peer
device or other common network node, and typically includes

many or all of the elements described above relative to the

-15-

.

2005220174 04 Oct 2005

20

computer 110, although only a memory storage device 181 has
been illustrated in Figure 1. The logical connections
depicted in Figure 1 include a local area network (LAN) 171
and a wide area network (WAN) 173, but may also include other
networksf Such networking environments are commonplace in-
offices, enterprise-wide computer networks, intranets and the
Internet.

When used in a LAN networking environment, the computer-
110 is connected to the LAN 171 through a network interface or
adapter 170. When used in a WAN networking environment, the
computer 110 typically includes a modem 172 or other means for
establishing communications over the WAN 173, such as the
Internet. The modem 172, which may be internal or external,
may be connected to the system bus 121 via the user input
interface 160 or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote memory
storage device. By way of example, and not limitation, Figure
1 illustrates remote application programs 185 as residing on
memory device 181. It will be appreciated that the network

connections shown are exemplary and other means of

-16-

2005220174 04 Oct 2005

(%]

20

establishing a communications link between the computers may

be used.

Exemplary Filters and Arrangements Thereof

With contemporary operating systems, such as Microsoft
Corporation'’s Windows® XP operating system with an underlying
file system such as the Windows® NTFS (Windows® NT File
System), FAT, CDFS, SMB redirector filesystem, or WebDav file
systems, one oxr more file system filter drivers may be
inserted between the I/0 manager that receives user I/0
requests and the file system driver. 1In general, filter
drivers (sometimes referred to herein simply as “filters”) are
processes or components that enhance the underlying file
system by performing various file-related computing tasks that
users desire, including tasks such as passing file system I/0
(requests and data) through anti-virus software, file system
gquota providers, file replicators, and encryption/compression
products.

For example, antivirus products provide a filter that
watches I/0 to and from certain file types (.exe, .doc, and
the like) looking for virus signatures, while file replication

products perform file system-level mirroring. Other types of

-17-

2005220174 04 Oct 2005

20

file system filter drivers are directed to system restoration
(which backs up system files when changes are about to be made
so that the user can return to the original state), disk quota
enforcement, backup of open files, undeletion of deleted
files, encryption of files, and so forth. Thus, by installing
file system filter drivers, computer users can select the file
system features they want and need, in a manner that enables
upgrades, replacement, insertion, and removal of the
components without changing the actual operating system or
file system drivef code.

FIG. 2 is a block diagram representing an exemplary
arrangement of components of a system in which the present
invention may operate in accordance with various aspects of
the invention. The components include one or more
applications 205, an applications programming interface (API)
210, an input/output (I/0) manager 215, a filter manger 220, a
file system 225, and one or more filters 230-232.

The applications 205 may make file system requests (e.g.,
via function/method calls) through the API 210 to the I/O
manager 215. The I/0 manager 215 may determine what I/O
request or requests should be issued to fulfill each request

and send each I/0 reguest to the filter manager 220. The I1/0

-18-

2005220174 04 Oct 2005

20

manager 210 may also return data to the applications 205 as
operations associated with the file system reguests proceed,
complete, or abort.

In one implementation, filters comprise objects or the
like that when instantiated register (e.g., during their
initialization procedure) with a registration mechanism in the
filter manager 220. For efficiency, each filter typically
will only register for file system requests in which it may be
interested in processing. To this end, as part of
registration, each filter notifies the filter manager 220 of
the types of I/O requests in which it is interested (e.g.,
create, read, write, close, rename, and so forth). For
example, an encryption filter may register for read and write
I/0s, but not for others wherein data does not need to be
encrypted br decrypted. Similarly, a quota filter may be
interested only in object creates and object writes.

In addition to specifying the types of I/0 requests in
which it is interested, a filter may further specify whether
the filter should be notified for pre-callbacks and post
callbacks for each of the types of I/O. A pre-callback is
called as data associated with an I/0 request propagates from

the I/0 manager 215 towards the file system 225, while a post-

-19-

.

2005220174 04 Oct 2005

%3]

20

callback is called during the completion of the I/0 request as
data associated with the I/0 request propagates from the file
system 225 towards the I/0 manager 215.

From each I/O request, the filter manager 220 may create
a data structure in a uniform format suitable for use by the
filters 230-232. Hereinafter, this data structure is
sometimes referred to as callback data. The filter managexr
220 may then call and pass the callback data to each filter
that has registered to receive callbacks for the type of I/0
received by the filter manager 220. Any filters registered to
receive callbacks for the type of I/0s received by the filter
manager 220 are sometimes referred to as registered filters.

Typically, the filter managexr 220 passes callback data
associated with a particular type of I/0 request to each
registered filter sequentially in an order in which the
registered filters are ordered. For example, if the filters
230 and 232 are registered to receive callbacks for all read
I/0 requests and are ordered such that the filter 230 is
before the filter 232 in processing such requests, then after
receiving a read I/0, the filter manager 220 may first call
and paés the callback data to the filter 230 and after the

filter 230 has processed the callback data, the filter manager

-20-

2005220174 04 Oct 2005

20

220 may then call and pass the callback data (as modified, if
at all) to the filter 232.

A filter may be attached to one or more volumes. That
is, a filter may be registered to be called and receive
callback data for I/0s related to only one or more than one
volumes.

A filter may generate its own I/0 request which may then
be passed to other filters. For example, an anti-virus filter
may wish to read a file before it is opened. A filter may
stop an I/0 request from propagating further and may instruct
the filter manager to report a status code (e.g., success or
failure) for the I/0 request. A filter may store data in
memory and persist (e.g., store) this data on disk. In
general, a filter may be created to perform any set of actions
that may be performed by a kernel-mode or user-mode process
and may be reactive (e.g., wait until it receives I/0 requests
before acting) and/or proactive (e.g., initiate its own I/0
requests or perform other actions asynchronously with I/0
requests handled by the I/0 manager 215).

In one embodiment, filters may be arranged in a stacked
manner as illustrated in FIG. 3, which is a block diagram

representing another exemplary arrangement of components of a

-21-

2005220174 04 Oct 2005

20

system in which the present invention may operate in
accordance with various aspects of the invention. In this
embodiment, each of the filters 305-307 may process I/0
requests and pass the requests (modified or unmodified) to
another filter or other component in the stack. For example,
in response to a read request received from one of the
applications 205, the I/O manager 215 may issue an I/0 request
and send this request to the filter 305. The filter 305 may
examine the I/0 request and determine that the filter 305 is
not interested in the I/0 request and then pass the I/0O
request unchanged to the filter 306. The filter 306 may
determiﬁe that the filter 306 will perform some action based
on the I/O request and may then pass the I/0 request (changed
or unchanged) to the filter 307. The filter 307 may determine
that the filter 307 is not interested in the I/0 request and
pass the I/O request to the file system 235.

After the file system 235 services the I/0 request, it
passes the results to the filter 307. Typically, the results
pass in an order reverse from that in which the I/0O request
proceeded (e.g., first to filter 307, then to filter 306, and
then to filter 305). Each of the filters 305-307 may examine

the results, determine whether the filter is interested in the

-22-

2005220174 04 Oct 2005

20

results, and may perform actions based thereon before passing
the results (changed or unchanged) on to another filter or
component .

In another embodiment of the invention, filters may be
arranged in a stacked/managed manner as illustrated in FIG. 4,
which is a block diagram representing another exemplary
arrangement of components of a system in which the present
invention may operate in accordance with varioué aspects of
the invention. In this configuration, some of filters are
associated with a filter manager while other filters are not.
The filter manager 220 is placed in a stack with other filters
(e.g., filters 305 and 307).

It will be readily recognized that filters may be
implemented in many other configurations without departing
from the spirit or scope of the invention. In some
embodiments, a filter comprises any object that examines I/0
between an application and a file system and that is capable
of changing, completing, or aborting the I/0 or performing
other actions based thereon. Such filters may execute in user

mode or in kernel mode and may be part of other components.

-23-

2005220174 04 Oct 2005

93]

20

Returning to FIG. 2, the file system 235 may include one
or more volumes that may be located locally or remotely to the

machine or machines upon which the applications 205 execute.

Caching Remote Content Locally

FIG. 5 is a block diagram representing an exemplary
environment in which the present invention may be practiced in
accordance with various aspects of the invention. The
environment includes a file server 505, content servers 511-
513, and clients 520-523 and may include other components (not
shown) . The various entities may communicate with each other
via various networks including intra-networks and the Internet
515.

The file server 505 may include a set of all objects
(e.g., directories, files, other content, and the like) that
may be available to clients from a datacenter. The content
servers 511-513 may access these objects when providing
content to a client. A content server may, for example, host
a Web server application that serves content to clients
through networks including the Internet 515. After accessing
an object from the file server 505, a content server may then

provide the object to a client. A content server may or may

-24-

2005220174 04 Oct 2005

20

not cache objects obtained from the file server 505. For
example, extremely large objects that are not frequently
accessed may not be cached while relatively smaller objects
that are accessed frequently may be cached. A content server
may cache an object in main memory (e.g., RAM) and/or in non-
volatile memory such as disk. Determining which objects to
cache on a content server may be performed by a caching
component (i.e., one of caching components 525-527) included
on the content server.

In one implementation, content servers do not modify any
cached objects that they have cached from the file server 505.
Instead, when an application requests that a remote object be
modified or that a new object be created, the content server
sends the request to the file server 505. This helps keep the
most up-to-date copy of the content on the file server 505.

Each of the caching components 525-527 may include
various subcomponents including a filter and caching service
as described in more detail below.

FIG. 6 is a block diagram representing an exemplary
arrahgement of components of a system in which the present
invention may be practiced in accordance with various aspects

of the invention. The system includes a content server

-25-

2005220174 04 Oct 2005

20

application 605, a filter 610, a remote file system 615, a
caching service 620, and a local file system 625 and may also
include other components (not shown).

The content server application 605 may comprise various
components (not shown) that may independently access objects
from the remote and local file systems 615 and 625. In some
embodiments, no single component of the content server
application 605 is aware of which objects all the components
have requested or where these objects reside (e.g., locally or
remotely). To monitor which remote objects are being
requested, the filter 610 may monitor I/0s to and from the
remote file system 615. ‘Periodically, the filter 610 may send
a list to the caching service 620 that includes the names of
objects accessed from the remote file system 615.

The caching service 620 may then use the list sent by the
filter 610 to determine which objects from the remote file
system to cache on the local file system 625. This
determination may be made based on a policy set by an
administrator or the like which may include frequency of
access to the object, size of the object, or any other caching

rules.

-26-

’

2005220174 04 Oct 2005

20

In one embodiment, the caching service 620 executes in
user mode. In another embodiment, the caching service 620
executes in kernel mode. In yet another embodiment, the
functionality of the caching service 620 is performed by the
filter 610. In this embodiment, a caching service 620
separate from the filter 610 is unnecessary.

A system administrator or the like may set a registry key
or other configuration data to inform the caching service 620
where to cache objects. For example, a system administrator
may indicate that objects to be cached from network share
\\SERVER\SHARE be placed in the directory C:\CACHE. When an
object in a sgbdirectory of \\SERVER\SHARE is cached, any
ancestor directories of the cbject may alsoc be created in
C:\CACHE to keep a similar directory structure. For example,
if the caching service 620 determines that
\\SERVER\ SHARE\DOCUMENTS\ COMPANY . HTML should be cached, a
directory called DOCUMENTS may be created in C:\CACHE and the
object COMPANY.HTML may be placed in that directory.

In addition to monitoring which remote objects are
accessed, the filter 610 may also be used to redirect requests
to remote objects to locally cached objects as described in

more detail below.

-27-

.

2005220174 04 Oct 2005

20

FIG. 7 is a block diagram representing an exemplary
arrangement of components of a system in which the present
invention may be practiced in accordance with various aspects
of the invention. The system includes a content server
application 605, an I/0 manager 215, a filter 610, a
redirector 710, a remote file system 615, and a local file
system 625 and may also include other components (not shown) .

When any‘component of the content server application 605
requests access to an object that is on the remote file system
615, the component provides a name of the object (e.g., a UNC
name) to the I/0 manager 215. The I/O manager 215 interacts
with one or more redirectors (e.g., redirector 710) to
determine if any of the redirectors knows where the object
corresponding to the name resides. Alternatively, the I/0
manager 215 may interact with a single component that then
interacts with each available redirector to determine if a
redirector knows where the object corresponding to the name
resides. When a redirector responds, the redirector is used
to establish a session with the remote server upon which the
object resides. To the content server application 605, the
procedure for accessing remote objects may be identical to the

procedure for accessing local objects. In some

-28-

.

2005220174 04 Oct 2005

20

implementations, the content server application 605 may not
know whether an object is located remotely or locally.

When the caching service 620 of FIG. 6 begins executing,
the caching service 620 may provide a mapping of remote file
system names (e.g., network shares) to local cache directory
names. For example, this mapping may indicate that
\\SERVER\SHARE maps to C:\CACHE and that other remote file
system names map to other local cache directories. The filter
610 stores this information to determine when to redirect
requests for objects located remotely to local cache
directories. The filter may store the information in a
mapping table for example.

When the filter 610 receives a request to open a remote
object, the filter 610 may determine whether the request
should be mapped to the local file system 625. To do this the
filter 610 may determine whether the object is cached on the
local file system 625. For example, if the filter 610
receives a request to open an object named
\\SERVER\SHARE\A.TXT, the filter 610 may look in the mapping
table to see if there is a mapping for a prefix of this
object. In this case, the filter 610 may determine that

\\SERVER\SHARE maps to C:\CACHE. The filter 610 may then

-29-

.

2005220174 04 Oct 2005

193]

20

determine whether the object A.TXT exists in C:\CACHE. If so,
the filter 610 may instruct the I/0O manager 215 to redirect
the request to the local file system 625 as described in more
detail below.

FIG. 8 is a flow diagram that generally represents
actions that may occur when determining whether to redirect an
I1/0 operation to a local cache in accordance with various
aspects of the invention. At block 805, the process begins.

At block 810, a create operation is received by the
filter. A create operation may create an object or open an
already-existing object. Other operations may be ignored by
the filter and passed on to the redirector.

In some implementations, an application may request that
it be notified when objects in a directory have changed. 1In
such implementations, when the remote server sends a
notification that a change has occurred, the filter may take
other actions as described in more detail in conjunction with
FIG. 10.

At block 815, a determination is made as to whether the
create operation is attempting to open a remote object for
write access. If so, processing branches to block 830;

otherwise, processing branches to block 820. If the create

-30-

2005220174 04 Oct 2005

20

operation is attempting to modify a remote object (the yes
branch), the filter passes the operation to the redirector so
that the remote content is updated. This allows the original
content, not the content that is cached locally, to be
updated.

At block 820, a determination is made as to whether the
operation is an open of a directory. If so, processing
branches to block 830; otherwise, processing branches to block
825. When a content server application is requesting
directory information, it typically needs to be able to view
the name of all objects in a directory, not just those objects
that are cached locally. By allowing opens of directorie§ to
proceed to the remote server as normal, the filter allows the
requestor to obtain a directory listing that includes all
objects in the remote directory. While or after opening a
directory, a content server application may operate upon the
directory in other ways (e.g., by deleting the directory or
registering for change notifications). These other operations
are also sent to the remote server but may be sent without
interaction by the filter as in some embodiments the filter

redirects creates only.

-31-

.

2005220174 04 Oct 2005

ut

20

At block 825, a determination is made as to whethexr the
create operation is requesting that a new object be created.
Iﬁ so, processing branches to block 830; otherwise, processing
branches to block 835. 1If the create operation is attempting
to create a remote object (the yes branch), the filter passes
the operation to the redirector so that the remote content is
updated. This causes the object to be created on the remote
file system rather than creating the object in a local cache.
It will be recognized that the determinations associated with
blocks 815-825 may be performed in any order without departing
from the spirit or scope of the present invention. In one
embodiment, the determination associated with 825 is performed
first, followed by the determination associated with block
815, and then the determination associated with block 820.

At block 835, the operation is mapped locally or to a
remote server as described in more detail in conjunction with
FIG. 9.

FIG. 9 is a flow diagram that generally represents
actions which correspond to block 835 of FIG. 8 that may occur
when determining whether to redirect an I/O operation to a
local cache in accordance with various aspects of the

invention. At block 805, the process begins.

-32-

L3

2005220174 04 Oct 2005

20

At block 910, a determination is made as to whether the
object is mapped by the mapping table maintained by the
filter. 1If so, processing branches to block 915; otherwise,
processing branches to block 935. An object is mapped by the
mapping table if the object is a descendant of any directory
of a network share included in the mapping table.

At block 915, a determination is made as to whether the
object is cachéd. If so, processing branches to block 920;
otherwise, processing branches to block 920. In one
implementation, a filter may determine that an object is
cached by obtaining the cache directory from the mapping table
and attempting to open the object. In another implementation,
what objects are cachea is maintained in memory and a
determination of whether an object is cached may be made
without attempting to open the object. It will be recognized
that there are many other ways to determine that an object is
cached that may be used without departing from the spirit or
scope of the present invention

At block 920, the I/0 is reparsed to the new name. In
essence, the I/0 is redirected to the cached object of the
local file system. In some implementations, this may be

accomplished by returning a STATUS_REPARSE to the I/0 manager

-33-

’

2005220174 04 Oct 2005

wn

20

and providing the I/O manager with the name of the locally
cached object.

At block 925, the I/O is sent to the local file system.
The I/O manager may store information identifying what object
the I/0 was directed to so that afterwards any other
operations related to the I/0 may be sent directly to the
local file system without needing to be reparsed or handled by
the filter.

In implementations in which there is not a reparse
mechanism, the filter may monitor for subsequent I/0s related
to a recently mapped I/0 and may direct these I/0s to the
local file system.

At block 930, the caching service is notified of the

accessed object. As indicated previously, lists of accessed

‘objects may be sent to the caching service periodically

instead of sending a notification each time an object is

accessed. Sending notification of accesses to local cached
objects to the caching service may be done, for example, so
that the caching service may determine when to remove cached

objects from the local file system.

-34-

r

2005220174 04 Oct 2005

20

At block 935, the I/O is sent to the remote file system.
This may be done through a redirector component as described
previously.

At block 940, the caching service is notified that an
object was accessed remotely. Again, as indicated previously,
lists of accessed objects may be sent to the caching service
periodically instead of sending a notification each time an
object is accessed. Sending notification of accesses to
remote objects to the caching service may be done, for
example, so that the caching service may determine when to
obtain remote objects and cache them on the local file system.

At block 945, the process returns.

FIG. 10 is a flow diagram that generally represents
actions that may occur when a remote object changes in
accordance with various aspects of the invention. At block
1005, the process begins.

At block 1010, notification that an object contained on a
remote server has changed is received by the filter. At block
1015, the object is deleted locally, if it exists. This helps
to ensure that stale content is purged from the local cache.

Furthermore, when the remote object is requested again, it

-35-

’

2005220174 04 Oct 2005

20

will not be found in cache, so the filter will allow the
request to be sent to the remote file system.

At block 1020, the notification is forwarded to the
content server which may then attempt to obtain the most
recent copy of the object from the remote server to cache it.

At block 1025, the process returns.

FIG. 11 is a block diagram representing another exemplary
arrangement of components of a system in which the present
invention may be practiced in accordance with various aspects
of the invention. The system includes a content server
application 605, an I/0 manager 215, a filter 1105, a
redirector 710, a remote file system 615, and a lccal file
system 625 and may also include other components (not shown).

In some operating systems, the operating system may
provide reparse points for directories of a file system. A
reparse point is a collection of data associated with a
directory of a file system. The data of a reparse point may
indicate a directory in which cached objects associated with
the directory exist and a remote directory from which the
objects may be obtained. When an operaticn is received to
access a directory associated with a reparse point or any of

its descendants, a STATUS REPARSE is returned to the I/0

-36-

’

2005220174 04 Oct 2005

20

manager 215 together with the data associated with the reparse
point. Reparse points may be persisted by the file system so
that they exist even after a dismount and remount of the file
system.

When the local file system 710 responds with a
STATUS_REPARSE, the filter 1105 may use the data associated
with the reparse point to determine whether the object is
cached locally. 1If the object is cached locally, the filter
instructs the I/0O manager 215 to redirect the I/0 operation to
the locally cached object. If the object is not cached
locally, the filter may instruct the I/0 manager 215 to obtain
the object remotely via the redirector 615.

The conditions for automatically passing certain I/O
operation (e.g., that modify an object, open a directory, and
create an object) to the remote file system as described in
conjunction with FIG. 8 still apply with the filter 1105 of
FIG. 11. 1In addition, the reporting actions associated with
blocks 930 and 940 of FIG. 9 may also be performed by the
filter 1105 of FIG. 11.

In connection with using reparse points, one or more
shadow directories may be created on the local file system.

Reparse points may be associated with each directory to

-37-

-

2005220174 04 Oct 2005

20

indicate a local cache directory and a remote directory on
which objects may be found. 1In addition, the content server

application 605 may be instructed toc obtain objects via the

one or more shadow directories using network names (instead of

volume names). This may be done to avoid misbehavior that may

result if the content server application 605 determines that

the objects are located locally. Security delegation may also

be enabled to allow credentials to be passed to remote
machines.

As can be seen from the foregoing detailed description,
there is provided a method and system for caching remote data
locally. While the invention is susceptible to various
modifications and alternative constructions, certain
illustrated embodiments thereof are shown in the drawings and
have been described above in detail. It should be understood
however, that there is no intention to limit the invention to
the specific forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative
constructions, and equivalents falling within the spirit and
scope of the invention.

Throughout this specification and the claims which

follow, unless the context requires otherwise, the word

-38-

:

4

2005220174 04 Oct 2005

"comprise", and variations such as "comprises" or
"comprising", will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not
the exclusion of any other integer or step or group of

integers or steps.

The reference to any prior art in this specification is
not, and should not be taken as, an acknowledgment or any form
of suggestion that that prior art forms part of the common

general knowledge in Australia.

-30-

.

2005220174 04 Oct 2005

20

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-readable medium having computer-
executable instructions, comprising:

receiving a reguest to access an object that is stored on
a remote server;

examining the request by a filter to determine whether to
forward the request to the remote server or to redirect the
request to a local file system, wherein the filter has an
opportunity to monitor requests to the remote server; and

if the object is cached, redirecting the request to the

local file system.

2. The computer-readable medium of claim 1,. further
comprising if the request to access the object comprises a
request to create the object, forwarding the request to the

remote server.

3. The computer-readable medium of c¢laim 1, further
comprising if the request to access the object comprises a
request to modify the object, forwarding the request to the

remote server.

-40-

¢

2005220174 04 Oct 2005

20

4. The computer-readable medium of claim 1, further
comprising if the object comprises a directory, forwarding

reguest to the remote server.

5. The computer-readable medium of claim 1, further
comprising notifying a caching service that the object was

requested and was not contained on the local file system.

6. The computer-readable medium of claim 5, further
comprising obtaining the object from the remote server and

storing it on the local file system.
7. The computer-readable medium of claim 1, further
comprising notifying a caching service that the object was

requested and was contained on the local file system.

8. The computer-readable medium of claim 7, further

the

comprising keeping the object in the local file system based

on a frequency with which the object is requested.

9. The computer-readable medium of claim 1, wherein the

filter executes in kernel-mode.

-41-

’

2005220174 04 Oct 2005

w

10. The computer-readable wmedium of claim 1, further
comprising opening and closing the object and airecting
input/output operations that affect the object between opening
and closing the object without examination of the input/output

operations by the filter.

11. The computer-readable medium of claim 1, further
comprising receiving a notification that the object has
changed and deleting a cached copy of the object on the local

file system.

12. The computer-readable medium of claim 11, wherein
the filter receives the notification and deletes the cached

copy of the object.

-42-

.

2005220174 04 Oct 2005

20

13. In a computing environment, a method, comprising:

receiving a request to access an object that is
associated with a reparse point, wherein the reparse point
includes names of a local directory and a remote directory;

determining whether the object is cached in the local
directory;

if the object is cached in the local directory, providing

access to the object via the local directory.

14. The method of claim 13, wherein the local directory
is stored in a local file system and wherein the remote

directory is stored on a remote file system.

15. The method of claim 14, wherein the reparse point is

persisted on the local file system.

16. The method of claim 14, wherein the local file
system returns the reparse point when an attempt to access the

object is received by the local file system.

17. The method of claim 16, wherein determining whether

the object is cached in the local directory comprises

-43-

4

2005220174 04 Oct 2005

20

examining, by a filter, the reparse point that the local file

system returns.

18. The method of claim 17, wherein determining whether
the object is cached in the local directory further comprises
the filter obtaining the local directory from the reparse
point and attempting to open the object in the local

directory.

19. The method of claim 18, further comprising
redirecting the request to the local directory if attempting

to open the object in the local directory succeeds.

20. The method of claim 18, further comprising
redirecting the request to the remote file system if

attempting to open the object in the local directory fails.

21. The method of claim 17, wherein the filter has an
opportunity of examining any request from user-mode processes

to access an object on the lcocal file system.

-44-

<

2005220174 04 Oct 2005

20

22. The method of claim 13, further comprising if the
object is not cached in the local directory, obtaining the
object from the remote directory and caching it in the local

directory.

23. The method of claim 13, further comprising if the
request to access an object is a request to create the object,

redirecting the reguest to the remote directory.

24. The methed of claim 13, further comprising if the
request to access an object is a request to change the object,

redirecting the request to the remote directory.

25. The method of claim 13, further comprising if the
object is a directory, redirecting the request to the remote

directory.

26. The method of claim 13, wherein the object has a
name that identifies the object to a file system, wherein the
reparse point is associated with a directory that has a name

that identifies the directory to the file system, and wherein

-45-

2005220174 04 Oct 2005

the object is associated with a reparse point if a prefix of

the name of the object includes the name of the directory.

-46-

2005220174 04 Oct 2005

20

27. An apparatus for caching, comprising:

a local file system arranged to store objects;

a component arranged to determine which objects to store

on the local file system; and

a filter arranged to monitor input and output and to

report to the component names of objects for which access is

sought.

28. The apparatus of

claim 27, wherein the objects

comprise directories and files.

28. The apparatus of
opportunity to examine any

file system.

30. The apparatus of
opportunity to examine any

file system.

31. The apparatus of

arranged to register to be

claim 27, wherein the filter has an

communication to or from the local

claim 27, wherein the filter has an

communication to or from a remote

claim 30, wherein the filter is

notified of any communication to or

from the remote file system that involves a create operation.

-47-

L

2005220174 04 Oct 2005

20

32. The apparatus of claim 31, wherein the create
operation comprises an operation to open an already-existing

object.

33. The apparatus of claim 31, wherein the create

operation comprises an operation to create a new object.

34. The apparatus of claim 27, wherein the filter is
arranged to perform actions, comprising:

receiving a request to access an objéct that is stored on
a remote server; and

determining whether to forward the request to the remote

server or to redirect the request to the local file system.

35. The apparatus of claim 34, wherein the filter is
further arranged to forward the request to the remote server
if the request comprises a request to create a new object,

change an existing object, or open a directory.

-48-

(A

2005220174 04 Oct 2005

20

25

36. The apparatus of claim 34, wherein the filter is
further arranged to forward the request to the local file

system if the object is cached on the local file system.

37. The apparatus of claim 27, wherein the component
applies a policy to the cobjects reported by the filter to

determine which objects to store on the local file system.

38. A method substantially as hereinbefore described

with reference to the drawings and/or Examples.

39. An apparatus substantially as hereinbefore described

with reference to the drawings and/or Examples.

40. A computer-readable medium substantially as
hereinbefore described with reference to the drawings and/or

Examples.

-49-

2005220174 04 Oct 2005

41. The steps, features, compositions and compounds
disclosed herein or referred to or indicated in the
specification and/or claims of this application, individually
or collectively, and any and all combinations of any two or

more of said steps or features.

DATED this FOURTH day of OCTOBER 2005

Microsoft Corporation

by DAVIES COLLISON CAVE

Patent Attorneys for the applicant(s)

-50-

SHYHO0dd 0ol
cor1 IsNo .
S8l NOILVONddY Lol W L 'Ol4
181 J10N3Y _ _ __
\ P 91 vi S3TNAOW Svi 5VT
T G " quvosAIx viva Wv¥90¥d SWVNO0ud W31SAS
P Brrrds WY90Md (5FT wanio| wotvoriaay | OMLVE3JO
| N
S¥3ILNAWOD est N <
AN 7~
3Low3y W3IAOW [@ 1~ e
. 2} N N v~
\ MHOMLIN vayy 3apm SLL f.\mm TN -
.............. S e N s S SN
081 ! — [E— M __
I
| 0LL 09l 05k —~ | — ovl |
_ ! Jmo“\“_mmp‘z_ AOVAILN| 30VAYILN] = vivQ |
bLL JOV4H3IN AHUOWIN el
= " ou“smpz_ LNdN| “T0A-NON AHOW3 “TOA-NON WYN90Yd “
A MHOMLIN | d3sn 3I9VAONTY J1GVAONIY-NON |
vauy wool | —soom '
_ Wv¥o0ud ¥3HLO | |!
suaNVads | | . |
] _ SNg WaLsAS e SWv¥90dd _
NOILYOITdd
\mmv 261 “ AV V NI v “
| T nvngo | |!
HILNIRId . 30VAN3IN| d |
n VHIHdINAd SOVAUIIN| . ZE (Wvy) |,
| 1nd1lno J O3aIA /V \\ \ ||||||||| |
1INQ) ONISS300¥8d —
_ S61 o6l 0zL gk |[ET soig |
! _ __Jm_Wwow ||
_ b AMOW3N W3LSAS _

CO0C PO V0 PLIOTISO0C

-51-

2005220174 04 Oct 2005

2/11
FIG. 2

205~ APPLICATIONS

!
210\/7 - /

USER MODE

/

215N /0O MANAGER

220~ FILTER MANAGER < >

225N FILE SYSTEM

KERNEL MODE

230

FILTER A

231

FILTER B

232

FILTER C

-52-

2005220174 04 Oct 2005

311
FIG. 3

APPLICATIONS " 205

/ }j\ 210 USER Mobe
API

/ / KERNEL MoDE
\
I/0 MANAGER L 215
5
Y
FILTER D N 305
]
‘t
FILTER E L 306
J\
\d
FIWLTER F (307
f
Y
FILE SYSTEM L\ 235

-53-

2005220174 04 Oct 2005

FIG. 4

4/11

APPLICATIONS

205

i

/ AP
[

7»/\210

USER MODE

KERNEL MODE

/O MANAGER L 215
4
! 230
FILTER D L\ 305 FILTER A
Iy
Y /"231
220~ FILTER MANAGER ——p] FILTER B
1
Y 232
FILTER F /307 FILTER C
4
\d
FILE SYSTEM N 235

-54-

XA ~

OO
IN3ITD > 1 43AN3S INIINOD
ezg — eLs -
IN3ID |
- 3 925~
zes 9 u [09]
3 — HIAYIS INILINOD §3AY3S 34
I
N z16 - 506 —
IN3ND - |
125 —
525~
[00]
ININD e ————— [————p H3IAYIS INIINOD
025 — G156 LG —~

S "Old

CO0C PO V0 PLIOTISO0C

-55-

2005220174 04 Oct 2005

620

6/11
FIG. 6
~ 605
CONTENT SERVER >
APPLICATION
A
//-610 Y
FILTER
Yy 615

REMOTE FILE SYSTEM

CACHING SERVICE

A

A

y

625

LOCAL FILE SYSTEM

-56-

2005220174 04 Oct 2005

711
FIG. 7
605
CONTENT SERVER
APPLICATION
i P 215
1/O MANAGER
i ~ 610 T
FILTER -
A
v 710 i Y 625
REDIRECTOR LocCAL FILE SYSTEM

A

y ,~ 615

REMOTE FILE SYSTEM

-57-

2005220174 04 Oct 2005

FIG. 8

RECEIVE CREATE
OPERATION /810

815

CREATE WITH
WRITE ACCESS?

820

Is OPEN OF
DIRECTORY?

y 830

SEND REQUEST TO
REMOTE SERVER

N
~ 835
DIRECT OPERATION TO LOCAL OR
REMOTE SERVER APPROPRIATELY
(FIG. 9)

Y :845
(RETURN)=

-58-

2005220174 04 Oct 2005

9/11

BEGIN

FIG. 9

Is
OBJECT MAPPED
BY MAPPING
TABLE?

Is OBJECT

905

910

A

CACHED?

REePARSE I/O TO
NEW NAME 620
4
SenD 1/0 TO LocAL
Fie System [~ 925

Y
REPORT TO CACHING
SERVICE ACCESSED (g3

OBUJECT

\d

SEND /O TO
REMOTE FiLE
SYSTEM

/035

\

945

REPORT TO CACHING
SERVICE MISSED
FILE

" 940

-59-

2005220174 04 Oct 2005

FIG. 10

10/11

(BEGIN k™ 1005

RECEIVE NOTIFICATION
FROM REMOTE SERVER {/M1010
OF CHANGE OF OBJECT

DELETE OBJECT IN LOCAL

CACHE 1015

FORWARD NOTIFICATION A
TO CONTENT SERVER 1020

(RETURN }/\1025

-60-

2005220174 04 Oct 2005

11/11
FIG. 11
605
CONTENT SERVER
APPLICATION
i ~ 215
I/0 MANAGER
A
1105 615
FILTER REDIRECTOR
A 4
V70 v 625
LoCAL FILE SYSTEM REMOTE FILE SYSTEM

-61-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

