UNCOATED RECORDING MEDIA

![Figure 2]

Title: UNCOATED RECORDING MEDIA

Abstract: An uncoated recording medium includes a blend of hardwood, softwood, and thermomechanical pulp fibers. A total fiber content is at least 80 wt% of a total wt% of the uncoated recording medium. The hardwood fibers range from about 20 wt% to 70 wt%, the softwood fibers range from about 30 wt% to 50 wt%, and the TMP fibers range from about 10 wt% to 40 wt% relative to the total fiber content. Filler(s) range from about 3 wt% to 14 wt% of the total wt% of the uncoated recording medium. The medium has (i) a basis weight ranging from about 45 g/m² to 63 g/m², (ii) an MD L&W 5° bending stiffness ranging from about 0.14 mNm to 0.30 mNm and a CD L&W 5° bending stiffness ranging from about 0.12 mNm to 0.15 mNm, and (iii) a normalized opacity ranging from about 1.25 to 1.60.
Published: with international search report (Art. 21(3))
UNCOATED RECORDING MEDIA

BACKGROUND

[001] Media used in laser printing and in inkjet printing often have a weight ranging from about 75 g/m² (gsm) to about 90 g/m² (gsm). Media within this weight range may be desirable for laser printing, at least in part because of the opacity characteristics exhibited by the media, as well as the printing performance that is achieved with the media in terms of reduced or eliminated wrinkling and jamming. Media having a weight within the weight range provided above may also be desirable for inkjet printing, at least in part because show through (i.e., strikethrough) is minimized or eliminated.

BRIEF DESCRIPTION OF THE DRAWINGS

[002] Features and advantages of examples of the present disclosure will become apparent by reference to the following detailed description and drawings.

[003] Fig. 1 is a graph illustrating actual average opacity versus predicted average opacity for Samples 1 through 7 of Example 2 (Table 2);

[004] Fig. 2 is a graph illustrating sheets through printer and geometric mean stiffness versus thermomechanical pulp (TMP)% and basis weight for Samples 1 through 7 of Example 2 (Table 2);

[005] Fig. 3 is a graph illustrating ink strikethrough percentage versus average opacity for Samples 1 through 7 of Example 2 (Table 2); and

[006] Fig. 4 is a flow diagram illustrating examples of methods of the present disclosure.
DETAILED DESCRIPTION

[007] The present disclosure relates generally to uncoated recording media. Examples of the uncoated recording medium disclosed herein are light weight cut size papers, which have a basis weight ranging from about 45 g/m² (gsm) to about 70 g/m² (gsm). In some instances, the weight ranges from about 50 gsm to about 63 gsm. Some difficulties generally encountered when moving to lower basis weight are retaining the paper feed reliability in printers, while maintaining good opacity to avoid image show through. Examples of the present disclosure advantageously include light weight cut size papers exhibiting reliable sheet feed and desirable opacity.

[008] In examples of the media disclosed herein, a balance between fiber amount (and types of fibers) and filler type and amount has been identified so that the filler amount is reduced without deleteriously affecting desirable qualities, such as weight, stiffness, opacity, and brightness. In fact, the stiffness of the examples of the media disclosed herein contributes to the light weight cut size paper working reliably in a variety of printing systems, including laser printers and inkjet printers. It is believed that the runability of the light weight cut size papers disclosed herein is enhanced. For example, it is believed that examples of the light weight cut size papers disclosed herein will exhibit reduced or eliminated jamming and wrinkling when compared to other commercially available light weight cut size papers. Some examples of the uncoated recording media disclosed herein are also particularly suitable for use in inkjet printing systems. These examples of the light weight cut size paper are able to maintain inkjet colorants on the surface and thus exhibit minimal show through (strikethrough), which is desirable.

[009] The examples of the uncoated recording media disclosed herein may be about 20% thinner and lighter than other commercially available papers (e.g., 60 gsm compared to 75 gsm). The thin and light-weight examples disclosed herein offer many advantages. For example, fewer raw materials are utilized to manufacture the light weight cut size paper, and the lighter weight of the paper may result in lower shipping costs of the paper itself and of brochures and other
products made with the paper. Furthermore, thinner paper requires less storage space than thicker paper in cabinets, printer paper trays, briefcases, etc. In addition, laser printers may utilize less power for fusing toner on thinner paper. [0010] Examples of the uncoated recording medium (i.e., light weight cut size paper) include a pulp (e.g., a chemical pulp) of a blend of hardwood fibers and softwood fibers, as well as fibers formed by thermomechanical pulping (TMP) (referred to herein as "TMP fibers"). Examples of suitable hardwood fibers include pulp fibers derived from deciduous trees (angiosperms), such as birch, aspen, oak, beech, maple, and eucalyptus. Examples of suitable softwood fibers include pulp fibers derived from coniferous trees (gymnosperms), such as varieties of fir, spruce, and pine (e.g., loblolly pine, slash pine, Colorado spruce, balsam fir, and Douglas fir). Examples of suitable TMP fibers include the hardwood fibers and softwood fibers listed above (e.g., aspen and maple are common TMP fibers, and pine softwood may also be used for TMP fibers). [0011] In an example, the uncoated recording medium includes a blend of bleached chemical northern USA hardwood fibers, bleached chemical southern USA softwood fibers, and Tembec Inc. (Temiscamingue, QC, Canada) Temcel aspen TMP fibers. In examples of the medium according to the present disclosure, the ratio of hardwood fibers to softwood fibers to TMP fibers used may range from about 70:20:10 to about 30:30:40. In another example, the ratio of hardwood fibers to softwood fibers to TMP fibers is about 50:30:20. [0012] The uncoated recording medium has a total fiber content of at least about 80 wt% of the total wt% of the uncoated recording medium. "Wt%" as used herein refers to dry weight percentage based on the total dry weight of the uncoated recording medium. The total fiber content is equal to 100 wt% minus total filler wt% minus wt% of any other ingredients, including, for example, sizing agents, starch, and salt. In an example, the total fiber content ranges from about 85 wt% to about 95 wt%. [0013] In examples of the medium of the present disclosure, the hardwood fibers are present in an amount ranging from about 20 wt% to about 70 wt%
relative to the total fiber content, the softwood fibers are present in an amount ranging from about 20 wt% to about 50 wt% relative to the total fiber content, and the TMP fibers are present in an amount ranging from about 10 wt% to about 40 wt% relative to the total fiber content.

[0014] The blend of hardwood and softwood fibers may be prepared via any known pulping process, such as, for example, chemical pulping processes. In an example, the hardwood and softwood fibers are chemically pulped fibers. Two suitable chemical pulping methods include the kraft process and the sulphite process. In another example, some of the hardwood and softwood fibers are chemically pulped fibers, and some of the hardwood and softwood fibers are mechanically pulped fibers. In the latter example, the amount of chemically pulped fibers is at least 60 wt% of the total fiber content, and the amount of mechanically pulped fibers is up to 40 wt% of the total fiber content.

[0015] As used herein, "TMP" is meant to include two processes. In one process, TMP fibers are prepared by physically grinding wood chips or logs using heat to soften the chips (Thermo-Mechanical Pulp). In the other process, CTMP (Chemi-Thermo-Mechanical Pulp) or BCTMP (bleached Chemi-Thermo-Mechanical Pulp), chemicals are added to assist in softening the wood chips, but at a lower chemical and exposure time level as compared to chemical pulps.

[0016] It is to be understood that the hardwood, softwood and TMP fibers used in the examples disclosed herein are not expanded fibers, and the uncoated recording medium does not include any expanded fibers. Expanded fibers are hardwood and/or softwood fibers that have been exposed to a treatment process that expands the fibers. Expanded fibers exhibit a gel-like resistance to settling. One example of a treatment process that forms expanded fibers utilizes a horizontal fine media mill having a 1.5 liter fibrillating zone volume and five impellers. Expanded fibers can be added to increase the strength of the resulting media; however, the light weight cut size paper disclosed herein exhibits a desirable stiffness without the inclusion of expanded fibers.
The uncoated recording medium also includes filler. As mentioned above, the ratio of fiber to filler has been selected to achieve the examples of the light weight cut size paper disclosed herein, which have desirable stiffness and opacity. In general, the amount of fiber has been increased, and the amount of filler has been reduced. In an example, the amount of filler included in the uncoated recording medium ranges from about 3 wt% to about 14 wt% of the total wt% of the uncoated recording medium. In some examples disclosed herein, the uncoated recording medium may include from about 65 lbs of filler per short ton (2000 lbs) of fiber to about 122 lbs of filler per short ton of fiber (i.e., from about 33 kg of filler per metric ton (1000 kg) of fiber to about 61 kg per metric ton of fiber).

In an example, the uncoated recording medium may include a blend of fibers having about 40% hardwood fibers, about 30% softwood fibers and about 30% TMP fibers, and about 9 wt% filler (about 6 wt% calcium carbonate and about 3 wt% titanium dioxide) to render a thin paper that is light weight (about 52 gsm basis weight), has a desirable opacity (about 83), and has a desirable stiffness (i.e., exhibits desirable runnability on printers).

Examples of suitable fillers include titanium dioxide (TiO₂), precipitated calcium carbonate, ground calcium carbonate, talc, clay (e.g., calcined clay, kaolin clay, or other phyllosilicates), calcium sulfate, or combinations thereof. An example of a suitable filler combination is calcium carbonate (precipitated, ground, or combinations thereof) with titanium dioxide. Another example of a suitable filler combination is precipitated calcium carbonate with titanium dioxide. These combinations may include from about 0.7 wt% to about 5 wt% (of the total wt% of the uncoated recording medium) of the titanium dioxide, and from about 2 wt% to about 9 wt% (of the total wt% of the uncoated recording medium) of the calcium carbonate (precipitated, ground, or a combination thereof). In another example, the combination of calcium carbonate and titanium dioxide includes from about 2.2 wt% to about 5 wt% of the calcium carbonate (precipitated, ground, or a combination thereof) and from about 1 wt% to about 2.7 wt% of the titanium dioxide. In an example, the filler is a combination of the calcium carbonate(s) and
the titanium dioxide and excludes other fillers. Another example filler combination includes kaolin clay and talc with titanium dioxide, with or without other fillers. In an example, the ratio of kaolin clay/talc to titanium dioxide ranges from about 10:1 to about 1:5; or from about 3:1 to about 1:1.

[0020] In the examples disclosed herein, the combination of calcium carbonate and titanium dioxide may be desirable to achieve, in part, a desirable opacity and a desirable brightness (both of which are discussed further hereinbelow). Many currently available office papers (within or above a traditional weight of 75 gsm) sold in the United States utilize a large amount of calcium carbonate in order to achieve opacity and brightness. As an example, 40 samples of cut size office paper sold in the United States were tested for filler content using an X-ray fluorescence analyzer. The filler ranges for each of these papers was found to include less than 1% talc, less than 0.2% clay, from about 13% to about 23% calcium carbonate, and trace amounts (equal to or less than 0.1 %) titanium dioxide, where each % is by dry weight of the paper.

[0021] These results illustrate that traditional weight commercially available papers in the United States rely on calcium carbonate as the filler, likely in part because this particular filler increases paper brightness. In light of these results, it seems a light weight cut size paper containing calcium carbonate with small amounts of talc and/or clay and trace amounts of titanium dioxide could readily be made. However, a reduced filler amount has been found to deleteriously affect the brightness and opacity. The deleterious effect on brightness is evidenced by the Askul paper in Example 1, which illustrates that a light weight cut size paper containing a reduced amount of calcium carbonate, a small amount of clay, and trace amounts of titanium dioxide does not result in a light weight cut size paper with a desirable brightness. In determining a suitable balance between fiber and filler for obtaining a light weight cut size paper with desirable stiffness, opacity and brightness, the present inventors have surprisingly found, in an example, that by increasing the amount of titanium dioxide and decreasing the amount of
precipitated calcium carbonate, a light weight cut size paper with desirable
stiffness, opacity, and brightness can be achieved.

[0022] Titanium dioxide is commercially available, for example, under the
tradename Ti-PURE® RPS VANTAGE® (E. I. du Pont de Nemours and Company).
Precipitated calcium carbonate may be obtained by calcining crude calcium oxide.
Water is added to obtain calcium hydroxide, and then carbon dioxide is passed
through the solution to precipitate the desired calcium carbonate. Precipitated
calcium carbonate is also commercially available, for example, under the
tradenames OPACARB® A40 and ALBACAR® HO DRY (both of which are
available from Minerals Technologies Inc.). Ground calcium carbonate is
commercially available, for example, under the trade names OMYAFIL®,
HYDROCARB 70®, and OMYAPAQUE®, all of which are available from Omya
North America. Examples of commercially available filler clays are KAOCAL™,
EG-44, and B-80, all of which are available from Thiele Kaolin Company. An
eexample of commercially available talc is FINNTALC™ F03, which is available from
Mondo Minerals.

[0023] The uncoated recording medium may also include size press (or surface)
starch additives, internal starch additives, or internal sizing agents. An example of
a suitable size press/surface starch additive is 2-hydroxyethyl starch ether, which is
commercially available under the tradename PENFORD® Gum 270 (Penford
Products, Co.). When a size press/surface starch additive is included, the amount
used may range from about 30 kg/ton of paper to about 50 kg/ton of paper. In an
example, the amount of size press/surface starch additive is about 45 kg/ton of
paper (i.e., about 100 lbs/ton of paper). An example of a suitable internal starch
additive is a cationic potato starch, which is commercially available under the
tradename STA-LOK™ 400, from Tate & Lyle. When an internal starch additive is
included, the amount used may range from about 3 kg/ton of paper to about 6
kg/ton of paper. In an example, the amount of internal starch additive is about 2.7
kg/ton of paper (i.e., about 6 lbs/ton of paper). Examples of suitable internal sizing
agents include alkyl ketene dimer (AKD) and alkenyl succinic anhydride. AKD is
commercially available under the tradename HERCON® 80 (Hercules, Inc.), and may be used in an amount ranging from about 1.0 kg/ton of paper to about 3.0 kg/ton of paper. In an example, the amount of AKD included is about 1.8 kg/ton of paper (i.e., about 4 lbs/ton of paper). When alkenyl succinic anhydride is included, the amount used ranges from about 0.5 kg/ton of paper to about 2.5 kg/ton of paper. In an example, the amount of alkenyl succinic anhydride included is about 1.6 kg/ton of paper (i.e., about 3.5 lbs/ton of paper). For the amounts provided herein in terms of per ton of paper, per grams of paper, etc., it is to be understood that the paper refers to the uncoated recording medium.

[0024] When it is desirable to utilize the uncoated recording medium for inkjet (or multipurpose) printing, the medium may also include a salt, which is added during the paper making process at the size press. Examples of suitable salts include calcium chloride (CaCl₂), magnesium chloride (MgCl₂), aluminum chloride (AlCl₃), magnesium sulfate (MgSO₄), and combinations thereof. The salt may be added in any amount ranging from about 4000 pg/gram of paper to about 9500 pg/gram of paper. The addition of the salt may provide the uncoated recording medium with the ability to maintain colorants (e.g., present in inkjet inks) at the surface of the uncoated recording medium, thereby improving show through characteristics (i.e., strikethrough, or the amount of ink printed on one side of the paper that can be seen through the other side of the paper) as well as other printing qualities (black optical density, color saturation, etc.).

[0025] The uncoated recording medium exhibits a number of properties that render the light weight cut size paper reliable and suitable for a variety of printing techniques. These properties include stiffness (bending and tensile), opacity (reported both as opacity and as normalized opacity (discussed below)), and brightness.

[0026] The examples of the uncoated recording medium disclosed herein have a machine direction Lorentzen & Wetter (L&W) 5 degree bending stiffness of at least 0.14 mNm (milliNewton meters). Some examples of the machine direction L&W 5 degree bending stiffness extend up to 0.30 mNm. The examples of the
uncoated recording medium disclosed herein have a cross direction Lorentezen & Wetter (L&W) 5 degree bending stiffness ranging from about 0.12 mNm to about 0.15 mNm. L&W stiffness may be measured, for example, using an L&W bending tester available from Lorentezen & Wetter (see http://www.lorent.zen-wetter.com/images/stories/LorentzenWetter/PDF_product_info/LW_Bending_Tester.pdf). L&W stiffness is generally measured by holding one end of a sample stationary while bending the other end through a selected angle (e.g., ranging from 0° to 5°). The L&W bending tester is automated and performs these steps. The force to bend the sample is measured by the tester. Bending stiffness is also calculated by the tester using the sample size, bending angle, and force. Stiffness may also be measured in terms of Clark stiffness using, for example, a Clark stiffness tester available from Alat Uji. In an example, the Clark stiffness of an example of the uncoated recording medium in the machine direction may range from about 70 cm³/100 to about 100 cm³/100, and the Clark stiffness of an example of the uncoated recording medium in the cross direction may range from about 25 cm³/100 to about 45 cm³/100. The stiffness value of examples of the uncoated recording medium disclosed herein provides the lightweight cut size paper with sufficient rigidity to keep the paper from wrinkling and/or jamming during printing.

[0027] Examples of the medium disclosed herein further exhibit a ratio of machine direction (MD) tensile stiffness to cross direction (CD) tensile stiffness ranging from about 1.4 to less than about 2.5. In an example, the lightweight paper has an MD/CD tensile stiffness ratio of about 1.8. In contrast, newspaper or magazine paper generally exhibits an MD tensile stiffness to CD tensile stiffness ratio ranging from about 3 to about 5.

[0028] The examples of the uncoated recording medium disclosed herein also have an opacity ranging from about 78 to about 87. In an example of the medium disclosed herein, the opacity is about 82. For the examples disclosed herein, the maximum opacity may be up to 88. Opacity is an optical property of the paper, and may be determined by a ratio of reflectance measurements. TAPPI opacity (i.e., opacity using 89% reflectance backing) is one opacity value that may be used.
TAPPI opacity is 100 times the ratio of reflectance of a sample when backed with a black backing to the reflectance of the sample when backed with a white backing having a known reflectance of 89%. As such, opacity is a unitless property. The reflectance measurements may be carried out using a brightness and color meter. Higher opacity values are often obtained when the amount of filler is increased. However, it has been found in the examples disclosed herein that desirable opacity levels may be achieved with the lower amounts of filler disclosed herein.

Further, examples of the uncoated media according to the present disclosure exhibit a normalized opacity ranging from about 1.25 to about 1.60. As used herein, "normalized opacity" is the opacity (actual or predicted) divided by the basis weight in grams per square meter. Normalized opacity (also referred to herein as "opacity index") is reported as a unitless number. In other examples of the present disclosure, the uncoated medium exhibits a normalized opacity ranging from about 1.30 to about 1.48. In contrast, some higher basis weight (e.g., over 75 gsm) exhibit a normalized opacity ranging from about 1.16 to about 1.18.

Still further, the inventors of the present disclosure have discovered that opacity of examples of the uncoated media can be accurately predicted using an opacity model. The amounts of calcium carbonate, titanium dioxide and basis weight were included in a linear model, and this was advantageously found to explain 95% of actual opacity values. See, e.g., the prediction line in Fig. 1 as compared to the actual data points (the actual data points are from actual opacity tests run on Samples 1 through 7 of Example 2 (Table 2, below)). "P" stands for probability value, "R Sq" stands for R-squared (R-squared is used to describe how well a regression line fits a set of data, with an R-squared near 1.0 indicating that a regression line fits the data well—the R-squared in the instant case is 0.95), and "RMSE" stands for root mean square error. Fig. 1 shows that the linear model (described in more detail immediately below) is a good model and can be used to predict opacity for trial points that were not run.
The model uses the following equation:

\[
\text{Opacity} = 46.4 + 1.4(\% \text{CaCO}_3) + 1.8(\% \text{TiO}_2) + 0.44(\text{basis weight in gsm})
\]

For an example of lightweight cut-size paper including 6% CaCO3, 3% TiO2, and having a basis weight of 52 gsm, the model predicts an opacity of about 83:

\[
46.4 + 1.4(6) + 1.8(3) + 0.44(52) = 83.08
\]

As such, the present inventors have found that examples of the uncoated medium as disclosed herein may be designed to an opacity target using the 3 variables noted above in the model.

Examples of opacity predictions according to the model are shown in Table 1 below:

<table>
<thead>
<tr>
<th>Basis Wt, gsm</th>
<th>Calcium Carbonate filler, in %</th>
<th>Titanium Dioxide Filler, in %</th>
<th>Predicted Opacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>6</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>52</td>
<td>5</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>1</td>
<td>82</td>
</tr>
</tbody>
</table>

The examples of the uncoated recording medium disclosed herein also have an ash content ranging from about 3 wt% to about 10 wt%. The ash content is often equal to the amount of filler. As such, the ash content may also be referred to as a percentage based on the dry weight of the filler used. However, the ash content from burning may be less than the filler level, as determined by room
temperature techniques. It is believed that if the ash content is higher, the stiffness may be deleteriously affected, and if the ash content is lower, opacity may be deleteriously affected. In an example, the ash content ranges from about 6 wt% to about 7 wt%.

[0036] As mentioned above, the brightness of examples of the uncoated recording medium is also desirable even though the weight of the paper is reduced. Brightness may be increased with an increased amount of filler (e.g., an increased amount of calcium carbonate). However, an increased amount of filler generally decreases the stiffness of the paper. The uncoated recording medium disclosed herein has the reduced amount of filler, desirable brightness, and desirable stiffness. In an example, the desired qualities and the low filler level is achieved using a combination of precipitated calcium carbonate and titanium dioxide in the ranges provided herein.

[0037] In examples of the uncoated medium disclosed herein, the ISO brightness ranges from about 80 to about 84 (on a scale of 1-100). In general, ISO 2470 brightness may be measured using illuminant C and 2° observer conditions. It is believed that the ISO brightness may be increased by including calcium carbonate and titanium dioxide in amounts at the higher end of the provided ranges. Alternately or additionally, optical brightening agent(s) (OBAs) and/or fluorescent brightening agents (FBAs) may be added to the light weight cut size paper to increase brightness. Basic class types of brighteners include triazine-stilbenes (di-, tetra- or hexa-sulfonated), coumarins, imidazolines, diazoles, triazoles, benzoxazolines, and biphenyl-stilbenes. The optical brightening agent(s) and/or fluorescent brightening agents may be added in a total amount ranging from about 0.5 kg/ton of paper to about 15 kg/ton of paper. The optical brightening agent(s) and/or fluorescent brightening agents may be added in the wet end or in the size press.

[0038] Examples of the uncoated recording medium exhibit desirable strikethrough/show through characteristics (e.g., the strikethrough is minimized to such an extent as to be deemed acceptable to a user). In an example, when ink or
toner is printed on the medium, a percentage of strikethrough of the ink or toner from the front side of the medium to the back side of the medium ranges from about 17% to about 30%. In another example, when ink is printed on the medium, a percentage of strikethrough of the ink from a front side of the medium to a back side of the medium ranges from about 20% to about 24%. In yet another example, when toner is printed on the medium, a percentage of strikethrough of the toner from a front side of the medium to a back side of the medium ranges from about 17% to about 24%.

[0039] In some examples, the uncoated recording medium disclosed herein consists of the fibers and filler(s), with or without the previously mentioned additives, and without any other components that would alter the weight, stiffness, and/or opacity of the uncoated recording medium.

[0040] The uncoated recording medium may be made using any suitable paper making process. It is to be understood that the process used does not deposit any coating on the recording medium; rather the various ingredients are processed to form a continuous web of light weight paper that can be processed into cut sheet paper in converting operations. Furthermore, the paper making process used does not form any complexes between the fiber and the filler.

[0041] In an example, the uncoated recording medium is formed on a Fourdrinier paper machine. The Fourdrinier paper machine consists of a headbox that delivers a stream of dilute fibers and other papermaking ingredients on to a continuously moving wire belt. The water drains through the wire belt, thereby forming a wet mat of fibers. The mat is then pressed and dried. Subsequent operations may add size press/surface additives to improve strength and a calendering step may be used to smooth the paper. In another example, the mat can be formed between two wires using a twin wire paper machine. Paper made by a continuous process, such as Fourdrinier or twin wire paper machines, has directionality. The Machine Direction (MD) of the paper refers to the direction the wire travels. The Cross Direction (CD) of the paper refers to the direction perpendicular to the direction the wire travels. Some physical properties of the
paper, such as stiffness (as noted above), will have different values in the MD versus CD.

[0042] As noted above, the examples of the lightweight cut size paper disclosed herein may be printed using a variety of printing techniques, including laser printing and inkjet printing. Printing may be accomplished in the typical manner, where the lightweight cut size paper is fed into the selected printer, and toner or ink is applied thereto. When printing on lightweight cut size paper, it is to be understood that a printing mode that utilizes less energy may be used. For example, some laser (i.e., laser jet, enterprise) printers are capable of detecting the lightweight cut size paper and automatically initiating an energy savings printing mode that uses a lower temperature for fusing than a printing mode used for higher weight paper. While the lightweight cut size paper is actually being printed on in the energy savings printing mode, the overall energy savings may range from about 4% to about 20% in an example, or from about 6% to about 15% in another example.

[0043] To further illustrate the present disclosure, examples are given herein. It is to be understood that these examples are provided for illustrative purposes and are not to be construed as limiting the scope of the present disclosure.

EXAMPLES

Example 1

[0044] Commercially available papers were tested. These commercially available papers included Askul 60 gsm Paper (available in Japan), Mondi's Maestro, International Paper's 60 Standard bond, and Boise Cascade's X-9.

[0045] In the following discussion, the ash content of the commercially available papers was determined using TAPPI test method T 211. A test specimen was ignited in a muffle furnace at 525°C to burn off organic fibers. A separate test specimen was analyzed for the percentage moisture. The resulting weight of ash and moisture level in the sample are used to calculate the percentage ash present at 525°C on a moisture-free sample basis.
The Clark stiffness of the commercially available paper was also determined using TAPPI Standard T451. Stiffness was also measured using a Lorentzezen & Wetter (L&W) bending-resistance tester both in the machine direction and in the cross direction. L&W stiffness was measured by holding one end of a sample stationary while and bending the other end through an angle (e.g., ranging from 0° to 5°). The force to bend the sample was measured. Bending stiffness was calculated by the tester using the sample size, bending angle, and force.

The commercially available papers were tested for brightness. The Tappi brightness was measured using TAPPI Standard T452, "Brightness of pulp, paper, and paperboard (directional reflectance at 457 nm)". ISO 2470 brightness was measured using illuminant C and 2° observer conditions.

Opacity was tested using TAPPI test method T425. In accordance with this test method, a reflectance measurement was made on a sheet of paper backed by a black backing, R_o. Another reflectance measurement was made on the sheet backed by an 89% reflective tile, R_o.89. Opacity = 100 x R_o/R_o.89. Higher opacity values indicate that it is more difficult to see through the sheet of paper.

A hot mandrel (bend) test was also performed for some of the commercially available papers. This test involved contacting strips of each paper with a hot mandrel (i.e., a heated surface that had a radius of curvature of about 8 inches). The heated surface was made from a block of aluminum, and the curvature of the surface ensured good contact with the respective paper samples. The mandrel was heated to 150°C using a hot plate. This laboratory test is often predictive of curl resulting for a laser printer fuser, but is independent of the geometric variables present in a fuser.

For the hot mandrel test, paper strips of 1 inch by 8 inches were cut from the respective sheets of paper. Four strips were cut, namely two strips with the 8 inch direction in the machine direction, and two strips with the 8 inch direction in the cross direction. Each strip was held in contact with the hot surface for three seconds. Curl was immediately measured using a hanging curl chart as described in ASTM standard D4825 and results were recorded in millimeters. The final
results for a single sheet include four values, representing a MD strip and CD strip heated on side 1, and a MD strip and CD strip heated on side 2.

[0051] Desirable hot mandrel test results include similar results for curl when heating side 1 compared to heating side 2. This indicates uniformity in the paper sheet. The value in millimeters of MD side 1 minus MD side 2, and similar for CD strips, is a simple way to characterize a paper curl, with low numbers often predicting low curl in laser printers. These values are reported in this Example.

Askul 60 gsm Paper (Askul paper)

[0052] The Askul paper included the following fillers: 0.4 wt% clay, 5.2 wt% calcium carbonate, and a trace amount (equal to or less than 0.1 wt%) TiO2. The Askul paper included about 93 wt% fiber. The basis weight was 60.4.

[0053] The Tappi brightness and ISO brightness, opacity, ash content, and stiffness were determined for the Askul paper. The Tappi brightness was 84. The ISO brightness on the seam-up side was 81% and the brightness on the seam-down side was 81%. The ISO brightness is fairly low, based on the USA standard of 93. With this low ISO brightness value, the contrast between paper and printing is lower, making any printed text or color look less bright. The opacity was 82. The ash content, measured at 525°C, was about 6.7 wt%. The Clark stiffness (cm³/100) was 87.4 in machine direction and 39.1 in cross direction. The L&W stiffness was 0.22 in machine direction and 0.10 in cross direction.

[0054] The Askul paper was tested using a laser jet printer. In terms of feedability, fixing, transfer, curl, wrinkle, and stacking, the Askul paper performed marginal to very good. In particular, the Askul paper printed on the laser jet printer was marginal in terms of feedability and curl.

[0055] Curl was also tested using the hot mandrel (bend) test, as described above. The machine direction axis (MD) curl for Askul paper was 20 (average for 12 sheets with a standard deviation of 13) and the cross direction axis curl for Askul paper was 13 (average for 12 sheets with a standard deviation of 6). While these results are marginal, values of 10 or lower are more desirable. The hot
Mondi’s Maestro (Maestro)

[0056] The Maestro included 10.4 wt% calcium carbonate (with no titanium dioxide) as the filler. The basis weight was 61.6. Maestro included about 89 wt% fiber.

[0057] The Tappi brightness and ISO brightness, opacity, ash content, and stiffness were determined for the Maestro. The Tappi brightness was 94. The ISO brightness on the seam-up side was 101% and the brightness on the seam-down side was 101%. The opacity was 84. The ash content, measured at 525°C, was about 16.7 wt%. The Clark stiffness (cm³/100) was 70.8 in machine direction and 40.2 in cross direction. The L&W stiffness was 0.20 in machine direction and 0.10 in cross direction.

[0058] The Maestro was also tested using a laser jet printer. In terms of feedability, fixing, transfer, curl, wrinkle, and stacking, the Maestro performed marginal to very good. In particular, the Maestro printed on the laser jet printer was marginal in terms of curl.

[0059] Curl was also tested using the hot mandrel (bend) test as previously described. The machine direction axis curl for Maestro was 8 (average for 12 sheets with a standard deviation of 13) and the cross direction axis curl for Maestro was 3 (average for 12 sheets with a standard deviation of 7). While the hot mandrel (bend) test indicated that curl would be minimal, an undesirable amount of post printer curl was actually exhibited by the Maestro sample. It is believed that the poor curl performance was due, at least in part, to the relatively high filler amount and ash content.
International Paper’s 60 Standard bond (IP60)

[0060] The IP60 included calcium carbonate (with no titanium dioxide) as a filler in an amount of 14.2 wt%. It was estimated that IP60 included about 86 wt% fiber. The basis weight was 60.9 gsm.

[0061] The ISO brightness, ash content, and stiffness were determined for the IP60. The ISO brightness on the seam-up side was 96% and the brightness on the seam-down side was 97%. The ash content, measured at 525°C, was about 15 wt%. The Clark stiffness (cm3/100) was 58.8 in machine direction and 30.5 in cross direction. The L&W stiffness was 0.15 in machine direction and 0.08 in cross direction.

[0062] The IP60 was tested using a laser jet printer. In terms of feedability, fixing, transfer, curl, wrinkle, and stacking, the IP60 performed relatively poorly. In particular, the IP60 suffered from feedability issues, curl issues, wrinkling issues, and stacking issues. It is believed that the poor printing performance was due, at least in part, to the relatively low stiffness value and the relatively high filler amount and ash content.

Boise Cascade’s X-9 (X-9)

[0063] The X-9 included the following fillers: 0.4 wt% talc, 0.3 wt% clay, 0.3 wt% S1O2, and 13.3 wt% calcium carbonate (with no titanium dioxide). The basis weight was 61.8. X-9 included about 85 wt% fiber.

[0064] The Tappi brightness and ISO brightness, opacity, ash content, and stiffness were determined for the X-9. The Tappi brightness was 94. The ISO brightness on the seam-up side was 94% and the brightness on the seam-down side was 94%. The opacity was 84. The ash content, measured at 525°C, was about 16.9 wt%. The Clark stiffness (cm3/100) was 87.4 in machine direction and 38.0 in cross direction. The L&W stiffness was 0.22 in machine direction and 0.12 in cross direction.

[0065] The X-9 was also tested using a laser jet printer. In terms of curl, wrinkle, and stacking, the X-9 performed poorly.
Curl was again tested using a hot mandrel (bend) test, as described above. The machine direction axis curl for X-9 was 16 (average for 12 sheets with a standard deviation of 27) and the cross direction axis curl for X-9 was 26 (average for 12 sheets with a standard deviation of 16). For X-9, it was noted that the curl performance for three of the sheets were very different from the other nine sheets, thus the large standard deviation. It is believed that the poor printing performance was due, in part, to the high variability in curl from sheet to sheet. It is also believed that the poor printing performance was due, at least in part, to the relatively high filler amount and ash content.

The test results for the commercially available papers illustrate that when higher levels are filler are utilized, stiffness and/or printing performance are deleteriously affected. The results also indicate that when lower levels of particular fillers are utilized, other properties, such as brightness, may be deleteriously affected.

Example 2

Various examples of the uncoated media disclosed herein, as well as a comparative example, were tested for jams and wrinkles to see if the light weight cut size papers have sufficient rigidity to keep the paper from wrinkling and/or jamming during printing. A description of Samples 1-7, as well as a comparative sample ("China 52g" - a commercial 52 gsm paper) is below in Table 2.
Table 2

<table>
<thead>
<tr>
<th>Jams & Wrinkles</th>
<th>Sample</th>
<th>TMP %</th>
<th>CaCO3 %</th>
<th>TiO2 %</th>
<th>Filler % (CaCO3 + TiO2)</th>
<th>Avg Basis Weight</th>
<th>Geometric Mean Stiffness</th>
<th>100 sheet job</th>
<th>6015 Sheets successfully run</th>
<th>400 sheets run</th>
<th>3 Env. 4550 Wrinkle</th>
<th>Directional stiffness</th>
<th>MD Stiffness</th>
<th>CD Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Weight targeted</td>
<td>2</td>
<td>0</td>
<td>2.6</td>
<td>0.9</td>
<td>3.49</td>
<td>52</td>
<td>0.12</td>
<td>0</td>
<td>37</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Weight targeted</td>
<td>6</td>
<td>10</td>
<td>3.6</td>
<td>2.5</td>
<td>6.12</td>
<td>54</td>
<td>0.14</td>
<td>50</td>
<td>13</td>
<td>0.18</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Weight targeted</td>
<td>3</td>
<td>30</td>
<td>5.0</td>
<td>1.0</td>
<td>5.99</td>
<td>55</td>
<td>0.15</td>
<td>100</td>
<td>10</td>
<td>0.18</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Weight targeted</td>
<td>1</td>
<td>0</td>
<td>2.8</td>
<td>0.9</td>
<td>3.7</td>
<td>60</td>
<td>0.17</td>
<td>100</td>
<td>5</td>
<td>0.21</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Weight targeted</td>
<td>7</td>
<td>10</td>
<td>2.5</td>
<td>0.7</td>
<td>3.27</td>
<td>60</td>
<td>0.16</td>
<td>100</td>
<td>0</td>
<td>0.23</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Weight targeted</td>
<td>5</td>
<td>10</td>
<td>2.2</td>
<td>2.7</td>
<td>4.88</td>
<td>61</td>
<td>0.16</td>
<td>100</td>
<td>0</td>
<td>0.24</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Weight targeted</td>
<td>4</td>
<td>30</td>
<td>3.4</td>
<td>2.6</td>
<td>6.07</td>
<td>60</td>
<td>0.17</td>
<td>100</td>
<td>0</td>
<td>0.20</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative paper</td>
<td>0</td>
<td>15.3</td>
<td>0.0</td>
<td>15.33</td>
<td>55</td>
<td>0.14</td>
<td>0</td>
<td>18</td>
<td>0.17</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0069] "3 Env. 4550 Wrinkle" in Table 2 relates to the tests conducted. The papers were tested in 3 different environments, and the results therefrom were added together. The 3 environments were: 15°C/10% relative humidity, ambient office, and 30°C/80% relative humidity. The printer was an HP Color LaserJet 4550 (a printer that feeds the short edge). In the three environments, 400 sheets of paper were run (auto-duplexed, i.e., two passes through the fuser to make it more difficult than simplex printing). Then the run sheets were inspected and counted to determine how many sheets had wrinkles.
6015 Sheets successfully run” in Table 2 also relates to the tests conducted. The printer was an HP Color LaserJet 6015 (a printer that feeds the long edge). The tests were run in ambient office only. 50 sheets were loaded seam side up, and 50 sheets were loaded seam side down. Sheets were auto-duplexed. So, total sheets attempted to run per paper sample was 100. If 100 sheets ran without errors, the table reports 100. For Sample 6, 50 sheets ran loaded seam down, and no sheet made it through when paper was loaded seam up (so the table reports 50). For Sample 2, no sheets made it through, so the table reports 0 (meaning 0 sheets successful in 100 tries).

In Samples 1-7, the percentage of TMP, calcium carbonate and titanium dioxide was varied. As can be seen from Table 2 above, when the amount of TMP was zero (in Samples 1 and 2), 5 and 37 sheets, respectively, wrinkled (out of 400 sheets) when run through the 4550 printer. For Sample 2, in addition to 37/400 sheets wrinkling, 0/100 sheets were successfully run without jamming in the 6015 printer.

However, when the TMP% was increased to 10 and the filler percentages were increased as shown above (Sample 6), the paper wrinkled much less, and 50/100 sheets were successfully run without jamming. Still further, when the TMP% was increased to 30 (Sample 3) with the total filler percentage being roughly equal to that of Sample 6, the paper wrinkled less than did Sample 6, and was also able to complete the 100 sheet run successfully without jamming.

Sample 3 (average basis weight of 56 gsm) performed much better than the Comparative sample paper (average basis weight of 55 gsm). The Comparative sample was unable to run any sheets on the 6015 printer without jamming, exhibiting low stiffness and poor runability.

See also Fig. 2, which is a graph illustrating sheets through printer and geometric mean stiffness versus thermomechanical pulp (TMP)% and basis weight for Samples 1 through 7. As can be seen, the amount of TMP added to the light weight cut size paper appears to have more of an impact on the lower basis weight papers.
Example 3

[0075] Opacity as well as the opacity index (normalized opacity) is shown in Table 3 below for samples A-F.

[0076] The HW, SW AND TMP columns reflect the percentages of hardwood, softwood and TMP fibers included in the sample (relative to total amount of fiber). The filler% column shows the total of calcium carbonate plus titanium dioxide in the respective sample.

The HPMP paper is HP Multipurpose paper which includes a salt therein (75 gsm). The Boise X9s are Boise Cascade’s X-9 (no salt added) paper (one 75 gsm and the other 60 gsm). The Askul is a 60 gsm paper. The China 52g is the comparative paper referred to in Table 2 above.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Basis wt (lbs)</th>
<th>HW</th>
<th>SW</th>
<th>TMP</th>
<th>CaCO₃ %</th>
<th>TiO₂ %</th>
<th>Filler %</th>
<th>Avg Basis Weight (gsm)</th>
<th>Avg Opacity (actual)</th>
<th>Opacity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>32</td>
<td>70</td>
<td>30</td>
<td>0</td>
<td>2.7</td>
<td>0.9</td>
<td>3.6</td>
<td>52</td>
<td>74</td>
<td>1.41</td>
</tr>
<tr>
<td>C</td>
<td>32</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>3.5</td>
<td>0.7</td>
<td>4.2</td>
<td>55</td>
<td>77</td>
<td>1.40</td>
</tr>
<tr>
<td>F</td>
<td>32</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>3.6</td>
<td>2.5</td>
<td>6.0</td>
<td>54</td>
<td>80</td>
<td>1.48</td>
</tr>
<tr>
<td>G</td>
<td>35</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>2.5</td>
<td>0.8</td>
<td>3.3</td>
<td>60</td>
<td>77</td>
<td>1.30</td>
</tr>
<tr>
<td>A</td>
<td>35</td>
<td>70</td>
<td>30</td>
<td>0</td>
<td>2.9</td>
<td>0.8</td>
<td>3.7</td>
<td>60</td>
<td>78</td>
<td>1.30</td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>2.3</td>
<td>2.1</td>
<td>4.4</td>
<td>61</td>
<td>80</td>
<td>1.31</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>3.4</td>
<td>2.4</td>
<td>5.8</td>
<td>60</td>
<td>82</td>
<td>1.36</td>
</tr>
<tr>
<td>HPMP 75g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.8</td>
<td>0.1</td>
<td>15.9</td>
<td>77</td>
<td>89</td>
<td>1.16</td>
</tr>
<tr>
<td>Boise X9 75g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.7</td>
<td>0.0</td>
<td>18.8</td>
<td>76</td>
<td>90</td>
<td>1.18</td>
</tr>
<tr>
<td>Boise X9 60g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.1</td>
<td>0.0</td>
<td>11.2</td>
<td>62</td>
<td>84</td>
<td>1.36</td>
</tr>
<tr>
<td>Askul 60 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
<td>0.1</td>
<td>4.8</td>
<td>61</td>
<td>82</td>
<td>1.35</td>
</tr>
<tr>
<td>China 52g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.3</td>
<td>19.4</td>
<td>55</td>
<td>83</td>
<td>83</td>
<td>1.49</td>
</tr>
</tbody>
</table>
The Boise X960 gsm paper had an opacity index similar to that of Samples A-G, however the amount of filler was much higher than that of Samples A-G. The Askul 60 gsm paper also had an opacity index similar to that of Samples A-G, however the amount of calcium carbonate was higher, and the amount of titanium dioxide was much lower than in Samples A-G. Further, the Boise X960 gsm and the Askul exhibited relatively poor strikethrough (as will be discussed below). The China 52g paper also had an opacity index similar to that of Samples A-G, however, the amount of filler was much higher than that of Samples A-G. Further, the China 52g paper exhibited low stiffness and poor runability (as shown in Example 2 above).

Predictions using the opacity math model (see, e.g., Table 1 above) for a 52 gsm paper indicates an opacity index of up to 1.60 is achievable with examples of the uncoated medium of the present disclosure.

Strikethrough was tested using the XRite 938 set to reflectance with Illuminate A/2 degrees. A simplex printed test plot with a black solid area was placed print side down on a white backing. Reflectance readings were taken on the back side of the paper in an area with no printing and in the area with solid printing. Strikethrough is calculated as the reduction in reflectance, normalized to the paper reflectance, \(1 - \frac{R_{\text{solid area}}}{R_{\text{paper}}}\) \times 100. A lower strikethrough value indicates less image seen through the paper and therefore, better duplex print quality. The results from these tests are shown in Table 4 below.
Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>Avg Basis Weight</th>
<th>Avg Opacity</th>
<th>Opacity Index</th>
<th>Ink Strikethru% HP Inkjet 8100</th>
<th>Toner Strikethru% HP LaserJet 4550</th>
<th>Salt added? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>52</td>
<td>74</td>
<td>1.41</td>
<td>30%</td>
<td>30%</td>
<td>Y</td>
</tr>
<tr>
<td>C</td>
<td>55</td>
<td>77</td>
<td>1.40</td>
<td>29%</td>
<td>24%</td>
<td>Y</td>
</tr>
<tr>
<td>G</td>
<td>60</td>
<td>77</td>
<td>1.30</td>
<td>27%</td>
<td>24%</td>
<td>Y</td>
</tr>
<tr>
<td>A</td>
<td>60</td>
<td>78</td>
<td>1.30</td>
<td>25%</td>
<td>25%</td>
<td>Y</td>
</tr>
<tr>
<td>F</td>
<td>54</td>
<td>80</td>
<td>1.48</td>
<td>24%</td>
<td>21%</td>
<td>Y</td>
</tr>
<tr>
<td>E</td>
<td>61</td>
<td>80</td>
<td>1.31</td>
<td>24%</td>
<td>20%</td>
<td>Y</td>
</tr>
<tr>
<td>D</td>
<td>60</td>
<td>82</td>
<td>1.36</td>
<td>20%</td>
<td>17%</td>
<td>Y</td>
</tr>
<tr>
<td>HPMP 75g</td>
<td>77</td>
<td>89</td>
<td>1.16</td>
<td>13%</td>
<td>12%</td>
<td>Y</td>
</tr>
<tr>
<td>B X9 75g</td>
<td>76</td>
<td>90</td>
<td>1.18</td>
<td>16%</td>
<td>10%</td>
<td>N</td>
</tr>
<tr>
<td>B X9 60g</td>
<td>62</td>
<td>84</td>
<td>1.36</td>
<td>25%</td>
<td>17%</td>
<td>N</td>
</tr>
<tr>
<td>Askul 60 g</td>
<td>61</td>
<td>82</td>
<td>1.35</td>
<td>30%</td>
<td>20%</td>
<td>N</td>
</tr>
<tr>
<td>China 52g</td>
<td>55</td>
<td>83</td>
<td>1.49</td>
<td>not tested</td>
<td>21%</td>
<td>N</td>
</tr>
</tbody>
</table>

[0080] Fig. 3 illustrates the effect that average opacity had on strikethrough of the ink printed on Samples A-G from Table 3. Strikethrough is indicative of the amount of ink that is seen through the paper after the image is printed thereon. The measurement is a loss of reflectance, and a lower percentage value is indicative of less strikethrough. As shown in Fig. 3, as opacity declines, the percentage of strikethrough increases. Samples D, E and F exhibited a loss of reflectance of 24% or less. As can be seen, the opacity of examples of the light weight cut size paper as disclosed herein can be controlled. One advantage of this opacity control is that duplex print quality can be controlled.

[0081] The Tappi brightness and the ISO brightness of each of the Samples 1 through 7 (from Table 2) were also measured as described above in Example 1. These results are shown in Table 5.
An acceptable ISO brightness is at least 80, which samples 1-7 exhibited. As discussed above, the brightness of examples of the present disclosure may be increased in various ways if desired.

Referring now to Fig. 4, example methods according to example(s) disclosed herein include one of: i) inkjet printing an ink onto a surface of an example of the uncoated recording medium; or ii) applying a toner to a surface of an example of the uncoated recording medium. If a toner is applied, the toner fusing may or may not be accomplished using an energy savings printing mode.

It is to be understood that the ranges provided herein include the stated range and any value or sub-range within the stated range. For example, a range from about 0.7 wt% to about 5 wt% should be interpreted to include not only the explicitly recited limits of about 0.7 wt% to about 5 wt%, but also to include individual values, such as 1.3 wt%, 2 wt%, 3.2 wt%, etc., and sub-ranges, such as from about 1 wt% to about 4.5 wt%, from about 1.2 wt% to about 3 wt%, etc. Furthermore, when "about" is utilized to describe a value, this is meant to encompass minor variations (up to +/- 10%) from the stated value.

In describing and claiming the examples disclosed herein, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise.
While several examples have been described in detail, it will be apparent to those skilled in the art that the disclosed examples may be modified. Therefore, the foregoing description is to be considered non-limiting.
What is claimed is:

1. An uncoated recording medium, comprising:
 a blend of hardwood fibers, softwood fibers, and thermomechanical pulp (TMP) fibers, wherein a total fiber content is at least 80 wt% of the uncoated recording medium, and wherein the hardwood fibers are present in an amount ranging from about 20 wt% to about 70 wt% relative to the total fiber content, the softwood fibers are present in an amount ranging from about 30 wt% to about 50 wt% relative to the total fiber content, and the TMP fibers are present in an amount ranging from about 10 wt% to about 40 wt% relative to the total fiber content; and
 a filler present in an amount ranging from about 3 wt% to about 14 wt% of the total wt% of the uncoated recording medium;
 the uncoated recording medium having i) a basis weight ranging from about 45 g/m² to about 63 g/m², ii) a machine direction Lorentezen & Wetter 5 degree bending stiffness ranging from about 0.14 mNm to about 0.30 mNm and a cross direction Lorentezen & Wetter 5 degree bending stiffness ranging from about 0.12 mNm to about 0.15 mNm, iii) an ISO brightness of at least 80, iv) a normalized opacity ranging from about 1.25 to about 1.60, and v) a ratio of machine direction tensile stiffness to cross direction tensile stiffness being less than 2.5.

2. The uncoated recording medium as defined in claim 1, further comprising a salt present in an amount ranging from about 4000 µg per gram of the uncoated recording medium to about 9500 µg per gram of the uncoated recording medium.

3. The uncoated recording medium as defined in claim 2 wherein the salt is calcium chloride (CaCl₂), magnesium chloride (MgCl₂), or combinations thereof.

4. The uncoated recording medium as defined in claim 1 wherein the filler is chosen from titanium dioxide, precipitated calcium carbonate, ground calcium carbonate, talc, clay, and combinations thereof.
5. The uncoated recording medium as defined in claim 4 wherein the filler includes a combination of titanium dioxide and calcium carbonate.

6. The uncoated recording medium as defined in claim 5 wherein:

 an amount of the titanium dioxide ranges from about 1 wt% to about 5 wt% of the total wt% of the uncoated recording medium; and

 an amount of the calcium carbonate ranges from about 2 wt% to about 9 wt% of the total wt% of the uncoated recording medium.

7. The uncoated recording medium as defined in claim 5 wherein:

 an amount of the titanium dioxide ranges from 0.7 wt% to about 2.7 wt% of the total wt% of the uncoated recording medium; and

 an amount of the calcium carbonate ranges from about 2.2 wt% to about 5 wt% of the total wt% of the uncoated recording medium.

8. The uncoated recording medium as defined in claim 7 wherein when ink or toner is printed on the medium, a percentage of strikethrough of the ink or toner from a front side of the medium to a back side of the medium ranges from about 17% to about 24%.

9. The uncoated recording medium as defined in claim 1 wherein the blend includes a ratio of the hardwood fibers to the softwood fibers to the TMP ranging from about 70:20:10 to about 30:30:40.

10. The uncoated recording medium as defined in claim 1, further comprising a size press starch additive, an internal starch additive, and any of alkyl ketene dimer or alkenyl succinic anhydride.

11. The uncoated recording medium as defined in claim 1 wherein the uncoated recording medium excludes expanded fibers.
12. The uncoated recording medium as defined in claim 1 wherein:
 i) the blend of hardwood fibers, softwood fibers and thermomechanical pulp fibers includes chemically pulped hardwood fibers and chemically pulped softwood fibers; or
 ii) at least 60 wt% of the total fiber content includes chemically pulped hardwood fibers and chemically pulped softwood fibers, and up to 40 wt% of the total fiber content includes mechanically pulped hardwood fibers and mechanically pulped softwood fibers.

13. A printing method for the uncoated recording medium as defined in claim 1, the method comprising one of:
 i) inkjet printing an ink onto a surface of the uncoated recording medium; or
 ii) applying a toner to the uncoated recording medium surface; and
 fusing the toner utilizing an energy savings printing mode.

14. The printing method as defined in claim 13 wherein the surface is a front side, and wherein a percentage of strikethrough of the ink or toner from the front side of the medium to a back side of the medium ranges from about 17% to about 30%.

15. An uncoated recording medium, comprising:
 a blend of hardwood fibers, softwood fibers, and thermomechanical pulp (TMP) fibers, wherein a total fiber content is at least 80 wt% of a total wt% of the uncoated recording medium, and wherein the hardwood fibers are present in an amount ranging from about 20 wt% to about 70 wt% relative to the total fiber content, the softwood fibers are present in an amount ranging from about 30 wt% to about 50 wt% relative to the total fiber content, and the TMP fibers are present in an amount ranging from about 10 wt% to about 40 wt% relative to the total fiber content;
a combination of titanium dioxide and calcium carbonate, an amount of the titanium dioxide ranging from about 1 wt% to about 5 wt% of the total wt% of the uncoated recording medium, and an amount of the calcium carbonate ranging from about 2 wt% to about 9 wt% of the total wt% of the uncoated recording medium; and

calcium chloride (CaCl₂) present in an amount ranging from about 4000 μg per gram of the uncoated recording medium to about 9500 μg per gram of the uncoated recording medium;

the uncoated recording medium having i) a basis weight ranging from about 45 g/m² to about 63 g/m², ii) a machine direction Lorentzen & Wetter 5 degree bending stiffness ranging from about 0.14 mNm to about 0.30 mNm and a cross direction Lorentzen & Wetter 5 degree bending stiffness ranging from about 0.12 mNm to about 0.15 mNm, and iii) a normalized opacity ranging from about 1.30 to about 1.48;

wherein when ink is printed on the medium, a percentage of strikethrough of the ink from a front side of the medium to a back side of the medium ranges from about 20% to about 24%, or wherein when toner is printed on the medium, a percentage of strikethrough of the toner from a front side of the medium to a back side of the medium ranges from about 17% to about 24%.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2013/023799

A. CLASSIFICATION OF SUBJECT MATTER
B41M 5/50(2006.01)i, B41M 5/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B41M 5/50; B41M 5/00; B05D 5/00; B05D 3/02; B41M 5/52; C09D 11/02; D21H 19/54; B41J 2/015

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: wood fiber, hardwood, softwood, thermomechanical pulp, stiffness, opacity, brightness

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 2012-144405 Al (HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. et al.) 01 November 2012 See abstract, paragraphs [0019]-[0021] and claims 1-2, 5.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2009-0317549 Al (ZHENG TAN et al.) 24 December 2009 See paragraphs [0083]-[0090], [0204]-[0208], claim 1 and figures 9-11</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0104406 Al (XIAOQI ZHOU et al.) 05 May 2011 See abstract, paragraphs [0034]-[0034], [0051]-[0059] and claim 1.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0205287 Al (XIAOQI ZHOU et al.) 25 August 2011 See abstract, paragraphs [0010]-[0013], [0031]-[0036] and claims 1, 3.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2012-0016214 A (KEMIRA OYJ) 23 February 2012 See abstract, paragraph [0038] and claim 1.</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier patent or patent application published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)

"O" document referred to in the written description of the invention as constituting the most pertinent prior art

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search 18 October 2013 (18.10.2013)

Date of mailing of the international search report 21 October 2013 (21.10.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 301-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

CHOI, Sang Won
Telephone No. +82-42-481-8291

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 2012-148405 Al</td>
<td>01/11/2012</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>us 2009-0317549 Al</td>
<td>24/12/2009</td>
<td>CA 2728278 Al</td>
<td>23/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102076911 A</td>
<td>25/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102076911 B</td>
<td>13/03/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103088699 A</td>
<td>08/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2288752 Al</td>
<td>02/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010148860 A</td>
<td>10/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-0133849 Al</td>
<td>30/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8361571 B2</td>
<td>29/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-154898 Al</td>
<td>23/12/2009</td>
</tr>
<tr>
<td>us 2011-0104406 Al</td>
<td>05/05/2011</td>
<td>EP 2293950 Al</td>
<td>16/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2293950 A4</td>
<td>22/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200948624 A</td>
<td>01/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8507054 B2</td>
<td>13/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-145790 Al</td>
<td>03/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2344341 A</td>
<td>20/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2344341 A4</td>
<td>05/09/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201026927 A</td>
<td>16/07/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-044795 Al</td>
<td>22/04/2010</td>
</tr>
<tr>
<td>Fr 10-2012-0016214 A</td>
<td>23/02/2012</td>
<td>AU 2010-247315 Al</td>
<td>18/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2760625 A</td>
<td>18/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102421604 A</td>
<td>18/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2429827 A</td>
<td>21/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-526678 A</td>
<td>01/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0050392 Al</td>
<td>01/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-130876 Al</td>
<td>18/11/2010</td>
</tr>
</tbody>
</table>