

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Assembly of modules with magnetic anchorage for the construction of stable grid structures

(51) 6 International Patent Classification(s)
A63H 33/04 A63F 9/00
(2006.01) 20060101ALI20
A63F 9/00 060101BHAU
(2006.01) G09B 1/38
G09B 1/38 20060101ALI20
(2006.01) 060101BHAU
G09F 7/04 G09F 7/04
(2006.01) 20060101ALI20
A63H 33/04 060101BHAU
20060101AFI20 PCT/EP01/1534
060101BHAU 3

(21) Application No: 2002240881 (22) Application Date: 2001.12.27

(87) WIPO No: WO02/055168

(30) Priority Data

(31) Number (32) Date (33) Country
MI2001U000010 2001.01.09 IT

(43) Publication Date: 2002.07.24

(43) Publication Journal Date: 2003.02.06

(71) Applicant(s)

Claudio Vicentelli

(72) Inventor(s)

Vicentelli, Claudio

(74) Agent/Attorney

Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000

(56) Related Art

US 5411262

US 5651715

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 July 2002 (18.07.2002)

PCT

(10) International Publication Number
WO 02/055168 A1

(51) International Patent Classification⁷: A63H 33/04, (74) Agent: PETRUZZELLI AVV. ANTONIO; C.so Italia, A63F 9/00, G09B 1/38, G09F 7/04 43, I-20122 Milano (IT).

(21) International Application Number: PCT/EP01/15343 (81) Designated States (national): AU, BR, CA, CN, JP, RU, US.

(22) International Filing Date: 27 December 2001 (27.12.2001) (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

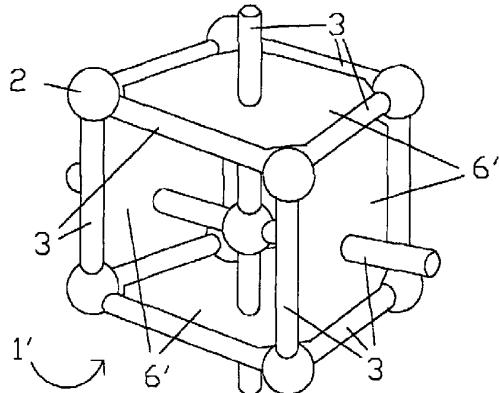
(25) Filing Language: English

(26) Publication Language: English

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(30) Priority Data:
MI2001U000010 9 January 2001 (09.01.2001) IT


For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant and

(72) Inventor: VICENTELLI, Claudio [IT/IT]; Località La Scaletta, I-07041 Alghero (IT).

(54) Title: ASSEMBLY OF MODULES WITH MAGNETIC ANCHORAGE FOR THE CONSTRUCTION OF STABLE GRID STRUCTURES

WO 02/055168 A1

(57) Abstract: In an assembly of modules with magnetic anchorage for the construction of grid structures, one or more elements for stabilisation of the grid structure are inserted in the form of panels (6, 12, 6') which can be removably slotted in corresponding polygonal areas circumscribed by the modules of the grid structure.

ASSEMBLY OF MODULES WITH MAGNETIC ANCHORAGE FOR THE CONSTRUCTION OF STABLE GRID STRUCTURES

Technical Field

The present invention relates to an assembly of modules with magnetic anchorage for the construction of stable grid structures.

Background of the Invention

From the Italian patent no. 01301090, whereof the same Applicant is owner, an assembly of modules is known which optimizes the exploitation of magnetic energy available for the anchorage of the modules in such a way as to achieve a plurality of grid structures having the most complex and original shapes.

The point of magnetic coupling between two modules can be chosen as required at any one of the zones of the magnetically active surface and/or ferromagnetic surface of one of the modules and is not limited by a predefined orientation between the two modules in such a way that the modules of the assembly can be combined overall one with the other, obtaining a plurality of shapes.

In all assembly systems with magnetic anchorage known today, and above all in those assemblies with magnetic anchorage which under-exploit the magnetic energy available for anchorage between modules, it is noticed how some shapes of the grid structure do not have the appropriate requirements of stability and self-support ability, particularly with reference to resistance to shearing or slipping and to bending stress.

In these cases the shape of the original grid structure has to be modified by adding thereto other appropriate modules to ensure its stability.

This solution, in addition to modifying the original shape of the required grid structure, can cause excessive increase in the weight and cost of the same grid structure.

It is therefore desirable to provide an assembly of modules with magnetic anchorage for the construction of grid structures which, by the use of a same number of magnetic modules, achieve an improved resistance to the deformation caused by shearing, slipping, bending or torsional stresses.

It is further desirable to provide an assembly of modules with magnetic anchorage for the construction of grid structures which makes any required grid structure stable without it being necessary to modify its shape and excessively increase its weight or total cost.

It is the object of the present invention to substantially overcome or at least one or more of the disadvantages of the prior art or to meet one or more of the above desires.

Summary of the Invention

Accordingly, in a first aspect, the present invention provides an assembly for construction of a grid structure, comprising: a plurality of magnetically anchorable modules, said modules being disposable along side edges of polygonal areas to define a grid structure of the assembly; stiffening panels conforming to said polygonal areas of said grid structure; and attachment means for attaching said stiffening panels and said modules to each other, said attachment means being arranged for removably fitting said stiffening panels in corresponding ones of said polygonal areas of said grid structure of the assembly.

In a second aspect, the present invention provides an assembly for construction of a grid structure, comprising: plural corner members and plural connecting members that are magnetically connected to respective ones of said corner members to form a hollow grid structure, wherein a first set of said corner members and said connecting members define a planar polygonal area of said hollow grid structure, and wherein sides of said connecting members of said first set that face said polygonal area have recesses therein; and a polygonal panel removably attached in said polygonal area, edges of said panel being removably fitted within respective ones of said recesses to stabilize said hollow grid structure.

The panels can be made in a lightweight and economical material and enable extremely stable grid structures to be obtained, although maintaining the original simplicity and flexibility of assembly of the modules unchanged.

The panels for stabilization of the grid structure can also allow new ways of using grid structures both as elements strictly for amusement and as display or furnishing elements.

Brief Description of the Drawings

A preferred form of the present invention will now be described by way of example with reference to the accompanying drawings, wherein:

Fig. 1 is a side elevation view of an assembly of modules with magnetic anchorage defining a two-dimensional structure in accordance with a first preferred embodiment of the present invention;

Fig. 2 is a cross-sectional view taken along line 2-2 of Fig. 1;

Fig. 3 is a partially sectioned detailed view of the structure of a cylindrical module used in the present invention;

Fig. 4 is a side elevation view of an assembly of modules with magnetic anchorage defining a bi-dimensional structure in accordance with a second preferred embodiment of the present invention;

Fig. 5 is a cross-sectional view taken along line 5-5 of Fig. 4;

Fig. 6 is a perspective view of an assembly of modules with magnetic anchorage defining a three-dimensional structure in accordance with a further preferred embodiment of the present invention; and

Fig. 7 is a cross-sectional view of a grid structure similar to that of Figures 1 and 2, wherein a different structure of display panel is provided.

Detailed Description of the Preferred Embodiment

With reference to Figures 1, 2 and 3, a two-dimensional assembly 1 of eight modules comprising four spherical modules 2 and four cylindrical modules 3 is illustrated.

25

2a

The spherical modules 2 consist of a ferromagnetic ball member for example in steel, while the cylindrical modules 3 each comprise a central ferromagnetic cylindrical yoke 4, to each of whose opposite ends a corresponding cylindrical element 5 in permanently magnetic material is provided.

5 The permanently magnetic elements 5 are magnetised axially and are arranged with the ends of opposite magnetic polarity in such a way as to be connected in series via the ferromagnetic yoke 4.

If necessary the structure of the cylindrical modules 3 can be contained in a non-magnetic covering matrix 9.

10 The assembly 1 comprises a square plaque or panel 6 with cut away corners which defines, in the direction of the thickness of the panel 6, lateral recessed edges 7 with an arched cross profile.

The radius of curvature of the four edges of the panel 6 is equal to the radius of the cylindrical element 3.

15 As can be seen, the assembly consists of four cylindrical modules 3 disposed in a square arrangement and of four spherical modules 2 arranged at the corners of the square in contact with the end bases of the two cylindrical modules 3 which converge therein.

The cylindrical modules 3 are oriented in such a way that the magnetic tensions caused thereby in the magnetic circuit formed by the assembly are all combined in series.

20 Before finishing the assembly with the fourth and final cylindrical module 3, the panel 6 is inserted in the plane zone defined by the remaining three cylindrical modules 3 until each edge of the panel 6 is slotted on the lateral wall of a corresponding cylindrical module 3.

25 After insertion of the panel 6 the last cylindrical module 3 is slotted in the remaining free side of the panel 6 to complete the assembly.

Clearly the panel 6, although leaving the flexibility of assembly of the modules unchanged, acts in the sense that it stiffens the assembly and allows it to maintain its shape even where there is shearing or torsional stress, and at the same time can act as a surface for supporting a weight.

30 The panel 6 can be in coloured or natural plastic material or wood, in lightweight metal or in any other lightweight and economical material yet sufficiently resistant from the mechanical standpoint.

The panel is removably slotted or fitted between the cylindrical modules 3 and can naturally be reused as required for the creation of new and different assemblies.

35 The assembly of Figure 1 can form the basis for the construction of definitely more complex three-dimensional grid structures.

Referring now to Figures 4 and 5, an assembly of modules is illustrated for the construction of a structure similar to that of Figure 1 but with modules having a different shape and structure.

In this case the spherical ferromagnetic modules 2 forming the corners of the square structure are replaced with permanently magnetic cubic modules 10 having two adjacent faces 10' and 10" with opposite magnetic polarity, while the cylindrical modules 3 forming the sides of the square structure are replaced by modules 8 which are structurally identical but in the form of a parallelepiped with a square cross-section.

In this case the system of removably slotting between the panel 12 and the modules 8, although still of the male/female type, is made in a different way by forming rectangular grooves 11 with width equal to the thickness of the panel 12 along the longitudinal median axes of each of the four lateral faces of the parallelepiped modules 8.

Naturally other forms of removable slotting of the panels in modules other than those shown here can be provided without departing from the principle claimed. Obviously the number and points of positioning the stabilisation panels in a more complex grid structure can be varied as required by the person constructing it.

In order to adapt to the various possible shapes of the areas defined by the modules forming a grid structure, the panel can also have in turn a triangular, rectangular, pentagonal or generically polygonal shape.

The present principle must also be considered extended to the cases wherein the modules of the assembly are different in terms of shape, structure and dimensions from those shown hitherto, but such as to create in any case a grid structure. Modules extending along a preferential axis, for example straight prisms or cylinders with a generically polygonal base, will preferably be used, alone or combined with modules without a preferential extension axis, for example cubes or spheres, and slotting will take place between a panel and the modules extending along a preferential axis, which define a polygonal area of the grid structure.

All the modules and the procedure for assembly of the modules illustrated in the Italian patent no. 01301090 can advantageously be used.

In particular the modules which create the grid structure can thus be modules of a first type, consisting of at least one active magnetic element, that is to say an element which has two surfaces of opposite polarity, at least one ferromagnetic element and possibly a non-magnetic covering matrix, or modules of the first type combined with modules of a second type, the latter consisting of a ferromagnetic element possibly inserted in a non-magnetic covering matrix.

The modules are assembled in such a way that the magnetic flow generated by the active magnetic elements used in the anchorage, closes totally or at least partially via the ferromagnetic parts of the grid structure, and in such a way that the magnetic tensions produced in the magnetic circuit generated by the active magnetic elements which achieve anchorage, are combined in series.

5 Figure 6 shows a three-dimensional assembly made with spherical modules 2 and cylindrical modules 3 identical to those described with reference to Figures 1, 2 and 3.

In this example of assembly 1', which represents a model of a body centre cubic 10 lattice grid of a crystal of the centred body type, the panels 6' have a hole in the centre which allows a cylindrical module 3, inserted through it, to be supported. The presence of at least three panels in three corresponding orthogonal faces of the cubic structure 15 prevents deformation of the structure caused by application of a bending or shearing action thereon. If preservation of the deformability of the structure in one of its main directions is required, it will be sufficient to eliminate from the structure the panel arranged in the plane wherein deformation is to be produced.

The panels can improve the recreation ability of the grid structure to be constructed, as they can for example depict portions of a picture of a three-dimensional puzzle.

20 The panels can also act as explanatory or advertising boards, in addition to allowing the creation of closed, half-closed or open volumes, which can be used according to the most widely varying needs of furnishing, support, containing or other purposes.

A particularly advantageous panel structure in accordance with the present 25 invention provides a main panel which can be removably combined with a cover panel mounted above the main panel, which cover panel extends beyond the edges of the corresponding main panel to increase the covered portion of the modules circumscribing the polygonal area wherein the main panel is attached. This aspect of the present invention is illustrated in Fig. 7, where a main square panel 6" is combined with a cover 30 panel 14, in this case square and transparent, which protrudes beyond the edges of the main panel 6" until it covers almost half the upper lateral surface of the cylindrical modules between which it is inserted.

The cover panel 14 has feet 16 at the four corners which can be press fitted into a 35 housing cavity 18 formed on the body of the main panel 6" in such a way as to form a single body with the main panel 6".

The internal side of the cover panel 14 supports in turn a square plate 20 with dimensions equal to the cover panel 14, which plate bears a decorative pattern or picture or part of a picture to be displayed. Finally the plate 20 has at the four corners respective apertures which can be entered by the feet 16 of the cover panel 14 before the latter is in turn attached to the main panel 6".

The use of these cover panels enables greater coverage, at most complete, of the modules of the grid structure, and enables a picture or a decoration for display to be removed, recomposed or changed without having to open or disassemble each time the modules of the grid structure.

The claims defining the invention are as follows:

1. An assembly for construction of a grid structure, comprising: a plurality of magnetically anchorable modules, said modules being disposable along side edges of polygonal areas to define a grid structure of the assembly; stiffening panels conforming to said polygonal areas of said grid structure; and attachment means for attaching said stiffening panels and said modules to each other, said attachment means being arranged for removably fitting said stiffening panels in corresponding ones of said polygonal areas of said grid structure of the assembly.
- 10 2. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules having an outer cylindrical surface.
- 15 3. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules having an outer polygonal surface.
4. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules having at least one longitudinally extending groove, and wherein said stiffening panels have shaped side edges to engage said groove.
- 20 5. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules having an outer surface, and wherein said stiffening panels are provided with lateral edges that engage the outer surface of said elongated modules of the assembly.
- 25 6. The assembly according to claim 5, wherein said elongated modules have an outer cylindrical surface and wherein said stiffening panels are provided with lateral edges having a profile conforming to said outer cylindrical surface.
- 30 7. The assembly according to claim 1, wherein said modules are provided with a non-magnetic covering matrix.
8. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules each including at least one magnet.

9. The assembly according to claim 8, wherein said grid structure comprises elongated ones of said modules each including a magnet at each end.

10. The assembly according to claim 8, wherein said modules each include
5 at least one magnet and a ferromagnetic element.

11. The assembly according to claim 10, wherein said ferromagnetic element is a sphere or polyhedral shaped element.

10 12. The assembly according to claim 1, wherein said grid structure comprises elongated ones of said modules each including a magnet at each end, and a ferromagnetic element axially extending between the magnets of the elongated modules of the assembly.

15 13. The assembly according to claim 1, wherein said stiffening panel is made of a material selected from the group consisting of lightweight metal, plastic and wood material.

14. The assembly according to claim 1, wherein at least one of said
20 stiffening panels comprises a cover panel removably connectable to said one stiffening panel.

15. The assembly according to claim 14, wherein said cover panel extends beyond edges of said one stiffening panel.

25 16. The assembly according to claim 14, wherein a decorative pattern is attached to said cover panel.

17. The assembly according to claim 14, wherein said cover panel is made
30 of transparent material, and a decorative pattern is positioned inside between said panel cover and said one stiffening panel.

18. An assembly for construction of a grid structure, comprising: plural corner members and plural connecting members that are magnetically connected to respective ones of said corner members to form a hollow grid structure, wherein a first set of said corner members and said connecting members define a planar polygonal area of said hollow grid structure, and wherein sides of said connecting members of said first set that face said polygonal area have recesses therein; and a polygonal panel removably attached in said polygonal area, edges of said panel being removably fitted within respective ones of said recesses to stabilize said hollow grid structure.
19. An assembly for construction of a grid structure, said assembly being substantially as hereinbefore described with reference to Figs 1 to 3; Figs 4 and 5; Fig 6; or Fig 7 of the accompanying drawings.

Dated 10 July 2006
Claudio Vicentelli
Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

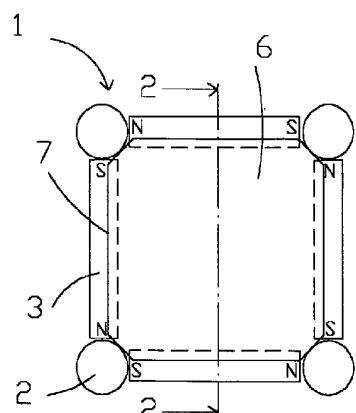


Fig. 1

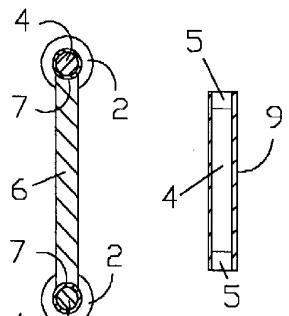


Fig. 2

Fig. 3

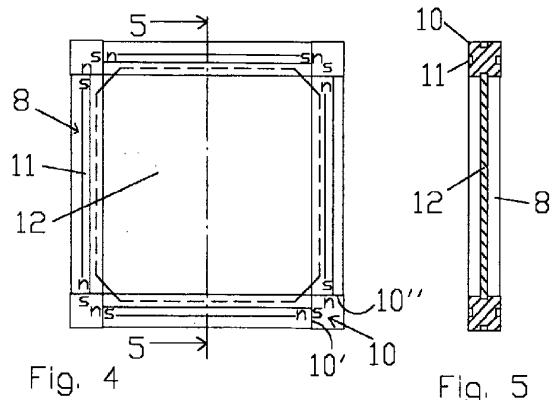


Fig. 4

Fig. 5

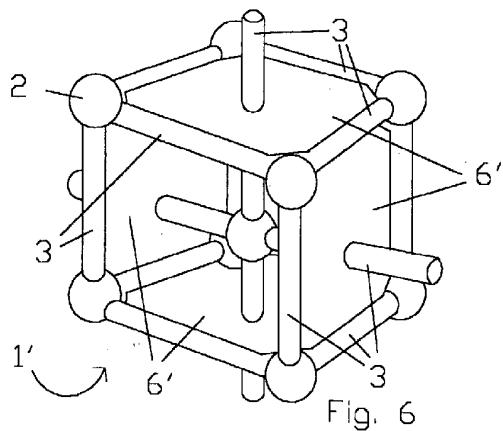


Fig. 6

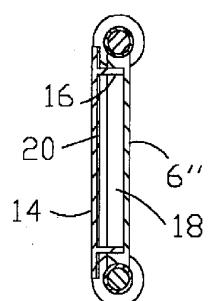


Fig. 7