PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/21178
06F 17/30 Al

G (43) International Publication Date: 12 June 1997 (12.06.97)

(21) International Application Number: PCT/US96/18510 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: {8 November 1996 (18.11.96)

(30) Priority Data:

08/565,939 us

1 December 1995 (01.12.95)

(71) Applicant (for all designated States except US): SAND TECH-
NOLOGY SYSTEMS INTERNATIONAL, INC. [CA/CA};
Suite 410, 4141 Sherbrooke Street West, Westmount, Que-
bec H3Z B8 (CA).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MARQUIS, Jean, A.
[US/US]; 3345 E. Brandon Street, Pasadena, CA 91107
(US).

(74) Agent: PROUT, D., Bruce; Christie, Parker & Hale, L.L.P.,
P.O. Box 7068, Pasadena, CA 91109-7068 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ,
UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: STORAGE AND RETRIEVAL OF ORDERED SETS OF KEYS IN A COMPACT 0-COMPLETE TREE

(57) Abstract

A computer storage system and processing method for indexing and accessing
data stored in the computer storage system, comprising a compact multi-way search tree
structure. The method employs a B-tree like search algorithm that is independent of key
type or key length because all keys in index blocks are encoded by a log2M bit surrogate,
where M is the maximal key length. A buffer consisting of a sorted list of key values

can be directly transformed into a representation of a Co-tree.

COMPLETE BINARY TREE

DEPTHS
01406 1402

0-COMPLETE BINARY TREE

DEPTHS
0=

O _1406 1430

1

2

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
cs
Cz
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing internationai

Ammenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

IT

JP

KE
KG

KR
KZ
LI
LK
LR
LT
LU
LV
MC

MG
ML

MR

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG
SI
SK
SN
SZ

TG
T

UA
uG

vz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 97/21178

PCT/US96/18510

STORAGE AND RETRIEVAL OF ORDERED SETS OF
KEYS IN A COMPACT 0-COMPLETE TREE

Field of the Invention
The invention relates to computer data and file storage systems and to a structure for

indexing and accessing data in computer data and file storage systems. and more particularly,

to a novel structure for implementing a compact representation of a O-complete tree and a

method of storing and retrieving a set of search keys in such a structure.

Background of the Invention
A recurring problem in data and file storage systems such as a database. in particular those

implemented in computer systems, is the search for and location of specific items of information
stored in the database. Such searches are generally accomplished by constructing a directory,
or index. to the database. and using search keys to search through the index to find pointers to
the most likely locations of the information in the database. whether that locauon is within the
memory or the storage medium of the computer.

In its most usual forms, an index to database records within a computer is structured as
atree comprised of one or more nodes, connected by branches, which is stored within a storage
means of the computer. Each node generally includes one or more branch fields containing
information for directing a search. and each such branch field usually contains a pointer. or
branch, to another node, and an associated branch key indicating ranges or types of information
that may be located along that branch from the node. The tree, and any search of the tree, begins
at a single node referred to as the root node and progresses downwards through the various
branch nodes until the nodes containing either the items of information or. more usually, pointers
to items of information are reached. The information related nodes are often referred to as leaf
nodes or. since this is the level at which the search either succeeds or fails. failure nodes. Within
a tree storage structure of a computer. any node within a tree is a parent node with respect to all
nodes dependent from that node, and sub-structures within a tree which are dependent from that
parent node are often referred to as subtrees with respect to that node.

The decision as to which direction. or branch, to take through a tree storage structure in
a search is determined by comparing the search key and the branch keys stored in each node
encountered in the search. The results of the comparisons to the branches depending from a
given node are to be followed in the next step of the search. In this regard, search keys are most
generally comprised of strings of characters or numbers which relate to the item or items of

information to be searched for within the computer system.
The prior art contains a variety of search tree data storage structures for computer

database systems. among which is the apparent ancestor from which all later tree structures have

-1-

15

20

35

W0 97/21178 PCT/US96/18510

been developed and the most general form of search tree well known in the art. the "B-tree."
(See, for example, Knuth. The Art of Compuier Programming, Vol. 3. pp. 473-479). A B-tree
provides both satisfactory primary access and good secondary access to a data set. Theretore,
these trees naturally tend to be used in data storage structure often utilized by database and file
systems. Nevertheless. there are problems that exist with the utilization of B-tree storage
structures within database svstems. Every indexed attribute value must be replicated in the index
itself. The cumulative effect of replicating many secondary index values is to create indices

which often exceed the size of the database itself. This overhead can force database designers

to reject potentially useful access paths. Moreover. inclusion of search key values within blocks

of the B-tree significantly decreases the block fan out and increases tree depth and retrieval time.
Another tree structure which can be implemented in computer database systems, compact

0-complete trees (i.e., Cg-trees), eliminates search values from indices by replacing them with

small surrogates whose typical 8-bit length will be adequate for most practical key lengths (i.e.,
less than 32 bytes). Thus. actual values can be stored anywhere in arbitrary order. leaving the
indices to the tree structure to be just hicrarchical collections of (surrogate, pointer) pairs stored
in an index block. This organization can reduce the size of the indexes by about 50% to 80% and
increases the branching factor of the trees. which provides a reduction in the number of disk
accesses in the system per exact match query within computer database systems. (See Orlandic
and Pfaltz. Compact O-Complete Trees, Proceedings of the 14th VLDB Conference, pp.
372-381.)

While the known method of creating C-trees increases storage utilization 50% to 80%
over B-trees. there is a waste of storage space due to the presence of dummy entries (surrogate,
pointer==NIL) wherein the number of index entries at the lowest level of the tree exceeds the
actual number of records stored. Therefore, the expected storage utilization of index entries of
Cy-trees at the lowest tree level is 0.567 versus 0.693 as in the case of B-trees.

Ithough B-trees and C-tree storage structures represent efficient methods of

Moreover. a
searching for values, both methods require initial generation of the tree data storage structure
itself. Neither of these computer storage structures inherently stores information in sorted order.

A tree can be built more efficiently if the key records are initially sorted in the order of
field, than if records are in random order. Therefore. an efficient computer database

d sort sets of keys first, and then build a tree based on keys extracted at intervals

their key
system shoul

from the sorted keys.
If the values are in sorted ordered, the next key value to be stored is likely within the

range of key values for the current leaf index block or subtree. In addition, index block splitting
can be deferred until ail keys within a given key interval of the current index block are inserted.
s 1o build a data storage structure and method which effectively inputs an
records or data items within a key range interval in the most efficient way

the data storage structure and method should reduce wasted storage space

Therefore. a goal 1
ordered sort of key
possible. In particular,

20

WO 97/21178 PCT/US96/18510

and, during input. sort the search keys that access the data items stored within the storage
medium or memory of the computer. This goal is to be achieved while simultaneously retaining
the merits and taking advantage of the properties of known B-tree and Cy-tree computer storage

structures.

Summary of the Invention ‘
In an embodiment of the invention, a data storage structure for minimizing the amount of

information required to retrieve stored data within a computer system 1s comprised of entries for
indexing search keys. Each entry comprises a depth value and a data present indicator having
two conditions. and a tree structure stored in the computer interconnecting the entries and
forming the data storage structure. Search keys may be binary representations of the data records
indexed by the data storage structure or may be any other attribute or set of attributes used to
look up the data records. The data storage structure further comprises a means for storing a
count of each of the entries associated with a search key interval range.

The described embodiment of the present invention includes novel methods for storing,
accessing and retrieving data indexed by the tree data storage structure. These methods comprise
a method for sequentially processing a number of search keys within the tree structure to perform
a predefined function on each search key, a method for locating a search key within the tree
structure, a method for storing and indexing information for each search key within the tree
structure, and a method for splitting an index block of the present invention.

An embodiment of the present invention also provides additional efficiency with regards
to storage utilization beyond the already stated 50% to 80% savings of Cy-trees over B-trees.
To alleviate the problem of waste created by Cy-trees at the lowest levels. a preferred
embodiment of the invention replaces storage of the (surrogate, pointer) entries as physically
adjacent pairs of values with two separate physical structures within the storage means of the
computer. namely: 1) an index block depths structure to a list of the surrogate values including
a depth value and a data present structure indicator having two conditions and 2) a pointers
structure pointing to a list of every non-NIL pointer value. these being in lexicographic order.
In the preferred embodiment of the invention, a NIL pointer of the prior Cj-tree data storage
structure (i.e., a dummy entry) is represented by a data not present indicator bit in the value of
the surrogate itself. The meta-data of each subtree also reflects the count of non-NIL entries for
each subtree to accumulate an incremental lexical position for each indexed key within the
pointers structure. Since the pointers structure does not contain any NIL pointers, only a bit of
storage is necessary to indicate a NIL pointer and minimal meta-data is recorded. Therefore,
storage utilization tends to revert back to that which is expected with a B-tree.

Moreover. to eliminate the inefficiency of traversing a multilevel tree structure, the keys
to be added to the data storage structure of the preferred embodiment of the present invention
are processed as a collection or more than one item in sorted order. In this way. greater locality
of reference and reduction in traversal and maintenance of the nodes of the tree (including index

10

15

20

30

35

WO 97/21178 PCT/US96/18510

block splitting) from the root to the leaf for cach key can be realized. By determining if the next
key is included in the key interval range of the current index block. processing of a predefined
function can continue in the current index block or resume in its parent block. With this new
method. splitting of an index block is deferred until all processing of the current block is
compieted or the block size is at an extreme maximum far greater than the normal threshold,

thus. allowing for context retention of the subtree until all relevant keys have beén added to that

subtree.
Still other embodiments of the present invention will become readily apparent to those

skilled in the art from the following detailed description. wherein is shown and described only
embodiments of the invention by way of illustration for carrying out the invention. As will be
realized. the invention is capable of other and different embodiments and its several details are

capable of modifications in various obvious respects. all without departing from the spirit of the

invention. Accordingly, the drawings and the detailed description are to be regarded as

illustrative in nature and not restrictive.

10

15

20

30

35

WO 97/21178

PCT/US96/18510

Brief Description of the Drawings

The previous descriptions and all of the structures and features of the present invention
and its embodiments will become apparent from the following description and accompanying

drawings.

FIG.

lais a schematic and block diagram of a computer system in which is implemented

the present invention.
FIG. 1b is a schematic and block diagram of a database system on a computer for

implementing the present invention.

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

FIG. 4a.

FIG.

2a is a conceptual illustration of a prior art complete binary tree.

2b is a conceptual illustration of a prior art O-complete binary tree.

3a is a diagram of a prior art Cy-tree index structure for values stored in a database.
3b is a diagram of the Cy-tree of FIG. 3a before splitting occurs.

4a illustrates an instantiation of a C-tree of the present invention.

4b is a detailed diagram of the contents of the storage container of the Cy-tree of

5 illustrates an exemplary three level embodiment of a Cy-tree according to the

present invention.

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

6a is the diagram of an exemplary node of the storage structure.

6b is the diagram of an exemplary INIT node.

7 is a flow chart of the Sequential Processing Procedure of the present invention.
8 is a flow chart of the Leaf Search Procedure of the present invention.

9 is a flow chart of the Leaf Insert Procedure of the present invention.

10 is a flow chart of the Branch Search Procedure of the present invention.
11 is a flow chart of the Branch Insert Procedure of the present invention.

12 is a flow chart of the Search Depth Procedure of the present invention.

13 is a figure of the Bulk Process Procedure of the present invention.

14 is a figure of the Reset bK function of the present invention.

15 is a flow chart of the Add Depth Procedure of the present invention.

16a is a flow chart of a Split Root Procedure of the present invention.

16b is an illustration of the root level before splitting.

16¢ is an illustration of the root level after splitting occurs.

17 is a flow chart of the Split Child Procedure of the present invention.

18 is a flow chart of the Minimum Depth Procedure of the present invention.
19 is a flow chart of the Split Node Procedure of the present invention.

Like numbers and designations in the drawings refer to like elements.

10

15

30

35

WO 97/21178 PCT/US96/18510

Detailed Description
A) Computer System Overview
FIG. la depicts a computer system having a programmable computer and computer

programs for creating a file system and for processing operations on the file system in
accordance with the present invention. The system includes programmable computer 1. display
2, computer input device 3 and a storage means. The storage means comprises a storage device
4 such as a magnetic disk storage system or a partition of memory of the computer for storage
of data. Hardware/and software including the file system and hardware/and software for
performing processing operations to be described are implemented in a file system 5 (shown in
phantom lines), which is connected with computer 1. The system 3 in connection with computer
1 coordinates the various activities related to representing data in the file system and to
performing operations on one or more data files stored within the storage device 4. System 5 can
be a programmed general purpose computer, such as a personal. mini or mainframe computer,
or a special purpose computer formed by one or more integrated chips.

Referring to FIG. 1b. file system 5 includes a file processing unit 7 and a command
interpreter 6. In order to access specific items of information stored in the computer file system.
the file processing unit 7 uses a novel compact 0-complete data storage structure 40 as depicted
in FIG. 4 for minimizing the amount of information required to retrieve items of data stored
within the storage device 4. The data storage structure has a plurality of entries 30, 31, 80, 81,
82, 83. 84, 85, 86, 87, 88 for indexing search keys 1420, wherein each entry comprises a depth
value 89 and a data present indicator 90, the latter, by way of example having two conditions,
and a novel Cy-tree structure 43 stored in the storage device 4 of the computer interconnecting
the entries and forming the data storage structure 40. The data storage structure 40 further
includes a means 66 for storing the count of the non-NIL leaf entries associated with a search key
interval range. In addition. the present invention uses a separate pointers structure comprised
of header 36 and entries 36a. that is distinct from the tree structure 43 and. in a typical
embodiment. may be distinct from the data storage structure 40 itself. The pointers structure 36
and 36a accesses the data items within the storage container 39 of the storage device 4.

The described embodiment of the present invention includes novel methods for storing,
accessing and retrieving data indexed by the tree data storage structure. These methods include
a method for sequentially processing a number of search keys within the tree structure to perform
a predefined function on each search key, a method for locating a search key within the tree

structure. a method for storing and indexing information for each search key within the tree

structure. and a method for splitting an index block of the present invention.

B) Prior Art Tree Structures
Referring now to FIGS. 2a and 2b, there is shown a prior art complete binary tree and a

0-complete binary tree. respectively, and how these trees are used to index data.

10

15

20

35

WO 97/21178 PCT/US96/18510

1) Complete Binary Tree
Referring to FIG. 2a, binary tree 1402 is an illustrative edge labeled tree data storage

structure consisting of nodes indicated by dots, such as 1406. 1408 and 1410, separated by arcs
or edges, such as 1412 and 1414. The nodes are identified by small and capital letters a through
Z and A". The end nodes are called leaf nodes or leafs and are labeled with capital letters. All
the other interior nodes are labeled with small letters. Information to be retrieved is stored in
storage locations pointed to by pointers located at the tree's leaves, such as leaves 1416 and 1418.
Search keys 1420 are shown for leaves H, I V, W, L, Z. A'and Q. InFIG. 2a. the search keys
1420 are strings of binary digits with an arbitrary, uniform length up to some maximum length
in bits, 8 bits being used by way of example. The search keys 1420 associated with each of these
leaves are used to locate the pointer to the storage location for the corresponding leaf in the
storage device 4. Only those leaves indicated by an associated search key 1420 have a pointer
to a storage location that stores associated data records and therefore are said to be full. The
leaves G. K, O, S, T and Y do not have pointers to a storage location and therefore are said to
be empty.

Retrieval of the data records in the storage device 4 is achieved by successively
comparing binary 0 and 1 symbols in one of the search keys 1420 with a 0 or 1 edge label on
each arc 1412 between the nodes along a path of the connected dots and arcs starting with root
node a and ending with the desired leaf. Each node or leaf of the binary tree is either a 0-node
or O-leaf if its entering arc is labeled 0, or a 1-node or I-leaf if its entering arc is labeled 1. In
a computer database and file management system. an access path to a node is a binary string
obtained by concatenating the 0 and 1 edge labels traversed from the root node a to the particutar
node in question.

Binary tree structures are said to be "complete” if every node is either a leaf or is a node
that has exactly two non-empty direct descendants (i.e.. nodes having a dependent 0-node and
adependent 1-node). In FIG. 2a. each node from node a to node A’ satisfies the two conditions
for 0-completeness.

Thus, FIG. 2a depicts a tree storage structure with the search keys 1420, inciuding
00001000, 00100101, 01000010, 01000110, 1000001, 10101000, 10101010 and 10110010, to
locate data records at leaves H, I, V, W, L, Z, A" and Q respectively. Empty leaves G,K, O, T,
S and Y are included within the tree 1402 to fulfill the requirement of a "complete” binary tree.

2) 0-Complete Binary Tree

Refer now to FIG. 2b. A prior art 0-complete binary tree 1430 is shown having the same
structure. nomenclature and reference numerals as used in FIG. 2a except where noted. Binary
tree 1430 with & leaves is said to be O0-complete if 1) the sibling of any 0-leaf is present in the
tree, and 2) there are exactly -1 1-nodes in the tree. Thus, FIG. 2b is a O-complete binary tree
representation of the binary tree of FIG. 2a since every O-leaf H. V, L, T, Z has a sibling 1-node,
and there are nine leaves H, I, V, W, L. T, Z, A’ and Q and eight I-nodes I, W, e, ¢, m, A", U and

7-

10

h

20

WO 97/21178 PCT/US96/18510

Q. The O-complete tree 1430 is derived from the binary tree 1402 of FIG. 2a by deleting from
the tree 1402 those 1-leaves that are empty (indicated by the lack of an associated search key)
such as leaves G. K. O. S and Y. Note that deletion of any empty 0-leaf violates the second
condition which requires eight 1-nodes in tree 1430. so that node T. even though it is empty,
remains in the tree storage structure 1430 and increases required storage space.

Each interior node. designated by small letters. has a corresponding O-subtree and 1-
subtree. The "pre-order traversal” of a 0-complete tree starts at the root node a of the tree and
then iterates the following two steps until the last node has been accessed:

1) if the current node nn; is an internal node then the next node nnj, | in the order will

be its 0-son because. by definition of 0-completeness. every interior node must

have a 0-son node;
2) if the current node nn, is a leaf then the next node in the pre-order will be the [-son

of the node pp whose 0-subtree contains nn; and whose depth is maximal.
Thus. the first node in pre-order is the internal root node a. The next node is its 0-son
node b. which is followed by 0-son nodes d and then leat H. The next node in pre-order is the

| -son of the node d since H is a leaf node and the O-subtree of node d contains H and its depth

in the tree is maximal (i.e., depth of 2 as opposed to node b whose 0O-subtree contains H and

whose depth is 1). The complete pre-order traversal of tree 1430 depicted in FIG. 2b is the
sequenccabdHIejnrV We fLmpTuxZA'Q.
Successor nodes to each leaf node H, I, V, W, L. T, Z, A" except the last leaf node Q in

the pre-order traversal of a 0-complete tree are also of special importance. These nodes. termed

bounding nodes, are respectively I, e, W, ¢, m.u, A, Q in FIG. 2b. Since bounding nodes are

defined in terms of the pre-order traversal. each leaf node. except the last one Q, has its own

unique bounding node. In addition. trom the previously stated definition of the pre-order

traversal. every bounding node is a 1-node.

2.a2) Key Intervals
"Discriminators” of a node and a bounding node can be used to establish a key interval

that corresponds to each leaf in the 0-complete tree. The "discriminator” of a leaf node is a

binary string of the same length as the search keys and whose high order, or left-most. bits are

the binary bits of the concatenated arcs, or path, leading up to the leaf with all of the other

right-most bits set to 0.
The "key interval” is formally defined to be the key range between the leaf discriminator

(inclusively) and the discriminator of its bounding node (non-inclusively). The exception is
again the last leaf (Q by way of example) in the pre-order traversal, whose upper bound of its key
interval is always known in advance and consists of all one bits (i.e., 11111111).

In Table 1, the key intervals of each leaf node H,I, V, W,L, T, Z, A", Q of the 0-complete

tree 1430 are listed in lexicographic order. Thus. for example, leaf V has a discriminator of

01000000 and its corresponding bounding node W has a discriminator 01000100; the key

-8-

10

15

20

30

35

WO 97/21178 PCT/US96/18510

interval of leaf V. as shown in Table 1. is 01000000 (inclusive) to 01000100 (non-inclusive). or
01000000 to 01000011 inclusively.

By examining Table 1, knowledge of bounding node discriminators is sufficient to
identify the appropriate key interval of any leaf and hence the corresponding data record with
any given search key. By way of example using search key 01000010. a search procedure that
examines the bounding discriminators of the tree in their pre-order traversal sequence will find
the correct key interval for the search key when the first bounding discriminator greater than the
search key 01000010 is found. The discriminator of the first bounding node L. 00100000. is less
than the search key 01000010. The second bounding discriminator of bounding node e in pre-
order. 01000000, is also less than the search key. The discriminator of the third bounding node
W, 01000100, is greater and is the non-inclusive upper bound of the key interval for leaf V. The
inclusive lower bound of the key interval for leaf V is the discriminator of the previous bounding
node e.

Along with each key interval in Table 1. there is shown a number denoting the "depth"
of the bounding node in the O-complete tree 1430 for that key interval. For example. the
bounding node of leaf V is the leaf W that has a depth of 6 in the 0-compiete binary tree. For
the last node Q, which has no bounding node by definition. the upper bound of its interval is set
to 11111111 with an assigned depth of 0.

There is one apparent regularity in the relationship between discriminators of a set of
bounding nodes and their depths. If the depth of a bounding node is dd. then by definition of a
discriminator, the ddth bit of the corresponding discriminator is set to 1 with all subsequent lower
order bits 0.

In Table | wherein the key length is eight bits. the initial dummy discriminator is
00000000 and the depth of the first bounding node I is three, the third bit of the first bounding
node discriminator is I and all subsequent. low order bits are 0 to obtain the first bounding node
discriminator 00100000; the depth of the second bounding node € is two. using the first bounding
node discriminator, the second bit is set to 1 and all subsequent bits are set to 0 in order to obtain
the second bounding node discriminator 01000000. The discriminators of the remainder of the

bounding nodes are constructed in a similar manner.

3) Prior Art Cy-Trees
Using the knowledge that key intervals can be constructed from depths of bounding nodes

in a O-complete binary tree, a prior art compact form of the O-complete tree of Fig. 2b is
represented at 9 in Fig. 3a. This compact form is called a Cy-tree. The tree structure has index
blocks 10, 11, and 12 with entries 17. When forming a Cy-tree, the maximum number of entries
17 in any one index block is always less than or equal to a predetermined full index block
number 14. Assuming a predetermined full index block number 14 of five in Fig. 3a, consider
now how the tree structure 9 represents the 0-complete binary tree of Fig. 2b. Each entry 17 of
index blocks 10, 11 and 12 has a depth value 17a and a pointer 17b to a storage location 13. The

9.

10

20

30

35

WO 97/21178 PCT/US96/18510

only exception would be a NIL entry, such as 17b’. representing an empty leaf or node of Fig.
2b, such as leaf T. This entry 17b” has an empty pointer 17b with no corresponding data stored
in memory and wastes storage space within the computer system.

By way of example in Fig. 3a with reference to Table 1. the depth values 3, 2, 6. 1. of
bounding nodes I, e, W. ¢ corresponding to leaves H. I V, W are stored in index block 11. The
depth values 3, 5, 7, 4 of bounding nodes m, u, A’. Q corresponding to leaves L, T, Z. A” and the
assigned depth value of 0 for the final leaf node Q are stored in index block 12. The pointer 17b
of each entry 17 points to a storage location 13 corresponding to a search key and its associated

data record in memorv or the storage device. except empty pointer 17b of entry 17b’

corresponding to empty leaf T of FIG. 2b. Root index block 10 has entries 17 with pointers 1 7b
12. The depth value 17a of each entry 17

that point to a corresponding leaf index block 11 and
of index block 10 corresponds to the last or minimum depth value. 1 and 0, of each respective

leaf index block 11 and 12 and provides the key interval range for each leaf index block 11 and
12.

Now consider the known method of splitting a fuli index block of a compact O-compliete
wree as show in FIG. 3b. wherein the first six search keys have been indexed in the lexicographic
order. At this point, the tree structure is a single index block 19 having six entries 17 which is
a compact representation of a conceptual 0-complete binary tree having six leaf nodes indexing
search keys 00001000, 00100101, 01000010, 01000110, 10000001, and 10101000. Once the
sixth search key 10101000 in order is indexed. the predetermined full index block number 14 of
five was exceeded, and a split of index block 19 must occur. The split occurs at the minimum
depth of depth values 17a of index block 19, which is 1. This split creates a root index block 20,
a leaf index block 21 having depth values 17a of 3,2,6 and I and a leaf index block 24 having
depth values 17a of 3 and 0. After splitting, parent index block 20 is comprised of two entries
17. The first entry 22 has a depth value 17a of | corresponding to the bounding node depth of

a leaf node indexing search key 01000010 in a conceptual binary 0-complete tree after input of

the same six search keys. and the second entry 23 has a depth value 17a of 0 which is always the
assigned value of the final leaf node in the pre-order of a 0-complete binary tree. The pointers
17b of entries 22 and 23 point to index blocks 21 and 24 respectively.

B) Compact 0-Complete Data Storage Structure of the Present Invention

Now, referencing FIG. 4a. a representation of the data storage structure 40 of an

embodiment of the present invention is depicted after the input of the same set of search keys

1420 as in FIGS. 2a, 2b. 3a. A greater number of search keys can be input into the data storage
structure 40, and it would be within the skill of the practitioner in the art to apply the described
embodiment to a greater set of keys. As opposed to the Cy-tree of FIG. 3a having blocks 10, 11
and 12 with adjacent depth value 17a and pointer 17b entries 17, the data storage structure of
FIG. 4 has tree structure 43 comprised of root node 47 with index block header 47a indexed to
index block entries 47¢ and subtree pointer 47b. node 34 with index block header 34a linked to

-10-

10

15

20

35

W0 97/21178

PCT/US96/18510

index block entries 34c and subtree pointer 34b. and node 35 with index block header 35a linked
to index block entries 35¢ and subtree pointer 35b.

Each entry in 47c¢. 34¢ and 35¢ contains a depth value 89 and a data present indicator 90.
in addition. the structure 40 has a separate pointers structure comprised of a pointers header 36
with corresponding entries 36a containing the pointers or referencable indices for the
corresponding depth values 89 of leaf index block entries 34¢ and 35¢ that are non-NIL. The
depth vaiues 89 in 34c and 35c and the indices of pointer entries 36a are representative of the
depth values 17a and pointers 17b in index blocks 11 and 12 of FIG. 3a. except that empty
pointers corresponding to 0-leaf entries such as leaf T are excluded thus reducing wasted storage
space. The index block entries 47¢ of node 47 includes entries 30 and 31, corresponding to the
entries in index block 10 of FIG. 3a which give the last. i.e.. minimum value depth entries in the
corresponding index blocks of 34c and 35c, respectively. Pointer 47b of the root level 41 points
to the leaf level 64 for key intervals corresponding to each of the index block entries 47c.

In addition to separation of the corresponding depth values 89 into index block entries
47¢. 34c and 35c and pointer entries 36a, counts header 66 with corresponding entries 66a is
related. Entries 66a contains count entries 32 and 33 that give the total number of F or full leaf
(non-NIL) entries in index block entries 34¢ and 35c, respectively. Thus, count entry 32 has a
value of 4 indicating there are 4 non-NIL 4 entries (or F values) in index block entries 34c.
Count entry 33 has a value of 4 indicating there are 4 non-NIL entries (or F values) in index
block entries 35¢. Thus, the data storage structure 40 has a novel Cy-tree structure 43, a distinct
pointers structure 36 and 36a, and a storage container 39. The nodes 34, 35 and 47 and the
counts header 66 and counts entries 66a are in the tree structure 43 whereas the referencable
indices or pointers are in the separate pointers structure comprised of header 36 and entries 36a.

The tree structure 43 in the FIG. 4 example has a height of two. root level 41 and leaf
level 64. Index bliock entries 47¢ at root level 41 include two entries 30 and 31. and index block
entries structures 34¢ and 35c at leaf level 64 include four entries 80. 81. 82. 85 and five entries
84, 85, 86, 87, 88. respectively. The height or number of levels of a Cy-tree storage structure
varies depending on the number of data items and associated search keys to be indexed within
the leaf entries of the tree structure 43 and on a predetermined full index block number 79 set
within the file system. The described FIG. 4 example embodiment has a predetermined full
index block number 79 of five.

Depth values 89 are located in index block entries 47c¢. 34¢, 35¢ that are linked by index
block headers 47a. 34a and 35a within the nodes 47, 34 and 35. respectively, of tree structure 43.
Pointer entries 36a are linked to tree structure 43 by pointers header 36. Significantly, the data
present indicator bit 90 is also in each of the index block entries 47¢c. 34c and 35c.

Each indicator bit 90 is in one of two conditions, F or T, represented by 0 and 1.
respectively. In depth values 89 at the leaf level 64, a T or first condition. indicates that the
corresponding entry is a NIL entry of the Cy-tree of FIG. 3a or empty node of a conceptual 0-

11-

10

20

25

30

35

WO 97/21178 PCT/US96/18510

complete binary tree such as leaf T at depth value 3 in FIGS. 2a and 2b. An F. or second

condition. indicates the corresponding entry is associated with a corresponding data item in the
storage device of the computer, such as entries 80 to 84 and 86 to 88 corresponding to leaves H,
IV, W,L.Z A'and Q of FIGS. 2a and 2b. Each of the non-NIL entries 80 to 84 and 86 to 88
has a corresponding data item within the storage container 39 of memory 8 of the computer
which is addressed by means of one of the pointer entries 36a. A NIL or T entry such as 85 does
not address any index entry in 36a or data item in the storage container 39. Each of the pointer
entries 36a is a pointer or a referencable index to the corresponding lexically ordered data item.
or alternatively to one of the search keys 1420 which is associated with the data item, stored
within the storage device of the computer.

Consider the data storage structure of the compact 0-complete tree 40 with reference to

its component data structures. FIG. 6a is an exemplary diagram of the structure of each node

within a computer system. Node 34 is shown by way of example. the others being identical.
Node 34 is composed of two structures. Each structure is comprised of a header to a list of
entries 3dc. but each structure may be an array or some other form of data structure. One
structure has a map header 34a that points to a list of entries 34c¢. and the other is a compound
subtree pointer 34b that points a list of elements which may be comprised of other lists.
Compound header C associated with each index block points to the next lower level, if
any, of the tree structure 43. Thus, in F IG. 4 compound header 47b points to a subtree of child
nodes 34 and 35 in a branch. Each branch may or may not contain a compound header that points
to a lower level of the tree. When the compound header C is not empty, as in node 47, the node
47 is an INTERIOR or ROOT branch type node. At a leaf level of the tree structure, no child
nodes or subtrees depend from the nodes and the respective compound headers are empty as
depicted at nodes 34 and 35 where compound pointers 34b and 35b. respectively, do not point

to another level of the tree. Compound headers give a subtree its structure by grouping together

several pieces of related information. In an initial INIT type structure 40" as in FIG. 6b. before

any non-NIL values have been added, the map header 47a' of node 47" points to an entry with a
depth value 89' of 0 and an indicator bit 90' set to the first or NIL condition T, which indicates
there is no corresponding data item for this entry in the storage container 39",

The first element, for example 42 in FIG. 4. of the compound structure is always empty
at the root level, and is merely reserved so that the compound structure layout of the root level
is similar to the various sub-levels of the tree and in the event a new root level needs to be
created when the root index block 47a of node 47 becomes overfull, as when the number of
entries 47¢ linked to root index block header 47a exceeds the predetermined full index block
number 79 of five. The first element's 42 purpose in the deeper levels, other than the root level

of the tree. is to be explained.
The fourth element at the root level 41 is the pointers header 36 pointing to a list of

pointer entries 36a. The fifth element depicted in FIG. 4 is a storage container 39 in memory 8

-12-

10

15

20

25

30

35

WO 97/21178

PCT/US96/18510

or storage device 4 of the computer in which the actual data items of information are stored.
Data items may be any form of data which can be stored by a computer system. Each of entries
36a corresponds to one of the index block entries 34c and 35c. Each entry in entries 36a contains
a referencable index or a pointer to a data item in container 39.

The final two elements 36 and 39 are separate from the tree structure 43 and may be
implemented in various distinct methods. For example. in contradistinction to the described
embodiment in FIG. 4, the two elements may be placed in a distinct compound pointer structure,
which is not physically adjacent to the trce structure 43.

The search keys 1420 and the data storage structure 40 are organized so the file system
can simply and efficiently find requested items. As shown in FIG. 4b, storage container 39
contains data items, which are represented by search keys. in any order. A lexically ordered
referencable index or pointer for each search key is placed in pointer entries 36a. Finally, each
index or pointer addresses the location of a data item in container 39. A number of items to be
inserted simultaneously are first sorted lexically within a buffer. then stored in any order into
container 39. Storage of data values may be done by various methods known to one of ordinary
skill in the art.

Returning to tree structure 43, in order to take advantage of the indicators 90, the first
element 66 of the compound structure at any level, such as level 64, except the root level 41, is
a counts header to counts entries 66a. Each of the counts entries 66a. such as entries 32 or 33,
is a count of non-NIL leaf entries having an indicator 90 set to F in the corresponding index
block entries 34¢ and 35¢ within the subtree level 64 connected to node 47 through compound
header 47b. Since there are two nodes 34 and 35 at level 64 in FIG. 4, the counts structure
contains exactly two entries 32 and 33. The first entry 32 corresponds to the count of index
block entries 34c¢. and the second entry 33 corresponds to the count of index block entries 35c¢.
Since the first index block entries 34c include four non-NIL or F entries 80, 81, 82, 83, the first
entry 32 of the counter structure contains a count value of 4. Since the second index block
entries 35¢ include four non-NIL entries 84, 86, 87, 88, the second entry 33 has a count value
of 4. The non-NIL leaf entry count. such as entries 32 and 33, of each subtree of each level is
incremented as each new non-NIL entry corresponding to a new data item is inserted into the
corresponding index blocks and is decremented for each non-NIL entry deleted from the
corresponding index block.

While performing operations on the data storage structure 40 and descending the tree
structure 43 from the root level 41 down. access information to the pointer entries 36a in the
form of a pointers index, ps, is kept of the non-NIL or F leaf entries in preceding subtrees
through the accumulation of the values in the first element of each subtree level, such as counts
header 66 and entries 66a of level 64. In order to derive the corresponding pointers index of a
stored data item, the preceding count from previous subtree levels is added to the count of non-
NIL entries processed in the current leaf index block up to the entry corresponding to the key

-13-

15

20

30

WO 97/21178 PCT/US96/18510

interval of the present search key. This index ps corresponds to the data item's pointer position
in the pointers entries 36a. which is also the data item's lexical position.

Now. with reference to FIG. 4a and 4b, an example of how to determine the key interval
range and data item of a search key is described. Further detail as to the steps to be performed
in such a determination is described herein with reference to the program structure. particularly
the Search Depths Procedure of FIG. 12. Assume a search is performed on thé search key in
binary form 10101000. The search key is represented by a sequence containing the ordinal value
bit positions of the one bits in the search key, which starting from the left are values 1, 3. and 5.
In addition, a final value is added after the last in the sequence and is a value representing the
maximal key length in bits plus 1, which in this example is 9 since the key is one byte maximum.
As a result, the sequence for search key 10101000 is 1,3, 5 and 9. This search key sequence is
compared to the depth values of the index blocks in the tree structure 43. First, the depth values
89 of index block entries 47¢ of root node 47 are compared to the elements of the search key
sequence. A comparison of depth values 89 is iterated until an entry is found wherein the depth
value is less than an ordinal value of the search key element of the sequence. In addition. an
index to an entry in the current index block 47¢ and an index to the ordinal positions of the
search key sequence element are maintained. The depth value of entry 30 is compared to the first
ordinal element of the search key sequence. Since both are equal to 1, the index 1o the search
key sequence element is incremented. Then. since the depth value is not less than the ordinal
value, the index to the entries in the index block is incremented.

The depth value of the second entry 31 of index block 47c¢. 0, is compared to the second
ordinal element of the sequence. 3. Since the two values are not equal and the depth value of
entry 31 is less than ordinal value 3, i.e., (0<3), the search ends in this index block and. since this
is a non-leaf node 47. the child index block corresponding to entry 31 is obtained and searched.
In Fig. 4, this is index block structure 35a and 35¢. In addition. a pointers index to the pointers

entries 36a is incremented by the value stored in entry 32 of counts entries 66a. This pointers

index contains the sum of preceding non-NIL entries (illustrated by the F entries) in index block

entries 34c.
A count of non-NIL entries in the current leaf index block. initialized to one at the start

of the search at any subtree level, of entries of 35¢ is maintained. Since the first entry 84 is non-
NIL, the count of non-NIL entries is incremented by 1. The depth value of entry 84, which is
3, is compared to the second ordinal search value 3 of the search key sequence since the file
system resumes search of the ordinal values of the sequence at the same location at which the

search terminated in 47¢ of parent node 47. The depth value of entry 84. and the ordinal search

key sequence element 3 are equal. Thus, the next entry 85 in 35¢ is accessed. In addition. since

the ordinal value 3 equals the present bit position of the search key. the next ordinal value 5 of
the search key sequence is obtained. Entry 85 isa NIL entry, so the count of non-NIL entries
is not incremented. The depth value of entry 85 is then compared to the third ordinal value 5 of

-14-

n

10

15

20

30

35

WO 97/21178 PCT/US96/18510

the search key sequence. Since the two are equal (5=5). the next entry 86 of index block entries
35c is obtained and the next element of the ordinal value sequence. 9. is obtained. Entry 86 is
non-NIL, incrementing the count of non-NIL entries to two. [n addition, the depth value 89 of
entry 86 is compared to the ordinal value 9. Since the depth value 7 is less than the ordinal value
9 in the search key array (7<9). The search ends in this index block and. since this is a leaf node
34, the correct entry corresponding to leaf Z in FIG. 2b and Table 1 has been found.

At this point. the pointers index ps, which is equal to 4, is summed with 2 to result in 6.
The 6 is used to select the sixth entry of pointers entries 36a which is an 8. This sixth entry is
a referencable index to the eighth data item in storage container 39, which corresponds to search
key 10101000 in binary form as shown in FIG. 4b.

Thus, the storage structure 40 avoids the need for storage of extraneous NIL (dummy)
entries of the prior art of FIGS. 3a and 3b replacing them with the T/F indicators and the count
structure. The tree structure 43 and the search keys 1420, along with the entries 66a keeping
count of the number of indicator bits at the leaf ievel set to F, are used to keep an index to the
pointers entries 36a. The pointers entries 36a then comprises an index to the items stored in the
storage container 39.

Moreover. since the pointers header 36 and pointer entries 36a are distinct from the
remainder of the tree structure 43 and store referencable indices to the keys 1420 in
lexicographic order. a search key or data item can be accessed in its lexical order without using
the tree structure 43 at all. By knowing the lexical position of the data item to be located. the
data item can be located by accessing the entries 36a aione.

To build the Cy-tree of the present invention, an INIT type structure is created as shown
in FIG. 6b. Individual search keys are then inserted in the method of the program structure
described below. When an index block is full. the block is split into two parts in the manner
described below. Thus, building the C-tree data storage structure of the preferred embodiment
is a matter of iterative processing of the storing of indexing information and node and index
block splitting methods used for entering new data items or keys in lexicographic order into an

established Cy-tree of the preferred embodiment.
O) Program Structure of Storage and Retrieval of Keys in the Compact 0-Complete

Tree Representation.

The methods of sequentially processing a number of search keys within the tree structure
to perform a predefined function on each search key, a method for locating a search key within
the tree structure, a method for storing and indexing information for each search key within the
tree structure. and splitting an index block of the present invention will now be described.

The method for sequentially processing a number of search keys comprises searching
through the data storage structure for the index block corresponding to each search key,
performing a predefined function such as a search or inserting search keys to be indexed by the
tree structure, splitting index blocks when the number of entries in each block surpasses a

-15-

10

15

20

30

35

WO 97/21178 PCT/US96/18510

predetermined full number or becomes greater than a large maximum number. and processing
an empty string within the search keys to be inserted within the tree structure.
The computer program structure of the Cy-tree structure 1s illustrated diagrammatically

in the flow diagrams of FIGS. 7-19. A summary of the macro definitions used throughout the

program structure is presented in Table 3 wherein is indicated the macro name and a brief

description. Similarly. a summary of the flow diagrams of FIGS. 7-19 is presented in Table 2
wherein is indicated the flow diagram reference and its inputs. variables and outputs. Each of
the procedures will now be described with reference to Table 2 and Table 3. For convenience,
blocks 1o perform the steps to be described with reference to FIGS. 7-19 are in parenthesis.

1) Sequential Processing Procedure

FIG. 7 illustrates a Sequential Processing Procedure wherein a predefined function is
performed on a buffer within memory 8 (FIG. 1b) of lexically sorted search keys. The program
initially fetches a number of search keys and lexically sorts them within the buffer. Then, the
following described steps are performed.

The computer under the program control fetches from the storage container 39 the stored
key associated with the first entry of the pointers entries 36a pointed to by pointers header 36
(100). The stored key is checked to see if it is empty (102). This step is part of empty string
processing routine and checks to see whether the first entry of pointers entries 36a previously
indexed an empty string data item.

If the stored key is empty, an initial index ps to the pointers entries 36a that is a sum of
non-NIL entries in the tree structure is set equal to I to indicate that an empty string is present
within pointers entries 36a (104). If the key is not empty, the initial index value ps is set equal

to 0 (106).

A search key
if it is empty (i.e., an empty string
to storage container 39 and added to pointers entries 36a (110).

If the search key is not empty, initialization of the variables will occur. Trailing vanable

di, which stores the depth value of the previous entry when descending from an INTERIOR
block to a subtree branch. and a variable of the depth dj of the bounding node in the
present index block are initialized to O. The variable bK which references the current and

terminating bit position of the present search key being processed by the database system 1s

K is fetched from the buffer (108). The search key is then processed to see
) in order to determine whether an empty string is to be added

index

initialized to 1 (112).

The actual predefined function to be performed is determined by examining the flag
LOADING (114). If LOADING is indicated. then the system sequentially processes an inserting
function for storing the indexing information for each search key, and a node type check is done
to see if the present node is a ROOT type or an INIT type structure (116). If the system is not

loading.- then a sequential search is performed in order to locate the key interval corresponding

-16-

20

30

35

WO 97/21178 PCT/US96/18510

to the present search key, and a node type check is done to see whether the node is a ROOT type
or INIT type (118).

If loading and the node is ROOT type, the Branch Insert Procedure (120) is performed.
If the node is INIT type, Leaf Insert Procedure (122) is performed. If the step 118 indicates the
node is a ROOT type, then a Branch Search Procedure is performed (124). If during step 126
the node at the top of the tree 43 is an INIT type, then Leaf Search Procedure is performed (126).

After performing any of 120, 122. 124, 126 where the tree 43 may have been aitered.
NODE OVERFULL check is then done to see whether the number of entries in the current index
block is larger than the predetermined full index block number 79 (FIG. 4) allowed (128). If the
number of current entries is larger than the full index block number. then the Split Root
Procedure to be described (130) is performed. If it is not. the program steps to block 140
described herein.

Returning to step 110, if key K is empty and the stored key Ki referenced by entry p{1]
is empty, then further empty string processing transpires and a check is done to see if the index
to the pointers entries 36a. ps, is equal to one as established above (132).

If ps is 0. then the system knows that the check performed in step 102 did not find an
empty string stored in storage container 39. A check is performed to see whether LOADING is
true and a loading request (134) is being performed on the file system. If true. loading of search
keys into the tree structure is being performed and the index to the pointers entries 36a, ps, is set
to 1 to indicate the addition of an item (i.e., the addition of the empty string) (136).

At this point, it has been determined that the search key is empty and that a loading
request is being performed. Therefore. the key is an empty string. An element is inserted at the
first entry linked to pointers header 36a and the first position of the pointers vector p[1] is set to
the address of the key in the storage container 39 (1338).

Finally. a determination of any more keys is made (140) to see if more search keys are to
be analyzed from the buffer of memory 8. If so, the loop to step 108 is followed. If no more
search keys are to be analyzed. the Sequential Processing Procedure 1s extted (199).

2) Leaf Search Procedure

The Leaf Search Procedure, which is called by the Sequential Processing Procedure or the
Branch Search Procedure, is illustrated in FIG. 8. This portion of the program structure finds an
entry within the tree structure with a key interval which corresponds to the present search key
and, thus, locates the search key within the tree structure if it has been previously indexed. The
following described steps are performed.

The variables j and c are initialized to 1, and d' is set equal to dj, the depth of the bounding
node (200). The Search Depths Procedure to be described locates the entry in the present index
block having a key interval corresponding to the present search key (202). A determination is
then made to see whether the indicator of the located entry ej is a NIL indicator (i.e., indicator

90 is T) (204).

-17-

(v}

10

20

35

WO 97/21178 PCT/US96/18510

If the entry ej is a NIL entry, then the present scarch key is not found within the tree
structure (206). If the entry is non-NIL (i.e.. indicator 90 is F). then the stored key corresponding
to entry gj is fetched into Ki from the storage container 39 by using the entry p[c+ps] of the
pointers entries 36a indexed by the summed count c+ps of non-NIL entries (208). The summed
count provides the correct location or index in the pointers entries 36a since the sum of non-NIL
entries in previous index blocks ps and the count ¢ of non-NIL entries in the current index block
fetched by the Search Depths Procedure is maintained. By adding the two values. the element
of the pointers entries 362 associated with entry ej is found. Next. the tetched key Ki is
compared to the search key K to see whether the search key is the same value as the key

corresponding to leaf entry ej (210). If the two keys are not equal NE. the search key K was not

found and does not exist within the tree structure (212).
If they are equal, the appropriate leaf entry and key K were found (214). The Bulk
Process Procedure, to be described, is then performed in order to access the next search key and

determine the distinction bit b' between the present search key and the next key within the buffer

to process (216).

A determination is then made as to whether the next search key to be processed is
included in the key interval range of the current index block (218). Le.. d'<b’ where d' is
established or assigned at the initialization of this procedure. If the next search key is within the
key interval range of the current index block. the Reset bK Function is performed. where bK is
the present key bit position at which the search for the next search key is to be resumed (220).

By recalling the key bit position at which a search terminated at the end of each search or insert

procedure. the preferred embodiment is able to determine the appropriate key bit at which to
resume processing the search of the next search key since the plurality of keys are processed in
the lexical order of the values. If the present key is not included in the key interval range of the

current index block. there is a return to the routine which called the present iteration of the Leaf

Search Procedure with the appropriate values of the distinction bit b' and kev bit position bK
retained (299).
3) Leaf Insert Procedure

If a loading request is being perform
not previously exist in the storage device 4 are added individually to the

ed in step 114. then the new keys from the buffer of
sorted keys which did
data storage structure. The Leaf Insert Procedure is illustrated in FIG. 9 and inserts each new
search key by determining its correct placement and storing the index information of the key.

The steps of the Leaf Insert Procedure are described below.

The variables of the procedure =0, j=1 and d'=dj (the bounding depth) are initialized
(300). The Search Depth Procedure is performed to locate the entry whose key interval includes

the present search key (302). A check is then done to see whether the entry ej located by the
Search Depth Procedure is a NIL entry. having a T indicator 90 (304).

-18-

10

20

30

35

WO 97/21178

PCT/US96/18510

If the entry is a NIL entry, then the point of insertion entry is found. The variables ¢ and
n are incremented in order to reflect the addition of the new entry to be inserted as a non-NIL
entry and in order to reflect the newly inserted pointer to the key (306). Anelement is inserted
in pointers entries 36a and is assigned the address of the key and its referenced data item (308)
which are stored in the storage container 39. The indicator of the entry €] is changed from NIL
(T) to non-NIL (F) to reflect the association of the entry with a storage element in the storage
container 39 and of the pointers entries 36a (310).

If during step 304 the entry is not a NIL entry, a key addressed by the pointers entries 36a
element p[c+ps] is fetched and loaded into Ki (312). The present key K is compared with the
fetched key Ki to see if they are equal (i.e.. in order to determine if the present key already exists
in the storage container 39 (314). If they are equal. the Bulk Process Procedure is performed in
order to determine if the next key to be processed is within the key interval of the current index
block (316).

If the present key and the fetched key are not equal. the count n of new entries added to
pointers entries 36a is incremented since the present key did not exist (318). The Add Depths
Procedure to be described. is then performed in order to add any dummy entries and determine
the correct placement of the new entry. The routine returns a flag { which denotes whether the
present key being processed is greater than or equal to the fetched key Ki (320) and indicates the
position or index in pointers entries 36a. An element is inserted into pointers entries 36a and is
assigned the address of the key and its referenced data item in the correct indexed placement
corresponding to the sum of the number ps of non-NIL entries in the preceding subtrees the
number ¢ of non-NIL entries of the present index block. and the value of the flag f (322).

The Bulk Process Routine is then performed returning b', the distinction bit (324). Then,
a check is done to see whether the number of entries in the present index block is over MAX,
greater than the maximum allowed. The maximum is set at a very high threshold much greater
than the predetermined full index block number 79 for entries of an index block. e.g., five in
FIG. 4 (326).

If the number of entries in the present index block is not larger than the maximum. a
determination is made as to whether d' is less than b' indicating that the next key to be processed.
fetched during the Bulk Process Routine, is within the key interval range of the present index
block (328). If so, a Reset bK Procedure is performed (336) before returning to step 302.
Regardless. the procedure eventually returns to the calling procedure with the value of the
distinction bit b', the present key bit position bK. and the number of new elements in the pointers
entries 36a (399).

4) Branch Search Procedure
If the Branch Search Procedure of FIG. 10 is called from the Sequential Processing

Procedure of FIG. 7, then the following steps are performed in searching through branches of the

-19-

10

20

30

35

WO 97/21178 PCT/US96/18510

Cy-tree data storage structure in order to locate the correct LEAF level and index block to
perform the Leaf Search Procedure.

First, the variables j=c=1 and d'=dj, where dj is the bounding depth. are initialized (400).
The Search Depths Procedure is performed to locate the appropriate entry in the present
INTERIOR branch index block with a key interval containing the present key (402). Since the
system is at a branch level, the entry is associated with a subtree of the tree structure.

The located child node corresponding to entry €j of the branch 1s fetched (404), and then
checked to determine the node type (406). If the node type of the child block is a LEAF. the
Leaf Search Procedure is performed (408). If the node type is a non-leaf, i.e., an INTERIOR
type, the Branch Search Procedure is performed (410).

The procedure determines whether the present key is within the key interval range of the
present index block, i.e., d'<b' (414). If so, the Reset bK Procedure to be described is performed
(416) and a loop to step 402 is executed. If not, then the program returns the value of the
distinction bit b and the key bit position bK to the Sequential Processing Procedure and the
present iteration of Branch Search is complete (499),

5) Branch Insert Procedure
If the predefined function to be performed on the sorted search keys in the buffer is a load

and the index block type of Step 116 of the Sequential Processing Procedure is determined to be
a ROOT index block, then the Branch Insert Procedure is called in Step 120 and the steps, as
shown in FIG. 11, are performed as follows until the leaf index block containing the key interval
of the present search key is located.

The index to the entry whose interval contains the current search key is set to 1, i.e.,
j=c=1, the present bounding depth value is assigned. i.e.. d'=dj, and the count of new keys
associated with the parent index block is set to zero. i.e., cn=0 (500). Then. the Search Depth
Procedure is performed to locate the entry having the present key in its key interval (501). This
procedure returns the key bit position to resume search processing of the search key and the
index to the entry within the current index block whose key interval contains the search key.

Since the computer is performing a Branch Insert Procedure. the index block type of the
present index block is either INTERIOR or ROOT. After locating the entry with the present key
in the entry's key interval, the trailing depth variable, di. is updated if the index j to the depths
entry of the present index block is greater than 1 (502). The program realizes that the located
entry is not the first entry of the present INTERIOR type index biock, and the trailing variable
di is updated to the depth value of the entry ¢j-1 previous to the located entry in the present index
block (303). The variable dj is then set to the depth of the entry ej (504).

At this time. the indexed child node, jth child in the subtree V of the current index block.,
corresponding to the located entry is fetched including the index block depth entries and the
subtree of the child index block (505). This step returns an updated sum of non-NIL entries ps
with which to index the pointers entries 36a. More specifically, since the first element, the

-20-

15

20

30

35

WO 97/21178

PCT/US96/18510

counts structure. of the compound structure of the present level of the tree contains the non-NIL
entry count information for preceding subtrees. the elements of the counts entries up to the value
of j are summed together and added to the prior sum of the count of non-NIL entries to arrive at
the new sum (506).

A determination is then made of the type of the fetched child node from Step 504 (307).
If the child node is a LEAF. then the Leaf Insert Procedure is pertormed (508). If the child node
is an INTERIOR, then the Branch Insert Procedure is performed (510).

After processing is returned from Branch Insert or Leaf Insert. the counts entry c[j]
corresponding to the present index block is set to its previous value plus the number n of new
keys associated with entries of the child index block (514). The count cn of new keys associated
with the parent index block is incremented by the count n of new keys associated with entries
of the child index block (514).

The procedure then determines whether to split the present child node by determining
whether the index block is overfull (520). If the index block entries have surpassed the
predetermined full index block number of entries allowed per index block then the Split Child
Procedure. to be described. is performed (522).

A check is done to see whether the present key is within the key interval range of the
present index block (524), i.e.. d'<b'. If so, the distinction bit b' is set to zero which terminates
inserting up to the root level because a Split Child occurred (526). In either case, the number n
of new keys associated with entries of the child index block is set as a return variable to the count
of new keys cn for the current index block (536).

If the index block is not overfull, a check is done to see whether the present key is within
the key interval range of the present index block, i.e., d' < b'(534). If the present key is within
the key interval of the present index block. the Reset bK Procedure is performed (538).
Regardless. the procedure returns to the Calling Procedure with the count of the new keys n
added to the child index block. the distinction bit b'. and the key bit position bK (599).

6) Search Depth Procedure

As depicted in FIG. 12. every time a search or insert is performed on the Cy-tree data
storage structure, the Search Depths Procedure is performed to locate the entry within the present

index block wherein the key interval corresponds to the present key.
Index variable k is set to | and the input variable, count ¢ of non-NIL entries, is

decremented (600). The procedure gets the ordinal element b[k] of the present search key which
is at least as large as the present key bit position bK to begin searching the present key (602).
The ordinal elements are comprised of the values of the 1-bit positions in the two letter alphabet
of zeros and ones in the current search key being analyzed. A determination is then made as to
whether the present entry ¢j is a NIL entry (604). If the entry is not a NIL entry, the count ¢ of
non-NIL entries of the present index block is incremented (606).

21-

wn

10

15

20

30

35

WO 97/21178 PCT/US96/18510

The preferred embodiment then determines whether a depth value dj of entry ej of the
present index block is equal to (610) and. if not equal, less than (612) the present ordinal element
blk]. If equal. then index variable k is incremented (616). If not equal and greater than. then the
index variable j to the depth entries of the index block is incremented (618). If it is less than.
then the present key bit position bK is set equal to the present ordinal value b[K].(614). Finally.
the procedure returns to the calling routine (699). The values of the index variable j used to
index the depth entry corresponding to the key interval of the present key K, the count ¢ of non-
NIL entries of the present index block which is used to access the pointers entries 36a, and the
determination of the present key bit position bK which allows the file system to recall the present
key bit position of the search keys being processed is returned.

6.a) Multilevel Search
Now that the pertinent program structure to search for a search key has been described,

a more detailed example of how to determine the key interval range and data item of a search key
of a Cy-tree that is comprised of more than two levels is described with reference to FIG. 5 and
Table 4. The data storage structure 1540 is comprised of three levels: ROOT level. INTERIOR
level, and LEAF level. Certain items of information within structure 1340 that do not pertain
to this example have not been depicted in FIG. 5 and have been replaced with the letter X. Thus,
index block entries of ROOT level 1541 and INTERIOR level 1564 have an X depicting the
present indicator bit since the indicator bit only indicates the presence of a corresponding data
item at a LEAF level structures, such as 1570. Moreover. the depth values of each of the index
block entries at the LEAF level, other than entries 1575¢, are shown as an X since they are not
utilized by the present search example. Finally, the contents of pointers entries 1536a and
storage container 1539 have not been specifically described as they are not necessary to the
present example.

Assume a search is performed on the search key 10011001 as shown in Table 4. The
search key is represented by a sequence b[k] containing the ordinal value bit positions of the one
bits in the search key, which starting from the leftare 1, 4,5 and 8. As in the previous example
described. a final value, 9, is added after the last in the sequence. Therefore. the sequence is b[k]
=<1, 4, 5, 8, 9>. First, the depth values 89 of index entries 1547¢ of root node 1547 are
compared to the elements of the search key sequence. An index j to the index block entries 1547
is maintained. and an index k to the ordinal position of the search key sequence is maintained.
At step 1 of Table 4, the depth value d[j] of entry 1530 is compared to the first ordinal eiement
b[k] of the search key sequence, which is equal to 1. Since the depth value d[j] is greater than
the ordinal element b[k], the index j to the index block entries 1547¢ is incremented.

At step 2 of Table 4. the depth value dj] of the second entry 1531 of index block entries
1547¢ is compared to the first ordinal element b{k]. Since they are equal, the index k to the
search key sequence is incremented. Then, the index j to the index block entries 1547¢ is

incremented.

22-

10

15

20

30

35

WO 97/21178

PCT/US96/18510

Since j=3 and k=2 at step 3, the depth value d[j] of the third entry 1532 is compared to the
second ordinal element b[k]. Since the two values are not equal and the depth values d[j] of
entry 1532 is less than ordinal value b[k] (i.e., 0 < 4), the search ends in this index block headed
by 1547a. Since this is a non-leaf node 1547, the child node and index block corresponding to
entry 1332 are obtained and searched. In FIG. 5, this is node 1535 with subtree 1570. index
block header 1535a and entries 1535c¢. In addition. the terminating key bit posit‘ion bK is set to
the presently indexed ordinal value b[k] (i.e. bK = 4) in order that the computer system may
easily and efficiently resume the search procedure at the child index block.

In addition. as shown in step 4 of Table 4. a pointer index ps to the pointers structure 1536
is incremented by the values stored in entries 1557 and 1538 of counts header 1556 of
INTERIOR level 1564 since these entries precede the third entry which is the subtree to be
searched. This pointers index ps contains the sum of preceding non-NIL entries (illustrated by
the F entries) in the previous siblings of this node 1535. Thus. entry 1557 corresponds to non-
NIL leaf entries depending from the compound header C of node 1537 and entry 1558
corresponds to the non-NIL leaf entries depending from the compound header C of node 1538.
The pointers index ps is therefore presently equai to fourteen. since eight non-NIL leaf entries
depend from node 1537 and six non-NIL leaf entries depend from node 1538.

At step 5 of Table 4, the index variable j is initialized to one. The first depth value d[j]
of entries 1535c¢ is compared to the second ordinal search value b[k]. (The second ordinal value,
which equals four, is used since the computer system at step 602 in FIG. 12 increments the index
k and obtains the ordinal element in the search key sequence greater than or equal to the
terminating key bit position. bK, which was set to four when search of the parent node 1547
ended.) Since d[j] equals b[k], the index k to the search key sequence is incremented. Then, the

index j to the entries 1535c¢ is incremented.

At step 6, the depth value d[j] of the second entry 1554 of index block entries 1535c¢ is
then compared to the third ordinal element b[K], which is equal to five. Since the depth value
d[j] is less than the ordinal element b{K], (i.e.. 2 < 5), the search ends in this index block headed
by 1535a. Since node 1535 is an INTERIOR node, the child node and index block
corresponding to entry 1535 is obtained. In FIG. 5, this is node 1575. The terminating key bit
position bK is set to the presently indexed ordinal value b[k] (i.e., bK = 5). Then the pointer
index ps is updated at step 7 to additionally contain the number of non-NIL entries in previous
siblings of node 1575. Since at a LEAF level each count entry, such as entry 1561 linked to
count header 1560, corresponds to the number of non-NIL entries in a respective node in a LEAF
structure 1570, the first counts entry 1561 corresponds to the number of non-NIL entries in the
first node 1576 of structure 1570. The pointer index ps is therefore equal to nineteen, its

previous value fourteen plus the value found in counts entry 1561, five.

-23.

10

15

20

30

35

WO 97/21178 PCT/US96/18510

The index variable j and k are again set to one. The computer system increments the
index k and obtains the ordinal element b[k] greater than or equal to the terminating key bit

position bK. Thus. it obtains the third element which is equal to 5.
A count index ¢ of non-NIL entries. initialized to zero at the start of the search of entries

1575¢. is maintained. Since the ordinal element b[k] is less than the depth value d[j] of entry
1580 of index block entries 1575¢ at step 8, the index j to the entries 1575¢ is incremented. An
index c to the entries 1575¢ is not incremented since entry ej is a NIL entrv. At step 9, the
ordinal element is again less than the depth value d[j] of entry 1581. Thus, index j is
incremented. The index c is incremented since entry ej is a non-NIL entry. The depth value d[j]
of the non-NIL entry 1582 is equal to the present ordinal element b[k] in step 10. Therefore,
index k is also incremented.

In step 11, the depth value d{j] of the fourth non-NIL entry 1583 is compared to the third
ordinal element b{K]. Again. the values are equal (ie., 8 = 8). Indices k, j and ¢ are
incremented. Finally, the depth value d[j] of the fifth entry 1584 is compared to the fourth
ordinal element b{k]. The depth value d[j] is less than the ordinal element b[k] (i.e., 6 <9) and.
since the LEAF level is presently being searched. the correct entry corresponding to search key
10011001 has been found.

At this point, the pointers index ps is incremented by the counts index ¢ (i.e., 19 +4 =23)
at step 13. This provides the total of non-NIL entries previous to and including entry 1584. The
23 is used to select the twenty-third entry in the pointers entries 1536a which contains the
referencable index, or pointer, to the correct data item in storage container 1539.

7 Bulk Process Procedure
The Bulk Process Procedure which obtains the next key to process within the buffer

referred to in FIGS. 8 and 9 is depicted in FIG. 13. lts purpose is to fetch the next key Ki to
process in the buffer in memory 8 and determine the distinction bit between the previous key K

and the next key Ki.
The procedure determines whether there are more keys within the buffer (700). If more

keys within the buffer exist, the next key in the buffer to process in sequence is fetched into Ki
(702). Next, a determination as to whether the prior key K and the present key Ki to be
processed are equal (704). Since the search keys to be sequentially processed are sorted in the
buffer in lexical order, the preferred embodiment is able to determine when a duplicate key exists
and not process this search key. Theretore, if this step determines that the two keys are equal,
a feedback loop to step 700 is performed. If the two keys are determined to not be equal NE.
then the distinction bit of the two keys is found (706). The preferred embodiment then
establishes the present key K; in other words, the program moves the new key Ki to be processed
into the present key variable K (708).

If there are no more keys to be processed within the present buffer, then the distinction
bit b' is set to 0, which terminates processing to the ROOT level (710). By doing this. the

24-

w

10

20

30

WO 97/21178

PCT/US96/18510

procedures of the program structure previously described can determine that there are no more
keys to process within the buffer. in particular when determining whether the next key is within
the key interval of the present index block in steps 218, 328, 414. 524. and 534. Finally. the
procedure returns to its cailing routine with the value of the distinction bit b' and the new key K
(799).

8) Reset bK Function
Now, the Reset bK Function referenced in FIGS. 8,9, 10 and 11 is illustrated in detail in

FIG. 14. This procedure determines the key bit position bK to resume sequential processing for
the present search key. The procedure is able to determine the key bit position since the search
keys processed in sequence are in lexical order within the buffer. This property of an ordered
sequence allows the preferred embodiment to function as designed. The procedure first
determines whether the present index j to the current entry €j is the first in the current index
block (800). If so. the distinction bit b' is compared to the present key bit position bK (802). If
it is at least as large as the key bit position. the key bit position bK is compared to the trailing
variable di and the distinction bit b' (804).

A comparison of the distinction bit b' to the trailing vaniable di. an input variable to the
Reset bK Function. and the present key bit position bK is made (806). If the trailing variable di
is less than the distinction bit b' which is less than current key bit position bK. then key bit
position bK is set to the trailing variable di plus 1 (808).

If step 800 determines that the present index j to the depths entries is not 1 NE, a
determination is made as to whether the distinction bit b’ is less than the present key bit position
bK (810). If so. the key bit position bK is set to the value of the distinction bit b' (812).
Regardless, the value of the key bit position bK is returned (899).

9) Add Depth Procedure
The Add Depth Procedure, which is called by step 320 from the Leaf Insert Procedure.

is illustrated in FIG. 15. Its purpose is to determine the correct placement of the index entry for
storing the indexing information of a present search key relative to the located entry wherein the
search key belongs in the key interval defined by the entry by adding an entry or entries to the
current index block. This occurs since the present search key and a prior index key both belong
in the same key interval.

To determine the correct placement, the program must determine the depth of the leaf
node associated with the located entry and the previously indexed key in a conceptual 0-
complete tree, such as the tree 1430 represented in FIG. 2b. This is not recorded in the Cy-tree
representation. Only the depths of bounding nodes are recorded in the entries. The depth of the
leaf node in a conceptual 0-complete tree, as depicted in FIG. 2b, can be determined by the
definition of 2 compact 0-complete tree. The procedure first determines whether the current
entry ej is the first in an index block (900). If not. then the depth of the present entry, d[j], in the
index block is compared to the depth of the prior entry, d[j-1] (902). Based on this comparison.

-25-

W

10

15

20

30

35

WO 97/21178 PCT/US96/18510

if the depth of the located entry is less than LT the depth of the prior eniry. then the depth li of
the leaf node in the conceptual O-complete tree is set equal to the depth of the previous entry in
the index block, d[j-1] (908). If the depth of the located entry is greater than GT. the depth li of
the leaf node in the conceptual 0-complete tree is set equal to the depth of the present entry d[j]
(906). Finally, if the located entry is the first in the index block. the actual depth li of the leaf
in the conceptual 0-complete tree is set equal to the present trailing varnable di. which is the
depth value of the previous entry of the parent index block (904).

Next, an index variable i is set to the current index j to the index block entries and the
distinction bit b' of the present key K being processed and the key Ki indexed by the located

entry is determined (910). If the distinction bit b' is less than the depth li of the leaf in the

conceptual 0-complete tree (912), then the index entry to be added follows the located entry in
the pre-order sequence. More entries must be added to the present tree structure in order to
preserve a distinction between the access paths of the present search key and the key of the
located entry. To ensure that the conceptual tree is still 0-complete, it may be necessary to add
NIL entries wherein the indicator bit is set to true.

The ordinal element b[k] of the search key is obtained that is greater than the depth li of
the leaf in the conceptual 0-complete tree plus one. The presently indexed ordinal element b[k]
is then compared to the distinction bit b’ (918). If it is less than LT the distinction bit b', an entry
is inserted to the current index block before the presently indexed entry ei (924). The depth
value of the newly inserted indexed entry ei is set to the currently indexed ordinal position b{k]
of the current search key, and the indicator of the presently indexed entry ei is set to T signifying
aNIL entry (932). The index k to the ordinal elements of the current search key is incremented
(938). Next. an index i to the entry of the present index block is incremented (940) and the loop
continues at step 918. If the present key K being processed is greater than the key Ki previously
indexed by the located entry (920), the flag f is set to 1 (922). If it is less than. the flag fis set
to zero (926). An entry is then inserted before the presently indexed entry ei (930). The depth
value of the newly inserted indexed entry ei is set to the distinction bit b’ and the indicator of the

presently indexed entry is set to non-NIL or (F) (934) and the procedure returns the flag fto the

calling routine (999).

10) Split Routines
The method for splitting an index block will now be described with particular reference

to splitting an index block after determining the number of entries in the index block is greater
than a predetermined full index block number and splitting a block after determining that the
number of entries is greater than a threshold maximum number.

10a) Split Root Procedure
The Split Root Procedure is illustrated in FIG. 16a and an example of a root node being

split is depicted in FIG. 16b and 16c. The example in FIG. 16b and 16¢ will be further detailed
with reference to the description of the Procedure in FIG. 16a. The purpose of this procedure

-26-

vl

10

20

30

35

WO 97/21178

PCT/US96/18510

is to split the root node and index block when it has reached the predetermined full index block
number or when the program determines that an index block has achieved the maximum
threshold number of entries TH. The steps of the procedure are as follows.

The old root node R illustrated in FIG. 16b is split to create the new root node R’
comprising index block I' and subtree V' in FIG. 16¢c. The old root node depends from the
subtree V' of the new root node. A new root node I', V' is created (1000) and the Minimum
Depth Procedure of FIG. 18 to be described is called (1002) in order to determine the depth entry
having the minimum depth value in the root index block I to be split. The depth value of the first
entry el of the new root index block I' is set to the determined minimum depth value dmin of the
first index block I of the old root node R (1004), and the depth value of the second entry €2 is
set to 0 which is the last depth value of the index block I of the old root R. as in FIG. 16b (1006).
The compound subtree V' of the new root R' is linked to the old root node R that is being split
(1008). The sum of non-NIL entries depending from each respective subtree is determined and
placed in the entries of the counts structure c. wherein the first entry ¢[1] corresponds to the first
subtree VO (1010) and the second entry c[2] corresponds to the second subtree V1 (1012).
However. if the old root node R is now a leaf level. then the counts structure entries ¢[1] and c[2]
simply contain the number of non-NIL entries in their respective index blocks Iy and I;. The
procedure Split Node to be described splits the old root node I, V into two nodes and two index
blocks returning a value. n. equal to the number of entries in the second index block I} (1014).
If the child or second index block I, of the two index blocks depending from the new root node
R' is overfull, i.e., n>TH (1016), then obtain the second child node (1018), and split this child
(1020).

If the first index block 1 depending from the compound subtree V' of the new root node
R' is overfull (1022), then the first child node is obtained (1024) and split (1026). Regardless,
the procedure is exited (1099). As shown in FIG. 16b and 16c. the old root node R which

previously had one index block I has now been split into two index blocks Iy and I; with

respective subtrees Vyand V.

10b) Split Child Procedure
The Split Child Procedure is called from the Split Root Procedure in blocks 1020, 1026,

the Split Child Procedure in block 1216 and the Branch Insert Procedure in block 522 when a
index block is determined to be overfull. The Procedure is illustrated in FIG. 17. The Procedure
continues to split nodes and their respective index blocks as long as an index block of a child
node is determined to be overfull. The steps of the procedure are as follows.

A count of the number of splits of index blocks SPLITS is initialized to zero (1200). The
minimum depth of the present index block is determined by calling the Minimum Depth
Procedure to be described herein (1202). Next. the present index block Ij of the jth node is split
into two-index blocks Ij and [j+1 and is split into two subtrees Vj and Vj+1, by the Split Node
Procedure described herein (1204). The count of the number of SPLITS is incremented (1206).

27-

10

15

20

30

35

WO 97/21178 PCT/US96/18510

Next. an entry is inserted before the entry) in the parent index block of the index block Ij
presently being split (1208). The entry ¢j of the parent index block of the current index block
Ij being split has its depth value set to the minimum depth dmin of the current index block being
split (determined by the Minimum Depth Procedure) and its indicator set to non-NIL. F (1210).

A determination is made as to whether the index imin of the entry after which the split
occurred in the current index block is greater than the predetermined overfull index block
number TH (1212). If so, then the jth child. or first of the two nodes created by the present split,
is fetched from subtree V (1214) and split (1216). The count of the number of splits is
incremented by the number of SPLITS Is in the jth child index block that occurred during the call
to split child at step 1216 (1218), as s the index j of the child to split (1220).

A determination is then made as to whether the number of entries n in the newly created
block of the split is less than the full index block number TH (1222). If it is not, then the index
j of the node and respective index block to be split is incremented (1226) and the new jth child
node to be split is fetched from the parent subtree of the previously split node and respective
index block (1228). Otherwise. if the number of entries n in the new index block created after

the split is less than the full index number TH. the procedure returns to its calling routine with

the number of splits, n (1299).

10c¢) Minimum Depth Procedure
The Minimum Depth Procedure. used by the Split Root Procedure in blocks 1102 and the

Split Child Procedure in block 1202, for determining the index of the entry to split after by
obtaining the minimum depth value within an index block is performed by the sleps.illustrated
in FIG. 18.

First, the count cnt of non-NIL entries preceding and including the present entry and the
count ¢ of non-NIL entries preceding and including the minimum depth entry are initialized. The
index imin of the minimum entry and the index j to the index block are also set to 1. The index
ilast of the last entry in the index block is sct to the number of entries in the present index block.
Finally. the index imid of the midpoint of the depth values of the entries of the current index
block is set to the halfway point ilast’2 of the index ilast of the last entry (1300). The depth value
dmin of the minimum depth entry is set to the maximum length of a search key plus one M+1
(1302). The depth dj of the present entry is assigned (1304). Then. a determination is made as
to whether the indicator of the present entry €] is T corresponding to a NIL entry (1306). If not,
the count ent of non-NIL entries preceding and including the present entry is incremented (1308).

A determination is made as to whether the depth value dj of the present entry is less than
the value of the minimum depth entry dmin (1310). If it is less than, a further determination is

made as to whether the index j to the current index block is greater than the index imid of the

midpoint of depth values of the present index block (1312). If the index j to the current index

block is less than or equal to the index imid of the midpoint. then the index imin of the minimum
entry is set to the index j of the current entry €] and the count ¢ of non-NIL entries preceding and

.28-

o

10

15

20

3%
W

30

35

WO 97/21178

PCT/US96/18510

including the minimum depth entry of the present index block is set to the count cnt of non-NIL
entries preceding and including the present entry (1318). The depth value dmin of the minimum
depth entry is set to the present depth vaiue dj (1320). and the index j to the entry in the current
index block is incremented (1322).

If the index j to the current index block entry is greater than the index imid of the
midpoint in the current index block at step 1312, then a determination is made as to whether the
index imid of the midpoint minus the index imin of the minimum entry is at least as large as the
index j of the current index block entry minus the index imid of the midpoint of the depth values
of the current index block (1314). If it is at least as large as. then the index imin of the minimum
entry is set to the index j to the current index block entry, and the count ¢ of non-NIL entries
preceding and including the minimum depth entry is set equal to the count cnt of non-NIL entries
preceding and including the present entry ej (1316).

A determination is made following step 1322 as to whether the index j to the current index
block entry is equal to the index ilast of the last entry in the present index block (1324). Ifit is
less than. then the loop returns to step 1304. Regardiess. the procedure returns to its calling
routine with the count ¢ of non-NIL entries preceding and including the minimum depth entry,

the index imin of the minimum entry. and the value dmin of the minimum depth entry (1399).

10d) Split Node Procedure
The Split Node Procedure called from the Split Root Procedure in block 1014 and the

Split Child Procedure in block 1204 splits the present node and its respective index block at its
minimum depth value. The procedure is illustrated in FIG. 19. Two nodes, each having one
index block, will be created. The index block I of the first node includes the first entry of the
split index block up to the minimum depth entry, and the index block Ij+1 of the second node
includes the entry occurring after the minimum depth value up to the final entry of the index
block split.

A node [j+1, Vj+1 is inserted in the present level after the index block Ij and subtree Vj
of the node to be split (1400). The newly created index block Ij+1 of the new node will contain
entries from the index block Ij to be split starting from the entry e;,.... | occurring after the
minimum depth value up to the last entry €;},, in the index block to be split (1402). The index
block Ij to be split will be updated to contain its previous first entry up to the entry e; .
containing the minimum depth value (1404). The number n of entries in the newly created index
block Ij+1 is set to the index ilast of the number of entries in the present index block Ij to be
split minus the index imin of the minimum depth entry to split after (1406).

The procedure then determines whether the node to be split is a LEAF type by checking
the subtree Vj (1408). If it is not and the node type is INTERIOR, then the counts structure c
including the counts elements in the subtree Vj of the node to be split is fetched (1410). The
number cnt of non-NIL entries preceding and including the minimum depth entry is set equal to

29

10

—_—
N

20

35

WO 97/21178 PCT/US96/18510

the summation of the first element of the counts structure ¢ up to the element of the count
structure indexed by the index imin of the entry to split after (1412). The count structure for the
subtrees Vj+1 of the newly created node contains the elements of the count structure of the node
split indexed by the index imin+1 of the entry to split after up to the index ilast of the last entry
in the index block being split (1414). The subtrees of j+1 of the newly created node are set to
the subtree elements of the split node indexed by the index imin+! of the entry to split after up
10 the index ilast of the number of entries in the index block Ij of the presently split node (1416).

The count structure associated with the subtree Vj of the split node is adjusted to include
the first element through the element indexed by imin of the node to split at (1418). Moreover,
the subtrees of the jth node of the split node are adjusted to include the elements indexed by the
first element up to the index imin of the entry to split at (1420). The count structure in the
present level of the node to be split is fetched (1422). An entry is inserted in the counts structure
after the element indexed by the index j of the subtree to split (1424). This newly created
element c[j+1] is assigned the count c[j] of non-NIL entries in the preceding element of the
counts structure minus the number cnt of non-NIL entries preceding and inctuding the minimum
depth entry (1426). The element c[j] of the counts structure indexed by the index j of the subtree
to split is assigned the number cnt of non-NIL entries preceding and including the minimum
depth entry (1428). The procedure then returns the number n of entries in the newly created
index block (1499).

The program structure of the preferred embodiment of the present invention has been

described in detail above, with reference to the relevant procedures. While the invention has
been particularly shown and described as referenced to the embodiments thereof. it will be
understood by those skilled in the art that the foregoing and other changes in form and detail may

be made without departing from the scope and spirit of the invention.

-30-

10

15

20

30

35

WO 97/21178

PCT/US96/18510

Table 1
Key Interval Bounding Node
Leaf of Leaf Node Node - Depth
H 00000000-00100000 [-3
| 00100000-01000000 e-2
Vv 01000000-01000100 W-6
W 01000100-10000000 c-1
L 10000000-10100000 m -3
T 10100000-10101000 u-35
Z 10101000-10101010 A'-7
A 10101010-10110000 Q-4
Q 10110000-11111111 -0

31-

10

20

30

35

WO 97/21178 PCT/US96/18510
Table 2
Procedure l Inputs Variables Qutputs
Sequential p: a vector P=p<dli]> of pointers (p; Ki: search key of
grocessing is a pointer to a data item. or a pli].
rocedure record. with key Ki. such that the) .
Fig. 7 value of key Ki is less than the T%s[.Lsumt of non-
& value of key Ki+1. where i denotes | oy ieg:]s”ie: dlé]x
the lexical position of the key Ki). blocks and the
I: Index (root) block of depth indicator of an
entries of the C-trie storage empty string in
structure. Let ej=(dj, Nj) denote the stored data
the jth entry in an index block. in items (global
which dj denotes the depth of the variable - not
bounding node in a conceptual scoped).
0-complete tree and where Nj di- teaili
e by iz trailing
indicates a NIL indicator. variable of present
Vl: P}(()imerf t\(/) a subtree of igdex index block.
block . If V is empty, each ej in .
is related to a leaf (data item or g{:;u(:f itnh of d
record). Otherwise. V is a pointer g nogce.
to a structure consisting of (1) a bK: key bit
sequence of S = (lj, Vj) entries Eosi[ion of search
corresponding to each ej entry and ey being
(2) a sequence C = c<[j]> of the processed.
number of non-NIL entries in each K-
Vijth subtree. ke.ypresem search
buffer of search keys '
flag: loading request.
Leaf Search dj: depth of bounding node. j: index of entry. b': distinction bit of
Procedure e[]: entries for current index block. ¢: number of non- | Previous key and
Fig. 8 oK. * bit sosition in key K NIL entries in present key.
: current Dit position in Xey . current index bK: terminating bit
K: search key. block preceding position in key K
b: an array B = <b[K]> of sorted 2ﬁg¢n;1udlng g\?/gi;iéﬁsgéertiuon
1-bit positions in key K. 7 ed "
R . d": depth of conciuge
ps: sum of non-NIL entries in bounding node processing).
previous siblings of this node.)
Leaf insert di: trailing variable. j: index of entries.
Pi.'ocedure dj: depth of bounding node. ¢: number of non-
Fig. 9 K: hk NIL entries in n: count of new
. search Key. current index keys added to child
e[]: entries for the current index block preceding index block.
block. 22‘1 m:ludmg b': distinction bit of
bK: current bit position in key K. Y €. previous key and
d": depth of present key.
b: an array B = <b[k]> of sorted bounding node o .
1-bit positions in key K. gnode. | bK: terminating bit
N ¢ . f: flag indicating | Position in key K
n=0: count of new entries present search key | (Where last iteration
(PO'meTS/ke}'S) added to p[] follows previous[y of Search DCpIhS
s: sum of non-NIL entries jn indexed key. concluded
Brevnous siblings of this noJeA Processing).

10

15

20

25

30

35

WO 97/21178

Table 2 (continued)

PCT/US96/18510

Branch
Search
Procedure

Fig. 10

Procedure '

Inputs

dj: depth of bounding node.

e[], V: index block entries and
subtree for current node.

bK: current bit position in key K.
K: search key.

b: an array B = <b[k]> of sorted
1-bit positions in key K.

ps: sum of non-NIL entries in
previous siblings of this node.

Variables

j: index of entries.

¢: number of non-
NIL entries in
current index
block.

d" depth of
bounding node.
di: depth of entry
ej-1.

dj: depth of entry
e).

|

Outputs

b': distinction bit of
previous key and
present key.

bK: terminating bit
position in key K
(where last iteration
of Search Depths
concfuded
processing).

Branch Insert
Procedure

Fig. 11

di: trailing variable.

ef], V: index block entries and
subtree of current node.

dj: depth of bounding node.

b: an array B = <b[k]> of sorted in
1-bit positions in key K.

K: search key.
bK: current bit position in key K.

ps: sum of non-NIL entries in
previous siblings of this node.

j: index of entry.

d" depth of
bounding node.

n: count of new
keys added to
child index block.

cn=0: count of
new keys added to
pl] for current
index block.

bK: terminating key
bit position in K
(where last iteration
of Search Depths
concluded
processing).

n: count of new
keys added to child
index block.

b": distinction bit of
previous key and
present key.

Search Depth
Procedure

Fig. 12

d: a sequence L=d <{j]> of depth
entries of the bounding nodes in a
0-complete tree.

j: an index of the entry in sequence
L at which to begin/resume the
search at.

b: an array B = <b[k]> of sorted
1-bit positions in key K.

bK: key bit position to begin search
from. Passed on recursive cali and
reset for each new key.

c: an integer of the number
non-NIL entries in the current
index block preceding and
including entry ej.

k: index variable.

bK: terminating key
bit position in K
(where last iteration
of Search Depths
concluded).

J:index of entry e]
whose interval
contains key K.

¢: number of
non-NIL entries in
current index block
preceding and
including ej.

Bulk Process
Procedure

Fig. 13

K: search key just processed.

Ki: next search
key from buffer.

K: new search key.
b": distinction bit of
difference between

the previous key
and new kev.

wh

10

20

30

35

WO 97/21178

Table 2 (continued)

PCT/US96/18510

Procedure

Reset bK
Function

Fig. 14

Inputs
bK: key bit position search depth
concluded at.

j: index of entry ej Search Depth
concluded at.

di: trailing variabie.

b first bit of difference between
Kev K and previous kev in kev K.

Variables

Outputs

bK: present bit
position in key K to
resume processing
at.

Add Depth(s)
Procedure

Fig. 15

di: trailing variable.

j: index of depth entry whose
interval contains key K.

eﬁ}: depth entries for current index
block.

b: an array B=<b[k]> of sorted
|-bit positions in key K.

li: depth of leaf
entry in
conceptual 0-
complete tree.

j: index variable
to depth entry.

k: index in array
B.

f: flag denoting
present key follows
the previously
indexed search key.

Split Root
Procedure

Fig. 16

I: index block of entries to split.
R: (C. 1, V) atroot level.

C: count structure of root level (no
entries).

n: number of entries in L.
V: subtree of index block [.

I': new root depth
list of index block.

V" new root
compound vector
of index block.
imin: index of
entry to split after.
c: number of non-
NIL entries

receding and
inciuding e{imin).

Split Child
Procedure

Fig. 17

j: index of subtree to split.

I, V: parent index block and
subtree index block.

ej: entrv corresponding to 1], Vjin
index block.

imin: index of
entry to split after
inj.

dmin: minimum
depth of entry
€imin

split: number of
splits.

Is: number of left
splits

splits: number of
splits in index block
L.

-34-

h

10

15

20

30

35

WO 97/21178

Table 2 (continued)

PCT/US96/18510

Procedure

Minimum
Depth
Procedure

Fig. 18

Inputs

Variables

imid: index of
midpoint entry in
index block 1.
imin: index of
minimum entry.
ilast: index of last
entry in index
block I.

dmin: value of the
minimum depth
entry €imin

cnt: count of
non-NIL entries
preceding and
including entry
€imin
c:countof
non-NIL entries
preceding and
including entry

Cimin

Outputs

imin: index of entry
to splitafier in [j.
dmin: minimum
depth of entry e, ..
¢: number of
non-NIL entries

preceding and

including ;..

Split Node
Procedure

Fig. 19

j: index of subtree to split.

V: compound vector of index block
containing (I, Vj).

Ij: index block to split.

Vj: subtree for index block Ij.

imin: index of entry to split after.

cnt; number of non-NIL entries
preceding and including €;.:

ilast: index of last entrv of I.

¢: structure of
counts of non-NIL
entries in subtree
level V.

n: number of entries
in new le.

-35-

10

15

20

30

35

WO 9721178

Table 3

PCT/US96/18510

Macro

Function

NIL_ENTRY(d)

create a non-NIL entry from depth value. d.

ENTRY_ISNIL(e)

TRUE if entry e is a non-NIL entry.

DEPTH_ofENTRY(e)

extract the depth. d. of entry e.

-36-

10

15

20

30

35

PCT/US96/18510

WO 97/21178
TABLE 4
Search Key = 10011001
b[K]=<1,4,5, 8 9>
Steps Level k biK]| i dli} c ps c+ps
] 0 | 1 | 2
2 (ROOT)] 1 2 !
3 2 4 3 0
4 8+6=14
5 | 2 4] 4
6 (INTERIOR 3 5 2 2
- 3rd Node)
7 14+5=19
8 2 3 S ! 6 0
9 (LEAF - 2nd 3 5 2 7 |
Node)
10 3 5 3 5 2
H 4 8 4 8 3
12 5 9 5 6 4
13 23

-37-

10

15

20

25

30

35

WO 97/21178 PCT/US96/18510

WHAT IS CLAIMED IS:
I. A computer system having a storage means. a dynamic data storage structure for

retrieval of stored data within the storage means. the storage structure comprising:
a hierarchical tree structure stored in the storage means comprised of at least one

level; and
entries at least some of which are linked to the stored data and interconnected in

said tree structure. each of said entries comprising a depth value element indexing such entry in
said tree structure and a data present indicator, each indicator of said entries at one of said at

least one level indicating a corresponding data item included in said stored data.

2 The computer system of claim 1 wherein the tree structure further comprises a

o

stored count of a number of said entries linked to said corresponding data item in said stored

data.

3. The computer system of claim 1 wherein the corresponding data item in the stored
data is retrieved with a search key, said search key referencing the corresponding data item of
the stored data wherein through the tree structure the depth value element of at least some of said

entries indexes a location for the data item indicated by said search key.

4. The computer system of claim 1 further comprising a pointers structure for linking
to said data item each one of said entries having said present indicator that indicates that there

is a presence of a corresponding said data item in said stored data.

3. The compuier system of claim 1 wherein the data storage structure further

comprises at least one index block comprising at least one of said entries defining a key interval

range in said tree structure.

6. The computer system of claim 5 wherein said at least one index block comprises

a root level said index block linked to at least one further said index block in the tree structure

and wherein at least some of said entries in said further index block is linked to said

corresponding data item in said stored data.

7. The computer system of claim 6 wherein the data present indicator in at least one

of said entries in said further index block indicates a presence of a corresponding data item in

the stored data.

wh

10

I

20

30

35

WO 97/21178

PCT/US96/18510

8. The computer system of claim 6 wherein the root index block comprises at least
one said entry for each said further index block, the depth value element of each entry of the root
index block representing the minimum value represented by any of the depth value elements of

the entries in the corresponding said further index block.

9. The computer system of claim 7 further comprising a count indicating the number
of entries in the further index block having a present indicator which indicates presence of a

corresponding data item in the stored data.

10. The computer system of claim 5, wherein said tree structure is comprised of at least

one subtree comprising at least one of said at least one index block.

11. The computer system of claim 10 wherein each entry other than the entries at the

one of said at least one level is associated with one index block of one of said at least one subtree

of the tree structure.

12. In a computer comprising a storage means. a tree structure for retrieval of stored
data within the storage means and comprising at least one index block having at least one entry
that each comprise a depth value and a data present indicator, each index block defining a key

interval, a method for sequentially processing a plurality of search keys, comprising the steps of:
fetching the plurality of search keys into a buffer in the computer:
sorting the plurality of search keys in the buffer of the computer in lexical order; and
processing in sequence each one of the plurality of search keys by determining a present

index block. performing a predefined tunction. and determintng whether another of the plurality

of search keys following the one search key in the buffer is within the key interval of the present

index block.

13. The method of claim 12 wherein the step of processing in sequence further

comprises the step of determining a key bit position for processing the another search key.

14. The method of claim 12 wherein the step of performing a predefined function

comprises the step of locating the one search key.

-30-

15

30

35

WO 97/21178 PCT/US96/18510

15. The method of claim 12. wherein each entry defines another key interval. wherein
the step of locating comprises the step of Jocating the another key interval within the tree

structure corresponding to the one search key.

16. The method of claim 12 wherein the step of performing a predefined function

comprises the step of inserting indexing information for the one search key within the tree

structure.

17. The method of claim 12 further comprising the step of processing an empty string.

18. The method of claim 17 wherein the step of processing the empty string comprises

the steps of:
determining whether a first item of the stored data stored in the storage means

comprises the empty string;
determining whether a first position of the buffer comprises the empty string; and

storing the empty string in the first storage element in the storage means after
determining that the first element stored in the storage means does not comprise an empty string

and determining that the first position comprises the empty string.

19. The method of claim 12 wherein the step of sequentially processing further

comprises the steps of:
determining an amount of entries in the present index block:
determining whether the amount is larger than a predetermined full index block number;

and
splitting the present index block after determining the amount is larger than the

predetermined full index block number and determining the another search key is not within the

key interval of the present index block.

50. The method of claim 12 wherein the step of processing in sequence further

comprises the steps of:
determining an amount of entries in the present index block;
determining whether the amount is larger than a maximum number of entries; and

splitting the present index block after determining the amount is larger than the maximum

number.

-40-

10

20

30

35

WO 97/21178

PCT/US96/18510

e o

21 In a computer comprising a storage means. a tree structure for retrieval of stored
data and a sequence comprised of ordinal elements. the tree structure comprising at least one
entry, wherein each entry comprises a depth value and a data present indicator for indexing

search keys within the storage means. a method using the computer for locating a search key

indexed by the tree structure, comprising the steps of:
compiling into each ordinal element of the sequence each ordinal value of the

search key, 402, 501);
determining which entry includes a depth value with a predetermined relationship

to one of the ordinal elements of the sequence;
determining a count of each entry wherein the indicator indicates a corresponding

data item included in said stored data; and
locating the search key indexed by the tree structure based on the count.

22. The method of claim 21 wherein the step of compiling into each ordinal element

further comprises the step of determining each ordinal value of the search key comprised of a
finite two letter alphabet.

23. The method of claim 22 wherein the step of determining each ordinal value
comprises the step of determining each ordinal value of the search key comprised of a binary

representation.

24. The method of claim 21 wherein the step of determining which entry includes a
depth value comprises the step of determining which entry includes a depth value less than one

of the ordinal elements of the sequence.

4]-

10

20

30

35

WO 97/21178 PCT/US96/18510

25. In a computer comprising a storage means. a tree structure for retrieval of stored

data and comprising at least one index block that each have at least one entry that each comprise

a depth value and an indicator. each entry defining a key interval and further comprising a leaf

entry or a non-leaf entry. a method of storing indexing information for a search key within the

tree structure, comprising the steps of:
searching the tree structure for a leaf entry, wherein the search key belongs in the

key interval defined by said leaf entry;
determining a correct placement for storing the indexing information of the search

key relative to said leaf entry within the tree structure;
associating a storage element within the storage means with an entry corresponding

to correct placement; and
setting the indicator of the entry to indicate a corresponding data item 1s stored in

the storage means.

26. The method of claim 25. wherein each index block further comprises a leaf index

block or a non-leaf index block and each index block defines a second key interval. wherein the

step of searching comprises the steps of:
searching the tree structure for a leaf index block wherein the search key is contained in

the second key interval defined by the leaf index block; and _
searching the leaf index block for the Jeaf entry wherein the search key is contained in the

key interval defined by the leaf entry.

47-

10

15

20

30

35

PCT/US96/18510

WO 97/21178

27. In a computer comprising a storage means. a tree structure for retrieval of stored
data within the storage means and comprising at least one index block that each have at least one
entry that each comprise a depth value and a data present indicator. each index block associated

with access information, a method of splitting one index block. comprising the steps of:
determining a minimum depth entry within the one index block:
creating a new index block within the tree structure:
assigning the minimum depth entry and each entry preceding and including the minimum

depth entry in the one index block to the one index block:
assigning each entry succeeding the minimum depth entry in the one index block to the

new index block;
storing information pertaining to the one index block and the new index block in a parent

index block; and
storing the access information of the one index block. the new index block. and the parent

index.

28. The method of claim 27. wherein the step of storing information comprises the step
of storing a final depth value of the one index block and the new index block in the parent index
block.

29. The method of claim 27, wherein each index block is associated with an element of
a count structure for indexing search keys, said count structure indexing search keys by storing
a number of said at least one entry linked to a corresponding data item in said stored data,

wherein the step of storing access information comprises the step of updating the element of the

count structure associated with the one index block. the new index block. and the parent index

block.

-43-

WO 97/21178 PCT/US96/18510

1/21

FIG. Ta

2
4
DISPLAY
<y
1
Sggﬁé%E COMPUTER
Co- -0~ _"
—
53
INPUT
DEVICE
3
: 1 w 2
| |
INPUT | COMMAND
DEVICE ! INTERPRETER 1 DISPLAY —»
| |
4

| |

i i Zs |

' |

STORAGE | FILE |
DEVICE ~ f=——*| PROCESSING |

| UNIT]

8 Z7 I

! \ |

: MEMORY :

PCT/US96/18510

WO 97/21178
2/21
FIG.2a
PRIOR ART
COMPLETE BINARY TREE
DEPTHS
Q__1406 1402 0—
1 0
1408
¢/ 14127\ 1
1// 0 1 0 1410
/
T L) K 7
1/ 10 11 \o 1 \O
m L IK ! H 3
0000001], 00U0 1000
1 17/ 5 0070010 1420
14207 7 1420
10110010} Q ‘0 / -
1420 1/ N0 17 \0
\\ //
U N 4SS r 5—
1,/ \o 1 0
) 1418 1416
v X W V 6—
1 0 O g1420
10101010 A Z 7_J
101010001
1420 1420

WO 97/21178

PCT/US96/18510

3/21
FIG.2b
PRIOR ART
0O—COMPLETE BINARY TREE
DEPTHS
Q1406 1430 0—
1 0
1408
c b 1—
0 1410
2]
1
m 3]
1 0 00 u 0 1420
1420 1420
roriogio 4
1420 1 \9 0
\
u »T r 5—
0 1 0
Xo uc .Ltmlﬂll!lltj]
1
1420 1420
A / yu
1420 1420

WO 97/21178

PCT/US96/18510

4/21
9 FIG.3a
\‘ PRIOR ART
11
o
14 3] —— [00001000
2 —— [00100101
6] ——= [_01000010
1] 1= [01000110
~7 =—7b
10 170 ~—r
™ 1 17 13
5 \‘\12\ /
N 3] S [1 001
170 357170 — 178
ST —— [10101000
2T ——» 70707010
0 ——— 10110010
< — 17b
170 75 1420
PRIOR ART
BEFORE SPLIT AFTER SPLIT
"~ 17 13 21
3] —— (00001000 3] ——= [00001000
2] —— (00100101 2 = [00100101
6T —— (01000010 6] —— (01000010
T —— [01000010 1] —— [01000010
3 ——» [70000001
Mw_/
/0 —t— 10101000 22«1 T17 17 \17b \13
0 24
1420
170 17e 20/21}-3 — = (10000001
170 0 —+—» [T0101000
N N —
170 17 176 1420

PCT/US96/18510

WO 97/21178
5/21
FIG.4a
40
41
Ve | N /
47 |
"
39
42 470 47by I! 36 ~
M C |
47c¢ ! 36a
79 30 |
'~ 1.F [4
3N _~oF : 5
89\/ k/9 | ;
'3
_ 64 '8
’ 3 3 2
Ve —N N\ 7 N 3
40\ 34b\ 350\ 35b 'l
66a 34c 35¢ '
\‘ / / i
32 80 84 |
33 7 2.6 I, [T 0 L 43
6,F V“\/és 7.F V—\/é7 L‘//
LF_ | 4F Mg
89" —go 0.f I~ l
|
]

PCT/US96/18510

WO 97/21178

6/21

mn///

00010101

01000010

01100010 L0L00L00 00010000 otootiot

oLoLoL0!

10000001

30IA30 39VHO0LS Ni SW3L viva
WNLOV 40 3AILVINISIHAIY SAIM HOYVIS

QF 9144

PCT/US96/18510

WO 97/21178

7/21

06 68

i
__ 32
! : '8
_ 3X Iy :
" n_.x 1'g m.x . .
| : 3 Xivg51139 L X X X
: RS I Xlcaci{78 4'X 4'X 4'X
| A'X ER PRYSS o= X[v 4'X 4'X 1'%
__ u”x u“x tgstdaz 1'xjl 8 g”x u“x ¢ 3'X 1'X
\1_ L'X 3 Xlogs1q1g x| £ 3X L X £ 4'X Ux{| s
cpgy 1 X 3 X og 6,] IXILS L~1gg U X 3X ' 0 L' ¥ [c
(19 _z__u_ﬁ__o_g_ro_z:,z __u__z__u_z__ MESIWTOTW I
i N« SlSt) 9/st \ 06 68 2451
| ﬂ N X0 .
| vEG1 XC X§ xz1[9 8551 Z 13A7
llj xxq X'y Xy Xt 8 M LSSH
R _ _-0996|
| __o_z:,o_z_o_z__zj
! ﬁ oSG il 8¢S 1 (MOIY3LINI)
_ o 2 R/ £5 “9GG1L b 13A3
" asss 1 ogeg | PS5t Noagegy
, |06
” 68
“ X'01zes1 I
_ Xlriggl
| x'zhosst
cmnm_\l_J _ 3/ 4G\

W] (100¥)
0 13A3

mmm wnmc_ LYS1 onvm—

nﬁum_

—vm—

ovm_

WO 97/21178 PCT/US96/18510

8/21

MAP STRUCTURE HEADER (M) | COMPOUND STRUCTURE HEADER (C)

34q 34b

¢\ ¢\

34¢

M C

WO 97/21178 PCT/US96/18510

9/21

GET KEY OF 100

p[1] INTO Ki F[G 4

SEQUENTIAL PROCESSING PROCEDURE

v 120
BRANCH

INSERT

BRANCH
SEARCH

LEAF
SEARCH

WRITE EMPTY KEY;
INSERT p[1] = LOCATION OF KEY

WO 97/21178 PCT/US96/18510

10/21

FIG.8

LEAF SEARCH PROCEDURE

J:Cz]

SEAECH 202

rﬂ» T
DEPTHS

204 _—206
KEY K NOTL
YESL_FOUND

NO

GET KEY OF

p[c+ps]
INTO Ki

—208

212
KEY K NOT
FOUND

v 216
214 BULK PROCESS
—> KEYS

~—289

218 NO [RETURN
b bK

YeS
RESET bk [~ 220

WO 97/21178 PCT/US96/18510

11/21

LEAF INSERT PROCEDURE
,n=O1
j5e=1
i = _—300
SEARCHL—302

[DEPT 308

, 20 306 WRITE NEW KEY:| [REWRITE e
INCREMENT (g INSERT p[c+ps]= P ENTRY AS
YesLc AND n | | OCATION OF KEY] | NON=NIL

NO 312 314 316 #

GET KEY OF KEY EXISTS BULK PROCESS
plc+ps] KEYS
INTO Ki ‘< £EQ

_—318
[INCREMENT n]
v 320 322 394
ADD DEPTH WRITE NEW KEY: —
ENTRIES: M| INSERT plc+ps+f]= BULKK§$gCESS
RETURNS f| | LOCATION OF KEY ,

328 3 YES

NO

399

RETURN n|
336 b,bK

RESET bK

Yy

WO 97/21178

——p

12/21

FIG.10

PCT/US96/18510

BRANCH SEARCH PROCEDURE

j.—_—c.—_-]
d' =dj

L —400

L 4

SEARCH

—402

DEPTHS
4

GET CHILD
OF ENTRY j

404

INTERIOR

BRANCH

—408
LEAF
SEARCH

SEARCH

YES

RESET bK
4

499
RETURN
b\bk

416

WO 97/21178

——>

1—500

v
SEARCH|—501

DEPTHS

502

<

EQ

dj=depth

of e

Y

GET jth
CHILD IN V

v

PCT/US96/18510

13/21

di=depthw—503

of €-1

L—504
‘___—_—-—

ADD SUM OF
c[1..j-1] TO ps

INTERIOR

BRANCH
INSERT

L— 505

506

—508
LEAF
INSERT

y

FIG. 11

BRANCH INSERT PROCEDURE

514

RESET bK

Yy

536

b=0
INTERIOR 298
™

PCT/US96/18510

WO 97/21178

14/21

5%Qq'0 A
L NYNL3Y [T ININISONT =31 INanaaoN]
m%i\ﬂ 819—4 919~ p3
) 3
[M]a=Mq]a>[f]p [M]a=[(]p
219 019 ;
3 AUINT N
@owmu\zmmoz_ YN
¥09
Ma=<[x]q
I¥NAID0Yd HIdIA HOMYIS qumwd
N\ QN&N 09— A
L= 0
INIWIYDIQ

009 —

WO 97/21178 PCT/US96/18510

15/21

FIG. 13

BULK PROCESS PROCEDURE

710 —,
b=0

GET NEXT
KEY IN _Ki

524 706 708
FIND &' OF |3 ESTABLISH |, [RETURN
K-K| K FROM Ki b

798

EQ

FIG. 14

RESET bK FUNCTION
800 802 804

. GE
j=1 b'<bK 1 <bK<
? EQ ? ?
LT
NE 806 YE

NO

<B
DlbK=di+1 I-¥
810 NOY YES 808

S AT L g
GE _[RETURN

bK

899

WO 97/21178

16/21

FIG. 15

ADD DEPTH(S) PROCEDURE
902

PCT/US96/18510

912

916

b’ < i

GT

S

GET ELEMENT
b[k] SUCH
THAT
Li+1<b[k]

L

930~ ¢
INSERT ENTRY _ INSERT ENTRY
BEFORE e: =0 ™ BEFORE e;
932 934
N ~ v
e;: e; =
(b[k].T) (b",F)
938]
INCREMENT K
9949
940~ N
INCREMENT | RETURN f

WO 97/21178

PCT/US96/18510

17/21

FIG. 1T6a

SPLIT ROOT PROCEDURE

_—1000
CREATE
ROOT 'V
4 1002
MINIMUM
DEPTH
v 1004 1006 1008
lel= le2= | L
(amin.F) [(o) [TLY=F
SPLﬁf—1O74 _—1012 ¢/—4o1o
NODE(1,V) @ c[2]=n—-c—pse{c[1]=c

2 IN V'

GET CHILD
17 IN V'
v /—1026v/_1099
SPLIT | m&x7
CHILD

WO 97/21178

PCT/US96/18510

18/21

FIG.16b

OLD ROOT NODE

R=| C | V
I -
|
81 |
|
| I
| l
l
0 |
FIG.16c¢ |
L
NEW ROOT NODE 3
clvr |V
€
€2
OLD ROOT NODE
L C1 |ig | VO [11 | VI

c[1]1€1 Cmin+1
c[2]

@
3
3
O — — ~—

WO 97/21178 PCT/US96/18510

19/21

1200 FIG. 17
1202 SPLIT CHILD PROCEDURE

MINIMUM
™ DEPTH
v 1204
SPLIT INDEX
NODE 1j,Vj
v 1206
INCREMENT
SPLITS
v 1208 _—1210 1212 - 1214
A ENTRY ej= : GET jth
ég%ORE ej[® (dmin.F) > TE>PICHILD IN vV
v —1216
SPLIT(jth)
CHILD
4 —1218
SPLITS=
SPLITS+is
v —1220
j=)+ls
1222 _—-1299
RETURN
SPLITS
—1226
INCREMENT |
v 1228
GET jth
CHILD IN V
4

PCT/US96/18510

20/21

WO 97/21178

—b66¢1
UTWIrurp | o 03
0 NYNI3Y 7y
4 24y
[INIW3YONI
2ZELl—"___ 4
[p=utwp
0Zst— &
Juo=20
8L¢1—1 —HC_E_
11 Mt
—91l¢l 5 ER 3
Jud=2 == 1 [11 [2
MHC_E_ 39 %_..Em.lv_r—%_ i< Quwp>!
Zig! oLeL S3A
vigl o5 5
N3 I
ANIWIHONI [T N«H _w S|
QOM._.l\ q0¢% 1
[fa_fnua jo yydep=Tp Je—
POST— &
L+
20¢ 1—| =uwp
A
¢/1soli=piwi
%20|q xapul
3¥NA3008d H143a WNWININW 00¢ |— 1U8sald ui saujua
1o WIEI JO 13quInu=)so!
| =l=uwr "g=2=yus

WO 97/21178 PCT/US96/18510

21/21

FIG. 19

SPLIT NODE PROCEDURE
INSERT NODE | —1400

AFTER 1},V]
v
[j+1= 1402
e[imin+1..ilost]/—
\ 4
lj= 1404
e[1.imin][
v
~on= | 1406
ilast—1min

—1410 _—1412

1408 GET ¢ IN|,, cnt=sum
2 NTERIOR___ V] C“"’m'”w
LEAF
v_—i4i4 416

c:Vj+1= S:Vj+1=
c[imin+1..ilast][®S[imin+1 ..ilost]"

v 1418 ___—1420
cVj= S:Vj
c[1..imin][PIS[1..imin][]

\ 1422 —1424 _—1426
GET c IN|_[INSERT ENTRY| | c[j+1]=
> V > AFTER ¢[j] ™ cl&']—cnt 1

clj]=cnt [pRETURN n

International application No.
PCT/US96/18510

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
[PC(6) :GO6F 17/30

US CL :US: 395/601; 364/410
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimuin documentation searched (classification system followed by classification symbols)

us US: 395/600. 370/92

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the international search (namc of data base and, where practicable, search terms used)

APS
dynamic storage, hierarchial tree structuring, search keys, buffer, and index

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,555,409 A (LEENSTRA, SR. ET AL.) 10 September| 1-29
1996, FIGS. 1-5, col. 2, lines 32-39, col. 3, lines 3-8 & 24-
30, col. 14, lines 47-68, col. 15, lines 60-68.

Y US 5,404,513 A (POWERS ET AL.) 04 April 1985, Fig. 1,| 1-2, 6-8, 13-19,
items 14, 18, and 24-30, Figs. 2-5, Fig. 6, item 90 and 21-26

Y US 5,303,367 A (LEENSTRA, SR. ET AL.) 12 April 1994,| 1-2, 6-8, 13-19,
Abstract, lines 1-16, Figs. 2-3, col. 3, lines 9-20, col. 4,| and 21-26
lines 9-20, col. 9, lines 13-18, col. 14, and lines 38-45

Y US 4,429,385 A (CICHELLI ET AL.) 31 January 1984,| 1 and 12
Abstract, par. 2, lines 1-6, par. 3, lines 1-3, and Fig. 6.

O

D Further documents arc listed in the continuation of Box C. See patent family annex.

e document referring to un oral disclosuse, use, exhibition or other
incany

i docwnent pubtished prior to the intemational filing date bul later thua
the pnority date cluimed

. Special categaries of ciled docwnenta: T luter documcent published after the intemauonal filing date or priority
o) o date and not in conflict with the application but ciled to understand the
' A documentdefining the general state of the art which is not conaidered principle or theory underlying the invention
W be of particular reievance
I o X document of particular relevance; the claimed invention cannot be
E carlier docunent published on or after the intemationul filing date considerex novel or cannot be considered o invalve an inventive step
Lt document which may throw doubts on priority cluim(s) or which is when the documnent is taken alone
cited to cstablish the publication dute of another cition or other | . . . i
special reason (as specificd) ’. Y document of particular relevance; the claimed invention cannot be
considered 10 involve an inventve step when the document is

combined with one or more other auch documents. such combination
being obvious W a person skilled in the art

“&* document menber of the sanc patent family

Daute of the actual completion of the international search

14 JANUARY 1997

Date of mailing of the international scarch report

U 5MAR1997

Name and matling address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer

S
r".
'R CHERYL LEWIS J(I,M
(703) 305-8750

W

i
lephone No.

Form PCT/ISA/210 (second sheety(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

