一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法

本发明公开了一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法，包括数据采集模块、对数据进行加窗插值FFT运算的谐波参数检测模块、用于谐波测量通道参数调整的校准模块，其中谐波参数检测模块采用基于MIR-RSD高精度余弦窗的插值FFT算法，将时域信号加MIR-RSD窗并进行离散傅里叶变换得到离散频率X(k)，找到离散频率的绝对值X(k)的频率的大小，再根据δ值求出频率△。
1. 一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法，包括获取信号并对其模数转换的数据采集模块，对信号模数转换后的数据进行加窗插值的谐波参数检测模块，用于谐波测量通道参数调整的校准模块，其工作步骤包括：

步骤一：信号源发出信号，同时送至数据采集模块和被校准的谐波测量通道；

步骤二：数据采集模块获取信号并对其模数转换，获得信号模数转换后的数据；

步骤三：谐波参数检测模块采用基于MIR-RSD高精度余弦窗三谱线加权插值FFT算法对信号模数转换后的数据进行谐波分析，其工作步骤包括：

步骤1：选择长度为N的窗函数w(n)，n ∈ [0, N-1]，对信号模数转换后的数据x(n)进行加窗处理，获得加窗后的数据x*(n) = x(n)w(n)，并对对其进行离散傅里叶变换，得到离散频谱X*(k) = X(k)w(n)，k ∈ [0, N-1]，窗函数w(n)的时域形式为w(n) = \sum_{h=0}^{H-1} (-1)^{h} a_{h} \cos(2\pi h \frac{n}{N})，这里H ≥ 2为窗函数系数，且H的取值由ah的表达式决定，其中ah = \frac{8\delta^{2} - 2\delta^{2} C_{2h+1}^{H-1}}{8\delta^{2} + H + 1} \frac{C_{2h+1}^{H-1}}{2^{|h|}}；

步骤2：考虑到非同步采样和干扰的影响，信号的第i次谐波频率f_{i}在离散频谱所对应的位置k_{0}将偏离离散频谱X*(k)的谱线位置，即包含整数部分频率成分k_{1}及非整数部分频率成分δ = k_{0} - k_{1}，找到离散频谱中频率f_{i}附近的幅最大谱线k_{1}及其左边谱线k_{2}和右边谱线k_{3}，相应的频率幅度分别为|X(k_{1})|，|X(k_{2})|和|X(k_{3})|；

步骤3：计算加权比值系数β

\beta = \frac{|X(k_{2})| + |X(k_{3})|}{|X(k_{1})| + |X(k_{2})| + |X(k_{3})|} = \frac{|X(k_{1})|^{2} + |X(k_{2})|^{2}}{|X(k_{1})|^{2} + |X(k_{2})|^{2} + |X(k_{3})|^{2}}；

步骤4：设窗函数w(n)的频谱函数为W(k)，忽略频谱中负频率部分量的影响后的加窗信号的离散频谱函数为X_{w}(k) = \frac{A}{2j} e^{j\delta} W(k - \frac{f_{i}N}{f_{s}})，则β可改写为

\beta = \frac{W(-1 - \delta)^{2} + W(1 - \delta)^{2}}{W(-\delta)^{2} + W(-1 - \delta)^{2} + W(1 - \delta)^{2}}

构造函数β = g(δ)，通过多项式拟合，δ值可由反函数δ = g^{-1}(β) 求得；

步骤5：根据δ值可得第i次谐波频率值f_{i}

f_{i} = \frac{k_{0} + \delta}{N}

根据δ值及窗函数的频谱函数可得第i次谐波幅值A_{i}

A_{i} = \frac{2|X_{w}(k_{1})|}{|W(\delta)|}

根据δ值及窗函数的频谱函数可得第i次谐波相位角ϕ_{i}

ϕ_{i} = \text{phase}\{X_{w}(k_{1})\} - \pi \delta - \frac{\pi}{2}

上述计算得到的频率值、幅值、相位角定义为谐波测量结果L1；

步骤四：读取被校准的谐波测量通道的谐波测量结果L2，并以谐波参数检测模块的谐
波测量结果L1为真值，对系统进行M次测量，得到关于L1、L2的M组数据；

步骤五：根据L1、L2的M组数据，采用最小二乘法拟合计算被校准的谐波测量通道在各次谐波测量时的校准系数，从而完成被校准的谐波测量通道的校准工作。

2. 根据权利要求1所述的一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法，其特征在于，所述校准系数的求取过程，对谐波参数检测模块和被校准的谐波测量通道在基波频率f0下同时进行M次参数测量，每次都以步长Δ＝0.1Hz进行，得到一系列成对的测量结果，即L21、L11、L22、L12，⋯L2M、L1M，对M个点采用最小二乘法拟合得到方程

\[L1 = γL2 + τ \]

其中γ和τ为校准系数，则L2可以被校准为

\[L2 = \frac{L1 - τ}{γ} \]

那么第i次谐波的校准系数的求取，只需改变频率值，即在f_i = i/f_0的条件下，重复上述步骤即可。
说明书

一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量校准方法

技术领域
[0001] 本发明涉及信号相量测量领域，具体是一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法。

背景技术
[0002] 众所周知，电力系统谐波测量与分析已经成为电力系统领域发展的一个重要研究方向。近几十年来，随着各种电力电子装置（主要是一些非线性设备）的广泛应用，使得电网的谐波污染日益严重，电能质量下降。因此，实时测量和分析电网谐波分量，对于防止谐波危害、提高电能质量十分必要。可是在谐波测量中产生的误差直接影响到测量精度，不能达到预期防止谐波的效果，降低了工作效率。于是，对谐波分析结果进行校准必不可少。
[0003] 而谐波校准装置应运而生，可满足对谐波分析结果的校准。它采用DSP芯片作为处理器，处理信息量大、速度快，能够满足精度要求和实时性要求。它作为标准仪器，用来检测谐波分析结果是否准确。本发明采用了三谱线加窗插值FFT算法对信号进行处理，该算法通过分析加窗信号傅里叶变换的频域表达式，利用谐波频点附近的三根频谱的幅值确定谐波谱线的准确位置，进而得到谐波的幅值，频率及相位，推导的三谱线插值修正算法能够进一步提高谐波分析的准确性。

发明内容
[0004] 本发明的目的是为了针对现有技术存在的不足，提供了一种操作简单、运算速度快、精度更高谐波校准方法。
[0005] 本发明提出的解决方案为：将时域信号信号进行离散傅里叶变换得到离散频谱X(k)，找到离散频谱中频率1附近的幅度最大谱线k1及其左边谱线k2、右边谱线k3，相应的频谱幅度分别为|X(k1)|，|X(k2)|，|X(k3)|，计算互相关值系数B1，从而求出非整数部分频率成分δ，再根据δ值进而求出幅值、频率和相角作为标准量与被校准的谐波测量通道进行校准。
[0006] 本发明提出的基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法包括以下步骤：
[0007] 步骤一：信号源发出信号，同时送至数据采集模块和被校准的谐波测量通道；
[0008] 步骤二：数据采集模块获取信号并对其模数转换，获得信号模数转换后的数据；
[0009] 步骤三：谐波参数检测模块采用基于MIR-RSD高精度余弦窗三谱线插值FFT算法对信号模数转换后的数据进行谐波分析，获得谐波测量结果L1；
[0010] 步骤四：读取被校准的谐波测量通道的谐波测量结果L2，并以谐波参数检测模块的谐波测量结果L1为真值，计算被校准的谐波测量通道的谐波测量结果L2的绝对误差、标准差；
[0011] 步骤五：根据被校准的谐波测量通道的谐波测量结果L2的绝对误差、标准差，确定
被校准的谐波测周通道的系统误差数量，计算被校准的谐波测周通道在各次谐波测周时的系统误差校准系数，从而完成被校准的谐波测周通道的校准工作。

[0012] 所述的方法，基于MIR-RSD高精度余弦窗插值FFT算法实现谐波准确分析，其工作步骤包括：

[0013] 步骤一：选择长度为N的窗函数w(n)，n∈[0,N-1]，对信号模数转换后的数据x(n)进行加窗处理，获得加窗后的数据xw(n) = x(n)w(n)，并对其进行离散傅里叶变换，得到离散频谱Xw(k)，k∈[0,N-1]；

[0014] 步骤二：考虑到非同步采样和干扰的影响，信号的第i次谐波频率f_{i}在离散频谱所对应的位置k_{i}时偏离离散频谱Xw(k)的谱线位置，即包含整数部分频率成分k_{i}及非整数部分频率成分δ=|k_{i}-k|，找到离散频谱中频率f_{i}附近的幅最大谱线k_{i}及其左、右两边谱线k_{2}、k_{3}，相应的频谱幅度分别为|X(k_{1})|，|X(k_{2})|和|X(k_{3})|；

[0015] 步骤三：计算加权信噪比系β

\[\beta = \frac{\left| X(k_{2}) \right| |X(k_{2})| + \left| X(k_{1}) \right| |X(k_{1})|}{\left| X(k_{2}) \right| + \left| X(k_{1}) \right|} = \frac{\left| X(k_{2}) \right|^2 + \left| X(k_{1}) \right|^2}{\left| X(k_{1}) \right|^2 + \left| X(k_{2}) \right|^2} ; \]

[0016] 步骤四：设信号函数w(n)的频谱函数为W(k)，忽略频谱中负频率部分量的影响后的加窗信号的离散频谱函数为Xw(k) = \frac{A}{2} e^{j\theta} W(k-f_{i}N/f_{s})，则β可改写为

\[\beta = \frac{W(-1-\delta)|W(1-\delta)|}{W(-\delta)|W(1-\delta)|} \]

[0017] 构造函数β=g(δ)，通过多项式拟合，δ值可由反函数δ=g^{-1}(β)求得；

[0018] 步骤五：根据δ值可得第i次谐波频率频率值f_{i}

\[f_{i} = \frac{k_{i} + \delta}{N} \]

[0019] 根据δ值及窗函数的频谱函数可得第i次谐波幅值A_{i}

\[A_{i} = \frac{2\left| Xw(k_{i}) \right|}{W(\delta)} \]

[0020] 根据δ值及窗函数的频谱函数可得第i次谐波相角度φ_{i}

\[\phi_{i} = \text{phase}\{Xw(k_{i})\} - \pi \delta - \frac{\pi}{2} \]

[0021] 所述的方法，窗函数w(n)的时域形式为w(n) = \sum_{k=0}^{N-1} (-1)^{k} a_{k} cos(2\pi k n/N)，这里H≥2为

[0022] 窗函数系数，且H的取值由an表达的决定，其中\[a_{k} = \frac{8\delta^{2} - 2h^{2} C_{H+1}^{H+1}}{8\delta^{2} - H + 1} \]

[0023] 所述的方法，MIR-RSD高精度余弦窗被称为Maximum Image interference Rejection windows with Rapid Sidelobe Decay rate，具有最大抗干扰能力和最大旁瓣衰减率，且计算速度快，精度高。
所述的方法，校准系数的求取过程，对谐波参数检测模块和被校准的谐波测量通道同时进行M次参数测量，每次测量在基波频率f0下以Δ = 0.1为步长来实施，得到一系列成对的测量结果，即L2, L1, L21, L22, ..., L2k, L1k, 对M个点采用最小二乘法拟合得到方程
\[L2 = L1 - \tau \]

其中，γ 和τ为校准系数，则L2可以被校准为

那么第i次谐波的校准系数的求取，只需改变频率值，即在fi = f0的条件下，重复上述步骤即可。

本发明基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道校准方法，具有操作简单、计算精度等特点，采用MIR-RSD高精度余弦窗完插值FFT算法，计算快速、准确，能保证实现准确校准。

附图说明

图1是本发明处理流程的原理框图；

图2是本发明中基于MIR-RSD高精度余弦窗插值FFT算法实现流程图。

具体实施方式

本发明提出了一种基于MIR-RSD高精度余弦窗插值FFT算法的谐波测量通道的校准方法。以下结合附图作详细说明：

本实施例的处理流程的原理框图如图1所示，信号经过包含对其进行降压、滤波、模数转换的数据采集模块后转化为数字量，并送入配备DSP芯片的谐波参数检测模块，在这里将完成对转换后的数据加窗插值FFT运算，得到精确计算后的真值L1，读取被校准的谐波测量通道的谐波测量结果L2，以谐波参数检测模块的谐波测量结果L1为真值，对系统进行M次测量，得到关于L1, L2的M组数据，根据L1, L2的M组数据，采用最小二乘法拟合计算被校准的谐波测量通道在各次谐波测量时的校准系数，从而完成被校准的谐波测量通道的校准工作。

图1中的数据采集模块主要是由调理电路组成，调理电路包括电压互感器、电流互感器、归一化电路和低通滤波器，其中电压互感器、电流互感器将三相标准源产生的信号转换成低电平、小电流信号进入归一化电路和低通滤波器，采用归一化电路的目的是使同一系列信号流经后，仍然能够输出同一电平的信号，以便于系统进行处理。归一化电路可由一个数字电位计和运算放大器组成的增益可调的放大电路组成，而低通滤波器则是为了滤除高频信号，以确定所选信号的最高频率，因为在加窗插值FFT算法中要采用最高频率来确定采样点的数量。

信号经过前端采集模块后进入谐波参数检测模块，由DSP芯片和相应辅助电路组成，DSP芯片型号为TMS320F2812，该模块通过MIR-RSD高精度余弦窗能精确计算出各次谐波参数，得到测量结果L1，与被校准的谐波测量通道的谐波测量结果L2做最小二乘法拟合得到校准系数，从而完成被校准的谐波测量通道的校准工作。

下面以求取基波频率f的校准系数为例，具体阐述校准系数的求取过程：
设基波频率$\nu_0=50$Hz，采用三相标准源HBS1030在基波频率下对频率进行9次测量，其中步长$\Delta = 0.19$次频率取值分别为$49.6, 49.7, 49.8, 49.9, 50.0, 50.1, 50.2, 50.3, 50.4$。信号同时送至数据采集模块和被校准的谐波测量通道，后获得9组数据如表一所示，其中L_0表示频率设定值、L_1表示MIR-RSD高精度余弦算值，L_2表示被校准的频率测量值。

表一 实验测量数据对比值

<table>
<thead>
<tr>
<th></th>
<th>L_0</th>
<th>L_1</th>
<th>L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.6</td>
<td>49.7</td>
<td>49.8</td>
</tr>
<tr>
<td>L_0</td>
<td>49.6</td>
<td>49.7</td>
<td>49.8</td>
</tr>
<tr>
<td>L_1</td>
<td>49.1</td>
<td>49.1</td>
<td>49.3</td>
</tr>
</tbody>
</table>

根据表中9次测量数据，采用最小二乘法拟合计算，希望找出一条和这9个点最匹配的直线$L_1 = \gamma L_2 + \tau$，即找出在某种“最佳情况”下能够大致符合如下超定线性方程组的γ和τ：

$$
\begin{align*}
49.6 &= \gamma \times 49.1 + \tau, 49.7 &= \gamma \times 49.1 + \tau, 49.8 &= \gamma \times 49.3 + \tau \\
49.9 &= \gamma \times 49.2 + \tau, 49.9 &= \gamma \times 49.5 + \tau, 50.1 &= \gamma \times 49.6 + \tau \\
50.2 &= \gamma \times 49.6 + \tau, 50.3 &= \gamma \times 49.8 + \tau, 50.5 &= \gamma \times 49.9 + \tau \\
\end{align*}
$$

最小二乘法采用的手段是尽量使得等号两边的方差最小，也就是找出这个函数的最小值：

$$
S(\gamma, \tau) = (49.6 - (\gamma \times 49.1 + \tau))^2 + (49.7 - (\gamma \times 49.1 + \tau))^2 + (49.8 - (\gamma \times 49.3 + \tau))^2 + (49.9 - (\gamma \times 49.2 + \tau))^2 + (49.9 - (\gamma \times 49.5 + \tau))^2 + (50.1 - (\gamma \times 49.6 + \tau))^2 + (50.2 - (\gamma \times 49.6 + \tau))^2 + (50.3 - (\gamma \times 49.8 + \tau))^2 + (50.5 - (\gamma \times 49.9 + \tau))^2
$$

通过对$S(\gamma, \tau)$分别求γ和τ的偏导数，然后使其等于零，在MATLAB环境下实施得到：

$$
\begin{align*}
\gamma &= 1 \\
\tau &= 0.513 \\
\end{align*}
$$

于是，得到在基波频率ν_0下的频率校准系数γ与τ。

根据上述频率值得校准过程，幅值与相角值的校准系数可类似求出，且第1次谐波的校准系数的求取，只需改变频率值，即在$f_3 = i \nu_0$的条件下，重复上述步骤即可。

结合图2的程序流程图，具体阐述基于MIR-RSD高精度余弦函数插值FFT算法的实现过程：

当取MIR-RSD高精度余弦函数$N=4$时，由β的计算公式可得到δ的修正公式$\delta = \beta(\gamma)$具体为：

$$
\delta = 1.1429571 \beta - 0.09329259 \beta^3 + 0.01519437 \beta^5 - 0.00283131 \beta^7
$$

δ的准确求解直接关系到幅值、频率及相位的准确性，接下来采用经典信号来进行算法仿真，该信号离散形式的表达式为：

$$
x(n) = A_0 + A_1 \sin(2\pi f_1 n / f_s + \phi_1) + A_2 \sin(2\pi f_2 n / f_s + \phi_2), n = 0, 1, \ldots, N-1
$$

其中$f_3 = 3f_1$，各参数的取值为：$A_0 = 0.2, A_1 = 6, A_2 = 1, \phi_1 = 0.1, \phi_2 = 0$，其中基波频率为$f_1 = 50.2$Hz，采样频率$f_s = 1000$Hz，采样点数$N = 512$，首先对信号进行加MIR-RSD高精度余弦函数三谱线FFT变换，之后再根据本发明中的加权比值系数β公式计算非整数部分频率成分δ。
为了体现本发明能作为校准装置实现对被校准的谐波测量通道的准确校准，在MATLAB环境下，本文算法与加Hanning窗、Blackman-Harris窗三谱线插值FFT进行了对比，得出各算法测量结果的绝对误差，如表二所示。

表二 不同加窗三谱线插值FFT算法结果的绝对误差对比表

<table>
<thead>
<tr>
<th></th>
<th>Hanning 窗</th>
<th>Blackman-harris 窗</th>
<th>MIR-RSD 高精度余弦窗</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>-1.25×10^{-3}</td>
<td>-5.33×10^{-5}</td>
<td>-5.83×10^{-6}</td>
</tr>
<tr>
<td>A_1</td>
<td>-3.65×10^{-5}</td>
<td>-0.89×10^{-6}</td>
<td>-1.35×10^{-9}</td>
</tr>
<tr>
<td>A_3</td>
<td>7.27×10^{-5}</td>
<td>1.71×10^{-6}</td>
<td>-9.13×10^{-9}</td>
</tr>
<tr>
<td>f_1</td>
<td>-1.69×10^{-4}</td>
<td>-2.34×10^{-6}</td>
<td>7.82×10^{-9}</td>
</tr>
<tr>
<td>f_3</td>
<td>9.05×10^{-5}</td>
<td>-3.16×10^{-6}</td>
<td>-3.87×10^{-9}</td>
</tr>
<tr>
<td>φ_1</td>
<td>-2.98×10^{-4}</td>
<td>1.43×10^{-5}</td>
<td>2.24×10^{-8}</td>
</tr>
<tr>
<td>φ_3</td>
<td>7.28×10^{-4}</td>
<td>1.73×10^{-5}</td>
<td>-1.73×10^{-8}</td>
</tr>
</tbody>
</table>

由表二可以明显看出，本发明加MIR-RSD高精度余弦窗三谱线插值FFT算法的绝对误差结果明显小于表中其余两种类型的窗，也就是说，相比于加Hanning窗、Blackman-Harris窗三谱线插值FFT算法，本发明加MIR-RSD高精度余弦窗三谱线插值FFT算法有更高的准确度，完全符合本发明的校准功能。
信号源 → 信号 → 数据采集模块 → 谐波参数检测模块 → 被校准的谐波测量通道 → L1 → 最小二乘法拟合 → 校准系数

图1

开始 → 信号输入 → 对信号进行加窗处理 → 进行离散傅里叶变换得到离散频谱 → 找到最大谱线 k1，左边谱线 k2，右边谱线 k3 → 计算加权比值系数 B → 忽略负频率部分量影响将 B 改成含 δ 的表达式 → 通过多项式拟合求出 δ → 通过 δ 求出第 i 次谐波的频率 f_i，幅值 A_i，相角 φ → 结束

图2