发明名称
一种用于电火花加工环形花纹的机床轨迹摇动机构

摘要
一种用于电火花加工环形花纹的机床轨迹摇动机构，包括立柱横臂，所述立柱横臂上设有可沿X轴方向移动的X轴滑块，此X轴滑块与主柱横臂通过第一导轨连接；一B轴转盘固定于所述X轴滑块一端，一U轴底座固定安装于B轴转盘的表面；一U轴滑块通过第二导轨与U轴底座活动连接，此U轴滑块可以沿X轴方向移动；一V轴滑块通过第三导轨与所述U轴滑块活动连接，此V轴滑块可以沿Y轴方向移动；一Z轴滑块通过第四导轨与所述V轴滑块活动连接，此Z轴滑块可以沿Z轴方向移动，一电机安装于Z轴滑块一端。本发明可以一个电极就可以有效补偿侧向的放电间隙，且在加工中电极模具之间不产生干涉，从而达到对电极模具型腔的侧向电火花修光的目的。
1. 一种用于电火花加工环形花纹的机床轨迹摇动机构，包括立柱横臂(2)，其特征在于：所述立柱横臂(2)上设有可沿X轴方向移动的X轴滑块(4)，此X轴滑块(4)与立柱横臂(2)通过第一导轨连接；一B轴转盘(5)固定于所述X轴滑块(4)一端，一U轴底座(6)固定安装于B轴转盘(5)的表面；一U轴滑块(7)通过第二导轨与U轴底座(6)活动连接，此U轴滑块(7)沿X轴方向移动；

一V轴滑块(8)通过第三导轨与所述U轴滑块(7)活动连接，此V轴滑块(8)沿Y轴方向移动，一Z轴滑块(9)通过第四导轨与所述V轴滑块(8)活动连接，此Z轴滑块(9)沿Z轴方向移动，一电极(10)安装于此Z轴滑块(9)一端，上述U轴滑块(7)由第一长杆(11)和第二长杆(12)组成，此第一长杆(11)垂直固定于第二长杆(12)，V轴滑块(8)通过第三导轨与所述U轴滑块(7)活动连接时，所述第二长杆(12)通过第二导轨与U轴底座(6)活动连接，所述第一长杆(11)通过第三导轨与V轴滑块(8)活动连接；

或者，一Z轴滑块(9)通过第三导轨与所述U轴滑块(7)活动连接，此Z轴滑块(9)沿Z轴方向移动；一V轴滑块(8)通过第四导轨与所述Z轴滑块(9)活动连接，此V轴滑块(8)沿V轴方向移动，一电极(10)安装于此V轴滑块(8)一端，上述U轴滑块(7)由第一长杆(11)和第二长杆(12)组成，此第一长杆(11)垂直固定于第二长杆(12)，Z轴滑块(9)通过第三导轨与所述U轴滑块(7)活动连接时，所述第二长杆(12)通过第二导轨与U轴底座(6)活动连接，所述第二长杆(12)通过第三导轨与Z轴滑块(9)活动连接。

2. 根据权利要求1所述的机床轨迹摇动机构，其特征在于：当V轴滑块(8)通过第三导轨与所述U轴滑块(7)活动连接，所述电极(10)安装于此Z轴滑块(9)一端；当Z轴滑块(9)通过第三导轨与所述U轴滑块(7)活动连接，此电极(10)安装于此V轴滑块(8)一端。
一种用于电火花加工环形花纹的机床轨迹摇动机构

技术领域
【0001】本发明涉及一种用于电火花加工环形花纹的机床轨迹摇动机构，属于电火花特种加工领域。

背景技术
【0002】我国汽车工业发展迅速，对车用轮胎的需求也在迅速增长，但高档车用轮胎市场，国外品牌及合资品牌占了很大份额，以2008年为例，2008年全球轮胎销售达920亿美元，超过10亿美元的12家企业占全球轮胎销售收入的81%，但这12家企业全为外国企业。为了适应我国高速发展的汽车工业，必须加快我国轮胎制造业的发展。高档轮胎制造的关键技术之一是高档轮胎模具的制造，我国模具工业“十一五”发展规划已将其列入重点发展的模具产品。
【0003】电火花加工无切削力，加工不受材料的硬度限制，该技术采用成形电极作为工具，通过火花放电，在工件上加工出与电极形状相同，阴阳相反的型腔，这种加工方法可获得花纹型腔精度高，棱角清，表面光洁度高的效果，而且可加工窄槽，薄筋片等一般机加工设备难以加工的形状，可以实现自动化，半自动化加工，而且设备价格较低，投资规模小，生产成本低。
【0004】采用电火花成形加工技术进行的电火花轮胎模具环形花纹加工是轮胎模具加工的主要发展方向之一，具有明显的技术特点和优势。我国目前市场上电火花轮胎模具环形花纹加工设备在加工精度及效率方面还不能很好地满足高档轮胎模具制造的要求，一些轮胎模具企业订购进口同类设备的趋势在增大，同时，国际上轮胎制造企业也开始在我国订制高档轮胎模具，所以，进一步发展轮胎模具的精密电火花加工技术及设备对提高我国轮胎模具制造业的国际竞争力，促进我国轮胎模具的出口是非常必要的。
【0005】以往在采用轮胎模具电火花成形加工机床对轮胎模具花纹型腔的电火花加工中，由于粗加工和中精加工脉冲电源的参数不一样，粗加工放电间隙大，中、精加工放电间隙小，如果不通过补偿减小放电间隙，则中、精加工就无法进行。对花纹型腔的底部一般可以通过机床的伺服主轴（Z轴）进给补偿火花间隙来实现中、精加工。但为了对粗加工花纹型腔的侧向进行中、精加工，就要通过更换多个电极，增大电极在侧向的尺寸，减小放电间隙，达到对花纹型腔侧向修光的目的，但这种方法首先会导致增加电极的数量，提高制造成本，其次，由于多次更换电极，增加辅助时间，降低加工效率。

发明内容
【0006】本发明提供一种用于电火花加工环形花纹的机床轨迹摇动机构，该轨迹摇动机构可用一个电极就可以有效补偿侧向的放电间隙，并且在调整或加工中与轮胎模具之间不产生干涉，从而达到对轮胎模具型腔的侧向电火花修光的目的。
【0007】为达到上述目的，本发明采用的技术方案是：一种用于电火花加工环形花纹的机床轨迹摇动机构，包括立柱横臂，所述立柱横臂上设有可沿X轴方向移动的X轴滑块，此X
轴滑块与立柱横臂通过第一导轨连接；一B轴转盘固定于所述X轴滑块一端，一U轴底座固定安装于B轴转盘的表面；一U轴滑块通过第二导轨与U轴底座活动连接，此U轴滑块可以沿X轴方向移动；

[0008] 一V轴滑块通过第三导轨与所述U轴滑块活动连接，此V轴滑块可以沿Y轴方向移动；一Z轴滑块通过第四导轨与所述V轴滑块活动连接，此Z轴滑块可以沿Z轴方向移动，一电极安装于此Z轴滑块一端。

[0009] 或者，一Z轴滑块通过第三导轨与所述U轴滑块活动连接，此Z轴滑块可以沿Z轴方向移动；一V轴滑块通过第四导轨与所述Z轴滑块活动连接，此V轴滑块可以沿V轴方向移动，一电极安装于此V轴滑块一端。

[0010] 上述技术方案中的有关内容解释如下：

[0011] 1. 上述方案中，所述U轴滑块由第一长杆和第二长杆组成，此第一长杆垂直固定于第二长杆，

[0012] 当V轴滑块通过第三导轨与所述U轴滑块活动连接时，所述第一长杆通过第二导轨与U轴底座活动连接，所述第二长杆通过第三导轨与V轴滑块活动连接。

[0013] 当Z轴滑块通过第三导轨与所述U轴滑块活动连接时，所述第一长杆通过第二导轨与U轴底座活动连接，所述第二长杆通过第三导轨与Z轴滑块活动连接。

[0014] 2. 上述方案中，所述电极安装于此Z轴滑块或者V轴滑块下端。

[0015] 由于上述技术方案应用，本发明的有益效果是：

[0016] 1. 在轮胎模具环形花纹电火花加工中只需采用一个电极就能在电火花粗加工后完成电火花的精加工，实现花纹型腔的侧向修光，大大降低了采用多电极进行电火花修光的电极制造费用。

[0017] 2. 本发明切割机床在电极逼近或伸入轮胎模具的内环型腔并根据加工要求进行调整或加工时不会与轮胎模具产生干涉，满足该类模具内环花纹的加工要求；轮胎模具是圆环状，内腔尺寸较小，轨迹运动机构的U、V轴尺寸较小能伸入模具内腔而不碰撞。

[0018] 3. 本发明在B轴转盘带动U、V、Z轴滑块摆动后，U、V、Z轴滑块相互位置关系不变，轨迹摇动的数控模型不必改变，控制简练。

[0019] 4. 本发明切割机床能在型腔侧面和底部同时精修加工，可明显提高花纹型腔的侧面光洁度、表面质量的一致性和型腔精度。

[0020] 5. 本发明切割机床减少了多电极安装调整的辅助时间，明显提高加工效率。

[0021] 6. 本发明切割机床可以利用U、V轴滑块实现在这两个轴向的调整或单轴方向的电火花伺服加工，满足轮胎模具上的特殊花纹，例如：上大下小的“宝石花”的电火花加工要求。

附图说明

[0022] 图1为具有本发明轨迹摇动机构的机床结构示意图一；

[0023] 图2为附图1的左视图；

[0024] 图3为轨迹摇动机构主视图一；

[0025] 图4为附图3俯视图；

[0026] 图5为具有本发明轨迹摇动机构的机床结构示意图二；

4
具体实施方式

[0031] 下面结合附图及实施例对本发明作进一步描述：

[0032] 实施例一：一种用于电火花加工环形花纹的机床轨迹摇动机构，如附图 1-4 所示，包括：床身 1、立柱横臂 2 和用于放置待加工工件的 A 轴转盘 3，所述立柱横臂 2 上设有可沿 X 轴方向移动的 X 轴滑块 4，此 X 轴滑块 4 与立柱横臂 2 通过第一导轨连接；一 B 轴转盘 5 固定于所述 X 轴滑块 4 一端，一 U 轴底座 6 固定安装于 B 轴转盘 5 的表面；一 U 轴滑块 7 通过第二导轨与 U 轴底座 6 活动连接，此 U 轴滑块 7 可以沿 X 轴方向移动；

[0033] 一 V 轴滑块 8 通过第三导轨与所述 U 轴滑块 7 活动连接，此 V 轴滑块 8 可以沿 Y 轴方向移动；一 Z 轴滑块 9 通过第四导轨与所述 V 轴滑块 8 活动连接，此 Z 轴滑块 9 可以沿 Z 轴方向移动，一电极 10 安装于此 Z 轴滑块 9 一端。

[0034] 上述 U 轴滑块 7 由第一长杆 11 和第二长杆 12 组成，此第一长杆垂直固定于第二长杆，V 轴滑块 8 通过第三导轨与所述 U 轴滑块 7 活动连接时，所述第一长杆 11 通过第二导轨与 U 轴底座 6 活动连接，所述第二长杆 12 通过第三导轨与 V 轴滑块 8 活动连接。

[0035] 上述电极 10 安装于此 Z 轴滑块 9 下端。

[0036] 实施例二：一种用于电火花加工环形花纹的机床轨迹摇动机构，如附图 5-8 所示，包括：床身 1、立柱横臂 2 和用于放置待加工工件的 A 轴转盘 3，所述立柱横臂 2 上设有可沿 X 轴方向移动的 X 轴滑块 4，此 X 轴滑块 4 与立柱横臂 2 通过第一导轨连接；一 B 轴转盘 5 固定于所述 X 轴滑块 4 一端，一 U 轴底座 6 固定安装于 B 轴转盘 5 的表面；一 U 轴滑块 7 通过第二导轨与 U 轴底座 6 活动连接，此 U 轴滑块 7 可以沿 X 轴方向移动；

[0037] 一 Z 轴滑块 9 通过第三导轨与所述 U 轴滑块 7 活动连接，此 Z 轴滑块 9 可以沿 Z 轴方向移动；一 V 轴滑块 8 通过第四导轨与所述 Z 轴滑块 9 活动连接，此 V 轴滑块 8 可以沿 V 轴方向移动，一电极 10 安装于此 V 轴滑块 8 一端。

[0038] 上述 U 轴滑块 7 由第一长杆 11 和第二长杆 12 组成，此第一长杆垂直固定于第二长杆，Z 轴滑块 9 通过第三导轨与所述 U 轴滑块 7 活动连接时，所述第一长杆 11 通过第二导轨与 U 轴底座 6 活动连接，所述第二长杆 12 通过第三导轨与 Z 轴滑块 9 活动连接。

[0039] 上述电极 10 安装于此 V 轴滑块 8 下端。

[0040] 上述实施例只为说明本发明的技术构思及特点，其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施，并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰，都应涵盖在本发明的保护范围之内。