CLOT RETRIEVAL DEVICE FOR REMOVING OCCLUSIVE CLOT FROM A BLOOD VESSEL

Applicant: Neuravi Limited, Galway (IE)

Inventors: David VALE, County Galway (IE); Brendan CASEY, Galway (IE); Michael GILVARRY, County Galway (IE); Jacqueline O'GORMAN, County Clare (IE); Kevin MCARDLE, County Galway (IE)

Assignee: Neuravi Limited, Galway (IE)

Appl. No.: 14/952,202

Filed: Nov. 25, 2015

Related U.S. Application Data

Provisional application No. 62/084,960, filed on Nov. 26, 2014.

Publication Classification

Int. Cl.
A61B 17/221 (2006.01)

U.S. Cl.
A61B 17/221 (2013.01); A61B 2017/2215 (2013.01); A61B 2017/00327 (2013.01)

ABSTRACT

A clot retrieval device for removal of occlusive clot from a blood vessel comprises a clot engaging element 700 having a constrained delivery configuration and an expanded deployed configuration. In the expanded configuration peripheral portions are laterally spaced-apart and the clot engaging section 700 extends between the peripheral portions. The device 700 may have two superimposed wave patterns provided by a large amplitude curve 723 and shorter pitch sinusoidal patterns 721, 722. A wave shape varies the contact pressure between a clot and the device along the length of the device, reducing the compression of the clot by the device at some locations. The device can elongate when placed under tension which aids elongation of the clot during dislodgement.
Fig 29a

Fig 29b
CLOT RETRIEVAL DEVICE FOR REMOVING OCCLUSIVE CLOT FROM A BLOOD VESSEL

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 62/084,960, filed Nov. 26, 2014, which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] This invention relates to devices intended for removing acute blockages from blood vessels. Acute obstructions may include clot, misplaced devices, migrated devices, large emboli and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus—this mechanism is common in the formation of coronary blockages. The invention is particularly suited to removing clot from cerebral arteries in patients suffering acute ischemic stroke (AIS), from coronary native or graft vessels in patients suffering from myocardial infarction (MI), and from pulmonary arteries in patients suffering from pulmonary embolism (PE) and from other peripheral arterial and venous vessels in which clot is causing an occlusion.

STATEMENTS OF THE INVENTION

[0003] According to the invention there is provided a clot retrieval device for removing occlusive clot from a blood vessel comprising a clot engaging element having a constrained delivery configuration and an expanded deployed configuration, wherein at least a portion of the device has a longitudinally extending undulating edge.

[0004] In one case the clot engaging element has a first peripheral portion, a second peripheral portion and a clot engaging section extending between the first and second peripheral portions wherein, in the expanded configuration, the peripheral portions are laterally spaced-apart and the clot engaging section extends between the peripheral portions.

[0005] In one embodiment the undulating edge has a wave-like form. The undulating edge may have a sinuous wave form.

[0006] In one case the device has at least two wave patterns. The wave patterns may be superimposed on one another. In one case a first pattern has a wavelength and an amplitude and the second pattern has a wavelength and an amplitude which are larger than those of the first pattern.

[0007] In one embodiment the clot retrieval device comprises an activator for modifying the wave shape. The activator may comprise at least one push wire and/or at least one pull wire.

[0008] In one case the clot engagement element comprises one or more clot gripping features.

[0009] In one embodiment, in the constrained configuration, the clot engaging section is substantially flat.

[0010] In the expanded configuration the clot engaging section may be curvilinear.

[0011] In the expanded configuration the clot engaging section may be substantially flat.

[0012] In one embodiment in the constrained and expanded configurations the clot engaging section is substantially curvilinear.

[0013] In one case in the expanded configuration, the clot engaging section is of helical or spiral form.

[0014] In the expanded configuration, the clot engaging section may be of generally s-shape.

[0015] In one embodiment the clot engaging element has two surfaces which face in generally opposite directions and one or both surfaces is engagable with clot in the expanded deployed configuration.

[0016] In one embodiment the device comprises a portion defining a flow channel for flow of blood when the device is in the expanded deployed configuration.

[0017] In one case the device comprises a proximal section, a distal section and a clot engaging section between the proximal section and the distal section wherein the proximal section is slidably movable relative to the clot engaging section. The proximal section may comprise a slidable element such as a collar and proximal struts extending from the collar and the clot engaging section comprises a proximal shaft and the collar is slidably movable relative to the proximal shaft. At least some of the struts of the proximal section may extend in a distal direction for at least partial capture of clot between the clot engaging section and the proximal struts on proximal movement of the collar relative to the proximal shaft.

[0018] In one embodiment the wave pattern has an amplitude of from 2.0 mm to 6.0 mm. The wave pattern may have a pitch of from 3.0 mm to 8.0 mm.

[0019] In one embodiment the clot engaging section comprises a plurality of cells defined by struts and crowns and at least some of the struts and/or crowns are aligned with the wave-like form to enhance embedding of clot.

[0020] In one case the clot engaging section of the device has a transverse cross section having both flat and curved sections.

[0021] In one embodiment, in the expanded configuration, at least a portion of the clot engaging section of the device is a generally spiral or helical configuration relative to a longitudinal axis. The clot engaging section may further comprise a distal tubular section. A clot fragment portion may be provided at the distal end of the tubular section.

[0022] In one embodiment the clot engaging section comprises a pair of side rails formed from cell elements to which a plurality of clot engaging strut elements are connected, the cell elements protruding from opposite sides of a plane defined by the side rails.

[0023] In another embodiment the clot engaging section comprises a plurality of segments, adjacent segments being aligned at approximately 90° to each other. At least some of the segments may be of flat shape in transverse cross section.

[0024] In all embodiments the clot retrieval device may comprise a distal clot fragment protection section.

[0025] The invention also provides a method from removing occlusive clot from a blood vessel comprising the steps of:

[0026] providing a clot retrieval device having a clot engaging section with a longitudinally extending undulating form, the device having a constrained delivery configuration and an expanded deployed configuration;

[0027] advancing a microcatheter towards and across an occlusive clot;
[0028] loading the device into the microcatheter and advancing it to a distal portion of the microcatheter;
[0029] deploying the device to embed the clot; and
[0030] retrieving at least a portion of the device and the captured clot into a retrieval catheter.

[0031] In one embodiment the method comprises deploying the device within the clot.

[0032] In some cases the method comprises deploying a portion of the device between the clot and a portion of the vessel wall surrounding the clot.

[0033] In one embodiment the method comprises pulling the device proximally after deployment of the device within the clot.

[0034] The method may comprise delaying pulling of the device proximally after deployment to further embed in the clot prior to pulling of the device and the clot proximally.

[0035] In one embodiment the method comprises pulling the device proximally into a larger vessel before retrieval into a retrieval catheter.

[0036] In some cases the method comprises twisting the device to embed the device into the clot.

[0037] According to the invention there is provided a clot retrieval device for removing occlusive clot from a blood vessel comprising a clot engaging element having a constrained delivery configuration and an expanded deployed configuration, the clot engaging element having a first peripheral portion, a second peripheral portion and a clot engaging section extending between the first and second peripheral portions wherein, in the expanded configuration, the peripheral portions are laterally spaced-apart and the clot engaging section extends between the peripheral portions.

[0038] In one embodiment in the constrained configuration, the clot engaging section is substantially flat.

[0039] In one case in the expanded configuration the clot engaging section is curvilinear.

[0040] In another case in the expanded configuration the clot engaging section is substantially flat.

[0041] In one embodiment in the constrained and expanded configurations the clot engaging section is substantially curvilinear.

[0042] In one case in the expanded configuration, the clot engaging section is of helical or spiral form.

[0043] In another case in the expanded configuration, the clot engaging section is of generally s-shape.

[0044] In one embodiment the clot engaging element has two surfaces which face in generally opposite directions and either face is engageable with clot in the expanded deployed configuration.

[0045] In one case the device comprises a portion defining a flow channel for flow of blood when the device is in the expanded deployed configuration.

[0046] In one embodiment at least a portion of the device comprises an undulating edge. The undulating edge may have a sinusoidal or other wave-like form.

[0047] In one case the device has at least two wave patterns which may be superimposed. A first pattern may have a wavelength and an amplitude and the second pattern has a wavelength and an amplitude which are larger than those of the first pattern.

[0048] In one embodiment the device comprises an activator for modifying the wave shape. The activator comprises at least one push/pull wire.

[0049] In one case the clot engagement element comprises one or more clot gripping features.

[0050] The device may comprise a distal capture portion.

[0051] In one case the device is formed from a flat sheet of a shape memory material such as Nitinol.

[0052] The invention also provides a method for removing occlusive clot from a blood vessel comprising:

- loading the device into a microcatheter in which the device is in a constrained delivery configuration;
- advancing the microcatheter to an occlusive clot;
- deploying the device to capture the clot; and
- retrieving the device together with the captured clot into a retrieval catheter.

[0053] The device may be deployed within the clot to pin the clot between the device and the vessel wall. Alternatively the device is deployed between the clot and a portion of the vessel wall surrounding the clot.

BRIEF DESCRIPTION OF THE DRAWINGS

[0054] The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only, with reference to the accompanying drawings, in which:

[0055] FIG. 1a is a view of a clot retrieval device of the invention;

[0056] FIG. 1b is a view of another clot retrieval device including a distal fragment protection portion;

[0057] FIG. 2a is a cross sectional view of the device of FIG. 1a within a microcatheter in the region of a clot in a vessel;

[0058] FIG. 2b is a view of the device of FIG. 2a in an expanded deployed configuration;

[0059] FIGS. 2c and 2d are sectional views of a microcatheter with the device of FIG. 2a in a wrapped configuration in a linear orientation and a circular orientation respectively;

[0060] FIGS. 3a and 3b are isometric and side views of a clot retrieval device deployed in a vessel;

[0061] FIGS. 4, 5 and 6 are views of clot retrieval devices with various different cell shapes and cut patterns;

[0062] FIG. 7 is an isometric view of a clot retrieval device with a flow lumen through the device;

[0063] FIGS. 8a and 8b are views of a flat pattern clot retrieval device with a circular or u-shaped channel;

[0064] FIGS. 9 and 10 are views of further clot retrieval devices with flow channels;

[0065] FIGS. 11a to 13 illustrate another clot retrieval device having a portion with a flat configuration;

[0066] FIGS. 12 and 13 illustrate a clot retrieval device which is in a helical shape;

[0067] FIGS. 14a, 14b and 15 illustrate another helical device with a distal protection portion;

[0068] FIG. 16 illustrates another clot retrieval device which is twisted along the length of the device;

[0069] FIG. 17a is an isometric view of another clot retrieval device of the invention;

[0070] FIG. 17b is a cross sectional view of portion of the device of FIG. 17a;

[0071] FIGS. 17c to e show the device of FIGS. 17a and b in use;

[0072] FIGS. 18a and 18b illustrate further clot retrieval devices with flow channels in which details of cell pattern(s) and strut(s) are omitted;

[0073] FIGS. 19a-19e illustrate a clot retrieval device with a wave-like edge combined with tubular s-shape or u-shape central sections;
FIG. 20 shows a clot retrieval device with an s-shape cross section which spirals along the length of the device;

FIGS. 21a-21c are views of another clot retrieval device with a flat mid-section;

FIG. 21d shows a fragment protection region of the device of FIG. 21a;

FIG. 21e shows a portion of the mid-section of the device of FIG. 21a;

FIGS. 22a-22e are isometric, plan and side views of a clot engaging portion of another device according to the invention;

FIGS. 23a and 23b are schematic views of a clot retrieval device, in use;

FIGS. 24a-24c are views of another clot retrieval device of the invention;

FIGS. 25a-25c are views of another clot retrieval device of the invention;

FIGS. 26a-26d illustrate a method of use of a clot retrieval device of the invention;

FIGS. 27a-27d are a series of views of a schematic wave shaped device;

FIGS. 28a-28c are an isometric, side and plan views of a clot retrieval device;

FIGS. 29a and 29b are plan and section views of another clot retrieval device of the invention;

FIGS. 30a-30f illustrate a method of use of another clot retrieval device of the invention;

FIG. 31 is an isometric view of another clot retrieval device;

FIGS. 32a and 32b are an isometric view and an end view respectively of another clot retrieval device of the invention; and

FIGS. 33a and 33b are an isometric view and an end view respectively of another clot retrieval device of the invention.

DETAILED DESCRIPTION

Specific embodiments of the present invention are now described in detail with reference to the Figures, wherein identical reference numbers indicate identical or functionally similar elements. The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician. “Distal” or “distant” are a position distant from or in a direction away from the physician. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician.

Accessing cerebral, coronary and pulmonary vessels involves the use of a number of commercially available products and conventional procedural steps. Access products such as guidewires, guide catheters, angiographic catheters and microcatheters are well known and are regularly used in catheter laboratory procedures. In the descriptions below that these products and methods are employed in conjunction with the device and methods of this invention and are not described in detail.

The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in many cases in the context of treatment of intracranial arteries, the invention may also be used in other body passageways.

The expandable members of the devices disclosed are desirably made from a material capable of recovering its shape automatically once released from a highly strained delivery configuration. A superelastic material such as Niti-nol or an alloy with similar properties is particularly suitable. The material could be in many forms such as wire or strip or sheet or tube. A particularly suitable manufacturing process is to laser cut a Niti-nol tube and then heat set and electropolish the resultant structure to create a framework of struts and connecting elements. This framework can be any of a wide range of shapes as disclosed herein and may be rendered visible under fluoroscopy through the addition of alloying elements (such as Platinum for example) or through a variety of other coatings or marker bands.

Compression of the clot can alter the clot properties and make the clot less amenable to retrieval by making it firmer and “stickier” as described in our WO2012/120490A, the entire contents of which are herein incorporated by reference. The device of this invention is intended to facilitate clot retrieval by expanding between the clot and the vessel wall in such a way as to delaminate some or all of the clot from the vessel, engage with the clot over a significant surface area, and do so with minimal compression of the clot. The clot compression is minimal because the device does not need to significantly displace the clot in order to expand and engage with it. Rather the device uses the constraints of the clot itself and the vessel wall to guide its expansion, and expands within this interface region.

In its simplest form the unconstrained clot engaging portion of the device has two surfaces which face in generally opposite directions. When it is deployed within an occlusion it is constrained by the clot and vessel wall and thus must adopt a curved shape in order to expand. This curved shape can be considered to have an inside face (against the clot) and an outside face (against the vessel wall). When delivered through a microcatheter to a target site the device orientation may not be known to the user, and may not be within their power to control. An advantage of this design is that either surface of the device may become the inside or outside surface, so that the device is effectively reversible.

The flat device may comprise a portion that compresses an area of the clot in order to form a blood communication channel across the clot. Such a channel serves two key purposes: 1) it reduces the pressure gradient across the clot, thus reducing one of the forces that must be overcome in order to retract the clot and 2) it provides a flow path for oxygenated, nutrient carrying blood to reach the ischemic area distal of the clot. This portion may comprise a tubular or cylindrical shape such as shown in FIGS. 7, 9, 10, or a partially cylindrical or “U” shape as shown in FIG. 19, or other shape such that a discrete portion of clot is displaced in order to create a channel free of clot from the proximal to the distal end of the clot.

All of the devices described herein may also comprise a distal fragment capture portion, such as illustrated in FIGS. 1, 9, 12 and 14. This portion is ideally deployed distal of the clot to prevent the distal migration of any clot fragments that might be liberated during retrieval.

FIG. 1a shows a clot retrieval system 100 of this invention comprising a clot engagement body 101 connected to a shaft 102 at its proximal end and to a fragment protection portion 113 at its distal end. The clot engagement body comprises a framework of axial struts 105 and cross struts 107, with the cross struts comprising proximal connection points 108 and distal crowns 106. In other embodiments alternative designs of the clot engagement body may be employed such as shown in FIGS. 3 to 10. The fragment protection portion
113 in this case comprises a strut framework 103 and a fibre matrix 104. The shape of the clot engagement body 101 in the freely expanded configuration is predominantly flat. The device has an inner and an outer side when deployed in the vessel, with the inner side 112 in contact with the clot and the outer side 111 facing away from the clot. The deployment orientation of the device defines which side is in contact with the clot and which side is facing away. The sides of the device are similar so that either side can be deployed in contact with the clot without affecting the device performance. The clot engagement body material may be Nitinol or a similar super elastic or pseudoelastic alloy, or may be stainless steel or other material with sufficient elastic strain to allow recovery upon deployment from a microcatheter. The material may be laser cut from a flat sheet of material or from a tube and then further processed to be flat.

FIG. 2a shows a section view through an occlusive clot 110 in a vessel 125 through which a microcatheter 109 has been passed. A thrombectomy device 100 is shown within the microcatheter 109 in its collapsed delivery configuration. To introduce this device the thrombus or blood clot 110 is first crossed with a guidewire and microcatheter 109 as per standard interventional procedures. The guidewire is then removed and the device introduced as per standard procedure. The flat shape of this device allows it to expand between the clot and the vessel wall following the circumference of the vessel as shown in FIG. 2c, resulting in the device forming a ‘U’ shape after deployment, with the inner side of the clot engagement body 112 facing and engaging with the clot, and the outer side of the clot engagement body 111 facing the vessel wall. Positioning the device between the clot and the vessel wall reduces the contact area between the clot and the vessel wall reducing the engagement between the clot and vessel wall and subsequently the force required to dislodge the clot from the vessel. Hence by retracting the device, the clot can be dislodged and retrieved to a proximally positioned catheter or sheath, aided by aspiration if required. Alternatively the microcatheter or intermediate catheter can be forwarded to partially reshesh the device causing the cell pattern of the device 100 to close, pinching the clot between the struts improving the grip between the device and the clot. The arms of the ‘U’ shape may also bend in towards the clot during redeployment or remove the grip of the device on the clot and facilitating removal. The device and clot may be reshewnshed and fully removed through the intermediate catheter or the partially resheshed device and clot may be retracted with the intermediate catheter to a proximally positioned guide catheter or sheath. This may be done with or without the aid of aspiration.

The distal end of the clot engagement body may be connected to or be integral to a fragment protection portion 113 as shown in FIG. 1b. The fragment protection portion may be flat, tubular, cone shaped or irregularly shaped in the freely expanded configuration, and may be substantially planar or occupy a volume to form a “3D” filtering body such as the mesh structure shown in FIG. 2d. In the deployed configuration in the vessel this portion provides a way of capturing embolic fragments preventing their release in the bloodstream. The fragment protection portion may be constructed from the struts of the device, threaded, knitted or broided fibres, polymer films or other material that traps embolic debris while only partially restricting blood flow.

In the embodiment shown in FIG. 1a, the clot engagement body 101 is formed of a repeating cell pattern 107 along the length of the device and is flat in the freely expanded configuration. The cut pattern may include various cell shapes and unconnected crowns.

FIGS. 2c and 2d show a detailed sectional view of the microcatheter and wrapped device of FIG. 2a. When the device is in this collapsed configuration the clot engagement body may be wrapped in a circular orientation 127 as shown in FIG. 2d or the device may wrap down so that the struts align in a linear orientation 126 as shown in FIG. 2e. This collapsed linear orientation may promote the device to expand in a linear manner facilitating the expansion of the device between the clot and the vessel wall.

FIG. 3a shows an embodiment of the device (in an isometric view) which maintains a flat shape even when deployed in the vessel. This figure shows the flat device 150 deployed in a vessel 151, and positioned under an occlusive blood clot 152. The flat section of the device 154 is connected to a proximal shaft 153 to facilitate introduction and retrieval of the device. The flat section 154 consists of a pattern of struts 158 and cells 159 which engage with and embed into the clot. The use of a flat device may improve performance in gripping and removing the clot from the vessel, as the clot is not significantly compressed by the device unlike a tubular device which exerts a radial force along the length of the clot.

FIG. 3b shows a side view of the device and clot shown in FIG. 3a. In this view the struts 155 of the flat device 156 are shown embedded in the clot 152. This embedding causes portions of the clot 157 to protrude through the device cells improving the grip of the device on the clot. This view illustrates how significant clot compression is not required for the device to achieve good grip on the clot.

The level of strut embedding and clot protrusion into the device cells influence the level of grip the device can exert on the clot. The device cut pattern such as strut width, length, cell shape and size, crown inner diameter, floating crown design, all influence the level of strut embedding in the clot. FIGS. 4, 5, and 6 show various embodiments with different cell shapes and cut patterns. FIG. 4 shows a flat device 175 with a number of disconnected floating crowns 178. FIG. 5 shows a similar flat device 200 except the central crowns are connected together by a ‘backbone’ strut 208. FIG. 6 shows another iteration of the flat device with multiple cells 229 connected along the length of the flat device 225.

In another embodiment shown in FIG. 7 the flat pattern is combined with a tubular mid-section 252 which provides a flow lumen through the device on initial deployment in the clot. This flow lumen 252 may be formed by an integral or by a separate tubular component. On deployment the flat section of the device still expands between the clot and the vessel wall each side of the flow lumen. FIGS. 8a and 8b shows an alternative flat pattern 275 which can be heat-set to form a circular or U shape channel 288 in the device. This can be achieved by clamping the device in a fixture 285, such as that shown in FIG. 8a, prior to heat treatment. The cell pattern shown 280 has different cell sizes and shapes for the outer flat section 281 and the central U channel 279 to minimise the risk of the clot blocking the flow in the central channel on deployment, and to improve device flexibility.

FIG. 9 illustrates a device 300 which is very similar in design to device 250 of FIG. 7, but also comprises a distal mesh component 301. This distal mesh component may be attached to the distal end of the tubular mid-section 302 or to a connecting member 303 which runs through the tubular member and connects to a proximal elongate shaft 304.
distal mesh component 301 may be formed from one or more filaments or fibres, which may be monofilaments or multifilaments, and may be of a high strength polymeric material such as Ultra-High Molecular Weight Polyethylene (UHMWPE), Liquid Crystal Polymer (LCP), Polyethylene (PE), Polyethylene Terephthalate (PET), Polyamide (PA), Polyethylene Naphthalate (PEN) or an Aramid, or may be of a metal material. If of metal material the fibres or filaments are preferably formed from a shape memory or superelastic material such as Nitinol, so that they can recover form a compressed configuration within a microcatheter to form a dense mesh of a diameter approximately equal to that of the vessel in which the device is deployed so as to prevent the distal migration of clot fragments.

[0108] In the embodiment shown in FIG. 10 the device consists of a central tubular component 321 providing a flow lumen, combined with radiating arms 327 along the length of the device. These radiating arms 327 are connected to the proximal shaft 324 through connecting member 325, and are connected to a fibre or wire 323 at connection points 322 and expand between the clot and vessel wall on deployment, reducing friction between the clot and the vessel wall. During retraction the fibres provide additional engagement with the clot and help to grip and dislodge the clot from the vessel, and retrieve it to the proximal catheter or sheath. This Figure also shows the proximal shaft 324 and a distal radiopaque tip 328 on the device.

[0109] In another embodiment of the device as shown in FIGS. 11a-d, a flat section of the device 355 is formed by heat-setting a portion of a tubular device into a flat configuration, FIG. 11b. The section of the device heat-set into a flat configuration may be adjacent to a tubular section or can section of the device or in between two tubular sections, or be the full length of the device. This forming method can result in the flat section containing 2 layers of struts and crowns 370 and 371. The cut pattern of the device 354 prior to flattening may be configured so that after reshaping to a flat configuration both layers have the same strut pattern with struts and crowns aligned on top and bottom. Alternatively the strut pattern may be designed so that the struts do not align but leave spaces for the clot to embed in between the struts 372. This allows the struts to pinch the clot, FIG. 11c, when the device is retracted or partially reshulted into an intermediate catheter, guide catheter or microcatheter. The clot pinching by the struts increases the grip of the device on the clot and improves the ability of the device to dislodge difficult clots. This construction method facilitates combining the flat section 355 with a tubular 356 and cone shaped 358 distal fragment protection section.

[0110] In another embodiment of the device shown in FIGS. 12 and 13, the device 400 is formed in a helical shape where the body of the device conforms within the vessel so that it is predominantly in contact with the vessel wall along the full length of the device. The centreline of the device also forms a helical path in this case. This device can be formed by laser cutting the required strut pattern 409 from a tube or by cutting a flat sheet and then wrapping the flat part around a cylinder 408 prior to heat-setting. Therefore the device has a similar shape to wrapping a wide ribbon around a cylinder. When viewed along the vessel axis, this device does not impinge significantly into the vessel lumen. By positioning the device between the clot and the vessel wall, the area of clot in contact with the vessel wall is reduced which minimises the friction between the clot and the vessel and reduces the dislodgement force. This device also has the benefit of not compressing the clot when the clot is inside the lumen of the device which makes the clot easier to dislodge. Typical stentriever devices engage the clot so that the clot is predominantly positioned on the outer radial surface of the device with partial protrusion of the clot into the open cells of the cut pattern between the struts. The device of the invention facilitates entire clot being positioned within the lumen of the device without the clot being compressed by the struts and crowns. During aspiration with a syringe or vacuum pump the engagement of the clot on the device with typical stentriever devices can inhibit the flow of the clot into the aspiration or intermediate catheter due to the engagement between the clot and the device struts. This embodiment of the device facilitates aspiration as the clot is fully in the lumen of the device and the struts do not impede the flow path of the clot into the aspiration catheter.

[0112] FIG. 14a illustrates another embodiment 425 of a helical device of this invention similar to device 400 shown in FIGS. 12 and 13. This device comprises an elongate generally planar framework 429, which may be made from wire or from interconnected strut elements. Framework 429 is configured in a spiral or helical shape and is connected at its proximal end 428 to an elongate shaft 427, and at its distal end 430 to a fragment protection section 426, which itself terminates in a distal tip 431.

[0113] FIG. 14b shows an end view of the device of FIG. 14a, clearly illustrating the fragment protection section 426 which is intended to minimise the risk of losing embolic material during clot dislodgement and retrieval.

[0114] The helical shaped component can be used as an outer cage to engage and remove the clot, or as before, as shown in FIG. 15, can also be used as an inner component 451 within an outer cage 453 providing a flow channel for the restoration of flow when deployed within the clot.

[0115] An additional embodiment shown in FIG. 16 shows a flat device 485 which has been twisted along the length of the device. The device comprises a framework of struts 482. In an unconstrained configuration, the centre-line of the device is a straight line and the sides 481 of device are twisted around this axis in a double helix shape similar to a twisted ladder or ribbon. As in all the designs described here, this component could be used to engage the clot for dislodgement and retrieval or it could be part of an assembly and act as an inner component providing a flow channel for immediate restoration of flow on deployment. When acting as a flow channel, this component is positioned inside an outer cage which predominantly engages the clot.

[0116] The device 500 shown in FIG. 17a-e has a body section 501 and a distal fragment protection section 502. When viewed along the vessel axis the cross section of the body section has an ‘S’ shape as shown in FIG. 17b-c. In the unconstrained configuration, the outer arms of the ‘S’ shape 509 are curved with the mid-section 510 forming a diameter. This device diameter can vary in length typically in the range of 0.5 mm up to 10 mm. The device is designed so that on deployment in the clot 515, the clot engages with the cell pattern on the outer parts of the device, and can also protrude into the opening 511 between the device arms and diameter section potentially filling one side of the ‘S’ shape. The other side of the ‘S’ shape provides a protected flow lumen 512 for restoration of blood flow on deployment of the device. Both sides of the ‘S’ shape are equivalent and either side can be deployed in contact with the clot, as shown in FIGS. 17d and
17e. The side of the device in contact with the clot will depend on the deployment orientation. To dislodge the clot the device is retracted back to a proximally positioned balloon occlusion guide catheter, standard guide catheter or sheath, under aspiration. Alternatively an intermediate or distal access catheter may be used to apply distal aspiration and the device can be fully or partially resheathed into the catheter. During resheathing the clot protruding into one side of the ‘S’ profile can be pinched and gripped by the arms of the ‘S’ shape improving the grip of the device on the clot. The clot pinching can also be achieved by partial resheathing of the device into the microcatheter.

[0117] The edges 505 of the arms 509 of the ‘S’ shape may be profiled or curved to improve clot engagement and increase clot protrusion into one side of the device.

[0118] FIGS. 18a and 18b show other embodiments of the device where a flow channel 601 and ‘C’ shaped outer cage 602 are shown in a straight configuration (FIG. 18a) and a helical configuration (FIG. 18b). These images show only the outlines of both components and do not show the details of the cell pattern or struts which may be any of those described and/or illustrated herein.

[0119] In an alternative embodiment of the design shown in FIG. 19a-c, the flat portion of the device 610 has a sinusoidal or wave like edge 611 combined with a tubular, ‘S’ shape or ‘U’ shape central section 612 as shown in the cross sectional views in FIGS. 19b and 19c. The wave like edge 611 to the flat portion may improve the flexibility of the device as it is deployed or retracted around tortuous bends within the vasculature. The ‘S’ cross sectional shape 615 has the benefit of always providing a flow lumen through the device to restore blood flow on deployment in the clot regardless of orientation. Regardless of which side of the device is deployed in contact with the clot, a protected channel exists which allows blood flow through the device. The ‘S’ shape increases the clot contact area between the clot and the device improving the ability of the device to engage with and dislodge the clot. The ‘S’ cross section shape may also spiral along the length of the device as shown in FIG. 20. The ‘S’ shape also provides additional clot grip during partial or full resheathing of the device by the intermediate catheter as clot within the arms of the ‘S’ is pinched between struts and the intermediate catheter tip.

[0120] FIG. 21a-c shows another embodiment of the device 650 in which a mid-section 651 is formed so that when viewed from the side, FIG. 21b, perpendicular to the vessel axis, it has a sinusoidal or wave shape 652. The device consists of two sides as before with one side facing into or in contact with the clot and the other side generally facing away from the clot. If the device is inverted, the side previously facing into the clot would then be facing away from the clot.

[0121] Forming the device in a wave shape varies the contact pressure between the clot and the device along the length of the device, reducing the compression of the clot by the device in places. The device can also elongate when placed under tension such as during the dislodgement of a clot from the vasculature. This minimises the linear compression of the clot and may elongate the clot during dislodgement reducing the friction between the clot and the vessel wall and hence the dislodgement force required by the device to remove the clot.

[0122] In another embodiment of the device shown in FIG. 21c, the device has curved edges 655 when viewed along the axis of the vessel. This has the benefit of increasing the area of the device in contact with the vessel wall reducing the contact pressure applied to the wall by the device. When viewed along the vessel axis, the curved edges 655 can be tangential to a curve 657 which is tangential to flat section 656 or part of a continuous curve so that the cross sectional shape is that of a flattened ‘S’. This cross sectional shape has the benefit of an improved wrapping profile in the collapsed configuration. It also facilitates the curved sections of the device pinching the clot during partial or full resheathing into the intermediate catheter, guide catheter, sheath or microcatheter.

[0123] FIG. 21d shows a view of the fragment protection cone 653 which is formed of laser cut nitinol struts 660 and may also include polymer fibres to increase the density of the fragment protection mesh. This cone may be formed by laser cutting a flat sheet and then wrapping in a cone shape. The sheet material may then be joined together at the seam 662, for example by laser welding. Alternatively the seam may be left unconnected to facilitate ease of cleaning during the procedure if the device needs to be reused. A radiopaque coil 661 or tip may also be added to the cone for increased visibility under fluoroscopy.

[0124] A portion of the mid-section 651 is shown in FIG. 21e. This view shows the floating or unconnected crowns 665 and 667 which are formed to be out of plane with the remainder of the mid-section. These crowns contact the clot on deployment improving the ability of the device to dislodge the clot. In addition these crowns maintain contact with the clot as the device is retracted around a bend providing a particular benefit in retrieving the clot past bends and branches.

[0125] FIG. 22a-c show an isometric, plan and side view respectively of a clot engaging portion 700 of another device of this invention.

[0126] Device 700 comprises proximal struts 706 and 707, which may be connected to a proximal elongate member (not shown). These proximal struts are connected distally to a network of strut elements, comprising side rails 701 and 702, floating cells 705, and connecting arms 703.

[0127] Various devices of the invention such as the device 700 may have two superimposed wave patterns:— a first pattern of a relatively short wavelength and amplitude superimposed on a second pattern of a relatively long wavelength and amplitude. The device strut elements are configured in such a way as to impart a relatively strong restorative force to the first wave pattern to restore it from its relatively straight delivery configuration within a microcatheter to an undulating or sinusoidal configuration when deployed within a clot in a blood vessel. This allows the device to engage with the clot and grip it gently but securely for initial dislodgement. In order to retrieve the clot it may be necessary to retract the device and clot proximally into larger vessel diameters before they can be safely withdrawn into a large receiving catheter. The second wave pattern assists the device in retaining control of the captured clot during this retraction. This large amplitude pattern effectively enables the device to size itself to the vessel as the vessel size increases, and thus enables the device to remain in contact with the clot in larger more proximal vessel diameters in which the clot might otherwise become dislodged from the device.

[0128] The two different wave patterns can be seen most clearly in side view in FIG. 22c, where the effective centreline of the entire clot engaging portion follow the large amplitude curve 723, and the two side rails 701 and 702 of the device follow shorter pitch sinusoidal patterns 721 and 722 respectively.
[0129] FIG. 23a shows a schematic view of a device 750 engaged with a clot 757 in a vessel segment 756. Device 750 is similar to device 700 but has an additional fragmentation portion 751 with a distal tip 752 appended to its distal end. Device 750 comprises a body section 754 which may be connected at proximal end 753 to an elongate shaft (not shown). Body section 754 is configured to expand into an undulating wave somewhat sinusoidal wave pattern when deployed as shown in FIG. 23a. This wave pattern comprises peaks 761 which cause local compression of the clot in discrete regions adjacent said peaks such as region 760 shown, but causes minimal overall compression on the bulk of the clot body. Thus the overall properties of the clot are relatively unchanged by the action of the device on deployment, but discrete regions 760 are compressed and gripped by the device. This compression causes some local dehydration of the clot, increasing its coefficient of friction and thus increasing its grip and engagement with the device. But because the bulk of the clot remains uncompressed by the device the frictional engagement of the clot with the vessel is not significantly increased.

[0130] FIG. 23b shows the system of FIG. 23a when retracted into a larger diameter more proximal vessel segment 758. In this larger diameter vessel the body section 754 adopts a second wave pattern generally described by centreline 759. This may be achieved by configuring the device to adopt the shape shown in FIG. 23b in its freely expanded state, which may be done by heat setting a Nitinol device for example. Thus the device when collapsed within a microcatheter for delivery has a certain stored energy. Upon deployment within a clot a significant portion of this energy is released to enable the device to adopt the short wavelength pattern of FIG. 23a. Upon retraction of the device into a larger diameter vessel the remaining stored energy is exerted to enable the device to adopt a superimposed long wavelength pattern as shown in FIG. 23b, which helps the device retain a grip on the captured clot by increasing the effective diameter of the device and maintaining apposition with clot and the vessel wall.

[0131] This and other embodiments of the device may have additional wave pattern features, such as the curvature of side rails 701 and 702 in plan view in FIG. 22b, and the “out of plane” protrusions of features such as floating crowns 705 which are illustrated more clearly in FIGS. 21b and 21c.

[0132] The device 800 shown in FIG. 24a is another embodiment of the invention. This device consists of a mid-section 801 which in one embodiment is formed from a flat sheet and set in a series of wave shapes with a flat or profiled cross section. This section can also be formed by flattening a cut tube or using an oval or elliptical cross sectional shape tube when viewed along the vessel axis. In the embodiment shown, the mid-section 801 is combined with a fragment protection feature 802 and a proximal section 803. The proximal section may be a separate component and be formed in a tubular or cone shape. This section is connected to the device by one or more proximal struts 804, which are connected to a collar 805 positioned on the device shaft 806.

[0133] The collar 805 may be fixed to shaft 806 or it may be free moving and be able to slide along the shaft. FIG. 24b shows a plan view of the device with the proximal section 803 in a proximal position relative to the mid-section 801. This is typical of the orientation of the device on initial deployment in the blood clot or occlusion. When the device 800 is retracted to dislodge the clot, the proximal section 803 initially remains static due to friction between the component and the vessel wall. On device retraction the mid-section 801 and clot move proximally relative to section 803 allowing the clot to be partially retracted under the struts of the proximal section. This helps to grip the clot and prevent loss of contact with the clot as the device is retracted into larger diameter vessels. Continued retraction of the device causes all sections to move proximally as a single unit as travel of the proximal section 803 is limited by the collar 805 on shaft 806 contacting the proximal joint of the mid-section 801. The device and clot can then be retracted to a proximal catheter for removal from the vasculature.

[0134] FIG. 25a shows an isometric view of another embodiment of the invention. In this device 850 the body section 851 is formed with a longitudinal wave shape similar to that described in FIG. 22. The body section 851 is also connected to two or more pull wires 853 and 854 at one or more connection points 855. These pull wires 853, 854 extend to a proximal handle (not shown) where the user or physician can apply tension to the wires. By placing these wires under tension the wave profile of the body section 851 can be modified and the pitch distance between peaks 859 and 860 can be shortened. This can cause increased pinching of the clot within the valley 856 sections of the wave shape. FIG. 25b shows the device 850 deployed in a vessel (not shown) and engaging with a blood clot 857. By actuating the pull wire 853 through the microcatheter 858, the clot 857 is gripped and compressed in the valley section 856 of the device.

[0135] FIG. 25c shows an end view along the vessel axis of another iteration of the device. In this design, applying tension to the pull wire 861 and 862 by the user causes the side wings of the 'S' shape 863 and 864 to move in towards the diameter section 865 of the 'S'. When this device is deployed in contact with a blood clot (not shown), the actuation of the side wings 863 and 864 pinch the clot improving the grip of the device on the clot. Alternatively by pushing the wires 862 and 861 the user may improve the ability of the device to expand fully and engage the clot over a bigger area.

[0136] FIGS. 26a-26d show a method of use of a device of this invention. A guidewire 904 and microcatheter 902 are inserted in the vasculature 900 and are advanced across the obstructive clot 901 using conventionally known techniques. When the microcatheter 902 is positioned distal to the occlusive clot 901, the guidewire 904 is removed from the vasculature 900 to allow the clot retrieval device 910 to be advanced through the microcatheter 902. The device 910 is advanced in a collapsed configuration until the distal tip of the device reaches the distal end of the microcatheter 902. The microcatheter 902 is retracted while the position of device 910 is maintained to deploy the clot retrieval device across the clot 901 in a manner that the distal end of the device 910 is preferably positioned distal of the clot 901. The device 910 consists of a clot engagement portion 912 connected to an elongated proximal shaft portion 911. The device 910 expands so that it engages with the occlusive clot in a wave pattern which causes local compression of the clot in discrete regions adjacent the peaks of the device, but causes minimal overall compression on the bulk of the clot body. The device 910 may be allowed to incubate for a period of time within the clot 901 if desired. Flow arrest in the vessel may be utilised by inflating a balloon 915 on the guide catheter as per standard technique. Retracting the device 910 dislodges the clot from its position in the artery and further withdrawal of the device retrieves the clot 901 until it can be retrieved into the guide.
catheter 903 or introducer sheath. FIG. 26d illustrates the clot engaged with the device during retrieval into the guide catheter 903. Flow occlusion, aspiration and other standard techniques may be used during the clot retrieval process. The device 910 may be rinsed in saline and gently cleaned before reloading in the insertion tool. The device 910 may be reintroduced into the microcatheter to be redeployed in additional segments of occlusive clot, if required.

[0137] FIGS. 27a-27d show schematic details of the device shown in FIGS. 26a-26d and illustrate one embodiment of the device shown in FIG. 23. FIG. 27a shows a side view of the device containing a clot engagement portion 930 and a proximal shaft 931. FIG. 27b shows a plan view of the device while FIG. 27d shows an isometric view of the same device. FIG. 27c shows the cross sectional view A-A as detailed in FIG. 27a. The device may be formed from a flat sheet and heat-set in a series of wave shapes while maintaining a flat cross section. In another embodiment the device may have a curved or profiled cross section or be formed by flattening a cut tube or using an oval or elliptical cross sectional shape tube when viewed along the vessel axis. As with all the embodiments shown, this device can incorporate a fragment protection feature, for example such as that illustrated in FIGS. 23a and 23b.

[0138] In one embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 3.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. In a preferred embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 2.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. In a most preferred embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 1.5 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. The pitch of the wave pattern in the freely expanded state is preferably between 1.0 and 4.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. The pitch of the wave pattern in the freely expanded state is preferably between 0.5 and 2.0 times the amplitude of the wave pattern. A preferred embodiment for use in a human middle cerebral artery the amplitude of the wave pattern is between 2.0 mm and 6.0 mm and the pitch of the wave pattern is between 3.0 mm and 8.0 mm.

[0139] Another embodiment of the device is shown in FIGS. 28a-28c. An isometric view of the device is shown in FIG. 28a, while FIG. 28b shows a side view and FIG. 28c shows a plan view of the same device. The device 952 consists of a clot engagement section 950 connected to an elongated shaft 951. Section 950 may be formed by laser cutting a cell pattern into a flat sheet and heat setting into a partial or full wave pattern to engage with the clot to provide good dislodgement grip but minimal gross clot compression. Such a device may comprise any of the cell patterns disclosed elsewhere herein, and may be used to retrieve clot as described in relation to FIGS. 26a-d. The wave-like shape of the device varies the contact pressure between the clot and the device along the length of the device, creating peaks 953 in which the device exerts a relatively high compressive force on the clot and troughs 954 in which the device exerts little or no compressive force on the clot. The troughs 954 between the peaks 953 serve as a reception space into which the clot can freely flow as it compressed at peaks 953. The regions of higher compression allow the struts of the device to embed within the clot, creating a mechanical grip at both a microscopic (strut) and macroscopic (device wave pattern) level. The device can also elongate when placed under tension such as during the dislodgement of a clot from the vasculature. This minimises the linear compression of the clot and may elongate the clot during dislodgement reducing the friction between the clot and the vessel wall and hence the dislodgement force required by the device to remove the clot.

[0140] FIG. 29a shows an example of a different flat device pattern that may be formed into a longitudinal or lateral wave-like shape. The cut pattern may be optimised to align particular cell features such as crowns or cross struts with the peaks and troughs of the wave pattern to maximise clot embedding and grip. For example the row of cells 973 may be aligned with the wavelength so that the crowns 974 are positioned at the peak or trough (maximum or minimum wave amplitude) of the device wave. Similarly cross struts 975 may be positioned to be at the peak or trough of the wave, or at the centre-line mid wave height. The outer edge of the device 971 may be curved to minimise vessel contact pressure.

[0141] The device illustrated in FIG. 29a may have a flat, curved or profiled cross section when viewed along the vessel axis, for example FIG. 29b shows a cross sectional view (B-B) of this embodiment. This cross sectional view illustrates a curved profile which can be heat set into the device prior to or as part of the forming process to produce the wave pattern. The cross sectional shape of the device may be a combination of flat and curved sections as shown in FIG. 29b, where the device is flat in the mid-section 980 combined with a curve section each side 981 and an additional straight section 982.

[0142] FIGS. 30a-30f show a method of use of another device 1006 of this invention, where the device adopts a generally spiral or helical configuration in the freely expanded state similar to that shown in FIG. 12. This device can be formed by laser cutting the required strut pattern from a tube or by cutting a flat sheet and then wrapping the flat part around a mandrel prior to heat-setting. FIGS. 30a-30f shows a method of use of a device of this invention. FIG. 30a shows a representation of an artery 1001 with a bifurcation and an occlusive clot 1002 positioned at the bifurcation. A microcatheter 1003 is inserted in the artery 1001 and is advanced across the obstructive clot 1002 using conventionally known techniques. The clot retrieval device 1006 can then be advanced through the microcatheter 1003 to the target location. The microcatheter is retracted while the position of device 1006 is maintained to deploy the clot retrieval device across the clot so that the fragment protection section of the device 1011 is preferably positioned distal of the clot 1002.

[0143] The device 1006 consists of a clot engagement portion 1010 connected to an elongated proximal shaft portion and a distal fragment protection section 1011. The clot engagement portion of the device 1010 expands into a helical configuration allowing the clot to partially or fully be enveloped by the device. This allows the device to grip and dislodge the clot while minimising the overall compression of the clot body, making the clot easier to remove. On initial dislodgement the clot may be partially outside or proximal to the device and may migrate towards the centre of the device during retraction to the guide catheter or sheath. The guide catheter 1005 and intermediate catheter 1004 are shown in FIGS. 30b-30f. In the method of use shown in FIG. 30d, the intermediate catheter 1004 is forwardly to the face of the clot 1002 and local aspiration applied prior to retrieval of the device and clot into the guide catheter 1005. This device can
also be used with flow occlusion, aspiration and other standard techniques typically used during the clot retrieval process. FIGS. 30a-30f illustrate how the fragment protection portion of the device 1011 can capture fragments 1012 of the occlusive clot 1002 which can break off or be liberated during dislodgement and retrieval into the guide catheter or sheath 1005.

[0144] FIG. 31 shows another embodiment 1030 of the device where a proximal portion of the device is configured in a generally spiral or helical shape 1031 (similar to device 1006 of FIG. 30) and is connected to a radial or tubular portion 1033. The helical portion may be connected to a proximal shaft 1034 or additional portions of the device. The distal tubular portion contains a fragment protection section 1035 and is connected to a distal atraumatic radiopaque tip 1032. The helical section 1031 shown is a schematic representation and would typically consist of a laser cut cell pattern. The helical portion of the device 1031 is intended to provide improved performance for the dislodgement of fibrin rich sticky clots while the tubular section 1030 provides good clot retention during retraction to the guide catheter or sheath. As with all embodiments shown, the device may be rinsed and gently cleaned before reloading in the insertion tool. The device may be reintroduced into the microcatheter to be redeployed in additional segments of occlusive clot, if required.

[0145] FIG. 32a shows an isometric view of another clot retrieval device of the invention comprising a clot engaging portion 1050 attached proximally to an elongate shaft 1051 and distally to an optional distal tip 1055. Clot engaging portion 1050 comprises a pair of side rails formed from cell elements 1052 to which are connected a plurality of clot engaging strut elements 1053 and 1054. Strut element 1053 and 1054 protrude from opposite sides of the plane defined by the side rails, as shown in end view FIG. 32b. This design is intended to operate in a similar principle to the previously disclosed wave-like devices, in that it is intended to provide local regions of high embedding force into the clot at cross struts 1053 and 1054, and adjacent regions of little or no embedding or radial force. The high embedding force at the cross struts creates a mechanical interference between clot and device, enabling the device to grip the clot securely, but because this embedding and resultant compression of the clot is applied over a very discrete and limited area there is minimal impact on the properties of the gross body of the clot. This is a very important advantage because the inventors have discovered that compression of the clot can cause the clot to become firmer and can increase its coefficient of friction, both of which can make it more difficult to retrieve.

[0146] FIG. 33a shows an isometric view of another clot retrieval device of the invention comprising a clot engaging portion 1080 attached proximally to an elongate shaft 1081 and distally to an optional distal basket 1082. Clot engaging portion 1080 comprises a plurality of adjacent segments 1083 and 1084 which are aligned at approximately right angles to each other. Each segment 1083 or 1084 may be generally flat in shape, but the resultant overall structure 1080 has a three dimensional structure as can be seen in the end view shown in FIG. 33b. These alternating segments create a similar pattern of regions of high compression and regions of low compression in the clot to the previously shown wave-like designs, with similar advantages in terms of clot grip and retrieval with minimal force.

[0147] It will be apparent from the foregoing description that while particular embodiments of the present invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. For example, while the embodiments described herein refer to particular features, the invention includes embodiments having different combinations of features. The invention also includes embodiments that do not include all of the specific features described.

[0148] The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.

1. A clot retrieval device for removing occlusive clot from a blood vessel comprising a clot engaging element having a constrained delivery configuration and an expanded deployed configuration, the clot engaging element having a first peripheral portion, a second peripheral portion and a clot engaging section extending between the first and second peripheral portions wherein, in the expanded configuration, the peripheral portions are laterally spaced apart, the clot engaging section extends between the peripheral portions, and wherein at least a portion of the device has a longitudinally extending undulating edge.

2. A clot retrieval device as claimed in claim 1 wherein the undulating edge has a wave-like form.

3. A clot retrieval device as claimed in claim 1 wherein the undulating edge has a sinusoidal wave form.

4. A clot retrieval device as claimed in claim 1 wherein the device has at least two wave patterns.

5. A clot retrieval device as claimed in claim 4 wherein the wave patterns are superimposed on one another.

6. A clot retrieval device as claimed in claim 4 wherein a first pattern has a wavelength and an amplitude and the second pattern has a wavelength and an amplitude which are larger than those of the first pattern.

7. A clot retrieval device as claimed in claim 2 comprising an activator for modifying the wave shape.

8. A clot retrieval device as claimed in claim 7 wherein the activator comprises at least one push wire and/or at least one pull wire.

9. A clot retrieval device as claimed in claim 1 wherein the clot engagement element comprises one or more clot gripping features.

10. A clot retrieval device as claimed in claim 1 wherein, in the constrained configuration, the clot engaging section is substantially flat.

11. A clot retrieval device as claimed in claim 10 wherein in the expanded configuration the clot engaging section is curvilinear.

12. A clot retrieval device as claimed in claim 10 wherein in the expanded configuration the clot engaging section is substantially flat.

13. A clot retrieval device as claimed in claim 1 wherein in the constrained and expanded configurations the clot engaging section is substantially curvilinear.

14. A clot retrieval device as claimed in claim 11 wherein in the expanded configuration, the clot engaging section is of helical or spiral form.

15. A clot retrieval device as claimed in claim 11 wherein in the expanded configuration, the clot engaging section is of generally s-shape.

16. A clot retrieval device as claimed in claim 1 wherein the clot engaging element has two surfaces which face in generally opposite directions and one or both surfaces is engagable with clot in the expanded deployed configuration.
17. A clot retrieval device as claimed in claim 1 wherein the device comprises a portion defining a flow channel for flow of blood when the device is in an expanded deployed configuration.

18. A clot retrieval device as claimed in claim 1 wherein the device comprises a proximal section, a distal section and a clot engaging section between the proximal section and the distal section wherein the proximal section is slidably movable relative to the clot engaging section.

19. A clot retrieval device as claimed in claim 18 wherein the proximal section comprises a collar and proximal struts extending from the collar and the clot engaging section comprises a proximal shaft and the collar is slidably movable relative to the proximal shaft.

20. A clot retrieval device as claimed in claim 19 wherein at least some of the struts of the proximal section extend in a distal direction for at least partial capture of clot between the clot engaging section and the proximal struts on proximal movement of the collar relative to the proximal shaft.

21. A clot retrieval device as claimed in claim 2 wherein the wave pattern has an amplitude of from 2.0 mm to 6.0 mm.

22. A clot retrieval device as claimed in claim 2 wherein the wave pattern has a pitch of from 3.0 mm to 8.0 mm.

23. A clot retrieval device as claimed in claim 2 wherein the clot engaging section comprises a plurality of cells defined by struts and crowns and wherein at least some of the struts and/or crowns are aligned with the wave-like form to enhance embedding of clot.

24. A clot retrieval device as claimed in claim 1 wherein the clot engaging section of the device has a transverse cross section having both flat and curved sections.

25. A clot retrieval device as claimed in claim 1 wherein, in the expanded configuration, at least a portion of the clot engaging section of the device is a generally spiral or helical configuration relative to a longitudinal axis.

26. A clot retrieval device as claimed in claim 25 wherein the clot engaging section further comprises a distal tubular section.

27. A clot retrieval device as claimed in claim 26 having a clot fragment portion at the distal end of the tubular section.

28. A clot retrieval device as claimed in claim 1 wherein the clot engaging section comprises a pair of side rails formed from cell elements to which a plurality of clot engaging strut elements are connected, the cell elements protruding from opposite sides of a plane defined by the side rails.

29. A clot retrieval device as claimed in claim 1 wherein the clot engaging section comprises a plurality of segments, adjacent segments being aligned at approximately 90° to each other.

30. A clot retrieval device as claimed in claim 29 wherein at least some of the segments are of flat shape in transverse cross section.

31. A clot retrieval device as claimed in claim 1 comprising a distal clot fragment protection section.

32. A method for removing occlusive clot from a blood vessel comprising the steps of:
providing a clot retrieval device having a clot engaging section with a longitudinally extending undulating form, the device having a constrained delivery configuration and an expanded deployed configuration;
advancing a microcatheter towards and across an occlusive clot;
loading the device into the microcatheter and advancing it to a distal portion of the microcatheter;
deploying the device to embed the clot; and
retrieving at least a portion of the device and the captured clot into a retrieval catheter.

33. A method as claimed in claim 32 comprising deploying the device within the clot.

34. A method as claimed in claim 32 comprising deploying a portion of the device between the clot and a portion of the vessel wall surrounding the clot.

35. A method as claimed in claim 33 comprising pulling the device proximally after deployment of the device within the clot.

36. A method as claimed in claim 35 comprising delaying pulling of the device proximally after deployment to further embed in the clot prior to pulling of the device and the clot proximally.

37. A method as claimed in claim 35 comprising pulling the device proximally into a larger vessel before retrieval into a retrieval catheter.

38. A method as claimed in claim 32 comprising twisting the device to embed the device into the clot.

* * * * *