(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(21) 申请号 20140337288.1
(22) 申请日 2014.07.16
(71) 申请人 上海恒健生物技术有限公司
 地址 200433 上海市杨浦区翔殷路1128号
 13FB1、B2、B3室
(72) 发明人 鹿亚超
(74) 专利代理机构 上海伯瑞杰知识产权代理有限公司 31227
 代理人 吴瑾瑜

(51) Int.Cl.
 C12Q 1/68(2006.01)
 C12N 15/11(2006.01)

(54) 发明名称
 一种Y染色体微缺失多重实时荧光PCR检测试剂盒及扩增引物对和探针

(57) 摘要
 本发明涉及为生物分子诊断试剂公开了一种Y染色体微缺失多重实时荧光PCR检测试剂盒，包括以下用于检测SY84、SY86、SY127、SY134、
SY254、SY255、SY157、SY242、SY1191和SY1291的扩增引物对和荧光探针；还包括用于检测以下位点的扩增引物对和荧光探针：(1)SY82、SY88、
SY1064和SY1065位点中的至少一个；(2)SY105、
SY121、SY143和SY153位点中的至少一个；(3)
SY160；(4) 用于检测AZFd区域缺失的SY145和
SY152位点中的至少一个。本发明最多可检测21
个STS位点，缺失覆盖率为99%。采用多重实时
荧光定量PCR技术平台，能够快速、高通量的检测
出Y染色体微缺失位点，区分AZFa、b、c、d区是
全部缺失还是部分缺失，获得更全面的Y染色体
微缺失信息。
1. 用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，包括以下特征性扩增引物对及荧光探针：用于检测 AZFa 区域缺失的 SY84 和 SY86 的扩增引物对和荧光探针，检测 AZFb 区域缺失的 SY127 和 SY134 的扩增引物对和荧光探针，检测 AZFc 区域缺失的 SY254、SY255、的扩增引物对和荧光探针；还包括用于检测以下位点的扩增引物对和荧光探针：

(1) 用于检测 AZFa 区域缺失的 SY82、SY88、SY1064 和 SY1065 位点中的至少一个；和
(2) 用于检测 AZFb 区域缺失的 SY105、SY121、SY143 和 SY153 位点中的至少一个；和
(3) 用于检测 AZFc 区域缺失的 SY160；和
(4) 用于检测 AZFd 区域缺失的 SY145 和 SY152 位点中的至少一个。

2. 权利要求 1 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，还包括用于检测 AZFb 区域缺失的 SY157、SY242、SY1191、SY1291 的扩增引物对和荧光探针。

3. 权利要求 1 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于：

特异性扩增 AZF a 区域 SY82 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 1 和 SEQ ID No. 2；SY82 荧光探针的核苷酸序列如 SEQ ID No. 45；

特异性扩增 AZF a 区域 SY84 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 3 和 SEQ ID No. 4；SY84 荧光探针的核苷酸序列如 SEQ ID No. 46；

特异性扩增 AZF a 区域 SY86 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 5 和 SEQ ID No. 6；SY86 荧光探针的核苷酸序列如 SEQ ID No. 47；

特异性扩增 AZF a 区域 SY88 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 7 和 SEQ ID No. 8；SY88 荧光探针的核苷酸序列如 SEQ ID No. 48；

特异性扩增 AZFb 区域 SY105 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 9 和 SEQ ID No. 10；SY105 荧光探针的核苷酸序列如 SEQ ID No. 49；

特异性扩增 AZFb 区域 SY121 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 11 和 SEQ ID No. 12；SY121 荧光探针的核苷酸序列如 SEQ ID No. 50；

特异性扩增 AZFb 区域 SY127 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 13 和 SEQ ID No. 14；SY127 荧光探针的核苷酸序列如 SEQ ID No. 51；

特异性扩增 AZFb 区域 SY134 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 15 和 SEQ ID No. 16；SY134 荧光探针的核苷酸序列如 SEQ ID No. 52；

特异性扩增 AZFb 区域 SY143 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 17 和 SEQ ID No. 18；SY143 荧光探针的核苷酸序列如 SEQ ID No. 53；

特异性扩增 AZFd 区域 SY145 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 19 和 SEQ ID No. 20；SY145 荧光探针的核苷酸序列如 SEQ ID No. 54；

特异性扩增 AZFd 区域 SY152 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 21 和 SEQ ID No. 22；SY152 荧光探针的核苷酸序列如 SEQ ID No. 55；

特异性扩增 AZFb 区域 SY153 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 23 和 SEQ ID No. 24；SY153 荧光探针的核苷酸序列如 SEQ ID No. 56；

特异性扩增 AZFc 区域 SY160 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 25 和 SEQ ID No. 26；SY160 荧光探针的核苷酸序列如 SEQ ID No. 57；

特异性扩增 AZFc 区域 SY254 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 58。
专利要求书

No. 29 和 SEQ ID No. 30 ; SY254 荧光探针的核苷酸序列如 SEQ ID No. 59 ;

特异性扩增 AZFc 区域 SY255 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 31 和 SEQ ID No. 32 ; SY254 荧光探针的核苷酸序列如 SEQ ID No. 60 ;

特异性扩增 AZFa 区域 SY1064 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 35 和 SEQ ID No. 36 ; SY1064 荧光探针的核苷酸序列如 SEQ ID No. 62 ;

特异性扩增 AZFa 区域 SY1065 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 37 和 SEQ ID No. 38 ; SY1065 荧光探针的核苷酸序列如 SEQ ID No. 63。

4. 权利要求 2 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，

特异性扩增 AZFc 区域 SY242 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 27 和 SEQ ID No. 28 ; SY242 荧光探针的核苷酸序列如 SEQ ID No. 58 ;

特异性扩增 AZFc 区域 SY157 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 33 和 SEQ ID No. 34 ; SY157 荧光探针的核苷酸序列如 SEQ ID No. 61 ;

特异性扩增 AZFc 区域 SY1191 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 39 和 SEQ ID No. 40 ; SY1191 荧光探针的核苷酸序列如 SEQ ID No. 64 ;

特异性扩增 AZFc 区域 SY1291 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 41 和 SEQ ID No. 42 ; SY1291 荧光探针的核苷酸序列如 SEQ ID No. 65。

5. 权利要求 1 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，

所述的荧光探针是连接荧光基团和淬灭基团的核苷酸。

6. 权利要求 5 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，

所述的荧光基团选自 NED、ALEX-350、FAM、HEX、VIC、TET、JOE、ROX、TEXAS RED、CY3、CY5 和 CY5.5；淬灭基团选自 MGB、DABCYL、BHQ1、BHQ2、BHQ3、TAMRA 和 ECLIPSE。

7. 权利要求 1 所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物，其特征在于，

所述的荧光探针类型为 TaqMan 探针、TaqMan-MGB 探针、分子信标、改良分子信标、双链荧光
置换探针、LightCycler 探针或双环探针。

8. 一种 Y 染色体微缺失多重实时荧光 PCR 检测试剂盒，其特征在于，包括权利要求 1 ～
7 任一项所述用于多重实时荧光 PCR 检测 Y 染色体微缺失的组合物。

9. 权利要求 8 所述 Y 染色体微缺失多重实时荧光 PCR 检测试剂盒，其特征在于，还包括
用于特异性扩增男性特有 SRY 基因 SY14 位点和 ALB 基因的引物对和荧光探针；

特异性扩增 SY14 位点的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 42 和 SEQ
ID No. 44 ; SY14 荧光探针的核苷酸序列如 SEQ ID No. 66 ;

10. 权利要求 9 所述 Y 染色体微缺失多重实时荧光 PCR 检测试剂盒，其特征在于，所
述特异性扩增 ALB 基因的引物对，上游和下游引物核苷酸序列如 SEQ ID No. 67 和 SEQ ID
No. 68 ; ALB 荧光探针的核苷酸序列如 SEQ ID No. 69。
说明书

一种Y染色体微缺失多重实时荧光PCR检测试剂盒及扩增
引物对和探针

技术领域
[0001] 本发明属于分子生物学领域，具体为生物分子诊断试剂，尤其是检测Y染色体微缺失的试剂盒。

背景技术
[0002] 近年来，我国育龄人口中不孕不育人数呈现出大规模增长，数量已超过2000万。20年前我国育龄人群中不育不育率仅为3%，而如今已经攀升到15%，这其中由男性不育引起的不育占到50%，比10年前增加了15%。
[0003] 由于男性不育症临床表现、治疗方法和治疗效果根据发病原因的不同而存在着较大的差异，因此男性不育症治疗的重点是要找到具体的致病原因，进行病因治疗。男性不育症的病因有：泌尿生殖道畸形、生殖道感染、精索静脉曲张、内分泌紊乱、遗传学因素和免疫因素等。但是目前仍有50%的患者找不到明确原因，属于特发性男性不育，其体检及内分泌检查均正常，精液分析显示有少精、弱精和畸形精子，被称为中重度弱精症。随着近几年临床诊疗技术的发展，人们发现这种疾病的发生往往与个体存在着某些染色体或遗传上的缺陷有一定关系。
[0004] Y染色体不仅是性别决定的关键因素，也在人类精子发生过程中发挥重要作用。1976年，Tiepolo等首先报道Y染色体长臂(Yq11)常染色质区存在精子发生相关基因，称为无精子因子(Azoospermia Factor, AZF)。并由此展开了研究Y染色体微缺失与男性不育关系的序幕。国外研究报道，少精子症和无精子症患者约有8.2%的Y染色体微缺失率。其中AZF区域微缺失与男性异常生精表型密切相关，被认为是导致男性无精症与严重少精症的最常见分子遗传学机制。AZF分为a、b、c、d四个亚区，其中与精子发生相关的基因有DAZ(deleted in azoospermia)、DFFRY(the Y-linked homologue of the DFFRX)、DBY(dead box on the Y)、RBMY(RNA-binding motif Y)等。DFFRY与DBY是a区的候选基因，而RBMY和DAZ则分别是b区和c区的候选基因。d区位于b区和c区之间，目前尚无任何候选基因。
[0005] 目前Y染色体微缺失常用的检测方法主要是多重PCR扩增后电泳检测序列位点标签(Sequence tagged sites,STS)或候选基因。尽管目前该方法已经成为Y染色体微缺失检测的行业标准，然而仍然存在许多不足：首先电泳的方法容易造成PCR产物污染导致假阳性；其次，该方法耗时、工序多，不利于大批量样本的检测。
[0006] 2004年欧洲男科学研究会和欧洲质量监控组织公布的Y染色体微检测指南中推荐在每个AZF区域使用2个STS：sY84(AZFα)、sY86(AZFα)、sY127(AZFβ)、sY134(AZFβ)、sY254(AZFc)、sY255(AZFc)。这也是目前市面上许多商业试剂盒所检测的位点。然而，仅仅对这6个STS检测会出现较大比例的假阴性，对Y染色体微缺失的覆盖率只有95%，且不能判断AZF各亚区的缺失类型，从而不能很好的指导临床干预及治疗。
发明内容
[0007] 本发明的目的在于提供一种男性Y染色体微缺失基因检测试剂盒，该试剂盒能稳定、快速、准确、高通量、高覆盖对男性Y染色体微缺失基因进行检测，且其对临床干预或治疗的指导作用更加明确。
[0008] 本发明提供了一种检测试剂盒，其中包括了针对2004年欧洲男科协会（EAA）和欧洲分子遗传实验室质控协作网（EMQN）联合发布的Y染色体微缺失检测指南中的所有检测位点的引物序列（SY84，SY86，SY127，SY134，SY254，SY255），还包括了4个中国人群缺失较多的STS位点（SY157，SY242，SY1191，SY1291），并包括了若干扩展分析位点。在初步筛查后，进行扩展分析，可以真杀死定a、b、c区域缺失发生的情况——部分还是完全缺失。
[0009] 用于多重实时荧光PCR检测Y染色体微缺失的组合物，包括以下特征性扩增引物对及荧光探针：用于检测a区域的SY84和SY86的扩增引物对和荧光探针，检测b区域的SY127和SY134的扩增引物对和荧光探针，检测c区域的SY254、SY255，SY157，SY242，SY1191，SY1291的扩增引物对和荧光探针；还包括用于检测以下位点的扩增引物对和荧光探针：
[0010] (1) 用于检测a区域（AZFa）缺失的SY82、SY88、SY1064和SY1065位点中的至少一个；和
[0011] (2) 用于检测b区域（AZFb）缺失的SY105、SY121、SY143和SY153位点中的至少一个；和
[0012] (3) 用于检测c区域（AZFc）缺失的SY160；和
[0013] (4) 用于检测d区域（AZFd）缺失的SY145和SY152位点中的至少一个。
[0014] 优选的，还包括检测c区域的SY157，SY242，SY1191，SY1291位点的扩增引物对和荧光探针。
[0015] 上述的荧光探针是连接荧光基团和淬灭基团的核苷酸，所述的荧光基团选自Alex-350，FAM，HEX，VIC，TET，JOE，ROX，TAMRA，CY3，CY5和CY5.5。淬灭基团选自DABCYL，BHQ1，BHQ2，BHQ3，TAMRA和ECLIPSE。荧光探针的类型可选用TaqMan探针、TaqMan-MGB探针、分子信标、改良分子信标、双链荧光置换探针，LightCycler探针以及双环探针，优选为TaqMan-MGB探针。
[0016] 优选的，所述的扩增引物对和探针序列分别为：
[0017] 特异性扩增Y染色体AZF a区SY82位点的引物对，其核苷酸序列为：上游5'-CCTTCTGTGTTTTGAGTTTTA-GT-TGAG（SEQ ID No.1），Tm58℃，下游5'-GGAATGGGATGTGGGATAAATA（SEQ ID No.2），Tm59℃；SY82荧光探针的核苷酸序列：AATTGCGTCAATGCTAG（SEQ ID No.35），Tm69℃。
[0018] 特异性扩增Y染色体AZF a区SY84位点的引物对，其核苷酸序列为SEQ ID No.3和SEQ ID No.4所示；上游5'-CCCTATTTTTTAAAGTGCTA（SEQ ID No.3），Tm60℃，下游5'-ATCTCCAGCCATGTTCTG（SEQ ID No.4），Tm58℃；SY84荧光探针的核苷酸序列：CTCTACCTTCC（SEQ ID No.46），Tm69℃。
[0019] 特异性扩增Y染色体AZF a区SY86位点的引物对，其核苷酸序列为，上游：5'-GGTAATGGCCTTTCCAGAGTTT（SEQ ID No.5），Tm58℃，下游：TCTACCTCCAGGACTGTGGAATC（SEQ ID No.6），Tm59℃；SY86荧光探针的核苷酸序列：CCAAAGACTGGGCCC（SEQ ID No.47），
Tm70℃。

[0020] 特异性扩增 Y 染色体 AZF a 区 SY88 位点的引物对，其核苷酸序列为：上游：TAGCATTAGACCACCATGTTGTC (SEQ ID No. 7)，Tm59℃，下游：CCTGCGCACTGGTGAAAAA (SEQ ID No. 8)，Tm60℃；SY88 荧光探针的核苷酸序列为：AGTTGCTCATGTCCTGAAT (SEQ ID No. 48)，Tm69℃。

[0021] 特异性扩增 Y 染色体 AZF b 区 SY105 位点的引物对，其核苷酸序列为：上游：GGTGTGTTGTGAGCACCTAGA (SEQ ID No. 9)，Tm59℃，下游：ATGGATATTGCAAGTGATGTGAAG (SEQ ID No. 10)，Tm58℃；SY105 荧光探针的核苷酸序列为：AACCCGAGAGATCA (SEQ ID No. 49)，Tm70℃。

[0022] 特异性扩增 Y 染色体 AZF b 区 SY121 位点的引物对，其核苷酸序列为：上游：TTGTAGCTTTGGAGCAACTGAAC (SEQ ID No. 11)，Tm59℃，下游：GTAAGAGTACAGAGTGCTGAG (SEQ ID No. 12)，Tm59℃；SY121 荧光探针的核苷酸序列为：CCTTTGAACCCAGATG (SEQ ID No. 50)，Tm70℃。

[0023] 特异性扩增 Y 染色体 AZF b 区 SY127 位点的引物对，其核苷酸序列为：上游：GGCTCAACACCAAGGAAGAAAAAG (SEQ ID No. 13)，Tm58℃，下游：CATATAAGGAAAAGCTTGACAC (SEQ ID No. 14)，Tm58℃；SY127 荧光探针的核苷酸序列为：AACTTACCAAGGCC (SEQ ID No. 51)，Tm69℃。

[0024] 特异性扩增 Y 染色体 AZF b 区 SY134 位点的引物对，其核苷酸序列为：上游：ACTGTCTGGCTACATAAAAG (SEQ ID No. 15)，Tm59℃，下游：TATGCACTCACAACCTTTGCTGTCG (SEQ ID No. 16)，Tm59℃；SY134 荧光探针的核苷酸序列为：CAGCTGGAAACCTTCAAT (SEQ ID No. 52)，Tm69℃。

[0025] 特异性扩增 Y 染色体 AZF b 区 SY143 位点的引物对，其核苷酸序列为：上游：CAGTCCAGATTGTTGGCTATTGT (SEQ ID No. 17)，Tm60℃，下游：AAAGTTGCTGGGAGGATGAG (SEQ ID No. 18)，Tm58℃；SY143 荧光探针的核苷酸序列为：AACATTGATTAGCTCCCAGAC (SEQ ID No. 53)，Tm68℃。

[0026] 特异性扩增 Y 染色体 AZF d 区 SY145 位点的引物对，其核苷酸序列为：上游：TTCTACACCTACACAAAACACTCAT (SEQ ID No. 19)，Tm58℃，下游：AGTTGACTTGGGAGGATG (SEQ ID No. 20)，Tm58℃；SY145 荧光探针的核苷酸序列为：AICTGACTTTTGGCTGGG (SEQ ID No. 54)，Tm69℃。

[0027] 特异性扩增 Y 染色体 AZF d 区 SY152 位点的引物对，其核苷酸序列为：上游：TCTGCGCATGTTCAGCTCTTCT (SEQ ID No. 21)，Tm59℃，下游：AATAATTTGACAGGGAGGTTACCTAC (SEQ ID No. 22)，Tm59℃；SY152 荧光探针的核苷酸序列为：TCATGCTAGAACCAACGCC (SEQ ID No. 55)，Tm68℃。

[0028] 特异性扩增 Y 染色体 AZF b 区 SY153 位点的引物对，其核苷酸序列为：上游：TTCTAGGAAAACACTTTAAATCCA (SEQ ID No. 23)，Tm59℃，下游：TTAACATCCTCGACATCAAGAC (SEQ ID No. 24)，Tm59℃；SY153 荧光探针的核苷酸序列为：AATGCAATAGCAAAACCCCA (SEQ ID No. 56)，Tm70℃。

[0029] 特异性扩增 Y 染色体 AZF c 区 SY160 位点的引物对，其核苷酸序列为：上游：CAAAATCTAGTTCCTTCCTT (SEQ ID No. 25)，Tm60℃，下游：
AGCTACGGGTCTCGAATGGAATA (SEQ ID No. 26), Tm 60℃; SY160 荧光探针的核苷酸序列：
CATGGATCATTCTATGAC (SEQ ID No. 57), Tm 68℃。

【0030】特异性扩增 Y 染色体 AZFc 区 SY242 位点的引物对, 其核苷酸序列为：
上游：GTCTCTATCTTTACCTACAGGCAATC (SEQ ID No. 27), Tm 59℃，下游：
GCTCTGTTGGACTACAAAGTG (SEQ ID No. 28), Tm 59℃; SY242 荧光探针的核苷酸序列：
CGCTGTCAAGCTTGG (SEQ ID No. 58), Tm 69℃。

【0031】特异性扩增 Y 染色体 AZFc 区 SY254 位点的引物对, 其核苷酸序列为：
上游：CTGCAAATCTGAGACTCTAGAACC (SEQ ID No. 29), Tm 59℃, 下游：CCCTAGCATCAATTACCAAA (SEQ ID No. 30), Tm 59℃; SY254 荧光探针的核苷酸序列：
CACCCAGTCTTATC (SEQ ID No. 59), Tm 68℃。

【0032】特异性扩增 Y 染色体 AZFc 区 SY255 位点的引物对, 其核苷酸序列为：
上游：GCTGCTACTGTGACGCACAC (SEQ ID No. 31), Tm 60℃, 下游 :AACGCTGCTGATGATTACAGGTAC (SEQ ID No. 32), Tm 59℃; SY255 荧光探针的核苷酸序列：
CCAAACACTGAAACTCCT (SEQ ID No. 60), Tm 70℃。

【0033】特异性扩增 Y 染色体 AZFc 区 SY157 位点的引物对, 其核苷酸序列为：
上游：CGGCTTCACTTTCTGAGTT (SEQ ID No. 33), Tm 60℃, 下游：AAAGCTAGAAAAAGTTGAACGC (SEQ ID No. 34), Tm 59℃; SY157 荧光探针的核苷酸序列：
CAATGATTCTTACATTTAC (SEQ ID No. 61), Tm 70℃。

【0034】特异性扩增 Y 染色体 AZFa 区 SY1064 位点的引物对, 其核苷酸序列为：
上游：AGCCCAGGCTCAGAT (SEQ ID No. 35), Tm 59℃, 下游：GGCTCTCCCACACTGTTCTGAT (SEQ ID No. 36), Tm 60℃; SY1064 荧光探针的核苷酸序列：
ACCAACAAACAAATCGAG (SEQ ID No. 62), Tm 70℃。

【0035】特异性扩增 Y 染色体 AZFa 区 SY1065 位点的引物对, 其核苷酸序列为：
上游：AGACCAAAAGAGCAAGCACT (SEQ ID No. 37), Tm 58℃, 下游：
TTCTATTGCTCTGCTTTTACACA (SEQ ID No. 38), Tm 59℃; SY1065 荧光探针的核苷酸序列：
CAAAACCAAACTACTGCTAGCA (SEQ ID No. 63), Tm 70℃。

【0036】特异性扩增 Y 染色体 AZFc 区 SY1191 位点的引物对, 其核苷酸序列为：
上游：TACGGGCTAGACGGTTAATCTG (SEQ ID No. 39), Tm 59℃, 下游：GGTTGGCAGGCCGTCTGTA (SEQ ID No. 40), Tm 59℃; SY1191 荧光探针的核苷酸序列：
TCGCTCAGTACCAAC (SEQ ID No. 64), Tm 69℃。

【0037】特异性扩增 Y 染色体 AZFc 区 SY1291 位点的引物对, 其核苷酸序列为：
上游：CGGCTTCACTTCTTCATG (SEQ ID No. 41), Tm 59℃, 下游：TGCGCTCAGCTCTAATCC (SEQ ID No. 42), Tm 59℃; SY1291 荧光探针的核苷酸序列：
CAGCGCCGCCTG (SEQ ID No. 65), Tm 70℃。

【0038】一种 Y 染色体微缺失多重实时荧光 PCR 检测试剂盒，包括上述用于多重实时荧光
PCR 检测 Y 染色体微缺失的组合物，即检测上述位点的特异性扩增引物和荧光探针。即包括
用于检测 a 区域的 SY84 和 SY86 的扩增引物对和荧光探针, 检测 b 区域的 SY127 和 SY134
的扩增引物对和荧光探针, 检测 c 区域的 SY254, SY255, SY157, SY1242, SY1191, SY1291 的扩
增引物对和荧光探针; 还包括用于检测以下位点的扩增引物对和荧光探针；

【0039】（1）用于检测 a 区域 (AZFa) 缺失的 SY82, SY88, SY1064 和 SY1065 位点中的至少一
个; 和
[0040] (2) 用于检测 A 区域 (AZFa) 缺失的 SY105、SY121、SY143 和 SY153 位点中的至少一个；和
[0041] (3) 用于检测 c 区域 (AZFc) 缺失的 SY160；和
[0042] (4) 用于检测 d 区域 (AZFd) 缺失的 SY145 和 SY152 位点中的至少一个。
[0043] 优选的，试剂盒中还包括用于特异性扩增男性特有 SRY 基因 (SY14 位点) 的引物对和荧光探针，引物对的核苷酸序列为，上游 AGATGCTGGCGAAGAATTGC (SEQ ID No. 43)，
Tm59℃，下游 GTTGGACTCGGTGCCGAGTAC (SEQ ID No. 44) Tm60℃；荧光探针的核苷酸序列为
TTTGCTTCCGCCGAGATC (SEQ ID No. 66)，Tm70℃。
[0044] 试剂盒中还有用于特异性扩增管家基因 ALB 基因的引物对和荧光探针，引物对上游和下游的核苷酸序列为，GCCCATTGCTCTGTATGCTT (SEQ ID No. 6) 和
TTCCACTGCTAGGCCCATAC (SEQ ID No. 68)。荧光探针的核苷酸序列为 TATGATCGGTACGACAG
CCATCCAAG (SEQ ID No. 69) 所示。
[0045] 所述试剂盒还包括实时荧光 PCR 反应所需试剂：MgCl2，热启动 Taq 酶，UNG 酶，
dATP，dCTP，dTTP，dUTP 和 PCR 反应缓冲液。
[0046] 所述的 MgCl2 浓度为 1.0～5.0mmol/L。
[0047] 所述的 dATP，dCTP，dTTP，dUTP 浓度均为 50～400 μmol/L，dUTP 浓度为 10～1000 μmol/L。
[0048] 检测时，可将试剂盒中各组引物对和探针分别加在 6～8 个反应管内，每个反应管
含有 2 组 3 组或 4 组用于检测位点缺失的特异性扩增引物对及荧光探针，所述的位点选自
SY14、SY82、SY84、SY86、SY88、SY105、SY121、SY127、SY134、SY143、SY145、SY152、SY153、
SY160、SY254、SY255、SY157、SY242、SY1064、SY1065、SY1191、SY1291 中的至少一个。优选
的，每组反应管内还含有特异性扩增管家基因 ALB 基因的引物对和相应的荧光探针。反应
管内，荧光探针上的发光基团各不相同。
[0049] 特异性扩增 ALB 基因的引物，引物对上游和下游的核苷酸序列为 SEQ ID No. 67 和
SEQ ID No. 68 所示。荧光探针的核苷酸序列为 SEQ ID No. 69 所示。
[0050] 一般 PCR 仅采用一对引物，而本发明采用多重 PCR 法 (multiplex PCR) 即多重核酸
扩增法，同一 PCR 反应体系中含有两对以上引物对多个靶序列进行 PCR 检测。多重 PCR 有
优势也有劣势，优势为：多重 PCR 具有高效性、经济简便性等特点，可以在同一反应管内同
时检出多种目标序列，可大大节省时间和成本，更能满足临床的要求；劣势为：多重 PCR 往
往因为引物过多，引物之间发生相互反应，影响彼此的扩增效率。因此，在设计引物和探针
的时候要格外注意应该避免引物与引物之间、引物与探针之间和探针与探针之间的交叉反
应，尽量做到引物和探针越短越好、越少越好，相互之间无交叉反应，此劣势也为设计上的
一大难点。本发明采用 TaqMan MGB 探针，在退火温度不变的情况下可减少探针长度，从而
降低和引物及其他探针交叉反应的几率，提高扩展效率，提高产品的灵敏度。
[0051] 本发明最多可检测 21 个 STS 位点，比现有技术（一般为 6 个）多；其中包括 4 个
中国人群特有位点；缺失覆盖率大于 99%，而现有技术一般为 95%。现有技术与现有试剂
盒及相关技术相比，本发明具有以下突出优点：
[0052] 采用多重实时荧光定量 PCR 技术平台，能够快速 (90 分钟)、高通量的检测出 Y 染
色体微缺失位点。
采用比欧洲标准更多的 STS 位点能够获得更全面的 Y 染色体微缺失信息。能够知道 AZF a、b、c、d 区是全部缺失还是部分缺失，现有技术不能区分完全还是部分缺失。

从 PCR 到读取检测结果均为闭管操作，极大程度上降低污染的可能性，避免假阳性。

附图说明

图 1 为实施例 1 中各位点的特异性扩增引物序列及探针的核苷酸序列
图 2 为实施例 2 中样品检测结果
图 3 为实施例 2 样品中正常男性 Y 染色体荧光检测结果。
图 4 为实施例 2 样品中样本 3 荧光检测结果
图 5 为实施例 2 样品中样本 5 荧光检测结果

具体实施方式

实施例 1

一、引物设计

如图 1 所示，用于检测 SY14、SY82、SY84、SY86、SY88、SY105、SY121、SY127、SY134、SY143、SY145、SY152、SY153、SY160、SY254、SY255、SY157、SY242、SY1064、SY1065、SY1191、SY1291 位点的特异性扩增引物对和荧光探针核苷酸序列如图 1 所示。

二、试剂盒

将上述引物对和探针分装在 8 个反应管内，A-H 管的引物和探针序列及反应体系中的浓度分别如表 1-1～表 1-8 所示，F 为上游引物，R 为下游引物，P 为探针。

表 1-1 A 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度（μmol/L）</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY145-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY145-R</td>
<td>0.2</td>
<td>AZFb 区域 SY145 序列</td>
</tr>
<tr>
<td>SY145-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY254-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY254-R</td>
<td>0.2</td>
<td>AZFc 区域 SY254 序列</td>
</tr>
<tr>
<td>SY254-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
说明 书

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度（μ mol/L）</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY86-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY86-R</td>
<td>0.2</td>
<td>AZFa 区域 SY86 序列</td>
</tr>
<tr>
<td>SY86-P</td>
<td>0.2</td>
<td>NED 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY127-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY127-R</td>
<td>0.2</td>
<td>AZFb 区域 SY127 序列</td>
</tr>
<tr>
<td>SY127-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY255-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY255-R</td>
<td>0.2</td>
<td>AZFc 区域 SY255 序列</td>
</tr>
<tr>
<td>SY255-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

[0069] 表 1-3 C 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度（μ mol/L）</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY134-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
</tbody>
</table>

[0070]

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度（μ mol/L）</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY134-R</td>
<td>0.2</td>
<td>AZFb 区域 SY134 基因序列</td>
</tr>
<tr>
<td>SY134-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY1065-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY1065-R</td>
<td>0.2</td>
<td>AZFa 区域 SY1065 序列</td>
</tr>
<tr>
<td>SY1065-P</td>
<td>0.2</td>
<td>NED 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY1291-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY1291-R</td>
<td>0.2</td>
<td>AZFc 区域 SY1291 序列</td>
</tr>
<tr>
<td>SY1291-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

[0072] 表 1-4 D 管引物与探针列表

[0073]
表 1-5 E 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度 (μmol/L)</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY121-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY121-R</td>
<td>0.2</td>
<td>AZFb 区域 SY121 基因序列</td>
</tr>
<tr>
<td>SY121-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY242-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY242-R</td>
<td>0.2</td>
<td>AZFc 区域 SY242 序列</td>
</tr>
<tr>
<td>SY242-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY1064-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY1064-R</td>
<td>0.2</td>
<td>AZFa 区域 SY1064 序列</td>
</tr>
<tr>
<td>SY1064-P</td>
<td>0.2</td>
<td>NED 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

表 1-6 F 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度 (μmol/L)</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY88-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY88-R</td>
<td>0.2</td>
<td>AZFa 区域 SY88 基因序列</td>
</tr>
<tr>
<td>SY88-P</td>
<td>0.2</td>
<td>NED 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY105-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY105-R</td>
<td>0.2</td>
<td>AZFb 区域 SY105 序列</td>
</tr>
<tr>
<td>SY105-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY160-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY160-R</td>
<td>0.2</td>
<td>AZFc 区域 SY160 序列</td>
</tr>
<tr>
<td>SY160-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

表 1-7 G 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度 (μmol/L)</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY143-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY143-R</td>
<td>0.2</td>
<td>AZFb 区域 SY143 基因序列</td>
</tr>
<tr>
<td>SY143-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY1191-F</td>
<td>0.2</td>
<td>异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY1191-R</td>
<td>0.2</td>
<td>AZFc 区域 SY1191 序列</td>
</tr>
<tr>
<td>SY1191-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
表 1-8 H 管引物与探针列表

<table>
<thead>
<tr>
<th>引物与探针名称</th>
<th>引物浓度（μmol/L）</th>
<th>扩展与检测对象及探针荧光标记基团</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY84-F</td>
<td>0.2</td>
<td>异性扩增与检测 Y 染色体</td>
</tr>
<tr>
<td>SY84-R</td>
<td>0.2</td>
<td>AZFa 区域 SY84 基因序列</td>
</tr>
<tr>
<td>SY84-P</td>
<td>0.2</td>
<td>NED 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY152-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY152-R</td>
<td>0.2</td>
<td>AZFd 区域 SY152 序列</td>
</tr>
<tr>
<td>SY152-P</td>
<td>0.2</td>
<td>VIC 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>SY157-F</td>
<td>0.2</td>
<td>特异性扩展与检测 Y 染色体</td>
</tr>
<tr>
<td>SY157-R</td>
<td>0.2</td>
<td>AZFe 区域 SY157 序列</td>
</tr>
<tr>
<td>SY157-P</td>
<td>0.2</td>
<td>FAM 为发光基团，MGB 为淬灭基团</td>
</tr>
<tr>
<td>ALB-F</td>
<td>0.2</td>
<td>特异性扩展血清白蛋白基因 ALB</td>
</tr>
<tr>
<td>ALB-R</td>
<td>0.2</td>
<td>ROX 为发光基团，BHQ2 为淬灭基团</td>
</tr>
<tr>
<td>ALB-P</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

实施例 2

（1）试剂准备：TaqMan2×PCR Master mix（含 10mmol/L Tris-HCl，pH8.3，50mmol/L KCl，Mg²⁺，热启动酶，UNG 酶，dNTP），或者全血抽提试剂盒。

（2）基因组 DNA 的提取：用常规分子生物学方法或市售试剂盒从抗凝全血中提取人基因组 DNA。

（3）实时荧光 PCR 扩增与检测。

a. 实时荧光 PCR 反应体系如表 2，包括 3mmol/L Mg²⁺，200 μmol/L dATP、dCTP、dGTP、400 μmol/L dUTP，200nmol/L 各特异性引物，200nmol/L 各探针，1U 热启动酶，0.3U UNG 酶，50ng 人基因组 DNA，并加标签。384 孔板内反应。

表 2 反应体系
反应体系

含有引物对-探针混合物的反应管 A (或 B、
C、D、E、F、G、H)

1X

TaqMan 2X PCR Master mix

8ul (不足用水补足)

DNA 模板

10ul

2ul (50ng)

b. 实时荧光 PCR 反应在 ABI 7900 仪器上进行，按以下条件进行扩增检测。

反应程序：第一阶段 95℃10min；第二阶段 95℃15sec，60℃60sec（荧光采集），
40 个循环。

四个荧光检测通道分别为 NED、VIC、FAM、ROX。

共检测 11 个样本，并用 PCR 检测作为对照。结果如表 3。

<table>
<thead>
<tr>
<th>样本编号</th>
<th>恒健</th>
<th>仁济医院</th>
<th>是否一致</th>
<th>一致率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C 区全缺失</td>
<td>C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C 区全缺失</td>
<td>C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A 区全缺失</td>
<td>A 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A 区全缺失</td>
<td>A 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B+C 区全缺失</td>
<td>B+C 区缺失</td>
<td>一致</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>B+C 区全缺失</td>
<td>B+C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B+C 区全缺失</td>
<td>B+C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B+C 区全缺失</td>
<td>B+C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B 区全缺失</td>
<td>B 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B 区全缺失</td>
<td>B 区缺失</td>
<td>一致</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A+B+C 全区缺失</td>
<td>A+B+C 区缺失</td>
<td>一致</td>
<td></td>
</tr>
</tbody>
</table>

注：仁济医院采用普通 PCR 电泳方法，6 位点。

（3）实验质量控制

阴性对照：以纯水作为模板的反应管内，应无任何扩增曲线产生。

阳性对照：以正常男性基因组 DNA 作为模板的反应管内，四个荧光频通道应均有扩增曲线产生。

内对照：以待测男性基因组 DNA 作为模板的反应管内，ALB 序列对应的荧光通道应有扩增曲线产生。

缺失判定：当满足上述三个要求时，无扩增曲线产生的荧光通道指示相应 AZF 区域的缺失。

正常男性 Y 染色体，样本 3 和 5 的荧光检测结果如图 3、4 和 5。

具体的，11 个样本在 ABI 7900 仪器上的荧光检测结果如图 2，本实验结果与 EAA/
EMQN 出版 AZF 检测指南标准推荐的检测方法（多重 PCR 加电泳法）的结果（6 个欧标位点）
完全一致，提示我们设计的实验方法有着较好的灵敏度和特异性。相比之下，我们的方法与
多重 PCR 加电泳法相比，有着明显的优势。

第一，检测位点覆盖全，与欧标 6 位点检测的“UN”结果相比之下，本发明 21 位点
检测结果更加全面，结果解度更加可靠，可用于临床“完全缺失”和“部分缺失”结果的判读；
第二，本实施例中采用四重荧光定量 PCR 实验技术，灵敏度高、特异性强，实验周期短。

[0103] 如图 2，第一排表示对错标 6 个位点进行多重 PCR 加电泳法已测得的各种缺失类型，如 b+c 表示 b 区和 c 区缺失；阳性表示阳性对照，UN 表示缺失。第二排标各 1～11 表示检测的 Y 染色体微缺失样本。从下图可以看出，仅仅对错标 6 个位点检测无法区分 a、b、c 区是部分还是完全缺失。但通过我们的试剂盒则可以精确判断缺失的类型。如从我们的试剂盒检测结果看样本 1 和 2 实际上为 c 区部分缺失，样本 3 和 4 实际上为 a 区完全缺失；样本 5 和 7 实际上为 b 区完全缺失，c 区部分缺失，样本 6 和 8 实际上为 b 和 c 区均完全缺失，样本 9 实际上为 b 区完全缺失，c 区部分缺失，样本 10 实际上为 b 区完全缺失，样本 11 为 a、b 和 c 区均完全缺失。这样获得的信息量比仅仅 6 个错标位点的丰富多了，本试剂盒对临床诊断的意义更大。

[0104] 比如 c 区部分缺失患者样本 1 和 2，从遗传学推断睾丸内生精小管组织结构基本正常，TESE（睾丸活组织穿刺取精）有较大可能性。该遗传学损害可垂直传递至后代男性胚胎。部分人群中，睾丸生精能力随年龄增长快速衰减，因此，或许可以进行尽早保存精液。再如，样本 5 到 8 虽然从错标 6 个位点检测看均为 b 和 c 区缺失，但是事实上样本 5 和 7 比 6 和 8 的睾丸生精能力要强一些，c 区并非完全缺失。而样本 9 比样本 10 的睾丸生精能力更弱，因为 b 区完全缺失的同时还存在 c 区部分缺失。
SEQUENCE LISTING

<110> 上海恒健生物技术有限公司
<120> 一种 Y 染色体微缺失多重实时荧光 PCR 检测试剂盒及扩增引物对和探针
<130>

<160> 69
<170> PatentIn version 3.3

<210> 1
<211> 29
<212> DNA
<213> 人工序列
<400> 1
cctttcgttt ctgagttttt ttacttgag 29

<210> 2
<211> 25
<212> DNA
<213> 人工序列
<400> 2
ggatgatggg atgtttgat aaata 25

<210> 3
<211> 25
<212> DNA
<213> 人工序列
<400> 3
cctattttgt ttaaggtgc cattc 25

<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
atctccagcc catgttctgt 20

<210> 5
<211> 22
<212> DNA
<213> 人工序列
<400> 5

ggtaatgct tccagagtt gt

22

<210> 6
<211> 25
<212> DNA
<213> 人工序列
<400> 6
tctagcctca aggactgtga gaatc

25

<210> 7
<211> 27
<212> DNA
<213> 人工序列
<400> 7
tagcattaat agaccaccat gtgttgc

27

<210> 8
<211> 19
<212> DNA
<213> 人工序列
<400> 8
ccctgctccag ctctccccaa

19

<210> 9
<211> 24
<212> DNA
<213> 人工序列
<400> 9
ggtgttgttg gtcgagcat aaga

24

<210> 10
<211> 25
<212> DNA
<213> 人工序列
<400> 10
atggatattg caagtgtgt gaaag

25

<210> 11
<211> 21
<212> DNA
<213> 人工序列

[0003]
<210> 11
ttggtacctt tgtgccctgaa c 21

<210> 12
<211> 30
<212> DNA
<213> 人工序列
<400> 12
gtaagagtt cagagtaggg atctgagatg 30

<210> 13
<211> 23
<212> DNA
<213> 人工序列
<400> 13
ggcctcacaag cggaaagaaa aag 23

<210> 14
<211> 26
<212> DNA
<213> 人工序列
<400> 14
catataagga aacaagctgt gacaca 26

<210> 15
<211> 23
<212> DNA
<213> 人工序列
<400> 15
acggtctgcc tcaccataaa aeg 23

<210> 16
<211> 30
<212> DNA
<213> 人工序列
<400> 16
tatgcaacctc agaaacctag ctagttcagt 30

<210> 17
<211> 23
<212> DNA
<213> 人工序列
<400> 17
cactccccat tgtgggtcat tgt 23
<210> 18
<211> 22
<212> DNA
<213> 人工序列
<400> 18
aaagttcacc tggaggatg ag

<210> 19
<211> 28
<212> DNA
<213> 人工序列
<400> 19
ttctaaactt caacacaaaa acactcat

<210> 20
<211> 29
<212> DNA
<213> 人工序列
<400> 20
agttgcaacct gagaataatt gtatgttac

<210> 21
<211> 22
<212> DNA
<213> 人工序列
<400> 21
ttgccatgt ttcatgcttt tg

<210> 22
<211> 27
<212> DNA
<213> 人工序列
<400> 22
aatatttga caggagggta cttagca

<210> 23
<211> 26
<212> DNA
<213> 人工序列
<400> 23
ttctagcaaa gcaaacttaa aatcca

<210> 24

[0005]
<211> 27
<212> DNA
<213> 人工序列
<400> 24
ttaacatctt gcagcatcac taagaac 27

<210> 25
<211> 24
<212> DNA
<213> 人工序列
<400> 25
tatctcatt gcaccttcc tatt 24

<210> 26
<211> 23
<212> DNA
<213> 人工序列
<400> 26	agctcagggt ctcgaagga ata 23

<210> 27
<211> 27
<212> DNA
<213> 人工序列
<400> 27
gttctatct ttcctcaca gcgaatc 27

<210> 28
<211> 21
<212> DNA
<213> 人工序列
<400> 28
gctcgggtg gactagcaat g 21

<210> 29
<211> 23
<212> DNA
<213> 人工序列
<400> 29
tctgcaatcc ttagactcca aac 23

<210> 30
<211> 21
<212> DNA

[0006]
<213> 人工序列
<400> 30
ccctagcatc aattccacca a
 21

<210> 31
<211> 19
<212> DNA
<213> 人工序列
<400> 31
gctgctcag tgcagccac
 19

<210> 32
<211> 23
<212> DNA
<213> 人工序列
<400> 32
aacgtgctga gttacaggt tcg
 23

<210> 33
<211> 23
<212> DNA
<213> 人工序列
<400> 33
cggcttcact ttttctaaag ctt
 23

<210> 34
<211> 23
<212> DNA
<213> 人工序列
<400> 34
aagcctagga aaaaagtaag ccg
 23

<210> 35
<211> 18
<212> DNA
<213> 人工序列
<400> 35
ageccccagc ctcaagct
 18

<210> 36
<211> 20
<212> DNA
<213> 人工序列
<400> 36

[0007]
gctccccac acttcctgat

<210> 37
<211> 22
<212> DNA
<213> 人工序列
<400> 37
agaccaaaga gccaaagcaat

<210> 38
<211> 26
<212> DNA
<213> 人工序列
<400> 38
ttcatttgct tgtctttaaac tacaca

<210> 39
<211> 25
<212> DNA
<213> 人工序列
<400> 39
tcaggctaga gttggttaac tggat

<210> 40
<211> 19
<212> DNA
<213> 人工序列
<400> 40
gttggtgcag gggctgtga

<210> 41
<211> 18
<212> DNA
<213> 人工序列
<400> 41
cgggttcacgc ccatttctc

<210> 42
<211> 19
<212> DNA
<213> 人工序列
<400> 42
tggttcacgc ctgtaatcc
<210> 43
<211> 20
<212> DNA
<213> 人工序列
<400> 43
agatgctgcc gaagaattgc

<210> 44
<211> 22
<212> DNA
<213> 人工序列
<400> 44
gttgcaacctc gcgtgagagt ac

<210> 45
<211> 17
<212> DNA
<213> 人工序列
<400> 45
aatgcctcc agttctca

<210> 46
<211> 15
<212> DNA
<213> 人工序列
<400> 46
cctctacctc ttcccc

<210> 47
<211> 15
<212> DNA
<213> 人工序列
<400> 47
ccaaagactg ggcccc

<210> 48
<211> 19
<212> DNA
<213> 人工序列
<400> 48
agtggtctctg gcgtgtaat

[0009]
<212> DNA

<213> 人工序列

<400> 49

aaccccgag agatca 16

<210> 50
<211> 17
<212> DNA
<213> 人工序列
<400> 50

cctttgaacc caagatg 17

<210> 51
<211> 15
<212> DNA
<213> 人工序列
<400> 51

aatctaccaagagccc 15

<210> 52
<211> 21
<212> DNA
<213> 人工序列
<400> 52

catcgtgaac tttctacttg a 21

<210> 53
<211> 22
<212> DNA
<213> 人工序列
<400> 53

aacattgatt agtctccagc ac 22

<210> 54
<211> 18
<212> DNA
<213> 人工序列
<400> 54

actgacttt tggctggg 18

<210> 55
<211> 18
<212> DNA
<213> 人工序列

[0010]
<400> 55
tcatgtgaa accaagac 18

<210> 56
<211> 19
<212> DNA
<213> 人工序列
<400> 56
aattgcaatag aaaaaacca 19

<210> 57
<211> 21
<212> DNA
<213> 人工序列
<400> 57
cattgcatta cattctatgac 21

<210> 58
<211> 14
<212> DNA
<213> 人工序列
<400> 58
cgctgtcagc cttg 14

<210> 59
<211> 15
<212> DNA
<213> 人工序列
<400> 59
cacccagtc tcatc 15

<210> 60
<211> 20
<212> DNA
<213> 人工序列
<400> 60
ccaaacactg aaacctacct 20

<210> 61
<211> 20
<212> DNA
<213> 人工序列
<400> 61
caagatttc caagatattc 20
<210> 62
<211> 18
<212> DNA
<213> 人工序列
<400> 62
accaccaaca aatcagag 18

<210> 63
<211> 21
<212> DNA
<213> 人工序列
<400> 63
caaacaaaaa taacggtcagc a 21

<210> 64
<211> 15
<212> DNA
<213> 人工序列
<400> 64
tcgctcact gcaac 15

<210> 65
<211> 13
<212> DNA
<213> 人工序列
<400> 65
caggcgcgcg ccg 13

<210> 66
<211> 17
<212> DNA
<213> 人工序列
<400> 66
ttttgttcccc gctagatc 17

<210> 67
<211> 22
<212> DNA
<213> 人工序列
<400> 67
gcccatggtc ctgttctgac tt 22

<210> 68
<211> 20
<212> DNA
<213> 人工序列
<400> 68
tttcactgtgagccatcac 20

<210> 69
<211> 28
<212> DNA
<213> 人工序列
<400> 69
tatgatgcgg tacacagac catcaag 28
<table>
<thead>
<tr>
<th>序号</th>
<th>STS</th>
<th>区域</th>
<th>上游引物 1</th>
<th>TM</th>
<th>下游引物 2</th>
<th>TM</th>
<th>探针</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SY14</td>
<td>SRY</td>
<td>AGATGCCGGAAGAAATGC</td>
<td>59</td>
<td>GTGCACTTGCCTAGAATAC</td>
<td>60</td>
<td>TTGCTTCGCCAGATC</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>SY82</td>
<td>A2Fa</td>
<td>CCCTATTTGTTTTAGGCGCCATTC</td>
<td>58</td>
<td>GAGATGGGAGGTGATGAGAAAATA</td>
<td>59</td>
<td>AAAAGCTCTCAAGTCTTA</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>SY84</td>
<td>A2Fa</td>
<td>CCCTATTTGTTTTAGGCGCCATTC</td>
<td>58</td>
<td>GAGATGGGAGGTGATGAGAAAATA</td>
<td>59</td>
<td>AAAAGCTCTCAAGTCTTA</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>SY86</td>
<td>A2Fa</td>
<td>GCTAATGGCTCCGACAGTCTG</td>
<td>58</td>
<td>TCACTGCTCAAGATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>SY88</td>
<td>A2Fb</td>
<td>CTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SY105</td>
<td>A2Fb</td>
<td>GCTAATGGCTCCGACAGTCTG</td>
<td>58</td>
<td>TCACTGCTCAAGATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>SY121</td>
<td>A2Fb</td>
<td>TTGGATCTTTTGCGGCTGAC</td>
<td>59</td>
<td>GCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SY127</td>
<td>A2Fb</td>
<td>GCTAATGGCTCCGACAGTCTG</td>
<td>58</td>
<td>TCACTGCTCAAGATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>SY134</td>
<td>A2Fb</td>
<td>ACTGCTCCTGCCACCAAAAC</td>
<td>59</td>
<td>TATGCACCTAGAATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>SY143</td>
<td>A2Fb</td>
<td>CTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SY145</td>
<td>A2Fb</td>
<td>GCTAATGGCTCCGACAGTCTG</td>
<td>58</td>
<td>TCACTGCTCAAGATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>SY152</td>
<td>A2Fb</td>
<td>GCTAATGGCTCCGACAGTCTG</td>
<td>58</td>
<td>TCACTGCTCAAGATGGATGGAATC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>SY153</td>
<td>A2Fb</td>
<td>TTGGATCTTTTGCGGCTGAC</td>
<td>59</td>
<td>GCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SY160</td>
<td>A2Fb</td>
<td>GTGCACTTGCCTAGAATAC</td>
<td>60</td>
<td>TTGCTTCGCCAGATC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SY242</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SY254</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SY255</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SY157</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SY1064</td>
<td>A2Fa</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SY1066</td>
<td>A2Fa</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SY1191</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SY1291</td>
<td>A2Fb</td>
<td>GCTGCTAATAGGACCAACCTTGTGCTTTC</td>
<td>59</td>
<td>CCAAGACTGGGCCC</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序号</td>
<td>型号</td>
<td>试剂</td>
<td>组合</td>
<td>标记</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>ST145</td>
<td>AZTd</td>
<td>A</td>
<td>VIC</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>ST254</td>
<td>AZTc</td>
<td>A</td>
<td>FAM</td>
<td>UN</td>
<td>UN</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>A</td>
<td>BOX</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>ST255</td>
<td>AZTc</td>
<td>E</td>
<td>FAM</td>
<td>UN</td>
<td>UN</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>ST277</td>
<td>AZFB</td>
<td>B</td>
<td>VIC</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>ST285</td>
<td>AZTc</td>
<td>E</td>
<td>MED</td>
<td>26</td>
<td>25</td>
<td>UN</td>
<td>UN</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>B</td>
<td>BOX</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>ST729</td>
<td>AZTc</td>
<td>C</td>
<td>FAM</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>ST734</td>
<td>AZFB</td>
<td>C</td>
<td>VIC</td>
<td>27</td>
<td>27</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>ST736</td>
<td>AZTa</td>
<td>C</td>
<td>MED</td>
<td>26</td>
<td>27</td>
<td>UN</td>
<td>UN</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>C</td>
<td>BOX</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>ST742</td>
<td>AZTc</td>
<td>D</td>
<td>FAM</td>
<td>UN</td>
<td>UN</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>ST121</td>
<td>AZFB</td>
<td>D</td>
<td>VIC</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>ST134</td>
<td>AZTc</td>
<td>D</td>
<td>MED</td>
<td>25</td>
<td>25</td>
<td>UN</td>
<td>UN</td>
</tr>
<tr>
<td>22</td>
<td>ALB</td>
<td>ALB</td>
<td>D</td>
<td>BOX</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>ST160</td>
<td>AZTc</td>
<td>E</td>
<td>FAM</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>ST195</td>
<td>AZFB</td>
<td>E</td>
<td>VIC</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>ST288</td>
<td>AZTa</td>
<td>E</td>
<td>MED</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>E</td>
<td>BOX</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>ST191</td>
<td>AZTc</td>
<td>F</td>
<td>FAM</td>
<td>UN</td>
<td>UN</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>ST143</td>
<td>AZFB</td>
<td>F</td>
<td>VIC</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>F</td>
<td>BOX</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>ST150</td>
<td>AZTd</td>
<td>G</td>
<td>VIC</td>
<td>UN</td>
<td>UN</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>ST152</td>
<td>AZTc</td>
<td>G</td>
<td>FAM</td>
<td>UN</td>
<td>UN</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>ST94</td>
<td>AZTa</td>
<td>G</td>
<td>MED</td>
<td>26</td>
<td>24</td>
<td>UN</td>
<td>UN</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>G</td>
<td>BOX</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>ST14</td>
<td>SKY</td>
<td>H</td>
<td>FAM</td>
<td>26</td>
<td>26</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>ST50</td>
<td>AZFB</td>
<td>H</td>
<td>VIC</td>
<td>UN</td>
<td>UN</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>ST22</td>
<td>AZTc</td>
<td>H</td>
<td>MED</td>
<td>26</td>
<td>26</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>ALB</td>
<td>ALB</td>
<td>H</td>
<td>BOX</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>25</td>
</tr>
</tbody>
</table>

图 2
图 3