

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2005-504334
(P2005-504334A)

(43) 公表日 平成17年2月10日(2005.2.10)

(51) Int.CI.⁷

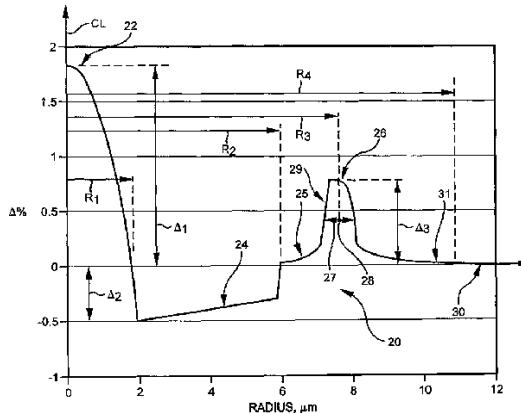
G02B 6/22

F 1

G02B 6/22

テーマコード(参考)

2 H 0 5 0


審査請求 未請求 予備審査請求 有 (全 53 頁)

(21) 出願番号	特願2003-531228 (P2003-531228)	(71) 出願人	501246857 コーニング・インコーポレーテッド アメリカ合衆国ニューヨーク州 14831 , コーニング, リバーフロント・プラザ 1
(86) (22) 出願日	平成14年9月9日 (2002.9.9)	(74) 代理人	100079119 弁理士 藤村 元彦
(85) 翻訳文提出日	平成16年3月25日 (2004.3.25)	(72) 発明者	ヘブゲン ピーター ジー アメリカ合衆国 ノースカロライナ州 2 8411 ウィルミントン ブリタニーレ イクスドライブ 7106
(86) 國際出願番号	PCT/US2002/028911	(72) 発明者	クワイ ゲング アメリカ合衆国 コネチカット州 064 60 ミルフォード ジョイロード 47 A
(87) 國際公開番号	W02003/027737		最終頁に続く
(87) 國際公開日	平成15年4月3日 (2003.4.3)		
(31) 優先権主張番号	09/965,406		
(32) 優先日	平成13年9月26日 (2001.9.26)		
(33) 優先権主張國	米国(US)		
(81) 指定國	EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), AE, AG, AL, AM, AT, AU, A Z, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP , KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, M N, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW		

(54) 【発明の名称】 Lバンド分散補償ファイバ及びこれを含む伝送システム

(57) 【要約】

本発明は、少なくとも3つのセグメントからなるセグメントコアを有し、且つ、Lバンドにおいて負の全分散と負の分散スロープとを有する分散補償光ファイバ(DCファイバ)に関する。セグメントコアの屈折率分布は、Lバンド波長バンド、すなわち約1570nmから1620nmの間で動作する高性能な通信システムに適する特性を有する光ファイバを提供するように選択される。本発明によるDCファイバは、-70から-225ps/km/nmの間の1595nmでの全分散と-0.7ps/km/nm²よりも負の分散スロープを呈する。DCファイバは、システムにおける非ゼロ分散シフトファイバに光学的に接続されて、非ゼロ分散シフトファイバの分散及び分散スロープを補償する。

【特許請求の範囲】

【請求項 1】

少なくとも3つのセグメントを有するセグメントコアを含み、屈折率分布が、約-70 ps/nm-kmと-225 ps/nm-kmの間の1595 nmでの全分散と、1595 nmで-0.7 ps/nm²-kmよりも負の分散スロープと、を与えるように選択されていることを特徴とする分散補償光ファイバ。

【請求項 2】

1595 nmでの全分散が約-95 ps/nm-kmと-225 ps/nm-kmの間にあって、分散スロープが1595 nmで-1.0 ps/nm²-kmよりも負であることを特徴とする分散補償光ファイバ。

10

【請求項 3】

1595 nmでの全分散が約-110 ps/nm-kmと-150 ps/nm-kmの間にあることを特徴とする分散補償光ファイバ。

【請求項 4】

前記全分散が約1570 nmから1620 nmの波長範囲内に亘って-60 ps/nm-kmと-190 ps/nm-kmの間にあることを特徴とする分散補償光ファイバ。

【請求項 5】

₁%が正、₂%が負、及び、₃%が正であることを特徴とする請求項1記載の分散補償光ファイバ。

【請求項 6】

1.5%よりも大なる正の₁%を有する中央コアセグメントと、

前記中央コアセグメントに隣接し、-0.4%よりも負の₂%を有するモートセグメントと、

前記モートセグメントに隣接し、0.7%よりも大なる正の₃%を有するリングセグメントと、を更に含むことを特徴とする請求項5記載の分散補償光ファイバ。

20

【請求項 7】

約1.5%から2.0%までの範囲内にある₁%及び約1.5 μmから2.0 μmまでの範囲内にある半径R₁を有する中央コアセグメントと、

約-0.3%から-0.9%までの範囲内にある₂%及び約4.5 μmから6.5 μmまでの範囲内にある半径R₂を有するモートセグメントと、

30

約0.6%から1.1%までの範囲内にある₃%及び約6.0 μmから8.0 μmまでの範囲内にある中央半径R₃を有するリングセグメントと、を更に含むことを特徴とする請求項1記載の分散補償光ファイバ。

【請求項 8】

1.7%よりも大なる正の₁%を有する中央コアセグメントと、

前記中央コアセグメントに隣接し、-0.5%よりも負の₂%を有するモートセグメントと、

前記モートセグメントに隣接し、約0.8%よりも正の₃%を有するリングセグメントと、を更に含むことを特徴とする請求項1記載の分散補償光ファイバ。

40

【請求項 9】

0.7%よりも大なる₃%を有するリングセグメントを更に含むことを特徴とする請求項1記載の分散補償光ファイバ。

【請求項 10】

前記リングセグメントは、0.7%と1.0%の間の₃%及び6.5 μmと8.0 μmの間の中央半径R₃を有することを特徴とする請求項9記載の分散補償光ファイバ。

【請求項 11】

約1.7%から1.9%までの範囲内にある₁%及び約1.7 μmから1.9 μmまでの範囲内にある半径R₁を有する中央コアセグメントと、

約-0.5%から-0.7%までの範囲内にある₂%及び約5.0 μmから6.0 μmまでの範囲内にある半径R₂を有するモートセグメントと、

50

約 0.75% から 0.9% までの範囲内にある R_3 % 及び約 6.5 μm から 8.0 μm までの範囲内にある半径 R_3 を有するリングセグメントとを更に含むことを特徴とする請求項 1 記載の分散補償光ファイバ。

【請求項 12】

1595 nm での分散を 1595 nm での分散スロープで割り算したカッパ値が 90 nm と 110 nm の間にあることを特徴とする請求項 1 記載の分散補償光ファイバ。

【請求項 13】

1595 nm での分散を 1595 nm での分散スロープで割り算したカッパ値が 95 nm と 100 nm の間にあることを特徴とする請求項 1 記載の分散補償光ファイバ。

【請求項 14】

所与の波長での分散を 1570 nm から 1620 nm の範囲内の所与の波長での分散スロープによって割り算したカッパ値の範囲が 80 nm と 155 nm の間であることを特徴とする請求項 1 記載の分散補償光ファイバ。

【請求項 15】

1595 nm で 7 dB 未満のピン配列曲げ損失であることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 16】

LP₀₁ よりもより高次の次のモードにカットオフ波長を有し、前記カットオフ波長が 20 50 nm 未満であることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 17】

15 μm^2 よりも大なる 1595 nm での実効面積を有することを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 18】

1595 nm での分散スロープが -0.7 ps / nm² - km と -2.5 ps / nm² - km の間にあることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 19】

1595 nm での分散スロープが -0.9 ps / nm² - km と -1.5 ps / nm² - km の間にあることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 20】

1595 nm での分散スロープが -0.9 ps / nm² - km よりも負であることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 21】

1595 nm での分散スロープが -1.2 ps / nm² - km よりも負であることを特徴とする請求項 1 記載の分散補償ファイバ。

【請求項 22】

約 1.5 μm と 2.0 μm の範囲内にある外側半径 R_1 を有する中央コアセグメントと、

約 4.5 μm と 6.5 μm の範囲内にある外側半径 R_2 を有するモートセグメントと、

約 6.0 μm と 8.0 μm の範囲内にある中央半径 R_3 を有するリングセグメントと、を更に含むことを特徴とする請求項 1 記載の分散補償光ファイバ。

【請求項 23】

前記リングセグメントは、約 10 μm と 12 μm の間にある外側半径 R_4 を有することを特徴とする請求項 22 記載の分散補償光ファイバ。

【請求項 24】

約 -95 ps / nm - km と -225 ps / nm - km の間の 1595 nm での全分散と、-1.0 ps / nm² - km よりも負の 1595 nm での分散スロープとを有する請求項 1 記載の前記分散補償ファイバを含むことを特徴とする光伝送システム。

【請求項 25】

前記分散補償ファイバに接続された非ゼロ分散シフトファイバを更に含み、前記非ゼロ分

10

20

40

50

散シフトファイバは、1595 nmで約0.065と0.08 ps/nm²·kmの間の分散スロープを有することを特徴とする請求項24記載の光伝送システム。

【請求項26】

前記非ゼロ分散シフトファイバは、1595 nmで約6.5と8.5 ps/nm·kmの間の分散を有することを特徴とする請求項24記載の光伝送システム。

【発明の詳細な説明】

【技術分野】

【0001】

本出願は、2001年9月26日付け米国特許出願第09/965,406号の優先権及び利益を請求する。

10

【0002】

本発明は、分散補償光ファイバ及びこれを含む伝送システムに関し、より詳細には、Lバンド(1570 nmから1620 nm)の範囲内で負の分散と負の分散スロープとを有する分散補償光ファイバ及び伝送システムに関する。

【背景技術】

【0003】

通信産業では、より高いデータ信号速度が必要とされている。故に、長距離に亘って高いビット速度で通信可能に設計された高性能な光ファイバの探索が強く望まれてきた。しかしながら、これらの高いデータ信号レートは、これに伴うペナルティを有するのである。特に、分散は、大なる実効面積のファイバを用いたシステムにおいて重要な課題である。更に、高いデータ信号速度の伝送ファイバの長さの関数として正の分散が生じる。ケーブル若しくは分散補償モジュール(DCM)に含まれる分散補償(DC)ファイバは、かかる分散を補償するように設計してきた。これらのDCファイバは、短い長さで、より長い伝送部分の正の分散及び正の分散スロープを補償するために一般的に負の分散スロープ及び負の分散を有するのである。DCファイバの好適な例として、本願出願人と同じ出願人による2001年3月9日付けの米国特許出願出願第09/802,696号がある。1570 nmと1620 nmの間のLバンド動作範囲内におけるDCファイバの曲げ特性及び分散特性(分散及び/又は分散スロープ)は、特に重要である。これは、DCMの巻き取りスプールに巻き取られたDCファイバにおいて特に重要である。

20

【0004】

30

以上のことから、DCファイバには以下が要求される:

- (1) DCMに含まれて、Lバンドの波長範囲(1570 nmから1620 nm)内でシングルモードであること
- (2) 通常の高性能な光ファイバ特性、例えば、高い強度、低い減衰及び許容範囲内の曲げ損失を維持すること
- (3) Lバンドにおいて非ゼロ分散シフトファイバ(NZDSF)の分散を特に効果的に補償すること

(定義)

以下の定義は、従来技術においても一般的な用法である。

- 屈折率分布は、屈折率と光ファイバ半径との間の関係である。
- セグメントコアは、少なくとも第1及び第2のセグメント、例えば、中央コア及びモートを有する。各々のコアセグメントは、それぞれ屈折率分布及び最大、最小屈折率を有する。
- コアのセグメントの半径は、屈折率分布のセグメントの始点及び終点に関して、若しくは、リングセグメントの場合はセグメントの中央位置に関して定義される。図2では、本願明細書において使用される半径の定義を図示している。同じ定義は図3乃至5でも使用されている。中央コアセグメント22の半径R₁は、クラッド30について計測された相対屈折率のゼロのラインと交差する位置まで、DCファイバの中央線(CL)から伸びた線分の長さである。モートセグメント24の外側半径R₂は、モートの外側端部がクラッド30に関して測定された相対屈折率のゼロのラインと交差する半径位置まで中央線か

40

50

ら伸びた線分である。半径 R_3 は、リングセグメント 26 の $_{3\%}$ の半分の値の位置で計測される。リングセグメント 26 の半値高さ幅は、リングセグメント 26 の半値 $\%_{\text{d}}$ で計測される。セグメント 26 の半径 R_3 は、中央線 (CL) から、半値高さ線セグメント 27 の中心位置 28 まで伸びた線分である。中心位置 28 は、 $_{3\%}$ の半値高さ位置のラインがリングセグメントの曲線と 2箇所で交差する位置の中点であって、セグメント 26 を二分して形成される。半径 R_4 は、リングセグメント 26 の最外側位置がクラッド 30 に対して計測されたゼロ屈折率の位置と交差する位置まで中央線 (CL) から測定される。

- 実効面積は、以下のように定義される。

【0005】

【数1】

10

$$A_{\text{eff}} = 2\pi (\int E^2 r dr)^2 / (\int E^4 r dr)$$

【0006】

ここで、積分範囲は 0 から E は 1595 nm で測定された伝搬光に関する電界である。

- 実効半径 (D_{eff}) は、以下のように定義される。

【0007】

【数2】

20

$$D_{\text{eff}} = (2/\pi^{1/2}) A_{\text{eff}}^{1/2}$$

【0008】

- 分布体積は、以下のように定義される。

【0009】

【数3】

$$2\pi \int \Delta\% r dr$$

30

【0010】

ここで、中央コアセグメント 22 の分布体積は、導波路の中心線 $R = 0$ から半径 R_1 まで延在する。リングセグメント 26 の分布体積は、半径 R_2 から半径 R_4 のリングセグメントの最後の位置まで延在する。相対屈折率は無次元であるので、分布体積の単位は $\% \mu m^2$ である。分布体積の単位 $\% \mu m^2$ は、本明細書中に亘って単にユニット又は単位と称される。

- $\%$ は、以下の式によって定義される屈折率の相対的な計測値で表される。

【0011】

【数4】

40

$$\Delta\% = 100 (n_i^2 - n_c^2) / 2n_c^2$$

【0012】

ここで、特に明記しない限り、 n_i は、各領域 i (例えば、22、24、26) の最大屈折率であり、 n_c は、特に明記しない限りクラッド (例えば、30) の屈折率である。

- アルファ分布は、屈折率分布に関し、 $(b) \%$ で表される。ここで、 b は半径であって、以下の式による。

【0013】

50

【数5】

$$\Delta(b)\% = [\Delta(b_0)(1 - [|b-b_0| / (b_1-b_0)]^a)] 100$$

【0014】

ここで、 b_0 は分布の最大位置、 b_1 は (b) %がゼロの位置、 b は b_i b_f である。ここで、%は上記の如く定義される。 b_i は分布の始点であって、 b_f は分布の終点であって、 a は実数である。分布の始点及び終点の位置が選択されて、コンピュータモデルに入力される。本明細書中で使用されているように、分布はステップ屈折率分布の後に続く場合、分布の始点位置は、分布及びステップ分布の交差位置である。モデル化において隣接した分布セグメントの分布と分布とを滑らかに接続するためには、前述した式は、以下のように書き直される。

10

【0015】

【数6】

$$\Delta(b)\% = [\Delta(b_a) + [\Delta(b_0) - \Delta(b_a)] \{ (1 - [|b-b_0| / (b_1-b_0)]^a) \}] 100$$

【0016】

20

ここで、 b_0 は隣接したセグメントの最初の位置である。

- ピン配列曲げ試験は、曲げに対する光ファイバの相対的な抵抗力を比較するために使用される。この試験を実行するために、まず、光ファイバは曲げ損失が生じないように配置されて、減衰が計測される。同じ光ファイバがピン配列の間を縫うように配置されて、再度、減衰が計測される。曲げによって引き起こされる損失は、2つの減衰の間の差である。ピン配列は、一列に配置されて、平坦な表面に垂直に固定されて維持されている一組10本の円筒ピンである。ピンの中心から中心の間隔は、5mmである。ピンの直径は、0.67mmである。光ファイバは、隣接したピンをそれぞれ反対側に通される。このテストの間、光ファイバは、導波路をピンの外周の一部に沿って配置するのに十分な張力を付加される。

30

【発明の開示】

【0017】

本願明細書において開示及び記載されている本発明によるDCファイバは、特にLバンドにおける特定のNZDSFの分散及び分散スロープを補償する場合に適している。

【0018】

本発明の1つの実施例によれば、DCファイバは、少なくとも3つのセグメントからなるセグメントコアを有し、各々のセグメントは、屈折率分布、相対屈折率%及び半径の大きさによって特徴づけられる。DCファイバの全体の屈折率分布構造は、設計される伝送システムが約1595nmに中間点を有するLバンド波長窓、及び、約1570nmから1620nmの間の波長バンドで動作するのに適した特性(属性)の特定のセットを提供するように選択される。本発明によるDCファイバは、NZDSFの分散及び/又は分散スロープの蓄積の補償に適している。すなわち、かかるDCファイバは、伝送システムを形成するNZDSFに接続されて、好ましくはLバンドにおいてNZDSFの分散及び/又は分散スロープ(最も好ましくは両方とも)を補償するように設計されている。DCファイバを含む伝送システムは、好ましくは、光増幅器、波長分割多重化のための素子や他の従来のシステムに使用される素子をも含むことができる。好ましくは、DCファイバは、スプール上に巻き取られた上でモジュールに収容される。

40

【0019】

本発明の実施例によれば、100kmのNZDSF伝送ファイバを使用した伝送システムの全分散(本願明細書においては、測定可能な分散 - 全分散 = 全分散 + 導波路分散 + 分布

50

分散として定義される)と本発明によるDCファイバの適切な長さによって、Lバンド(1570 nmから1620 nmの間)の全体に亘って+/-25 ps/nm未満のシステムを構築できる。本発明によって設計されたファイバ分布は、1595 nmで0.8 dB/km未満の優れた減衰を呈する。更に、ピン配列試験によって計測される曲げ損失は、好ましくは25 dB未満、より好ましくは10 dB未満、最も好ましくは3 dB未満である。すなわち、本発明によるDCファイバは、優れた曲げ損失を呈しているので、好都合にも、NZDSFの分散及び分散スロープを補償する伝送システムにおいて利用される小なる直径のDCMに巻き取られても使用され得るのである。

【0020】

DCファイバの好適な実施例によると、コアのセグメントの各々は屈折率分布によって特徴づけられて、好ましくはセグメントのうちの少なくとも1つが分布を有する。最も好ましくは、コア分布は、正の₁%の中央コアセグメント、負の₂%のモート領域及び正の₃%のリングセグメントを含む。好ましくは、リングセグメントは、非ステップ屈折率分布を有しており、モートセグメントからオフセットされている。

【0021】

本発明によるDCファイバは、少なくとも3つのセグメントを有するセグメントコアを有し、セグメントコアの屈折率分布は、1595 nmで、より好ましくは1570 nmから1620 nmのLバンド全体に亘って、負の全分散及び負の分散スロープを与えるように選択されている。本発明のDCファイバは、1595 nmでの全分散が約-70 ps/nm-kmから-225 ps/nm-kmの間にあって、分散スロープが1595 nmで-0.7 ps/nm²-kmよりも負である。より好ましくは、1595 nmでの分散は、約-95と-225 ps/nm-kmの間にあって、分散スロープは、1595 nmで-0.9 ps/nm²-kmよりも負である。更に、より好ましくは、1595 nmでの分散が約-110と-150 ps/nm-kmの間であって、より好ましくは、1570 nmから1620 nmのLバンド波長範囲に亘って-80から-190 ps/nm-kmの範囲内である。最も好ましくは、分散スロープは、1595 nmで-0.70 ps/nm²-kmよりも負であって、更に好ましくは、1595 nmで-0.9 ps/nm²-kmと-1.5 ps/nm²-kmの間である。

【0022】

好ましくは、DCファイバは、1570 nmから1620 nmのLバンド全体に亘って-0.5 ps/nm²-kmよりも負であって、より好ましくは-0.7よりも負であって、最も好ましくは-1.2 ps/nm²-kmよりも小さい。好ましくは、分散スロープは、Lバンド全体に亘って-0.5と-2.5 ps/nm²-kmの範囲内にあって、より好ましくは、-1.0と-1.8 ps/nm²-kmの間である。

【0023】

DC光ファイバは、1595 nmでの全分散を1595 nmでの分散スロープによって割り算して定義されたカッパ値において90 nmから110 nmの間の値を有し、より好ましくは、カッパ値は90 nmと105 nmとの間であって、最も好ましくは、95 nmと100 nmの間である。最も好ましくは、カッパ値は、1570 nmから1620 nmのLバンド範囲に亘って80 nmと155 nmの間であって、より好ましくは、85 nmから110 nmの間にある。

【0024】

DCファイバは、約1.8から5.0、より好ましくは約2.0から2.2の範囲内の分布を有する中央コアセグメントを含む。

【0025】

本発明の実施例によるDCファイバは、1.5%よりも大なる正の₁%を有する中央コアセグメントと、中央コアセグメントに隣接しており-0.3%よりも小なる負の₂%を有するモートセグメントと、モートセグメントに隣接しており0.6%よりも大なる正の₃%を有するリングセグメントとを含む。

【0026】

10

20

30

40

50

更に好ましくは、本発明の実施例によるDCファイバは、1.7%よりも大なる正の1%を有する中央コアセグメントと、中央コアセグメントに隣接しており-0.5%よりも小なる負の2%を有するモートセグメントと、モートセグメントに隣接しており0.8%よりも大なる正の3%を有するリングセグメントとを含む。

【0027】

本発明によるDCファイバの1595nmでの実効面積は、15 μm^2 よりも大であって、より好ましくは、17 μm^2 よりも大である。

【0028】

本発明の他の実施例によると、光伝送システムが分散補償光ファイバを有して与えられる。ここで、分散補償ファイバは、少なくとも3つのセグメントを有し、その屈折率分布は、1550nmで約-70ps/nm-kmから-225ps/nm-kmの間の全分散及び1595nmで-0.7ps/nm²-kmよりも小なる負の分散スロープを与えるように選択されたセグメントコアを含む。

【0029】

本発明の更なる特徴及び効果は、あとに続く発明の詳細な説明に記載され、当業者であればこの発明の詳細な説明の記載から直ちに明らかであろうが、添付図面とともに特許請求の範囲を含み発明の詳細な説明をも含む本願明細書に記載された発明を実施することによっても認識されるであろう。前述の一般的な説明及び以下の詳細な説明は単に本発明の典型例を示すにすぎず、特許請求の範囲により請求された本発明の特徴及び性質を理解するための概要若しくはフレームワークを提供することを目的としているに過ぎないことを理解されたい。添付の図面は、本発明の更なる理解を提供するために含まれてあり、ここに取り入れられて本明細書の一部を構成する。図面は、本発明の特定の実施例を示しており、発明の詳細な説明の記載とともに、本発明の原理及び動作の説明を与える。

【発明を実施するための最良の形態】

【0030】

本発明によるDCファイバは、所望の特性（特性値）の際だった特定のセットを生じる一連のセグメントコア設計において実施され、本願明細書において充分に記載されている。DCファイバコア設計のファミリーは、本願明細書において記載されている特定の実施例を含むが、これに限定されるものではない。すなわち、本願明細書に記載されている特定の実施例に対するモディファイが本発明の範囲内において、なされ得ることを認識されたい。第1の実施例が図1及び2に記載される。DCファイバ20は、少なくとも3つのセグメントをコアに含む。図1は、スケール通りに作図されておらず、また、各層の相対的なサイズはわかりやすくするために誇張されて記載されていると理解されなければならない。好ましくは、DCファイバ20は、中央コアセグメント22、隣接した円筒モートセグメント24及びこのモートセグメントを包囲している円筒リングセグメント26を有する。リングセグメント26は、中央線（CL）から、約62.5 μm の半径まで及ぶ円筒クラッド30によって更に包囲される。ファイバ20の全てのコア及びクラッド30は、例えばウレタンアクリレートまたは他の適切なコーティングの如き、保護コーティング34でコートされている。コーティング34は、異なる特性を有するいくつかの層からなることができる。例えば、最も内側の第1コーティング層は、最も外側の第2コーティング層よりも低いモジュラスを有し得る。しかしながら、すべての適切なコーティングが従来方法を利用して与えられ得ることを理解されたい。

【0031】

各コアセグメント22、24、26は、クラッド30に対してそれらの屈折率を変化させるためのドーパントを好ましくは含む。コアセグメント20は、クラッド30に対して、その屈折率を高めるためにゲルマニアを添加したシリカを好ましくは含む。クラッド30は、純シリカから好ましくは製造される。モートセグメント24は、シリカガラスにフッ素の如き適當な屈折率低下ドーパントを添加することによって形成される。リングセグメント26は、シリカにゲルマニアの如き適當な屈折率上昇ドーパントを添加することによってコアセグメントと同様に形成される。クラッドに対して屈折率を変化させることでの

10

20

30

40

50

きる他のドーパントが使用され得る。

【0032】

以上の如く、かかるドーパントの添加によって、正確に画定された分布を有するDCファイバコアが得られるのである。特に、適切なドーパント量の添加によって、中央コアセグメント22は正の₁%を有するようになされ、モートセグメント24は負の₂%を有するようになされ、及び、リングセグメント26は正の₃%を有するようになされる。₁%、₂%及び₃%は、従来通り、クラッド30の屈折率と相対的に正又は負であると定義されるのである。上記したように、DCファイバは、特にコーニング社によって製造されているLEAF(登録商標)の如きNZDSFの分散及びスロープの補償に効果的である。特に、DCファイバは、約7.93ps/nm-kmの1595nmでの分散及び0.0791ps/nm²-kmの1595nmでの分散スロープを有するNZDSFファイバを補償するように設計されている。NZDSFの分散及びスロープの補償をDCファイバの短い長さで達成するためには、DCファイバは、1595nmで高い負の分散及び高い分散スロープを有しなければならない。好ましくは、分散を分散スロープによって割り算した比(本願明細書ではカッパとして定義される)は、また1595nmで定義された範囲内にあるべきである。本発明によるDCファイバは、1595nmで約0.065と0.08ps/nm²-kmの間の分散スロープを有するすべての非ゼロ分散シフトファイバを補償するのに適している。本発明によるDCファイバは、1595nmで約6.5から8.5ps/nm-kmの間の分散を有する非ゼロ分散シフトファイバの分散を補償するためにも使用され得る。

10

20

30

40

50

【0033】

特に、図6に示すように、DCファイバのファミリーは、好ましくはLバンド動作窓に亘って約-60ps/nm-kmと-275ps/nm-kmの間で変動する全分散を有する。1つの実施例において、曲線120に示されるように、全分散は-80から-190ps/nm-kmの間で変動する。図7に示すように、Lバンド(1570nmから1620nm)全体に亘って、DCファイバのファミリーの分散スロープは、約-0.5ps/nm²-kmよりも負であって、多くは-0.7ps/nm²-kmよりも負であって、いくつかは-1.2ps/nm²-kmよりも負である。好ましくは、このDCファイバは、約-0.7ps/nm²-kmから-2.5ps/nm²-kmの間の1595nmでの分散スロープを有する。これらの相対的に低い負の分散値及び非常に低い負のスロープ値は、LバンドでのNZDSFにおいて補償される分散及び分散スロープを可能にする。図8に示すように、NZDSFのようなファイバを補償するとき、カッパ(分散を分散スロープによって割り算した値で定義される)が1595nmで約90nmから110nmの間にあって、好ましくは90nmから105nmの間にあって、最も好ましくは95nmから100nmの間であることが望ましい。好ましくはカッパ値は、1570nmから1620nmのLバンドに亘って約80nmと155nmの間の範囲内にある。特定の実施例において、図8の曲線120に示されているように、1570nmでのカッパ値よりも1570nmのカッパ値の方が高い値を有する。

【0034】

これに限定されるものではないが、1つの実施例によると、例えば、コーニング社によって製造されるLEAF(登録商標)ファイバの如きNZDSF36の100kmの長さを含む図9の伝送システム32は、1595nmで約7.93ps/nm-kmの正分散及び1595nmで約0.0791ps/nm²-kmの正分散スロープを有し、約1.8kmの本発明によるDCファイバ120の従来に比べて短い長さで補償され得る。1つの実施例において、DCファイバ120は、1595nmで約-142ps/nm-kmの分散及び1595nmで約-1.46ps/nm²-kmの分散スロープを有する。Lバンドに亘って約-110ps/nm-km及び-180ps/nm-kmの範囲内の分散と、Lバンドに亘って約-1.15ps/nm²-kmと約-1.7ps/nm²-kmの分散スロープと、を有するDCファイバ20をDCMに納めて使用すると、1570nmから1620nmのLバンド全体に亘っての全残余全分散は、伝送システム32で約+/-25p

s / km よりも大きくなないようにできる。伝送システム 32 は、例えば送受信機 40、光増幅器 42 及び受信機 44 などの従来の素子を含み得る。図 10 に示すように、任意には、伝送システム 32a は、受信機の代わりに 1 つ以上の追加の NZDSF 36b に連結され得る。

【0035】

表 1 では、1595 nm で約 7.9 ps/nm-km の分散及び 0.079 ps/nm²-km の分散スロープを有する NZDSF の分散スロープ及び分散を補償するための所望の特性を有する本発明の DC ファイバのファミリーを定義する。以下の実施例において、減衰が非常に小さく、曲げ誘起損失が許容される範囲内にあることを認識されたい。

【0036】

図 2 を参照すると、コア半径 (μm) に対する % の屈折率分布プロットが示される。これは、本願明細書において記載されている DC ファイバ 20 の第 1 の実施例であって、以下の表 1 の実施例 1 に対応している。特に、中央コアセグメント 22 は、約 2.0 のアルファ、1.83 % の最大 ₁%、及び、約 1.83 ミクロンの外側半径 R_1 のアルファ分布を有する。コアセグメントは、約 1.83 % の中央線上の相対屈折率パーセントを有するステップ屈折率領域を含み、分布が開始する約 0.2 μm の半径まで及ぶ。隣接したモートセグメント 24 は、コアセグメント 22 に当接してこれを包囲して、最も内側の半径 R_1 で外側半径 R_2 よりも僅かに負である ₂% を有するような、わずかなテーパーを有する屈折率分布である。モートセグメント 24 は、約 5.97 μm の外側半径 R_2 及び約 -0.5 % の最も負の ₂% を有する。実施例 1 では、半径 R_3 に位置するリングセグメントを含む。この半径 R_3 は、上記した如く、リングセグメントの中間位置半径である。 R_3 は、リングセグメント 26 の半値高さ幅の中央位置まで計測される。リングセグメント 26 は、モートセグメント 24 に当接してこれを包囲し、7.70 μm の半径 R_3 、約 0.9 μm のリングセグメント 26 の半値高さ幅及び約 0.8 % の ₂% を含む。リングセグメント 26 は、リングセグメント 26 のボディ 29 から R_2 でモートセグメント 24 の端部方向へ伸びる第 1 のテーパー部分 25 を含む。第 2 のテーパ化部分 31 は、ボディ 29 から R_4 のクラッド 30 の開始位置まで伸びる。

【実施例 1】

【0037】

DC ファイバ 20 は、図 2 に従ってモデル化され、上記した構成を有する。連続的にセグメントを数えて、中心線を包囲する中央コアセグメントである 1 で始まって、上記した定義に従って、コア構造が表 1 に記載されている。

【0038】

図 6 乃至 8 に図示したように、DC ファイバ 20 の実施例は、以下の予測された特性を有する：

- ・ 1570 nm での全分散が -90 ps/nm-km
- ・ 1595 nm での全分散が -115 ps/nm-km
- ・ 1620 nm での全分散が -148 ps/nm-km
- ・ 1595 nm での分散スロープが -1.18 ps/nm²-km
- ・ 2019 nm のカットオフ波長 λ_c (まっすぐな DC ファイバの LP_{01} よりもより高次の LP_{11} 及び LP_{02} の最も高いカットオフ波長)
- ・ 17.49 μm² の実効面積 (A_{eff})
- ・ 0.5 dB/km の 1595 nm での減衰
- ・ 6.4 dB のピン配列曲げ損失

【実施例 2】

【0039】

第 2 の 3 つのセグメントコア DC ファイバ 120 は、図 3 に示される屈折率分布に従ってモデル化された。この場合、コアセグメント 122 の 分布は、中央線から 0.2 μm の位置で始まって、2.0 の ₁% 及び 1.83 % の ₁% 及び 1.81 μm の R_1 を有する。モートセグメント 124 は、テーパ化ステップ分布を有し、-0.6 % の負の ₂% 及び 5.

10

20

30

40

50

3.8 μm の外側半径 R_2 を有する。リングセグメント 126 は、0.85% の R_3 %、7.02 μm の上記した定義による中心位置半径 R_3 及び 0.8 μm の中心位置幅を有する。追加の特性及び特徴は、表 1 に見いだされる。

【0040】

図 6 乃至図 8 に示すように、この DC ファイバ 120 は、以下の予測された特性を有する：

- ・ 1570 nm での全分散が -118 ps/nm-km
- ・ 1595 nm での全分散が -142 ps/nm-km
- ・ 1620 nm での全分散が -180 ps/nm-km
- ・ 1595 nm での分散スロープが -1.46 ps/nm²-km
- ・ 1975 nm のカットオフ波長 λ_c 。（まっすぐな DC ファイバの $L P_{01}$ よりもより高次の $L P_{11}$ 及び $L P_{02}$ の最も高いもののカットオフ波長）
- ・ 17.49 μm^2 の実効面積 A_{eff}
- ・ 0.6 dB/km の 1595 nm での減衰
- ・ 6.8 dB のピン配列曲げ損失

この実施例において、優れたが得られるとともに、曲げ損失は実施例 1 の設計よりも改善される。

【実施例 3】

【0041】

図 4 に示された分布を有する本発明による DC ファイバ 220 がモデル化された。コアセグメント 222 は、1.73% の相対屈折率 n_1 及び 1.83 μm の外側半径 R_1 を有する。分布は、2.2 の n を有する。モートセグメント 224 は、-0.5% の n_2 % 及び 5.87 μm の外側セグメント半径 R_2 を有する。リングセグメント 226 は、0.85% の n_3 % 及び 7.53 μm の中心点半径 R_3 を有する。この DC ファイバ 220 は、以下の予測された特性を有した。

- ・ 1570 nm での全分散が -75 ps/nm-km
- ・ 1595 nm での全分散が -95 ps/nm-km
- ・ 1595 nm での全分散が -126 ps/nm-km
- ・ 分散スロープが -1.04 ps/nm²-km、
- ・ 2010 nm のカットオフ波長 λ_c 。（まっすぐな DC ファイバの $L P_{01}$ よりもより高次の $L P_{11}$ 及び $L P_{02}$ のうち最も高いもののカットオフ波長）
- ・ 16.73 μm^2 の実効面積 A_{eff}
- ・ 0.5 dB/km の 1595 nm での減衰
- ・ 5.5 dB のピン配列曲げ損失

【実施例 4】

【0042】

3 つのセグメント設計の更なる実施例として、本発明による DC ファイバ 320 がまたモデル化された。図 5 を参照すると、コアセグメント 322 は、2.0 の n_1 、1.83% の n_1 %、1.79 μm の R_1 の n 分布を有する。モートセグメント 324 は、-0.7% の n_2 %、5.33 μm の外側半径 R_2 を有する。リングセグメント 326 は 0.85% の n_3 %、中心点半径 R_3 は 6.93 μm 、リングセグメントの半値高さ幅は 0.8 μm である。

【0043】

本発明による DC ファイバは、以下の予測された特性を有する：

- ・ 1570 nm での全分散が -165 ps/nm-km
- ・ 1595 nm での全分散が -222 ps/nm-km
- ・ 1620 nm での全分散が -275 ps/nm-km
- ・ 1595 nm での分散スロープが -2.40 ps/nm²-km
- ・ 1950 nm のカットオフ波長 λ_c 。（まっすぐな DC ファイバの $L P_{01}$ よりもより高次の $L P_{11}$ 及び $L P_{02}$ のうちの最も高いもののカットオフ波長）

- ・ 19.84 μm^2 の実効面積 A_{eff}
- ・ 0.8 dB / km の 1595 nm での減衰
- ・ 22 dB のピン配列曲げ損失

【実施例 5】

【0044】

3つのセグメント設計の更なる実施例として、本発明による DC ファイバ 42 が再度、モデル化された。図 11 を参照すると、コアセグメント 422 は 2.0 の 、 1.89 % の 1 % 及び 1.86 μm の R_1 の 分布を有する。モートセグメント 424 は、 -0.61 % の 2 % 、 5.68 μm の外側半径 R_2 を有する。リングセグメント 426 は 0.81 の 3 % を有し、中央半径 R_3 は 7.41 μm であって、リングセグメントの半値高さ幅は 0.9 μm である。 10

【0045】

本発明による DC ファイバは、以下の予測された特性を有する。

- ・ 1570 nm での全分散が -58 ps / nm - km
- ・ 1595 nm での全分散が -74 ps / nm - km
- ・ 1620 nm での全分散が -95 ps / nm - km
- ・ 1595 nm での分散スロープが -0.71 ps / nm² - km
- ・ 2037 nm のカットオフ波長 。(まっすぐな DC ファイバの LP01 よりもより高次の LP₁₁ 及び LP₀₂ のうちの最も高いもののカットオフ波長)
- ・ 15.63 μm^2 の実効面積 A_{eff}
- ・ 3.0 dB のピン配列曲げ損失、である。

【0046】

所望の特性を結果として達成する本発明による好適な DC ファイバのパラメータを表 1 に示す。上記した 3 つのセグメント設計でのパラメータが表 1 に示される。各特定のセグメントの最大 % が半径 R_1 に対応して記載される。半径がセグメントの中心点で計測される場合は、表に中にその旨を表記している。他の全ての半径は、セグメントの最も外側の半径であって、次の隣接したセグメントの最も内側の半径と一致する。ここで、セグメントは 1 (中央コアセグメントに対応する) から始まって外側に向かって計数される。これらの他の半径は、分布がクラッド屈折率と交差する位まで計測される。 20

【0047】

【表 1】

実施例	1	2	3	4	5
$\Delta_1\%$	1.83	1.83	1.73	1.83	1.89
$R_1(\mu\text{m})$	1.82	1.81	1.82	1.79	1.86
$\Delta_2\%$	-0.5	-0.6	-0.5	-0.7	-0.6
$R_2(\mu\text{m})$	5.97	5.38	5.87	5.33	5.68
$\Delta_3\%$	0.8	0.85	0.85	0.85	0.81
$R_3(\mu\text{m})$	7.70	7.02	7.53	6.97	7.41
$R_4(\mu\text{m})$	11.0	10.2	10.8	10.0	10.7
アルファ中央コア (単位)	2.0	2.0	2.2	2.0	2.0
体積中央コア (単位)	10.2	10.0	10.1	9.8	10.6
体積リング	45.8	42.6	45.0	41.9	45.5
分散 @ 1595 nm (ps/nm·km)	-115	-142	-95	-222	--74
分散スロープ @ 1595 nm (ps/nm ² ·km)	-1.18	1.46	-1.04	-2.40	-0.71
カッパ @ 1595 nm (nm)	97.9	97.2	91.3	92.5	103
モードフィールド径 (μm)	4.67	4.64	4.63	4.74	4.52
$A_{\text{eff}}(\mu\text{m}^2)$	17.17	17.49	16.73	19.84	15.63
$\lambda_c(\text{nm})$	2019	1975	2010	1950	2037

10

20

30

40

50

【 0 0 4 8 】

本発明のDCファイバは、例えばOVD、MCVD若しくはPCVDの如き、公知の化学蒸着法によって製造され得る。好ましくは、DCファイバは、OVD法によって製造されることができて、コアは、所望の直径までアルミナマンドレル上にゲルマニア酸化物を添加され、且つ、コアセグメントの所望の屈折率分布を達成するために適量のゲルマニアを添加したシリコン酸化物を堆積することによって製造される。マンドレルが除去されて、コアセグメントを構成しているストートプリフォームが塩素含有雰囲気内で完全に乾燥させられた後に、ヘリウム雰囲気を含む圧密化炉で圧密化される。圧密化コアブランクは、目標とする堆積表面にモートセグメントストートを与えたコアケーンに再度、線引きされる。シリカストートは、モートの適当な直径まで堆積して、圧密化炉の塩素含有雰囲気によって乾燥する。ストートプリフォームは、例えば、CF₄又はSiF₄の如き、フッ素含有雰囲気ガスによって添加され、その後圧密化されて、再度、ケーンに再線引きされる。これらのケーンは、リングセグメントストートを堆積するための堆積前処理表面となる。ゲルマニア

添加シリカストー卜は、2つのセグメントケーン上に与えられ、その後に乾燥、圧密化処理される。再度、圧密化されたプランクが再線引きされ、ここにおいてセグメントコアの3つの全てのセグメントを含む最終的なコアケーンになるのである。続いて、クラッドを含む追加のシリカストー卜がらコアケーン上に与えられる。最終的なストー卜プランクが乾燥、圧密化された後にDCファイバが線引き炉に移される。

【0049】

DCファイバの特定の実施例が開示されて、本願明細書において記載されてきたが、さまざまな変更態様及びバリエーションが本発明の範囲内から逸脱することなく本発明に対してなされ得ることは、当業者にとって明らかであろう。このように、添付の請求の範囲及びそれらの均等物の範囲内で与えられる本発明のこのような変更態様及びバリエーションをカバーすることを意図される。

【図面の簡単な説明】

【0050】

【図1】本発明によるDCファイバの各セグメントの断面斜視図である。

【図2】本発明によるDCファイバの第1の実施例のコア半径(μm)に対する%のグラフである。

【図3】本発明によるDCファイバの第2の実施例のコア半径(μm)に対する%のグラフである。

【図4】本発明によるDCファイバの第3の実施例のコア半径(μm)に対する%のグラフである。

【図5】本発明によるDCファイバの第4の実施例のコア半径(μm)に対する%のグラフである。

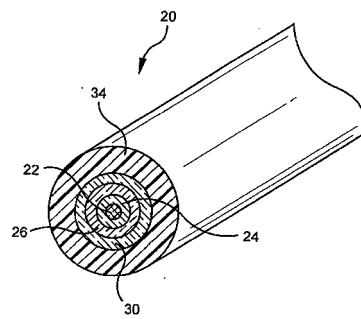
【図6】本発明によるDCファイバの幾つかの実施例の波長に対する分散のプロット図である。

【図7】本発明によるDCファイバの幾つかの実施例の波長に対する分散スロープのプロット図である。

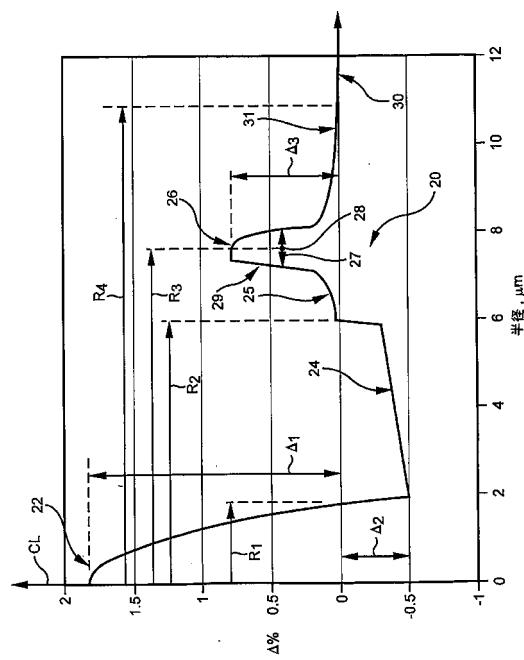
【図8】本発明によるDCファイバの幾つかの実施例の波長に対するカッパ値のプロット図である。

【図9】本発明によるDCファイバを含む伝送システムの第1の実施例のダイアグラム図である。

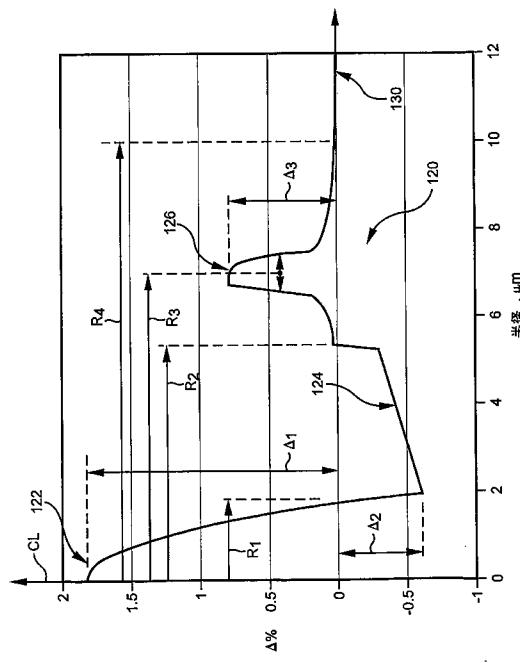
【図10】本発明によるDCファイバを含む伝送システムの第2の実施例のダイアグラム図である。


【図11】本発明によるDCファイバの第5の実施例のコア半径(μm)に対する%の図である。

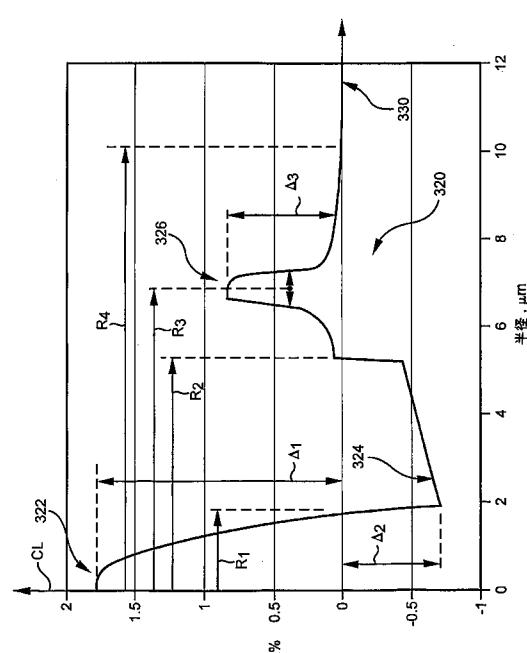
10


20

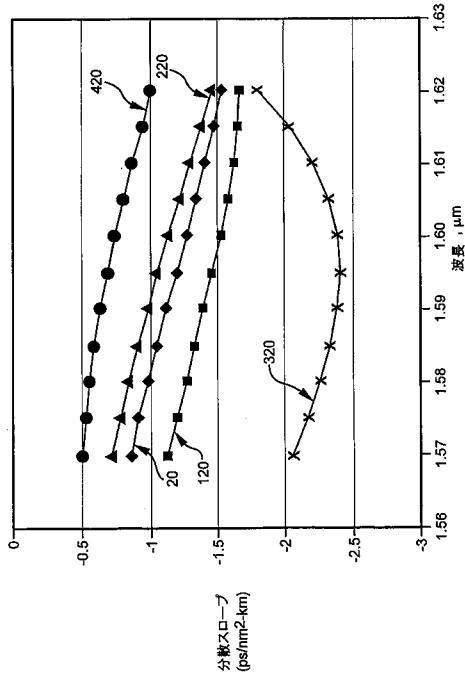
30

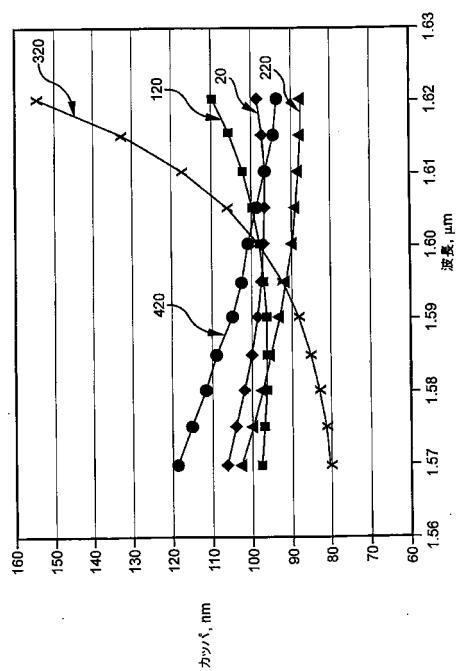

【図1】

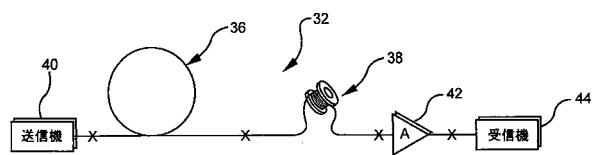
【図2】

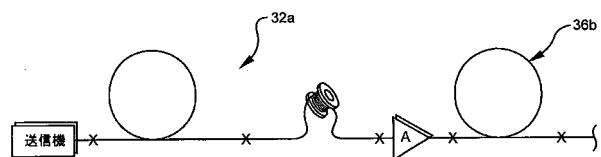

【図3】

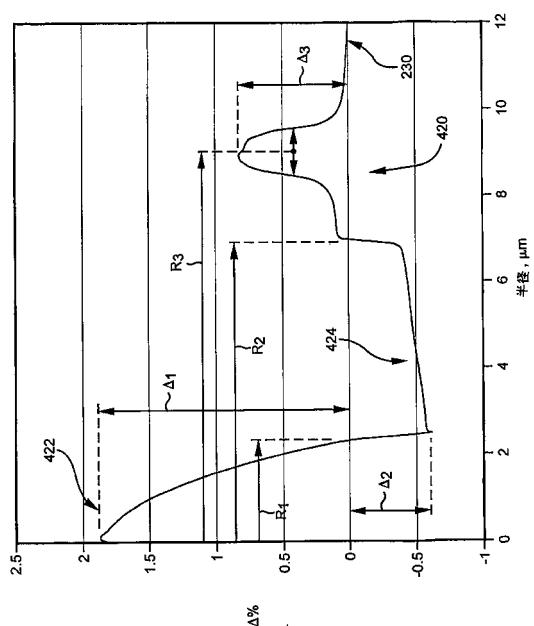
【図4】


【図5】


【図6】


【図7】


【図8】


【図 9】

【図 10】

【図 11】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
3 April 2003 (03.04.2003)

PCT

(10) International Publication Number
WO 03/027737 A1

(51) International Patent Classification¹: G02B 6/16. (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, FI, IS, IL, GB, GI, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/US02/28911

(22) International Filing Date: 9 September 2002 (09.09.2002)

(25) Filing Language: English

(26) Publication Language: English

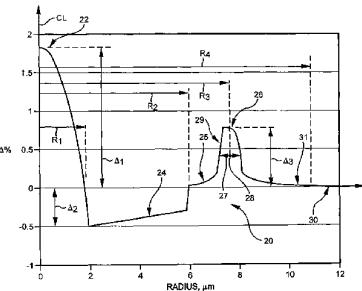
(30) Priority Data: 09/965,406 26 September 2001 (26.09.2001) US

(71) Applicant: CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Corning, NY 14831 (US).

(72) Inventors: HEBGEN, Peter G; 594 Stillwater Drive, Horseheads, NY 14845 (US); QI, Gang; 13 Timber Lane, Painted Post, NY 14870 (US); ZHANG, Lu; 29 Tall Meadow, Painted Post, NY 14870 (US).

(74) Agent: WAYLAND, Randall S; Corning Incorporated, Patent Department, SP-II-3-1, Corning, NY 14831 (US).

(84) Designated States (regional): European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).


Published:
with international search report
before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: L-BAND DISPERSION COMPENSATING FIBER AND TRANSMISSION SYSTEM INCLUDING SAME

WO 03/027737 A1

(57) Abstract: The present invention relates to a dispersion compensating optical fiber ("DC fiber") having a segmented core of at least three segments and having a negative total dispersion and negative dispersion slope in the L-band. The index profile of the segmented core is selected to provide an optical fiber having properties suitable for a high performance communication system operating in the L-band wavelength band, i.e., between about 1570 nm to 1620 nm. The DC fiber according to the invention exhibits total dispersion at 1595 nm of between -70 and -225 ps/km/nm and dispersion slope more negative than -0.7 ps/km/nm². The DC fiber may be optically connected to a non-zero dispersion shifted fiber in the system to compensate for dispersion and dispersion slope thereof.

WO 03/027737

PCT/US02/28911

**L-BAND DISPERSION COMPENSATING FIBER AND TRANSMISSION
SYSTEM INCLUDING SAME****Field of the Invention**

This application claims priority to, and the benefit of, U.S. Patent Application No. 09/965,406 filed 9/26/01.

Field of the Invention

The invention is directed to a dispersion compensating optical fiber and a transmission system including the same, and more particularly to a dispersion compensating optical fiber and transmission system in which the dispersion compensating fiber exhibits a negative dispersion and dispersion slope within the L-band (1570 nm to 1620 nm).

Background of the Invention

Higher data rates are becoming needed for the telecommunications industry. Thus, the search for high performance optical fibers designed for long distance, high bit rate telecommunications has intensified. However, these high data rates have penalties associated with them. In particular, dispersion is a significant problem for such systems, particularly those employing large effective area fibers. More specifically, positive dispersion builds as a function of the length of the high data rate transmission fiber. Dispersion Compensating (DC) fibers included in cable or in Dispersion Compensating Modules (DCM's) have been designed that compensate for such dispersion. These fibers generally have negative slope and negative dispersion such that a short length of the DC fiber compensates for the positive dispersion and positive slope of the longer transmission portion. A good example of a DC fiber may be found in commonly assigned US Patent Application No. 09/802,696 filed on 3/9/01. For L-band operation between 1570 nm and 1620 nm, the bend performance and dispersion properties (dispersion and/or dispersion slope) of the DC fiber are very important. This is particularly true in DC fibers that will be included in a wound spool of a DCM.

WO 03/027737

PCT/US02/28911

Thus, there is a need for a DC fiber which: (1) is single moded over the L-band wavelength range (1570 nm to 1620 nm) when included in a DCM; and (2) retains the usual high performance optical fiber characteristics such as high strength, low attenuation and acceptable resistance to bend induced loss, and (3) is particularly effective at compensating for the dispersion of Non-Zero Dispersion Shifted Fibers (NZDSF) in the L-band.

Definitions

The following definitions are in accordance with common usage in the art.

- The refractive index profile is the relationship between refractive index and optical fiber radius.
- A segmented core is one that has at least a first and a second segment such as a central core and a moat, for example. Each core segment has a respective refractive index profile and maximum and minimum index.
- The radii of the segments of the core are defined in terms of the beginning and end points of the segments of the refractive index profile or in terms of the midpoint of the segment in the case of a ring segment. Fig. 2 illustrates the definitions of radii used herein. The same definitions are used for Figs. 3-5. The radius R_1 of the center core segment 22, is the length that extends from the DC fiber's centerline (CL) to the point at which the profile crosses the relative refractive index zero as measured relative to the cladding 30. The outer radius R_2 of the moat segment 24 extends from the centerline to the radius point at which the outer edge of the moat crosses the refractive index zero, as measured relative to the cladding 30. The radius R_3 is measured to where $\Delta_3\%$ is half its maximum value of the ring segment 26. The half-height width of ring segment 26 is measured at the half $\Delta\%$ value of ring segment 26. The radius R_4 of segment 26 extends from the centerline (CL) to the midpoint 28 of a half-height line segment 27. The midpoint 28 is formed by bisecting the segment 26 between the two intersection points with the ring segment at the half height position of $\Delta_3\%$. The radius R_4 is measured from the centerline

WO 03/027737

PCT/US02/28911

(CL) to the point where the outermost portion of the ring segment 26 meets the zero refractive index point, as measured relative to the cladding 30.

- The effective area is defined as:

$A_{\text{eff}} = 2\pi \int (E^2 r dr) / (\int E^4 r dr)$, where the integration limits are 0 to ∞ , and E is the electric field associated with the propagated light as measured at 1595 nm.

- The effective diameter, D_{eff} , is defined as:

$$D_{\text{eff}} = (2/\pi^{1/2})A_{\text{eff}}^{1/2}$$

- The profile volume is defined as $2\pi \int \Delta\% r dr$. The profile volume of the central core segment 22 extends from the waveguide centerline, $R = 0$, to the radius R_1 . The profile volume of the ring segment 26 extends from the radius R_2 to the last point of the ring segment at radius R_4 . The units of the profile volume are μm^2 because relative index is dimensionless. The profile volume units, μm^2 , will be referred to simply as units throughout this document.

- The term, $\Delta\%$, represents a relative measure of refractive index defined by the equation,

$$\Delta\% = 100 (n_i^2 - n_c^2) / 2n_c^2$$

where n_i is the maximum refractive index in the respective region i (e.g., 22, 24, 26), unless otherwise specified, and n_c is the refractive index of the cladding (e.g., 30) unless otherwise specified.

- The term alpha profile, α -profile refers to a refractive index profile, expressed in terms of $\Delta(b)\%$, where b is radius, which follows the equation,

$$\Delta(b)\% = [\Delta(b_0)(1 - [b - b_0] / (b_1 - b_0))^\alpha] 100$$

where b_0 is the maximum point of the profile and b_1 is the point at which $\Delta(b)\%$ is zero and b is in the range $b_i \leq b \leq b_f$, where $\Delta\%$ is defined above, b_i is the initial point of the α -profile, b_f is the final point of the α -profile, and α is an exponent which is a real number. The initial and final points of the α -profile are selected and entered into the computer model. As used herein, if an α -profile is preceded by a

WO 03/027737

PCT/US02/28911

step index profile, the beginning point of the α -profile is the intersection of the α -profile and the step profile. In the model, in order to bring about a smooth joining of the α -profile with the profile of the adjacent profile segment, the equation is rewritten as;

$\Delta(b)\% = [\Delta(b_a) + [\Delta(b_0) - \Delta(b_a)] \{ (1 - [b - b_0] / (b_1 - b_0)]^0\}] 100$, where b_a is the first point of the adjacent segment.

- The pin array bend test is used to compare relative resistance of optical fibers to bending. To perform this test, attenuation loss is measured when the optical fiber is arranged such that no induced bending loss occurs. This optical fiber is then woven about the pin array and attenuation again measured. The loss induced by bending is the difference between the two attenuation measurements. The pin array is a set of ten cylindrical pins arranged in a single row and held in a fixed vertical position on a flat surface. The pin spacing is 5 mm, center to center. The pin diameter is 0.67 mm. The optical fiber is caused to pass on opposite sides of adjacent pins. During testing, the optical fiber is placed under a tension sufficient to make the waveguide conform to a portion of the periphery of the pins.

Summary of the Invention

The DC fiber in accordance with the invention disclosed and described herein is particularly well suited to compensating for dispersion and dispersion slope of certain NZDSF in the L-band.

According to an embodiment of the invention, a DC fiber is provided which has a segmented core of at least three segments, each segment characterized by having a refractive index profile, a relative index $\Delta\%$, and radius dimensions. The DC fiber's overall refractive index profile structure is selected to provide a particular set of properties (attributes) that make it suited for transmission systems designed to operate in the L-band wavelength window having a midpoint at about 1595 nm, and a wavelength band between about 1570 nm and 1620 nm. The DC fiber in accordance with the invention is particularly suitable for compensating for build up of dispersion and/or dispersion slope in NZDSF's. Thus, the DC fiber may be coupled to a NZDSF to form a transmission system and is designed to compensate for the

WO 03/027737

PCT/US02/28911

dispersion and/or slope (and most preferably both) of the NZDSF, preferably in the L-band. The transmission system including the DC fiber may also preferably include optical amplifiers, Wavelength Division Multiplexing operation, and other conventional system components. Preferably, the DC fiber is wound onto a spool and included in a module.

In accordance with an embodiment of the invention, the total dispersion (defined herein as the measurable dispersion - total dispersion equals total dispersion plus waveguide dispersion plus profile dispersion) of a transmission system employing 100 km of a NZDSF transmission fiber and a suitable length of the present invention DC fiber results in a system which has less than +/-25 ps/nm residual dispersion over the entire L-band (between 1570 nm and 1620 nm). Fiber profiles have been designed in accordance with the invention that exhibit excellent attenuation of less than 0.8 dB/km at 1595 nm. Moreover, the bend loss, as measured by a pin array test, is preferably less than 25 dB, more preferably less than 10 dB, and most preferably less than 3 dB. Thus, the DC fiber in accordance with the invention exhibits excellent bend loss and may be, therefore, advantageously wound onto and used in small diameter DCM's to be utilized in transmission systems for compensating dispersion and dispersion slope of long lengths of NZDSF.

In accordance with a preferred embodiment of the DC fiber, each of the segments of the core is characterized by a refractive index profile, and at least one of the segments preferably has an α -profile. Most preferably, the core profile includes a positive Δ_1 % central core segment, a negative Δ_2 % moat region, and a positive Δ_3 % ring segment. Preferably, the ring segment has a non-step index profile and is offset from the moat segment.

According to the present invention, the DC fiber has a segmented core having at least three segments and the refractive index profile of the segmented core is selected to provide a negative total dispersion and a negative dispersion slope at 1595 nm, and more preferably over the entire L-band from 1570 nm to 1620 nm. The present invention DC fiber has a total dispersion at 1595 nm between about -70 ps/nm-km and -225 ps/nm-km at 1595 nm; and a dispersion slope more negative than -0.7 ps/nm²-km at 1595 nm. More preferably, the dispersion at 1595 nm is

WO 03/027737

PCT/US02/28911

between about -95 and -225 ps/nm-km; and the dispersion slope more negative than -0.9 ps/nm²-km at 1595 nm. More preferably yet, the dispersion at 1595 nm is between about -110 and -150 ps/nm-km and ranges between -80 and -190 ps/nm-km over the L-band wavelength range of 1570 nm to 1620 nm.

Most preferably, the dispersion slope is more negative than -0.70 ps/nm²-km at 1595 nm and is preferably between -0.9 ps/nm²-km and -1.5 ps/nm²-km at 1595 nm.

Preferably also, the DC fiber has a dispersion slope that is more negative than -0.5 ps/nm²-km over the entire L-band from 1570 nm to 1620 nm; more preferably more negative than -0.7, and most preferably less than -1.2 ps/nm²-km. Preferably, the dispersion slope ranges between -0.5 and -2.5 ps/nm²-km over the entire L-band; more preferably between -1.0 and -1.8 ps/nm²-km.

The DC optical fiber preferably has a kappa value defined as the total dispersion at 1595 nm divided by the dispersion slope at 1595 nm of between 90 nm and 110nm; more preferably between 90 nm and 105 nm; and most preferably between 95 nm and 100 nm. Most preferably, kappa is between about between 80 nm and 155 nm over the L-band range of 1570 nm to 1620 nm; more preferably between 85 nm and 110 nm.

The DC fiber preferably includes a central core segment having an α -profile in the range of between about 1.8 to 5.0; more preferably about 2.0 to 2.2.

The DC fiber in accordance with embodiments of the invention preferably has a central core segment having a positive $\Delta_1\%$ greater than 1.5%, a moat segment adjoining the central core segment and having a negative $\Delta_2\%$ more negative than -0.3%, and a ring segment adjoining the moat segment having a positive $\Delta_3\%$ greater than 0.6%.

More preferably, the DC fiber in accordance with embodiments of the invention preferably has a central core segment having a positive $\Delta_1\%$ greater than 1.7%, a moat segment adjoining the central core segment and having a negative $\Delta_2\%$ more negative than -0.5%, and a ring segment adjoining the moat segment having a positive $\Delta_3\%$ greater than 0.8%.

The effective area of the DC fiber at 1595 nm in accordance with the invention is greater than 15 μm^2 , and more preferably greater than 17 μm^2 .

WO 03/027737

PCT/US02/28911

In accordance with another embodiment of the invention, an optical transmission system is provided having a dispersion compensating optical fiber, wherein the dispersion compensating fiber comprises a segmented core having at least three segments, the refractive index profile being selected to provide a total dispersion at 1595 nm between about -70 ps/nm-km and -225 ps/nm-km; and a dispersion slope more negative than -0.7 ps/nm²-km at 1595 nm.

Further features and advantages of the invention will be set forth in the detailed description which follows, and will be readily apparent to those of ordinary skill in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings. It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate several embodiments of the invention, and together with the description serve to explain the principles and operation of the invention.

Brief Description of the Figures

Fig. 1 illustrates a cross-sectioned perspective view of the various segments of the DC fiber in accordance with the invention.

Fig. 2 is a graph of $\Delta\%$ vs. core radius (μm) of a first embodiment of DC fiber in accordance with the invention.

Fig. 3 is a graph of $\Delta\%$ vs. core radius (μm) of a second embodiment of DC fiber in accordance with the invention.

Fig. 4 is a graph of $\Delta\%$ vs. core radius (μm) of a third embodiment of DC fiber in accordance with the invention.

Fig. 5 is a graph of $\Delta\%$ vs. core radius (μm) of a fourth embodiment of DC fiber in accordance with the invention.

Fig. 6 is a plot of dispersion vs. wavelength for several embodiments of DC fiber in accordance with the invention.

Fig. 7 is a plot of dispersion slope vs. wavelength for several embodiments of DC fiber in accordance with the invention.

Fig. 8 is a plot of kappa vs. wavelength for several embodiments of DC fiber in accordance with the invention.

Fig. 9 is a diagram of a first embodiment of transmission system including a DC fiber in accordance with the invention.

Fig. 10 is a diagram of a second embodiment of transmission system including a DC fiber in accordance with the invention.

WO 03/027737

PCT/US02/28911

Fig. 11 is a graph of $\Delta\%$ vs. core radius (μm) of a fifth embodiment of DC fiber in accordance with the invention.

Detailed Description of the Invention

The DC fiber in accordance with the invention may be embodied in a family of segmented core designs that yield a very particular set of desired properties (attributes) and shall be fully described herein. The family of DC fiber core designs include, but are not limited to, the particular embodiments described herein. Thus, it should be recognized that modifications to the particular embodiments described herein may be made without departing from the scope of the invention. A first illustrative embodiment is described with reference to Figs. 1 and 2. The DC fiber 20 includes at least three segments in the core thereof. It should be understood that Fig. 1, as shown, is not drawn to scale and the relative sizes of the layers have been exaggerated for clarity. Preferably, the DC fiber 20 has a central core segment 22, an adjacent cylindrical moat segment 24, and a cylindrical ring segment 26 surrounding the moat segment. The ring segment 26 is further surrounded by a cylindrical cladding 30 that extends to a radius of about 62.5 μm from the centerline (CL). The entire core and cladding 30 of the fiber 20 is coated with a protective coating 34 such as a urethane acrylate or other suitable coating. The coating 34 may consist of several layers having different properties. For example, the first innermost coating layer may have a lower modulus than a second outermost coating. However, it should be understood that any suitable coating may be applied utilizing conventional methods.

The various core segments 22, 24, 26 preferably include dopants to alter their refractive index relative to the cladding 30. Core segment 20 preferably includes germania-doped silica to increase its refractive index relative to the cladding 30. The cladding 30 is preferably manufactured from pure silica. Moat segment 24 is formed by doping silica glass with a suitable down-dopant such as fluorine. The ring segment 26 is formed similarly to the core segment by utilizing silica with a suitable up-dopant such as germania. Alternative dopants may be employed provided that the levels of index change relative to the cladding may be achieved.

WO 03/027737

PCT/US02/28911

Thus, by the addition of such dopants, a DC fiber core having a precisely defined profile is formed. In particular, by the addition of suitable dopant amounts, the central core segment 22 is made to have a positive $\Delta_1\%$, the moat segment 24 is made to have a negative $\Delta_2\%$, and the ring segment 26 is made to have a positive $\Delta_3\%$. $\Delta_1\%$, $\Delta_2\%$ $\Delta_3\%$ each is defined as being positive or negative as compared to the refractive index of the cladding 30, as is conventional practice.

As was mentioned above, the DC fiber in accordance with the invention is particularly effective at compensating for dispersion and slope of a NZDSF such as LEAF® manufactured by Corning Incorporated. In particular, the DC fiber is designed to compensate for a NZDSF fiber having a dispersion at 1595 nm of about 7.93 ps/nm-km and a dispersion slope at 1595 nm of 0.0791 ps/nm²-km. In order to compensate for dispersion and slope of a NZDSF and do so in a small fiber length of DC fiber, the DC fiber must have both a high negative dispersion and a high dispersion slope at 1595 nm. Preferably, the ratio of dispersion divided by dispersion slope (defined herein as kappa) should also be within a defined range at 1595 nm. The DC fiber in accordance with the invention is suitable for compensating for any non-zero dispersion shifted fiber having a dispersion slope of between about 0.065 and 0.08 ps/nm²-km at 1595 nm. The DC fiber in accordance with the invention may also be used to compensate for the dispersion of a non-zero dispersion shifted fiber having a dispersion of between about 6.5 and 8.5 ps/nm-km at 1595 nm.

In particular, as is illustrated in Fig. 6, the family of DC fibers preferably have a total dispersion ranging between about -60 ps/nm-km and -275 ps/nm-km over the L-band operating window. In one embodiment, total dispersion ranges between -80 and -190 ps/nm-km as is illustrated by curve labeled 120. As is illustrated in Fig. 7, the dispersion slope of the family of DC fibers over the entire L-band (1570 nm to 1620 nm) is more negative than about -0.5 ps/nm²-km; with many being more negative than -0.7 ps/nm²-km; and some being more negative than -1.2 ps/nm²-km. Preferably, the DC fiber has a dispersion slope at 1595 nm of between about -0.7 ps/nm²-km and -2.5 ps/nm²-km. These relatively low negative dispersion values and very low negative slope values enables both dispersion and dispersion slope to be compensated for in the NZDSF in the L-band. As is illustrated in Fig. 8., when

WO 03/027737

PCT/US02/28911

compensating for such NZDSF's, it is desired that kappa, defined as the dispersion divided by the dispersion slope, is between about 90 nm and 110 nm at 1595 nm, more preferably between 90 nm and 105 nm; and most preferably between 95 nm and 100 nm. Kappa preferably ranges between about 80 nm and 155 nm over the L-band of 1570 nm to 1620 nm. In some embodiments, kappa has a higher value at 1620 nm than at 1570 nm as is shown in curve labeled 120 in Fig. 8, for example.

By way of example, and not to be considered limiting, a transmission system 32 as shown in Fig. 9 having a 100 km length of NZDSF 36, such as LEAF® fiber manufactured by Corning Incorporated, having a positive dispersion of about 7.93 ps/nm-km at 1595 nm and a positive dispersion slope of about 0.0791 ps/nm²-km at 1595 nm may be compensated for by a shorter length of about 1.8 km of DC fiber 120 in accordance with the invention. In one example, the DC fiber 120 has a dispersion of about -142 ps/nm-km at 1595 nm and a dispersion slope of about -1.46 ps/nm²-km at 1595 nm. Using a DC fiber 20 in the form of a DCM having a dispersion ranging from about -110 ps/nm-km to -180 ps/nm-km over the L-band and a slope of between about -1.15 ps/nm²-km to about -1.7 ps/nm²-km over the L-band, the total residual total dispersion over the entire L-band from 1570 nm to 1620 nm can be made to be no greater than about +/- 25 ps/km-nm for the transmission system 32. The transmission system 32 may include conventional elements such as a transceiver 40, optical amplifier 42 and receiver 44. Optionally, as is illustrated in Fig. 10, a transmission system 32a may couple to one or more additional lengths of NZDSF 36b instead of a receiver.

Table 1, set forth below, defines the family of DC fibers according to the invention that have the desired properties for compensating for slope and dispersion of a NZDSF having a dispersion of about 7.9 ps/nm-km and a slope of 0.079 ps/nm²-km at 1595 nm. It should be recognized that in the examples that follow, that attenuation is quite low and bending induced losses are acceptable.

Referring to Fig. 2, a refractive index profile plot of $\Delta\%$ vs. core radius (μm) is illustrated. This is a first embodiment of the DC fiber 20 described herein and corresponds to Example 1 in Table 1 below. In particular, central core segment 22 has an alpha profile having an alpha of about 2.0, a maximum $\Delta_1\%$ of 1.83% and an outer radius R_1 of about 1.83 microns. The core segment includes a step index

WO 03/027737

PCT/US02/28911

region having a relative index percent on centerline of about 1.83% and that extends to a radius of about 0.2 μm , at which point the α -profile began. The adjacent moat segment 24 surrounds and abuts the core segment 22 and has a step index profile having a slight taper defined by having a $\Delta_2\%$ which is slightly more negative at its innermost radius R_1 than at its outer radius R_2 . The moat segment 24 has an outer radius R_2 of about 5.97 μm and a maximum negative $\Delta_2\%$ of about -0.5%. The Example 1 embodiment includes a ring segment located at a radius R_3 . This radius R_3 is the mid point radius of the ring segment as defined above. R_3 is measured to the midpoint of the half-height width of the ring segment 26. The ring segment 26 surrounds and abuts the moat segment 24 and includes a radius R_3 of 7.70 μm , a half height width of the ring segment 26 of about 0.9 μm , and a $\Delta_3\%$ of about 0.8%. The ring segment 26 includes a first tapering portion 25 which extends from the body 29 of the ring segment 26 towards the edge of the moat segment 24 at R_2 . A second tapered portion 31 extends from the body 29 to the beginning of the cladding 30 at R_4 .

Example 1

A DC fiber 20 was modeled in accord with Fig. 2 and had the configuration outlined above. Counting the segments consecutively, beginning with 1 being the central core segment surrounding the centerline, and using the definitions provided above, the core structure is also described in Table 1.

As illustrated in Figs. 6-8, this embodiment of DC fiber 20 has the following predicted properties:

- total dispersion at 1570 nm of -90 ps/nm-km;
- total dispersion at 1595 nm of -115 ps/nm-km;
- total dispersion at 1620 nm of -148 ps/nm-km;
- dispersion slope at 1595 nm of -1.18 ps/nm²-km;
- cut off wavelength, λ_c , of 2019 nm (the cutoff wavelength of the highest of the LP₁₁ and LP₀₂ higher order modes above LP₀₁ for a straight DC fiber);
- effective area, A_{eff} , of 17.17 μm^2 ;
- attenuation at 1595 nm of 0.5 dB/km; and
- pin array bend loss of 6.4 dB.

WO 03/027737

PCT/US02/28911

Example 2

A second three segment core DC fiber 120 was modeled in accordance with the refractive index profile shown in Fig. 3. In this case, the α -profile of the core segment 122 began at 0.2 μm from the centerline and had an α of 2.0, a Δ_1 % of 1.83%, and an R_1 of 1.81 μm . The moat segment 124 had a tapered step profile, a most negative Δ_2 % of -0.6%, and an outer radius R_2 of 5.38 μm . The ring segment 126 has a Δ_3 % of 0.85%, R_3 , the midpoint radius defined above, of 7.02 μm , and a midpoint width of 0.8 μm . Additional properties and characterizations may be found in Table 1.

As illustrated in Figs. 6-8, this DC fiber 120 has the following predicted properties:

- total dispersion at 1570 nm of -118 ps/nm-km;
- total dispersion at 1595 nm of -142 ps/nm-km;
- total dispersion at 1620 nm of -180 ps/nm-km;
- dispersion slope at 1595 nm of -1.46 ps/nm²-km;
- cut off wavelength, λ_c , of 1975 nm (the cutoff wavelength of the highest of the LP₁₁ and LP₀₂ higher order modes above LP₀₁ for a straight DC fiber);
- effective area, A_{eff} , of 17.49 μm^2 ;
- attenuation at 1595 nm of 0.6 dB/km; and
- pin array bend loss of 6.8 dB.

In this embodiment, the properties are excellent and the bend loss is improved over the design of Example 1.

Example 3

A DC fiber 220 in accordance with the invention having a profile illustrated in Fig. 4 was also modeled. The core segment 222 had a relative index Δ_1 of 1.73% and an outer radius R_1 of 1.83 μm . The α -profile had an α of 2.2. The moat segment 224 has a Δ_2 % of -0.5%, and outer segment radius R_2 of 5.87 μm . The ring segment 226 had a Δ_3 % of 0.85 and a midpoint radius R_3 of 7.53 μm .

This DC fiber 220 had the following predicted properties:

- total dispersion at 1570 nm of -75 ps/nm-km;
- total dispersion at 1595 nm of -95 ps/nm-km;

WO 03/027737

PCT/US02/28911

- total dispersion at 1595 nm of -126 ps/nm-km;
- dispersion slope -1.04 ps/nm²-km;
- cut off wavelength, λ_c , 2010 nm (the cutoff wavelength of the highest of the LP₁₁ and LP₀₂ higher order modes above LP₀₁ for a straight DC fiber);
- effective area, A_{eff} , 16.73 μm^2 ;
- attenuation at 1595 nm of 0.5 dB/km; and
- pin array bend loss of 5.5 dB.

Example 4

As a further example of a three-segment design, DC fiber 320 in accordance with the invention was also modeled. Referring to Fig. 5, the core segment 322 has an α -profile with α of 2.0, a Δ_1 % of 1.83%, and an R_1 of 1.79 μm . Moat segment 324 has a Δ_2 % of -0.7%, an outer radius R_2 of 5.33 μm . Ring segment 326 has a Δ_3 % of 0.85, midpoint radius r_3 is 6.93 μm and the half height width of ring segment is 0.8 μm .

This DC fiber in accordance with the invention has the following predicted properties:

- total dispersion at 1570 nm of -165 ps/nm-km;
- total dispersion at 1595 nm of -222 ps/nm-km;
- total dispersion at 1620 nm of -275 ps/nm-km;
- dispersion slope at 1595 nm of -2.40 ps/nm²-km;
- cut off wavelength, λ_c , of 1950 nm (the cutoff wavelength of the highest of the LP₁₁ and LP₀₂ higher order modes above LP₀₁ for a straight DC fiber);
- effective area, A_{eff} , of 19.84 μm^2 ;
- attenuation at 1595 nm of 0.8 dB/km; and
- pin array bend loss of 22 dB.

Example 5

As a further example of a three-segment design, DC fiber 420 in accordance with the invention was also modeled. Referring to Fig. 11, the core segment 422 has an α -profile with α of 2.0, a Δ_1 % of 1.89%, and an R_1 of 1.86 μm . Moat segment 424 has a Δ_2 % of -0.61%, an outer radius R_2 of 5.68 μm . Ring segment 426 has a

WO 03/027737

PCT/US02/28911

Δ_3 % of 0.81, midpoint radius r_3 is 7.41 μm and the half height width of ring segment is 0.9 μm .

This DC fiber in accordance with the invention has the following predicted properties:

- total dispersion at 1570 nm of -58 ps/nm-km;
- total dispersion at 1595 nm of -74 ps/nm-km;
- total dispersion at 1620 nm of -95 ps/nm-km;
- dispersion slope at 1595 nm of -0.71 ps/nm²-km;
- cut off wavelength, λ_c , of 2037 nm (the cutoff wavelength of the highest of the LP₁₁ and LP₀₂ higher order modes above LP₀₁ for a straight DC fiber);
- effective area, A_{eff} , of 15.63 μm^2 ;
- attenuation at 1595 nm of 0.7 dB/km; and
- pin array bend loss of 3.0 dB.

Table 1 below illustrates preferred DC fiber parameters in accordance with the invention that result in achievement of the desired properties. Parameters are illustrated in Table 1 for the three segment designs listed above. Set forth are maximum Δ % of each particular segment, as well as corresponding radii R_i . The cases in which the radius measurements are taken to the midpoint of a segment are labeled in the table heading. All other radii are the maximum outer radii of a given segment as well as the minimum inner radii of the next adjacent segment, where the segments are counted beginning with 1 (corresponding to the central core segment) and proceeding outward. These other radii are measured to the point where the profile crosses the cladding refractive index.

Table 1

Example	1	2	3	4	5
$\Delta_1\%$	1.83	1.83	1.73	1.83	1.89
R_1 (μm)	1.82	1.81	1.82	1.79	1.86
$\Delta_2\%$	-0.5	-0.6	-0.5	-0.7	-0.6
R_2 (μm)	5.97	5.38	5.87	5.33	5.68
$\Delta_3\%$	0.8	0.85	0.85	0.85	0.81
R_3 (μm)	7.70	7.02	7.53	6.97	7.41
R_4 (μm)	11.0	10.2	10.8	10.0	10.7
Alpha Central Core (units)	2.0	2.0	2.2	2.0	2.0
Volume Central Core (units)	10.2	10.0	10.1	9.8	10.6
Volume Ring	45.8	42.6	45.0	41.9	45.5
Dispersion @ 1595 nm (ps/nm-km)	-115	-142	-95	-222	-74
Dispersion Slope @ 1595 nm (ps/nm ² -km)	-1.18	1.46	-1.04	-2.40	-0.71
Kappa @ 1595 nm (nm)	97.9	97.2	91.3	92.5	103
Mode Field Diameter (μm)	4.67	4.64	4.63	4.74	4.52
A_{eff} (μm^2)	17.17	17.48	16.73	19.84	15.63
λ_c (nm)	2019	1975	2010	1950	2037

The present invention DC fiber may be manufactured in accordance with any known chemical vapor deposition method such as OVD, MCVD, or PCVD. Preferably, the DC fiber may be manufactured by an OVD method wherein the core is first manufactured by depositing silicon oxide doped with germania oxide onto an

WO 03/027737

PCT/US02/28911

alumina mandrel to the desired diameter and with the appropriate level of germania dopant to achieve the desired refractive index profile for the core segment. The mandrel is then removed and the soot preform constituting the core segment is consolidated in a consolidating furnace including a helium atmosphere after thoroughly drying in a chlorine containing environment. The consolidated core blank is then redrawn into a core cane which then becomes the target deposition surface for the application of the moat segment soot. The silica soot is deposited to the appropriate diameter for the moat and is then dried with a chlorine-containing atmosphere in a consolidation furnace. The soot preform is then doped with fluorine-containing gas, such as CF₄ or SiF₄ for example and subsequently consolidated and again redrawn into canes. These canes become the deposition surface for the ring segment soot. Germania-doped silica soot is deposited on the two-segment cane and it is then dried and consolidated. Again, the consolidated blank is redrawn and this time becomes the final core cane including all three segments of the segmented core. Additional silica soot which comprises the cladding is then deposited on the core cane. The final soot blank is dried and consolidated and subsequently transferred to a draw furnace where the DC fiber is drawn therefrom. Although particular examples of the DC fiber have been disclosed and described herein, it will be apparent to those of ordinary skill in the art that various modifications and variations can be made to the present invention without departing from the scope of the invention. Thus, it is intended that the present invention covers such modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims**What is claimed is:**

1. A dispersion compensating optical fiber, comprising:
 - a segmented core having at least three segments, the refractive index profile being selected to provide
 - total dispersion at 1595 nm between about -70 ps/nm-km and -225 ps/nm-km;
 - and
 - a dispersion slope more negative than -0.7 ps/nm²-km at 1595 nm.
2. The dispersion compensating optical fiber of claim 1 wherein
 - total dispersion at 1595 nm is between about -95 ps/nm-km and -225 ps/nm-km; and
 - a dispersion slope more negative than -1.0 ps/nm²-km at 1595 nm.
3. The dispersion compensating optical fiber of claim 1 wherein the total dispersion at 1595 nm is between about -110 ps/nm-km and -150 ps/nm-km.
4. The dispersion compensating optical fiber of claim 1 wherein the total dispersion is between -60 ps/nm-km and -190 ps/nm-km over a wavelength range from about 1570 nm to 1620 nm.
5. The dispersion compensating optical fiber of claim 1 wherein $\Delta_1\%$ is positive, $\Delta_2\%$ is negative, and $\Delta_3\%$ is positive.
6. The dispersion compensating optical fiber of claim 5 further comprising a central core segment having a positive $\Delta_1\%$ greater than 1.5%, a moat segment adjoining the central core segment and having a negative $\Delta_2\%$ more negative than -0.4%, and a ring segment adjoining the moat segment having a positive $\Delta_3\%$ greater than 0.7%.

WO 03/027737

PCT/US02/28911

7. The dispersion compensating optical fiber of claim 1 further comprising:
 - a central core segment having a $\Delta_1\%$ in the range of about 1.5% to 2.0% and a radius R_1 in the range of about 1.5 μm to 2.0 μm ,
 - a moat segment having a $\Delta_2\%$ in the range of about -0.3% to -0.9% and a radius R_2 in the range of about 4.5 μm to 6.5 μm , and
 - a ring segment having a $\Delta_3\%$ in the range of about 0.6% to 1.1%, a mid point radius R_3 in the range of about 6.0 μm to 8.0 μm .
8. The dispersion compensating optical fiber of claim 1 further comprising:
 - a central core segment having a positive $\Delta_1\%$ greater than 1.7%,
 - a moat segment adjoining the central core segment having a negative $\Delta_2\%$ more negative than -0.5%, and
 - a ring segment adjoining the moat segment having a positive $\Delta_3\%$ greater than 0.8%.
9. The dispersion compensating optical fiber of claim 1 further comprising a ring segment having $\Delta_3\%$ of greater than 0.7%.
10. The dispersion compensating optical fiber of claim 9 further comprising a $\Delta_3\%$ of the ring segment between 0.7% and 1.0% and a midpoint radius R_3 between 6.5 μm and 8.0 μm .
11. The dispersion compensating optical fiber of claim 1 further comprising:
 - a central core segment having a $\Delta_1\%$ in the range of about 1.7% to 1.9% and a radius R_1 in the range of between about 1.7 μm to 1.9 μm ,
 - a moat segment having a $\Delta_2\%$ in the range of about -0.5% to -0.7% and an radius R_2 of between 5.0 μm and 6.0 μm , and
 - a ring segment having a $\Delta_3\%$ in the range of about 0.75% to 0.9%, a midpoint radius R_3 in the range of about 6.5 μm to 8.0 μm .

WO 03/027737

PCT/US02/28911

12. The dispersion compensating optical fiber of claim 1 further including a kappa value defined as the dispersion at 1595 nm divided by the dispersion slope at 1595 nm of between 90 nm and 110 nm.
13. The dispersion compensating optical fiber of claim 1 further including a kappa value defined as the dispersion at 1595 nm divided by the dispersion slope at 1595 nm of between 95 nm and 100 nm.
14. The dispersion compensating optical fiber of claim 1 further comprising a range of kappa values defined as the dispersion at a particular wavelength divided by the dispersion slope at the particular wavelength over the range of 1570 nm to 1620 nm of between 80 nm to 155 nm.
15. The dispersion compensating optical fiber of claim 1 further comprising a pin array of less than 7 dB at 1595 nm.
16. The dispersion compensating optical fiber of claim 1 further comprising a cutoff wavelength for a next higher order mode above LP₀₁, the cutoff wavelength being less than 2050 nm.
17. The dispersion compensating optical fiber of claim 1 further comprising an effective area at 1595 nm of greater than 15 μm^2 .
18. The dispersion compensating optical fiber of claim 1 further comprising an dispersion slope at 1595 nm of between -0.7 ps/nm²-km and -2.5 ps/nm²-km.
19. The dispersion compensating optical fiber of claim 1 further comprising an dispersion slope at 1595 nm of between -0.9 ps/nm²-km and -1.5 ps/nm²-km.
20. The dispersion compensating optical fiber of claim 1 further comprising an dispersion slope at 1595 nm more negative than -0.9 ps/nm²-km.

WO 03/027737

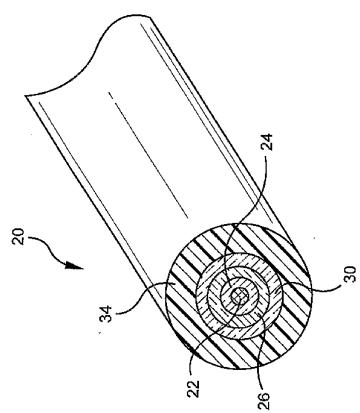
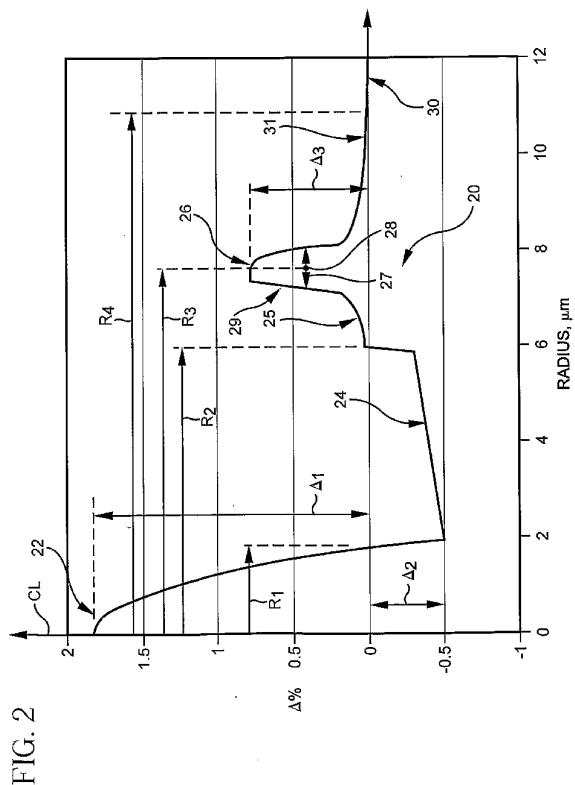
PCT/US02/28911

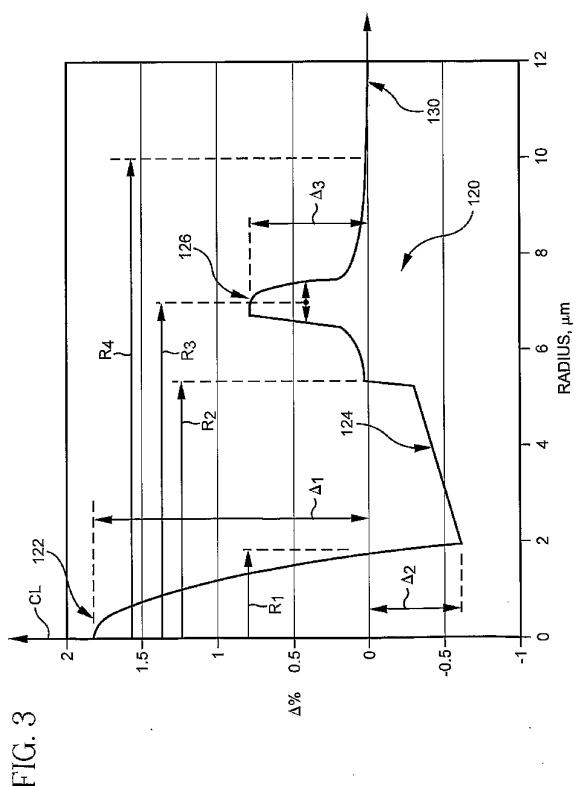
21. The dispersion compensating optical fiber of claim 1 further comprising an dispersion slope at 1595 nm more negative than $-1.2 \text{ ps/nm}^2\text{-km}$.
22. The dispersion compensating optical fiber of claim 1 further comprising:
 - a central core segment having an outer radius R_1 in the range of between about 1.5 μm and 2.0 μm ,
 - a moat segment having an outer radius R_2 in the range of between about 4.5 μm and 6.5 μm , and
 - a ring segment having a midpoint radius R_3 in the range of between about 6.0 μm to 8.0 μm .
23. The dispersion compensating optical fiber of claim 22 further comprising an outer radius R_4 of the ring segment in the range of between about 10 μm and 12 μm .
24. An optical transmission system including the dispersion compensating fiber of claim 1 further comprising a total dispersion at 1595 nm between about $-95 \text{ ps/nm}\text{-km}$ and $-225 \text{ ps/nm}\text{-km}$; and dispersion slope more negative than $-1.0 \text{ ps/nm}^2\text{-km}$ at 1595 nm.
25. An optical transmission system of claim 24 further comprising a non-zero dispersion shifted fiber coupled to the dispersion compensating fiber, the non-zero dispersion shifted fiber having a dispersion slope of between about 0.065 and 0.08 $\text{ps/nm}^2\text{-km}$ at 1595 nm.
26. The optical transmission system of claim 24 wherein the non-zero dispersion shifted fiber has a dispersion of between about 6.5 and 8.5 $\text{ps/nm}\text{-km}$ at 1595 nm.

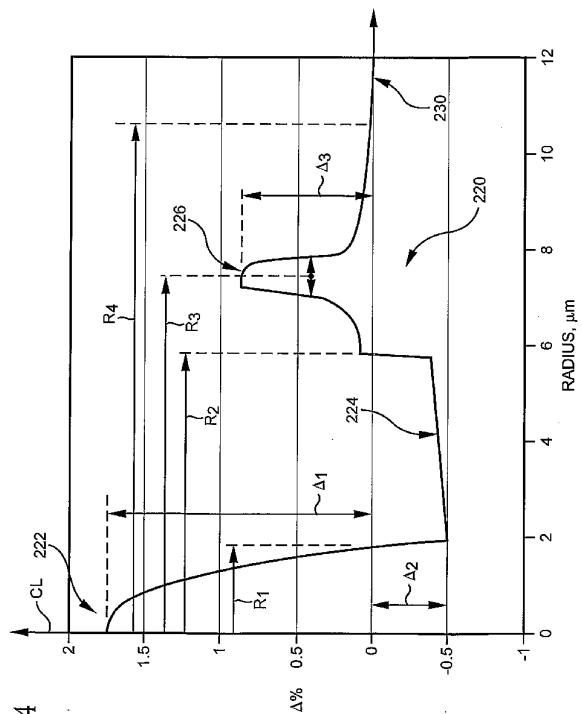
WO 03/027737

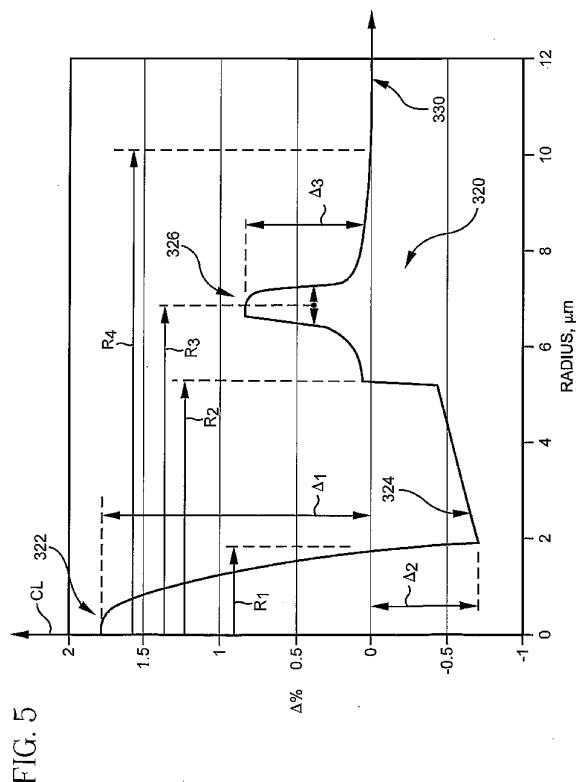
PCT/US02/28911

1/10


FIG. 1




WO 03/027737

PCT/US02/28911

3/10

WO 03/027737

PCT/US02/28911

6/10

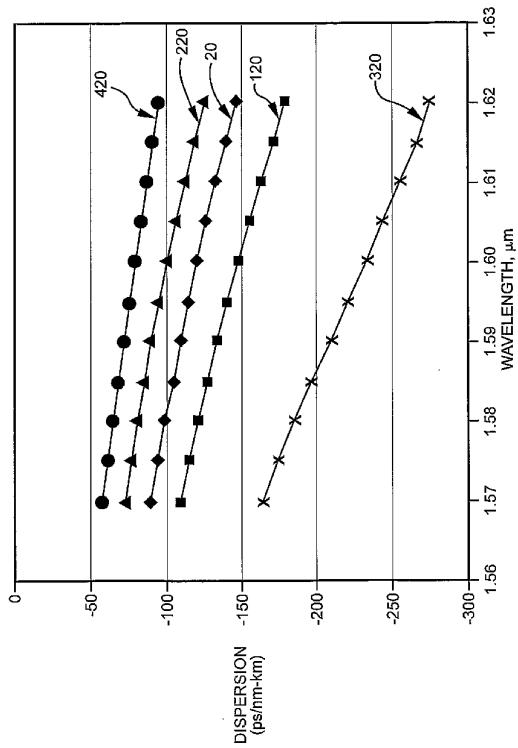


FIG. 6

WO 03/027737

PCT/US02/28911

7/10

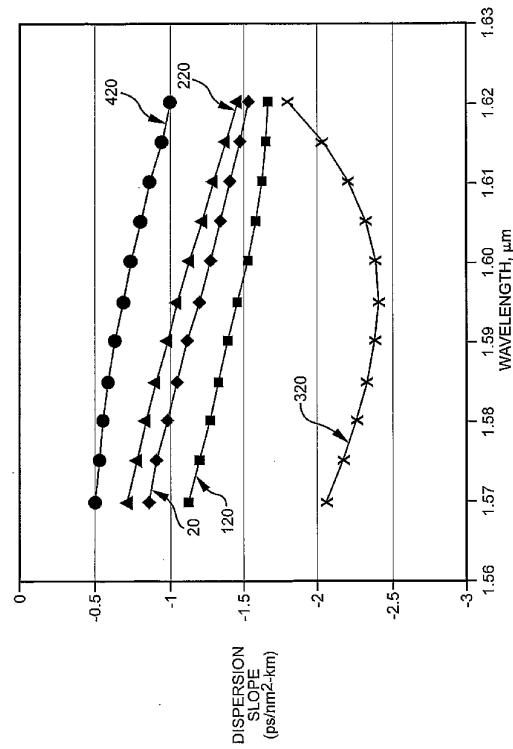


FIG. 7

WO 03/027737

PCT/US02/28911

8/10

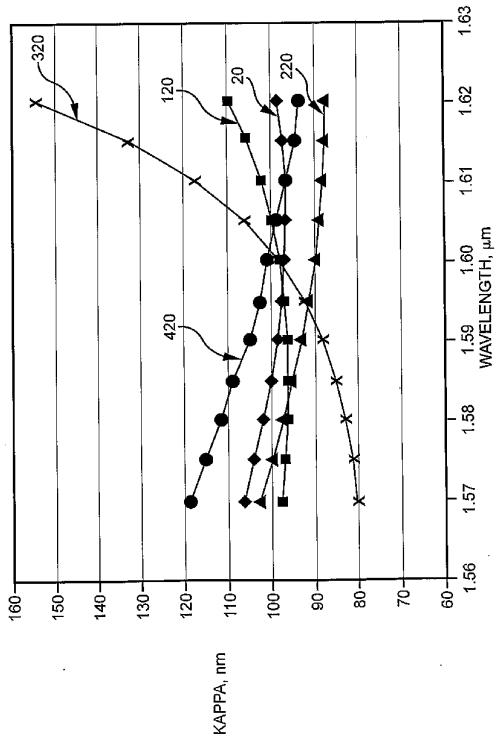


FIG. 8

WO 03/027737

PCT/US02/28911

9/10

FIG. 9

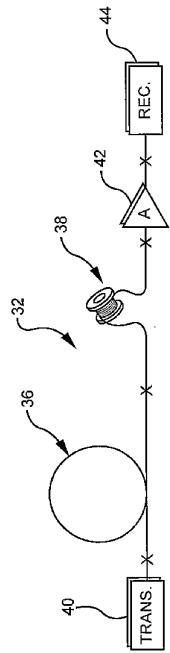
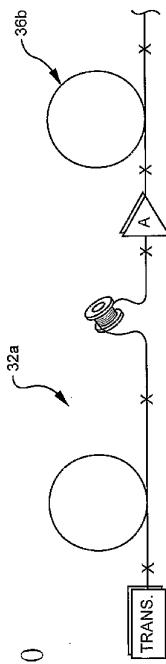



FIG. 10

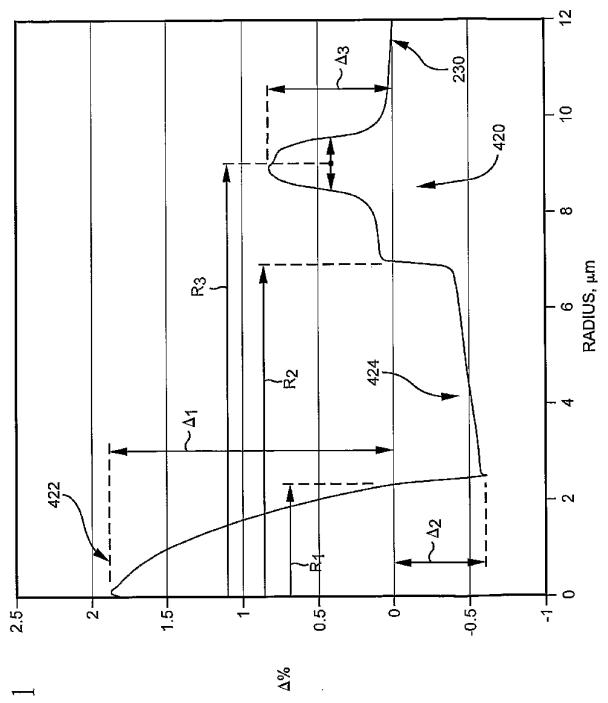


FIG. 11

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No. PCT/US 02/28911
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G02B6/16 G02B6/22 H04B10/18		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G02B H04B		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, INSPEC		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 004 905 A (CIT ALCATEL) 31 May 2000 (2000-05-31) column 6, line 30 - line 54; figure 1 paragraph '0043!	1,4,5, 15-18
Y	---	2,3, 6-14, 19-26
Y	EP 1 067 412 A (CIT ALCATEL) 10 January 2001 (2001-01-10) paragraph '0010!; figures 1-3	6-11,22, 23
Y	EP 1 081 514 A (CIT ALCATEL) 7 March 2001 (2001-03-07) paragraph '0012!; figure 1 ---	6-11,22, 23
		-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
L document which may throw doubt on priority, claim(s) or which is cited to establish the publication date of another document under special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken in combination with one or more other such documents, such combination being obvious to a person skilled in the art		
Z document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the International search report	
24 January 2003	04/02/2003	
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2200 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Authorized officer Lord, R	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		Internal Application No PCT/US 02/28911
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 00 67053 A (CORNING INC) 9 November 2000 (2000-11-09) page 1, line 6 - line 11; figure 5	2,3, 12-14, 19-21, 24-26
A	GRUENER-NIELSEN L ET AL: "DISPERSION COMPENSATING FIBERS" OPTICAL FIBER TECHNOLOGY, ACADEMIC PRESS, LONDON, US, vol. 6, no. 2, April 2000 (2000-04), pages 164-180, XP001025104 ISSN: 1068-5200 page 167, paragraph 2; figure 2	6-11,22, 23
A	EP 1 130 428 A (SUMITOMO ELECTRIC INDUSTRIES) 5 September 2001 (2001-09-05) figures 7,8	6-11,22, 23
A	WO 01 06682 A (SUMITOMO ELECTRIC INDUSTRIES) 25 January 2001 (2001-01-25) -& EP 1 202 479 A (SUMITOMO ELECTRIC INDUSTRIES) 2 May 2002 (2002-05-02) paragraph '0010!; figure 1	2,3, 12-14, 19-21, 24-26
P,X	WO 01 71391 A (CORNING INC) 27 September 2001 (2001-09-27) page 10, line 15 -page 11, line 6	1,4,5, 12, 18-20,22

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No
PCT/US 02/28911

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1004905	A 31-05-2000	FR 2786343 A1 AT 216086 T DE 69901224 D1 DE 69901224 T2 EP 1004905 A1 ES 2173714 T3 JP 2000162462 A US 6493494 B1	26-05-2000 15-04-2002 16-05-2002 31-10-2002 31-05-2000 16-10-2002 16-06-2000 10-12-2002
EP 1067412	A 10-01-2001	FR 2795828 A1 EP 1067412 A1 WO 0101177 A1 US 6263138 B1	05-01-2001 10-01-2001 04-01-2001 17-07-2001
EP 1081514	A 07-03-2001	FR 2799006 A1 EP 1081514 A1 WO 0116631 A1	30-03-2001 07-03-2001 08-03-2001
WO 0067053	A 09-11-2000	AU 4486600 A BR 0010173 A CN 1349615 T EP 1175632 A1 WO 0067053 A1	17-11-2000 15-01-2002 15-05-2002 30-01-2002 09-11-2000
EP 1130428	A 05-09-2001	AU 5198399 A CA 2344389 A1 EP 1130428 A1 US 6501892 B1 CN 1302385 T WO 0017685 A1 TW 417027 B	10-04-2000 30-03-2000 05-09-2001 31-12-2002 04-07-2001 30-03-2000 01-01-2001
WO 0106682	A 25-01-2001	AU 6020600 A CN 1361950 T EP 1202479 A1 WO 0106682 A1	05-02-2001 31-07-2002 02-05-2002 25-01-2001
WO 0171391	A 27-09-2001	AU 6655501 A EP 1266252 A2 WO 0171391 A2 US 2002012510 A1	03-10-2001 18-12-2002 27-09-2001 31-01-2002

Form PCT/ISA210 (patent family annex) (July 1992)

フロントページの続き

(72)発明者 チャン ルー

アメリカ合衆国 ニューヨーク州 14870 ペインテッドポスト トールメドウ 29

F ターム(参考) 2H050 AC09 AC15 AC26 AC35 AC38 AC71 AD01