(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2002237989 B2

(54)

(51)°

Title

A service gateway for interactive television

International Patent Classification(s)

GO06F 13/00 20060101ALI20051
(2006.01) 220BMJP

G09C 1/00 H04L 12/58
(2006.01) 20060101ALI20051
H04L 12/58 008BMEP
(2006.01) HO04L 29/08
H04L 29/08 20060101ALI20051
(2006.01) 008BMEP

HO4N 7/173 HO4N 7/173
(2006.01) 20060101ALI20051
HO04L 29/06 008BMEP
(2006.01) HO4L 29/06
HO04N 7/16 20060101ALN20051
(2006.01) 008BMEP

GO6F 13/00 HO4N 7/16
20060101AFI20051 20060101ALN20051
220BMJP 008BMEP

Gooc 1/00 PCT/US02/02725
Application No: 2002237989

WIPO No: W002/063879

Priority Data

Number (32) Date
60/267,876 2001.02.09
60/265,986 2001.02.02
60/279,543 2001.03.28
09/858,436 2001.05.16
60/266,210 2001.02.,02
60/269,261 2001.02.15

Publication Date :

Publication Journal Date :

Applicant(s)

oOpenTv, Inc.

Inventor(s)
Lam, Waiman;
Alao, Rachad;

Agent/Attorney
Callinans,

Related Art

2002.08.19
2003.02.13

Delpuch, Alain;

(33)

Huntington, Matthew;

1193 Toorak Road, Camberwell, VIC,

(22) Application Date: 2002.02.01

Country
Us
Us
us
us
Us
Us

Dereau, Vincent;
Henrard, Jose

Kidd, Taylor;

3124

WO 1998/053581 Al (COACTIVE NETWORKS INC) 26 November 1998
US 5712903 A (BARTHOLOWMEW et al) 27 January 1998

o
<
=2
o~
]
9]
&
=]
=
ol

=

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISIIED UNDER TIIE PATENT COOPERATION TREATY (PCT)

i

(10) International Publication Number

15 August 2002 (15.08.2002) PCT WO 02/063879 A2
(51) Lnternational Patent Classification”: HO4N 7/173 (72) Iaventors: ALAQ, Rachad; 330 Angel Avenue, Sunny-
vale, CA 94086 (US). DELPUCH, Alain; 20, avenue An-
(21) International Application Number: PCT/US02/02725 dré Prothin, F-92927 Puris Ta Délense (FR). DUREAL,
Vincent; 3519 South Courl, Palo Allo, CA 94306 (US).
) - HENRARD, Jose; 14, rue de igge, F-75005 Paris (FR).
(22) International Filing Date: 1 February 2002 (01.02.2002) HUNTINGTON, Matthew; 23 Gordon Avenue, ‘lwick-
enham TW1 INIT (GB). LAM, Waiman; 2137 Sunsprile
(25) Filing Language: Cnglish Drive, Union City, CA 94587 (US). KIDD, Taylor; 977
Upland Road, Redwood City, CA 94062 (US).
(26) Publication Language: Cnglish
(74) Agent: ROEBUCK, G., Michael; Madan, Messman &
L Sriram, P.C., 2603 Augusta, Suite 700, Houston, TX 77057
(30) Priority Data: s
60/265,986 2 February 2001 (02.02.2001) US T
60/266,210 2 February 2001 (02.02.2001) - US (g) Designated States (national): AT, AG, AL, AM, AT, ATI,
607267876 9 February 2001 (09.02.2001) US AZ BA. BB, BG. BR, BY, BZ, CA. CH,CN, CO, CR. CU.
60/269,261 15 February 2001 (15.022001) US 7 DE.DK.DM. DZ EC. BE. ES. FI. GB. GD. GE. GH.
601279,543 2§ March 2001 (28.03.2001) US GM, HR, HU, I, IL, IN, IS, JP. KT. KG, KP, KR, KZ, LC.
09/858,436 16 May 2001 (16.05.2001) US LK. IR LS. IT. LU IV, MA. MD. MG, MK, MN. MW
MX, MZ, NO,NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(71) Applicant: OPENTY, INC. [US/US]; 401 T. Middicficld SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

Road, Mountain View, CA 94043-4005 (US).

YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: A SERVICE GATEWAY FOR INTHRACTIVE TELEVISION

/—50

2
1Y
o
g |z
) E)
gl 3| |z
102 z 5 S| 210 212
SEHV!CES‘| 3 2 E
2 S 2 o
SERVICES CDMMLL;%;(CAWUN S § E COMMLUI%?AUON CLIENT
1Y ™ 3
f S o %
200—" = @ g
S
g
£
«
204~ 106~ 108~

{57) Abstract: A scrvice gateway provides a proxy between a client protocol and a plurality of standard communication protocols.
The service gateway provides asymmetrical routing, data compression and encryption to optimize client processing power and com-
munication link bandwidth. The service galeway enables content translation between clients and service providers. The service
gateway keeps track of client available memory and sequence numbers in messages to generate crror codes when applicable. A store
and forward message capability is provided along with abstract session identifiers. The service gateway supports user datagram
protocol.

w0 02/063879 A2 NI N0 O 000 A

(84) Designated States (regional): ARTPQ palent (GIT, GM, Published:
KE, 1.8, MW, M7, SD, SL. §Z. 17, UG, /M, ZW), — withoul infernational search report and io be republished
Liurasian patent (AM, AZ, BY, KG, KZ, MD, RU, T, TM), upon receipt of that report
European patent (AT, BE, CIT, CY. DE, DK, ES, FI, FR,
GB, GR, IE, [T, LU, MC, NL, PT, SE, TR), OAPI patent For two-letier codes and other abbreviations, refer (o the "Guid-
(BI, BI, CE CG, Cl, CM, GA, GN, GQ. GW. ML, MR, ance Notes on Codes and Abbreviations" appearing at the begin-
NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

20

25

30

WO 02/063879 PCT/US02/02725

TITLE: A SERVICE GATEWAY FOR
INTERACTIVE TELEVISION
INVENTORS: RACHAD ALAO; ALAIN DELPUCH; VINCENT DUREAU;

JOSE HENRARD; MATTHEW HUNTINGTON;
WAIMAN LAM; TAYLOR KIDD

Copyright Notice

A portion of the disclosure of this patent document contains material (code
listings and message listings) to which the claim of copyright protection is made. The
copyright owner has no objection to the facsimile reproduction by any person of the
patent document or the patent disclosure, as it appears in the U.S, Patent and Trademark
Office file or records, but reserves all other rights whatsoever, Copyright 2001 OpenTV, .

Inc.

Background of the Invention
Field of the Invention
The present invention relates to the field of communications in the interactive
television enviromment and specifically relates to a method and apparatus for providing a
generic meta language and digital tclevision application protocol for interactive

television.

Summary of the Related Art

Interactive television systems can be used to provide a wide variety of services to
viewers. Interactive television systems are capable of deliveﬁng typical video program
streams, interactive television applications, text and graphic images, web pages and other
types of information. Interactive television systems are also capable of registering viewer
actions or responses and can be used for such purposes as marketing, entertainment and
education. Users or viewers may interact with the systems by ordering advertised
products or services, competing against contestants in a game show, requesting
specialized information regarding particular programs, or navigating through pages of

information.

10

15

20

30

WO 02/063879 PCT/US02/02725

Typically, a broadcast service provider or network operator generates an
interactive television signal for transmission to a viewer’s television. The interactive
television signal may include an interactive portion comprising of application code or
control information, as well as an audio/video portion comprising a television program or
other informational displays. The broadcast service provider combines the audio/video
(A/V) and interactive portions into a single signal for transmission to a receiver
connected to the user’s television. The signal is generally compressed prior to
transmission and transmitted through typical broadcast channels, such as cable television

(CATV) lines or direct satellite transmission systems.

Typically, the interactive functionality of the television is controlled by a set top
box (STB) connected to the television. The STB receives a broadcast signal transmitted
by the broadcast service provider, separates the interactive portion of the signal from the
A/V portion of the signal and decompresses the respective portions of the signal. The
STB uses the interactive information, for example, to execute an application while the
A/V information is transmitted to the television. The STB may combine the A/V
information with interactive graphics or audio generated by the interactive application
prior to transmitting the information to the television. The interactive graphics and audio
may present additional information to the viewer or may prompt the viewer for input.

The STB may provide viewer input or other information to the broadcast service provider

via a modem connection or cable.

In accordance with their aggregate naﬁ.1re, interactive television systems provide
content in various content forms and communication protocols the must be understood
and displayed by the STB/client that receives the information from the broadcast service
provider/nctwork operator. Typically the client is a STB having a processor possessing
limited processing power. Translation of the various contents and protocols is beyond the
limited processing capability available in the typical STB processor. Thus there is a need
for a service gateway that receives a simple communication protocol which can be easily
understood by the client/STB processor and tnanslates the simple protocol into a plurality,

of standard protocols used by service providers. There is also a need for a software and

2

10

20

25

30

WO 02/063879 . PCT/US02/02725

hardware architecture that provides adaptive control of access, content and scheduling in

an interactive television environment,

Summary of the Invention

The present invention addresses the needs of the interactive television
environment discussed above. The present invention satisfies a long felt need to provide
a simple content and communication protocol than can be easily handled by a STB
processor and enables complex communication with the head-end operator's service
platform (SP) or a server, its subscriber clients and a plurality of service providers.
While the following discussion uses the exampls of a client/STB, the present invention
applies to all client devices including digital assistants, cell phones, pocket personal
computers or any other types of electronic device capable of receiving an electronic
signal. The present invention resides in a service platform (SP). The SP or server
enables a network operator, who provides television signals to its subscriber clients, to
create and provide business, transport and communication functions that enable
communication between service providers and the client or STB viewer via the service
gateway.

The interactive television environment must deal with and solve problems that
are unique fo interactive television, such as the intermittent return path from the client to
the SP. That is, the client device is not always connected to the communication link as
when the STB is turned off. Thus, there is not always an active return path from the
client. The present invention provides a store and forward function to alleviate this
intermittent return path problem.

Bandwidth and processiﬁg limitations and communication complexities are also
problematic in the interactive television environment. On one hand the network operator
typically provides a broadcast channel with a relatively large data transmission capacity
(typically a satellite and dish) to scnd data and programming to the client. On the other
hand, the client return path has a relatively low data transmission capacity, usually in the
STB scenario, a telephone line is the return path. Even if the return path happens to have

a larger bandwidth, STBs/clients typically passess a low speed modem to send data on

3

15

20

25

WO 02/063879 PCT/US02/02725

the return path. Processing limitations limit the ability of a STB or client to process the
spate of communication protocols utilized by the service providers communicating with
the STB.

The present invention also provides a method of optimally transferring content
from the Head End Server to the set top box in a manner that optimally allocates
bandwidth. This aspect of the invention comprises an application for generating
statistical calculations, residing entirely within the set top box, that calculates the latency
of different channels in an interactive television environment. This aspect of the
invention further comprises using the results of these calculations to pull content from the
head end server into a set top box in a manner that minimizes the amount of time required
for transferring content. A preferable definition of the latency of a channel is the length |
of tinac between the issuance of a request and the fulfillment of that request. A report is
generated by randomizing the issuance of a small portion, preferably less than 5%, of file
requests over all available channels, in order to sample latency times. A channel can be
used with increased or decreased frequency, with the frequency of use based upon the
results of the statistics. More detailed results can be obtained by further delineating a set
of priorities to the statistics. As an example, the invention records the relation between
the size of a file and latency on a given channel. The Head End Server increases or
decrcases the appearance of a resource in the broadcast carousel depending on network
demand. The present invention also provides a message flow rate controller for
controlling message flow rate by controlling the bit rate of transmission. These and other

issucs are addressed by the present invention.

Brief Description of the Drawings
Other objects and advantagés of the invention will become apparent upon reading
the following detailed description and upon reference to the accompanying drawings in
which: ‘
Figure 1 illustrates a high level architecture diagram for a preferred cmbodiment

of a service platform in which the present invention resides;

4

10

15

20

25

30

WO 02/063879 PCT/US02/02725

Figure 2 illustrates a more detailed architecture for a service platform in which
the present invention resides;

Figure 3 illustrates a mid level architecture for a preferred embodiment showing
data bases;

Figure 4 illustrates an example of a preferred application backend framework for
the present invention;

Figure 5 illustrates an example of u preferred DATP STB stack architecture of
the present invention;

Figure 6 illustrates a preferred embodiment of the Service Gateway (SGW),
Digital TV Application Transport Protocol (DATP) of the present invention as a
subset of the Digital TV Application Protocol (DAP) used to standardize back
channel comnumications between application servers and the SGW;

Figure 7 illustrates DAML and DATP as a subset of DAP;

Figure 8 illustrates an example of a preferred architecture for the SGW of the
present invention;

Figure 9 illustrates the sliding rejection window of the present invention;

Figure 10 illustrates a sample DATP session between a STB and the SGW, as an
application server in a preferred embodiment of the present invention;

Figure 11 illustrates an architecture for content translation, H20; and

Figures 12-16 - illustrate message scenarios between the client/STB, SGW, H20

and application service providers.

While the invention is susceptible to various modifications and alternative forms,
specific embodiments thereof are shown by way of example in the drawings and will
herein be described in detail. It should be understood, however, that the drawings and
detailed description thereto are not intended to limit the invention to the particular form
disclosed, but on the contrary, the invention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present invention as defined by the

appended claims.

10

15

20

25

30

WO 02/063879 PCT/US02/02725

Detailed Description of A Preferred Embodiment
Overview

The present invention, a service gateway resides in head-end operator's service
platform (SP) and interacts with the content iranscoder, H20 and a digital television
application transport protocol. In a typical interactive television environment, there are a
multitude of clients/subscribers, typically STBs that must communicate with a multitude
of application servers providing content over a multitude of networks using various
communication protocols. Typically the STB has limited processing power so that it is
undesirable to place a multitude of communication pratocol handlers in the STB
processor or STB stack. Thus, there is a need for a common communication interface
that can address all the STBs and application servers. The present invention, the service
gateway provides a communication protocol proxy that requires light processor
utilization, well-suited for a typical STB possessing limited processing power and the SP.
The service gateway enables the use of DATP which requires relatively few processing
cycles compared to typical Internet communication protocols. DATP reduces the
overhead of the communication protocol handler at the STB and makes the
communication protocol handler common for all STBs. The DATP protocol is portable
for all STBs since it is written in O-code, a STB independent byle code that interfaces

with the operating system of the STB.

In the present invention, a SGW performs as a DATP server communication
proxy and asymmetrical router. SGW enables SP clients at STBs to comnect to
application servers using DATP protocol. An HTML to native code proxy, H20 is
provided that can be considered in this context as an SP application server. H20
performs specific content translation, such as HTML to SP O-codes. O-codes are the
STB independent byte code of the virtual machine running on the SP. In a preferred
embodiment, an O-code implementation of the DATP protocol stack exists in the client,
typically a STB. The client communicates using DATP protocol to a DATP server,
SGW. The H20 proxy exists on the other side of the SGW performing content

translation such as HTML to O-code. An O-code implementation of a DATP stack in the
6

10

15

20

25

30

WO 02/063879 PCT/US02/02725

client/STB issues communication requests and communicates with SGW using DATP
protocol. Content translated by H20 is passed through the SGW to the client where

content is displayed.

SGW provides a DATP server function, which creates execution threads to handle
each individual STB and proccss cach related content. The SGW server stack
communicates with the client/STB using DATP protocol. SGW also applies the
appropriate protocol needed to enable the STB to communicate back and forth between
the STB and different application servers via the SGW. Interactive television
applications typically utilize well known Internet based protocols (HTML, etc.) to
communicate back and forth between the client/STB and application servers, The
present invention, SGW provides a generic and well-suited asymmetrical communication
protocol between the client/STB and application servers via the SGW. The present
invention accommodates the minimal processing and memory available at the client/STB.

The SGW provides an asymmetrical solution to data compression. The band
width of the bi-directional path from the client/’STB to the network operator is relatively
small, typically , however, a regular telephone line or a return channel in a cable and
usnally connected to a low speed modem. Thus, to increase the bandwidth available
over the low speed modem, the content down loaded from the server to the client/STB is
compressed. At the client/STB, however, data compression is preferably not perf;)rmed.
The client/STB data returncd is relatively small and not in need of data compression by
the STB processor which typically does not have the processing power to perform data
compression. In an alternative embodiment, there are, however, instances where data
compression from the client/STB is desired and in this case data compression is
performed at the SGW. Data compression, with respect to the client/STB is asymmetric
in that data is compressed going down stream to the client/STB and is not compressed
coming upstream from the STB. Thus, the architecture of the present invention is
asymmetric, unlike typical Internet-based protocols where both entities communicating

are assumed to be symmetrically powered.

-10-

10

135

20

25

30

WO 02/063879 PCT/US02/02725

The SGW and client/STB communicate with application servers utilizing session
identifiers for clients rather than user identifiers so that the client users remain
anonymous. The present invention also provides multicasting to clients. A multicast
message can be sent to multiple clients via a broadcast link, when broadcast bandwidth
and a tuner is in the STB and broadcast messages are available and sensed by a particular
filter setup in the STB. SGW via DATP requests that the STB receive a message from a
specific enuy on the broadcast. If no tuner is available to receive the broadcast in the
STB, message fragments are also sent on each point to point individual link to the STBs
without a tuner. If the STBs are on a LAN, messages are sent to a well known address on
the LAN to the STBs.

The present invention also provides a novel structure and method for handling
cookies from Internet applications and provides a "light" HTTP protocol, LHTTP which
encapsulates HTTP requests within DATP messages. LETTP is a simplified version of
HTTP that runs on top of DATP, which the SGW converts into HTTP for communication
with service providers. The novel LHTTP runs on top of DATP and does not implement
any part of the TCP/IP specification. l

SGW establishes a link or a socket connection with a STB. To implement User
Datagram Protocol (UDP), however, UDP is not performed directly. For a STB that can
output UDP, encapsulates DATP on top of UDP. The DATP-encapsulated UDP is sent
to the SGW. In the case of UDP, a socket in the SGW and a socket in the STB are
effectively bound together in a simulated connection on top of UDP. Through this SGW-
simulated connection, DATP packets are sent from the STB to the SGW server and from
the SGW server to the STB.

Many STB modems do not provide data compression, possess minimal processing
capability and cannot afford the processing cost to perform data compression in the STB.
Thus in a preferred embodiment, the SGW provides asymmetrical data compression is
performed at the SGW. The STB does not compress data. STB receives compressed

data and decompresses it, however, the STB does not perform data compression which is

8

11-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

peformed by the SGW. Data decompression, however, is less compute intensive than
data compression, thus, the STB preferably performs decompression.. Compressed data
is sent to the DATP stack at the STB but uncompressed data is sent from the STB to the
SGW. SGW performs data compression on the uncompressed data sent from the STB
and SGW returns the compressed data to application servers. Thus, the preferred
DATP/SGW asymmetric compression increases the bandwidth of the return path from
the STB through the SGW to the application servers.

The present invention, SGW provides asymmetrical routing. In asymmetrical
routing a portion of the bandwidth is allocated to SGW to send data to the broadcast
stream for broadcast. SGW has the ability to decide whether to send data to one or more
STBs over the broadcast stream or a point to point (PTP) connection between the SGW
and the STB(s). SGW routes data via broadcast or PTP, based on the amount of data, the
speed of the point to point link to the STB(s) and the current communication links
loading conditions. Thus, SGW may decide not to send a data set over the point to point
link because the data set is too large and instead send it over the broadcast stream. The
data can be compressed by SGW before sending it to the recipient stream or point to
point link to increase the bandwidth of the link between SGW and the link or stream and
to accommodate memory limitations in the STB.

SGW enables DATP to be computationally light weight becauso it is designed so
that all STB stack operations require 2 minimum of processing power. For example, in
the DATP encryption scheme, when using Rivest, Shamir and Alderman (RSA) public
key encryption, the key that comes from the server is chosen so that the its exponent is
small (3 or greater) so that exponentiation phase takes a minimal amount of time and
processing power. Thus the heavy computation is reserved for the SGW and thus, the
STB or client processor requires minimum processing capability. Likewisc the LHTTP
layer on top of DATP in the STB does not have to perform any heavy parsing or other
processing intensive operations. Instead, HTTP data is encapsulated in DATP messages
by LHTTP and the HTTP compute intensive fimctions, such as conversion to HTTP
protocol are handled by SGW.

-12-

20

25

30

WO 02/063879 PCT/US02/02725

DATP performs more than transactions. Rather, DATP is a message-based
protocol rather than a transaction oriented protocol, thus, when a user sends a message
from a STB to an application server, the application server does not have to respond.
That is, there is not a one-to-one correspondence between STB and service provider
messages. All DATP messages, except the class of unreliable DATP messages ate
processed through a DATP reliably layer. All DATP messagcs have unique identifiers

which can be used as the basis of a transaction.

In a transaction using DATP, for example a HTTP request, the STB sends a
DATP message to the SGW requesting a Web page. SGW converts LHTTP to HTTP
and sends it to the Internet via F20. Once the response containing the Web page returns
from the Internet to SGW via H20, which converts the content, SGW sends a LHTTP
DATP message to the STB returning the content of the requested Web page to the STB.
Another example of a transaction is a Fetchmail request sent from a STB. The Fetchmail
request is encapsulated in a DATP message. DAML is used on top of the DATP
message. DAML is a domain specific instance of XML.

Thus, the STB sends a DATP message to Fetchmail containing a DAML (XML)
request. Fetchmail reads the DATP message and extracts the content from the message,
passes the content to the application server which processes the transaction and returns a
message to Fetchmail, Fetchmail then sends a DATP message containing requested
content to the STB,

SGW also provides a store and forward function to handle peaks in numbers of
orders sent in from multiple users, while rapidly reacting to the user order request. SGW
quickly sends an "order acknowledge" to the user in response to user's order and stores
the order for transmission later to the application server, which will actually process the
order transaction. By sending the order later, a large number of orders can be spread out

over time and not have to be sent all at once to the application server. Thus, bandwidth is

10-

13-

15

20

25

30

WO 02/063879 PCT/US02/02725

efficiently utilized. DATP/SGW also provides a sliding rejection window based on
message fragment sequence numbets versus time. DATP/SGW are discussed in detail

below.

The Service Platform

Turning now to Figure 1, the SP in which the SGW of the present invention
resides is presented. The SP 50 comprises a group of applications roughly divided into
three categories, Content Conversion 204, Transaction Control/Business Functions 106
and Transport Conversion 108. The SP enables services 200 to interact with a client
212. The services 200 communicate through a communication link 102 to the SP 50.
The SP 50 in turn communicates with a client 212. The client 212 may be a STB, a
digital assistant, a cellular phons, or any other communication device capable of
communicating with the SP through communication link 210. The content conversion
204 and transport conversion 108 scrvices provide the transport and communication

function, and the business function services provide the business control functions.

Figure 2 illustrates an example of a preferred implementation of Service Platform
50. Services 200 provide shopping, chat, and other services either over the Internet or
over another network or communication channel accessible to the network operator.
Using the SP, the network operator accesses those services. Business finctions 206,
comprising service manager 238, interact with carousel manager 254 to retrieve content
from a service 200, The carousel comprises a repeating stream of audio/video/interactive
data broad cast to clients from the SP 50. Carousel manager 254, transaction manager 242
and service manager 238 control the content insertion and delstion from the broadcast
carousel. Service content is retrieved and converted into a SP suitable format by H20
248. H20 248 is a possible implementation of content conversion 204. H20 converts
HTML content into SP/client readable content. The converted content is formatted into a
data carousel and multiplexed by the Open Streamer 256 for broadcast to the client 212.
Client 212 interacts with the services and if necessary communicates with the SP and the
services 200. PTP communication goes through SGW 246. SGW 246 performs transport
conversion to convert the STB DATP protocol into a standare communication protocol

11

-14-

15

20

25

WO 02/063879 PCT/US02/02725

which the Platform Business Agents 226 and H20 248 understand. Load balancer 236
interacts with business functions 206, carousel manager 254, and SGW 246 to determine
the optimal load between the broadcast link 241 and the PTP communication link 210.
Business functions 206, interact with the platform business agents 226 to control access

and information exchange between the services 200 and client 212.

Services 200 negotiate with a network operator to offer services to subscribers via
the operator's Service Platform. As shown in Figure 3, the network operator uses the
Service Manger 238 to register the services and the negotiated business rules 222 (e.g.
schedule, bandwidth requirements, service access to viewer information) associated with ’
the service. The Service Manager 238 stores Setvice data 216 (e.g. URL address,
content). Based on the business rules 222 and Service Data 216, Service Managcr 238
communicates with the Broadcast Communication 234 function to retricve the content

from the content provider,

‘When the content is retrieved from the Service 200, it may be processed by the
Content Conversion 204 and Content Filters 224 to convert the content into a form
suitable for the client device 212. The Broadcast 234 function converts the content into a
form suitable for the broadcast 234 network. The converted content is received by the
client 212 over broadcast link 241. Client 212 and Service 200 interact via Point-to-Point
link 210 and Point-to-Point function 232, which are part of Transport Conversion 207.
The service 200 may comprise shopping, audio/video, gaming, voting, advertisement,

messaging, or any other service.

Client 212 communicates through Point-to-Point 232 communication link to the
Service Platform 50 and Service 200. Load Balancer 236 interacts with the Business
Functions 206 to determine the optimal load distribution between the Broadcast 234
Communication link 241 and the Point~to-Point 232 Communication link 210. The
Platform Business Agents 226 use business rules 222 to control the interaction and
exchange of information between the Service 200 and the client 212. For example, the

network operator may choose to prevent Service 200 access to user information, Service

12

-15-

20

25

30

WO 02/063879 PCT/US02/02725

200 must pay a fee based on the Business Rules 222 and Service data 216 to access the

user information.

Viewer Manager 240 stores client/user information in User Data 220. Platform
Business Agents 226 conirol the flow of viewer information to the Service 200,
Transaction Manager 242 records transactional information exchanged between the
service 200 and Client 212. Based on the Business Rules 222 and the User Data 220,
Advertising Manager 244 determines which advertisements and which type of
advertisements will be presented to the client via Broadcast 234 link 241 and Point-to-
Point 232 link 210. The Service Platform Transaction Manager records all transactions in
the Transaction Database to ensure accurate operator revenue collections (even when the
STB is turned off) and subscriber profiles in Viewer Profile 162 and Viewer Category
160 (viewer buying and viewing habits), which provides added value data to the network

operator.

The transaction log is also usefol for mining a user’s viewing and transaction data
for generating cumulative user profiles or used for more sophisticated profiling
techniques such as collaborative filtering. Viewers or clients are placed in one or more
categories (e.g., "sports fan", “chef-French") based on viewer user profile. Categories
enhance the network operator's ability to perform adaptive targeted advertising and
broadcasting based on long term and short-term viewing and buying trends of the

viewer/client.

The Service Platform provides a Wallet function, which provide a
checkout/purchase function. The wallet function is supported by the Service Platform,
although selected shops or services may bypass the wallet function in favor of their own
checkout procedure. The Wallet finction records and accesses data regarding the viewer
profile, viewer category, and transaction log. Thus, the Wallet minimizes typing of input
data by the user. This function is particularly useful when user is ordering via a TV
remote control with limited data entry capacity. Typically, content for the Wallet function
is a credit card number stripped out of 4 last digits, so that the user only has to complete

the last 4 digits or the shipping address for confirmation.

13

-16-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

Optionally, all user information is placed in the Wallet Function, hidden from the
service. Wallet information exists in both the Service Platform and the client. The Wallet
information on the Service Platform preferably contains as much information as possible,
including client shipping address, clicnt full credit card number, etc. The Wallet
information in the STB may only contain partial information such as the last 4 digits of
the credit card to remind the viewer which credit card on which a purchase was made.
Partial information is stored in the STB for protection from untrusted persons using the
STB and untrusted applications, which can access the STB data.

As linking occurs, when a viewer click triggers the call of an E-Commerce
application or service, the Service Platform determines the subscriber's navigation
location and records it in the Transaction Database 158. The Service Platform also
determines and records when the viewer followed a link to a store, or which program the
viewer was watching when he/she made the decision to purchase (referred to as an
"impulse buy"). The Transaction Database 258 enables the operator to store and provide
a detailed context and purchase history to subscriber. Such storage of context and
purchase history is also useful to improve subscriber profile and category information and
which can generate additional revenue and/or become part of a channel deal with an E-
Commerce provider.

The Service Platform enables a network operator to facilitate E-Commerce
deployment on its own network and to capturc a share of the E-Commerce revenues. The
Service Platform Personal Wallet function enables the network operator to manage credit,
impose spending limits and enable micro-payments. Services may interact with the
Service Manager and Viewer Manager to provide a.group of services from which the
Service Platform chooses to present to clients based on viewer profiles and categories.
Operator may conversely tell a service it subscriber profile to request specialized viewer

targeted offerings and advertisements to subscribers.

Viewer Manager 252 manages subscriber/user registration 264, preference, and
profile information 262. Viewer Manager 252 enables users to register and record
personal information in a database. The personal information comprises viewing
patterns, promotional preferences, personal, wallet and demographic information, etc.

Based on this recorded information and the user's activities, the Viewer Manager 252
14

17-

20

25

30

WO 02/063879 PCT/US02/02725

generates profile information to categorize the user and produce targeted services, content
and advertisements to suit the user's profile 262 and expected preferences and needs. The
Viewer Manager 252 also performs centralized updating of service and viewer

parameters.

The Service Platform, via the SGW and supporting functions, enables network
operators to conirol access to the viewer database and allow only those service providers
who have a prior contract or agreement with the network operator to access privileged
information (e.g., credit card numbers, viewer's actual name, home address, telephone
number, social security number, etc.). For distributed functions, that is, when the client
has sufficient processing power and storage, the Viewer Manager 252 enables access to
personal and profile information stored on the client devices and enables the client
devices to select user-preferred content. Clients select user-preferred content via business
filters in the client device (e.g., STB).

The Viewer Manager 252 provides Household/Subscribet/STB (or other client
device) identification and authentication in suppott of the Service Gateway and Parental
Control fimctions. The Viewer Manager 252 supports Multiple Viewer identification and
Registration authentication af a single STB through nicknames and personal identification
numbers. The viewer identifier preferably is derived from the client device identifier
number(s). The Viewer Manager 252 provides household and individual viewer profiling
through logging, generation, and matchmaking linked to observed cumulative TV
viewing and purchasing habits in support of SGW. The Viewer Manager supports
Distributed data capture and storage between the Service Platform and the STB, and
supports bi-directional synchronisation. The Vicwoer Manager 252 enables Distributed
profile usage between all Service Platform applications and provides synchronisation
with an external SMS/CRM.

The Viewer Manager 252 enables multiple viewer registrations for a single STB
or client device using abstract viewer identifiers comprising nickname, full name and PIN
Storage in the STB or other client device. Business Agents 226 enforce transactional
business rules for interaction between service providers and viewers. Based on business

rules, which are defined by the network operators and based on agreements with the

15

18-

WO 02/063879 PCT/US02/02725

10

15

20

25

30

service providers, the Business Agents 226 control transactions and service provider
access to user information. Business Agents 226 insert, replace and delete viewer

information during a transaction.

Business Agents 226 in.conjunction with SGW 246 create sessions between
subscribers and service providers. SGW/Business Agents 226 can control access to
viewer information details and manipulate viewer information by inclusion, replacement
and removal of viewer information presented to Setvice Providers. SGW/Business
Agents provide default values and control access to user information. SGW/Business
Agents also perform Transaction Logging, Messaging Logging, Load/Transaction
Monitoring.

Advertising Campaign management makes use of viewer data mining and analytic
systems in order to propose the best selection of products, advertisements and timing for
broadcast. The Service Platform provides rule based systems to create ‘smart’advertising
campaigns. The campaigns are adaptive based on user preferences, profiles, buying and
viewing habits, and demographics. Based on information coming from the Ad Content
database, Campaign Rules database, Service Manager, and Carousel Manager, the Ad
Manager decides the best products to present to the viewer. It triggers the Carousel
Manager to rebuild the broadcast catalog. The Ad Manager also interfaces with the
Business Agents to propose advertising contents presented to the viewer while the viewer
is on line.

Open Streamer packages advertisements as N Service Platform carousels, one per
transport streant, optimizing the bandwidth usage. STB client applications are broadcast
with an advertisement library. This library performs Campaign acquisition,
Matchmaking, Tracking and Reporting, The campaign acquisition client component runs
in parallel with the client application, watching for the campaign carousel, caching
information, and pre-fetching assets. The matchmaking client components evaluate each
advertising campaign with local parameters (type of page displayed, user information,
number of times campaign was ran, etc.) and accesses the best advertisements for display.

The SP in which the present invention resides, provides a system architecture that

provides a comprehensive revenue solution for regulation of content, advertising,

16

-19-

20

25

30

WO 02/063879 PCT/US02/02725

messaging services, E-Commerce and television conmmerce (T-Commetce) in an
interactive television environment. The revenue solution of the SP in which the present
present resides, provides network operator control and optimal revenue participation by
merchants, service providers, network operators and the Service Platform provider. The
Setvice Platform provides a centralizing structure that enables creation of new revenue

streams for network operators, solution providers and service providers.

The SGW enables the SP to hide the head-end operator's valuable subscriber
profile database by requiring viewer information be given to a service exclusively by the
network operator, and under the network operator’s conirol. To protect the subscriber's
identity, an abstracted user identifier (i.e., session identifier) is transmitted to the service
during the session that the service transmits transaction details to the SP. The user
identifier is session specific. There can be more than one user identifier associated with a
client, as when different family members use the same STB. Each family merber and
the household STB can be individually assigned a viewer identifier, category, tracked as
to transactions for purchases/movie requests/viewing habits/etc., and profiled by the SP
Viewer Manager. The view identifiers are made available io the SGW. The service
provider only knows the client or STB identifier through a session identifier. Only the
network or head-end opcra'tor, by way of the SGW can resolve a session identifier into
viewer information details (name, address, shipping information, etc.) needed for
fulfilling an order. An exception can be made for a credit card number or other
information, when the operator does not wish to perform credit card collections or other

{ransactions.

The present invention enables network operators to control access to the viewer
information database and allow only those service providers who have an agreement with
the network operator to access privileged information (e.g., credit card numbers, viewer
actual name, home address, telephone number, social security number, etc.). Viewer
manager 252 enables access to personal and profile information stored on the client
devices and enables the client devices or SP to select user-preferred content and

purchasing habits based on viewing stored in the viewer profile. Clients, SGW or the SP

17

-20-

10

15

20

25

WO 02/063879 PCT/US02/02725

select user-preferred content based on viewer profiling via business filters activated in the

client device by the client, SGW or another SP component.

The viewer mahager 252 provides household/subscriber/STB (or other client
device) identiﬁcation and authentication in support of the SGW and parental control
functions. The viewer manager 252 supports multiple viewer identification and
registration authentication at a single STB through nicknames and/or personal
identification numbers (PINs) plus, the viewer identifier derived from the client device
identifier number(s),transaction history, viewer profiles, nicknames and personal
identification numbers. The viewer manager 252 performs household and individual
viewer profiling through logging, generation, and matchmaking linked to observed
cumulative TV viewing and purchasing habits. The viewer manager supports distributed
data capture and storage between the SP and the STB, and supports bi-directional

synchronisation.

The viewer manager 252 enables distributed profile usage between all SP
applications and provides synchronisation with an external SMS/CRM. The viewer
manager 252 enables multiple viewer registrations for a single STB or client device using
abstract viewer identifiers comprising pseudonyms or nicknames, full names and PIN
storage in the STB or other client device. Business agents 226 enforce transactional
business rules for interaction between service providers and viewers. Based on business
rules, which are defined by the network operators and based on agreements with the
service providers, the business agents 226 control transactions and service provider
access to user information. Business agents 226 in support of SGW, supplement, add,
replace and delete viewer information during a transaction based on the service provider

agreements and abstract session identificrs.

Business agents 226 create sessions between client subscribers and service
providers. Business agents 226 control access to viewer information details and
manipulate viewer information by inclusion, replacement and removal of viewer

information presented to service providers., The business agents 226 provide default

18

21-

15

20

25

30

WO 02/063879 PCT/US02/02725

values and control access to user information. The business agents 226 also perform
transaction logging, messaging logging, and load/transaction monitoring.

Advertising manager 244 provides an interface with both the broadcast and PTP
links, which enables complimentary advertising interaction between the two delivery
channels. For example, a broadeast (push) advertisement can trigger a PTP connection to
the advertising service via the SP so that the user can buy the product or get more
information related to the product. A broadcast advertisement can also be placed in the
PTP content to inform a user of the availability of broadcast services (e.g., an
infomercial). ‘

In some instances, several products or advertising segments are pushed or
broadcast to the client without the client requesting the information. Business filters
associated with the client, prefefably located in a STB are used to select the best
advertisement for the viewer based on user profiles. For example, during a cooking
show, the SP may schedule a group of cooking advertisements for broadcast to viewers.
This group of advertisements may comprise cooking ads on Italian, French, Indian and
German cuisine. The SGW will set up the business filter associated with or located in the
STB or client to select which type of cuisine advertisement to present to the client, based
on a viewer profile One viewer may see a French cooking advertisement while anather
viewer may see the Indian cooking advertisement depending on the STB filter set by the
SGW, client or SP based on viewer profiles, user preferences and/or client profiles.

The SP enables reuse of Web Commerce infrastructure. The SGW residing in the
SP replaces the ‘usual’ HTML templates with an SP friendly format. The business
agents receive the order requests from the STB or client through the SGW. SGW queues
messages (to manage peaks), some orders are received by the business agents with a
delay (preferably orders that do not require any form of confirmation would use this
scheme). The SGW business agents add viewer information to orders. The amount and
type of the viewer information provided in a order/message is guided by business rules
depending on the service/retail agreement.

As communications between services and viewers/clients the information are sent
to either separate carousels with a single carouse] per transport stream or merged into the

existing application carousels. Orders then may proceed, if desired through a “credit card

19

22-

10

20

25

30

WO 02/063879 PCT/US02/02725

clearance’ function provided by the SP. As confirmations are sent back from the retailers,
the orders are sent real-time back to the user sent via email to the user or made available

on-demand through the SGW.

The SP, via SGW also provides offline viewer identification (OVI), which
enables a viewer to be identified or authenticated without an online viewer connection
established. This ensures that the connection delay (e.g., 10 — 40 seconds) can be placed
at the most appropriate place within the purchase process. This also enables viewer
identification along with the store and forward function. OVI enables communications

and completion of orders/operations with a client device that is intermittently on and off.

An offline order form function is provided which enables the SPF/SGW to provide
T-Commerce services for a viewer to add items to an order form (shopping cart) without
being online, The store and forward function is enables greater scalability. Store and
forward may be either forwarding in off peak hours or simply spreading the load over a
given time period after a transaction has been initiated. The full store and forward
solution is integrated with the so that responses can be forwarded from any channel at
any time. Store and forward can be used for enhanced E-Commerce, T-Commertce
transactions. The offline viewer authentication enables offline payment selection.
Offline payment selection is provided by the SP/SGW to improve the purchase process

and to enable use of the store and forward function with T-Commerce/E-Commerce.

The SP/SGW uscs standard Web transport where applicable, i.e., it uses HTTP
for real-time requests, and SMTP for asynchronous communication where applicable
(e.g. merchant reporting, store and forward). Even when going online, the SP provides
the ability to connect for a short period of time to access data (c.g., email) then uses the
data locally. The SP/SGW provides session-based identifiers instead of the typical Web
cookies to protect the operator viewer database. Instead of Web cookies, the SP/SGW
provides a session-based identifier that cannot be used by the service to identify the user,
only the session. The service must request the viewsr inforination from the SGW (and be

charged for it by the nctwork operator).
20

-23-

15

20

25

30

WO 02/063879 PCT/US02/02725

The SP/SGW optionally informs the viewer when a connection takes place, and
also can optionally ask for the viewer's approval to maintain the connection. The SP also
displays a "Comnection ON" status on the viewer's screen. The SP uses broadcast
bandwidth for PTP communication when it is more efficient. A load balancer is provided
that determines which information goes over the broadcast and which information goes
over the PTP connection. Load balancing decisions are based on the urgency of the data,
the delivery latency of the broadcast versus PTP transmission links, the comparative load
on the broadcast and PTP paths and the number of viewers receiving the data. Generally,
data going to a large number of viewers is broadcast, and small data quantities that need
to be sent immediately are sent over the PTP link. STBs without a broadband tuner will
receive PTP messages sent out along with broadband.

Referring to Figure 2, the invention is a method for optimally controlling the
choice of broadcast streams used for pulling content (e.g. programs, advertisement) into a
client device 212 (e.g. a set top box). “Content” is meant to imply television content not
normally obtained from an internet connection. In an interactive television environment,
the head end server 50 and set top box 212 have several broadcast channels available for
transferring content. For instance, the head end server 50 can place content into a
broadcast carousel stream to be transferred over a choice of channels 261 (i.¢., terrestrial,
cable. satellite dish), and the set top box 212 can pull this content from this stream. Over
a return channel 210 (e.g. PTP), the set top box 212 communicates with the head end
server 50 on a client-server basis, whereas the set top box 212 requests content from the
head end server 50.

The invention generates a record of latencies in fulfilling requests for all sizes of
files and times of request. It enables a small portion of file requests, preferably less than
5%, to be randomly distributed over all available channels. Since file size may be a
contributing factor to latency, the method preferably pulls similar sized filec from alternate
channels. As an cxample, a 200kB filc may be pulled from both the return (Point-to-
Point) channel 210 and the broadcast stream 261. At a given time of day, say 5:00 PM,
the average latency on the Point-to-Point conncction 210 may be 1.5 seconds while the
average latency on the broadcast stream 261 is 0.5 seconds. Some time later, say at 9:00

PM, a file of the same size is pulled across the channels. For a 200kB file, the average

21

-24-

20

25

30

WO 02/063879 PCT/US02/02725

latency on the Point-to-Point connection 210 may now be 1.0 second, while the average
latency on the broadcast stream 261 may be 5 seconds. These results would lead the set
top box 212 to obtain more of its content from the broadcast stream 261 at 5:00 PM and
to obtain more of its content from the Point-to-Point connection 210 at 9:00 PM.

The generated latency data is held for a specific amount of time and then is
released at a time when it is determined to be old. A time frame is chosen to be long
enough to allow an acceptable level of statistical sample points, as well as short enough
to ensure that the sample points being used are recent and relevant to the current time.
Sample points that are too old are dropped from the sample group before the next
statistical iteration.

The latency in the broadcast stream 261 is primarily determined by repetition rate
and can be affected by network traffic. On the broadcast side, the head end server 50
implements a feedback mechanism to determine whether it should broadecast the data
resources or whether the receiver should instead obtain that data resource over the return
channel 210 from a data server. Each client device 212 and data server keeps track of the
demand for the different data resources they use or provide. As the demand for a data -
resource goes down, the head end server 50 automatically decreases the resource’s
frequency of appearance in the carousel (off loading the demand onto the IP return
channcl connection and associated data server). As the demand for a resource goes up,
the head end scrver 50 automatically increases the resource’s frequency of appearance in
the carousel (decreasing the load on the return channel 210 and associated server). The
present invention also provides a message flow rate controller for controlling message
flow rate by controlling the bit rate of transmission.

SP provides STBs and/or clients with filters which selectively receive information
in the broadcast path based on viewer profiling, so that only selected viewers having a
particular filter set up in their STB captures content (advertising, information or A/V
programming, ctc.) in the broadcast stream. These filters enhance the adaptive and
sclective delivery aspects of the SP. The Carousel Manager provides a data carousel for
Open Streamer. The Carousel Manager manages a carousel of data in real-time. The
Carousel Manager complements Open Streamer. Carousel Manager provides a server

component and an STB client OCOD library. The Carousel Server receives requests

2

-25-

15

20

25

WO 02/063879 PCT/US02/02725

from applications to add to, remove from or otherwise change the carousels contents. As
Carousel Manager receives a request, it treats it as a single transaction, and obtains all
necessary data (usually through HTTP). The Carousel Manager generates new carousel
index or carousel directory file as needed. Carousel Manager publishes the updated
carousel directory to Open Streamer, thereby controlling Open Streamer's broadcast

priorities and tracks.

Open Streamer is a softwarc/hardware product that enables network operators to
broadcast SP ai)plications and data in their network broadcast. Open Streamer enables SP
data and applications to be transmitted simultancously with the network operator A/V
programs. Open Streamer enables a data stream to be updated in real time to match the
A/V contents, For example, a network operator can broadcast an interactive sports
application along with the live broadcast of a sporting event. Open Streamer comprises
two components, a common server DLL and a broadcast streamer. An application server
(e.g., a weather application server) or the Carousel Builder in the SP calls the comman
server DLL to send the carousel data to the broadcast streamer. The broadcast streamer
then performs multiplexing (according to code/data ratio and bit rate requirements) of the
applications and A/V data and sends the multiplexed data to the broadcast equipment for

broadcast.

DAP/DATP Protocol Scheme Overview

The present invention enables communication between STBs using DATP and
service providers using standard protocol via the SGW. DATP protocol is a message-
based protocol where an entily sends a message to another entity with a delivery
guarantee. Any time the STB sends a message to the SGW, STB receives an
acknowledgement message once the message has reached its final destination (SGW
provides the function of an application server). When the message has been processed by
an application server, a response message may be sent to the STB provided that the STB
session with SGW is still open. The DATP message transmission phase will be preceded
with a DATP login phase and followed by a DATP logout phase needed to establish a

23

-26-

15

25

WO 02/063879 PCT/US02/02725

DATP session. DATP is a session oriented protocol. Figure 10 illustrates a simple
example of DATP session.

DATP supports multiple sessions on top on the same STB Transport layer
conncetion. STB clients can send in the middle of an open session with the SGW login
packets to start a new session on the same STB transport link used for the first session.
Both DATP session management modules in the STB client and in the SGW multiplexes

the various session messages over the same link.

DATP Packet content overview

The DATP Protocol packet comprises a fixed size header, a variable size data
payload (DAML messages) and a trailer. The Header comprises the following elements:
Protocol Version Number; Packet type (Login/Logout Handshake, Ping, Data,
Acknowledge, etc.); Actual Transport Tnfo (Raw, TCP/IP, UDP, etc.); Message Sequence
Number (DATP message number generated by STB or SG); Service Identifier (ID of the
service to receive the data). The service id is an 8 bit identifier defined in the DATP
protocol. Session ID (Session ID is provided by SGW at handshake); Encryption Flags
for encrypted sessions; and Payload Data Size.

The Payload Data may contain the following depending on the packet type:
Login/Logout info for Handshake packets; Acknowledge Info for Acknowledge packet;
Data Payload for data packet. The trailer will contain at least the 32 bits CRC checksum
of the DATP packet. The DATP protocol byte ordering is BIG ENDIAN.

Packet Fields Specification

The Protocol Version field is the version of the DATP protocol used by the
transmitting entity. It’s the first byte of a DATP packet. The DATP packet format may
vary based on the DATP protocol version number. When new versions of the DATP

protocol are specified, this version number is increased to reflect the changes. DATP

27-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

communications between two entities will use the highest version of DATP available on

both entities. The version negotiation will be part of the login process.

The Packet Type Info field is the second byte of a DATP packet. It indicates what
type of DATP packet is being sent. STB transport Info field is the third byte of a DATP

“packet. It provides information on the transport used on the STB side. It is divided in 3

sub-fields: STB_transport_info[7..4]: The four MSB bits of the field represent the STB
native transpott protocol type. STB_transport_info[3]: This bit indicates if the
underlying transport is reliable. Note that this bit has is set to the correct value even if the
native transport protocol type value can provide a good indication of the protocol
reliability. STB_transport_info[2..1]: This bit indicates the speed class of the native STB
transport.

The Service ID is the forth byte in a DATP packet and indicates the id of the
destination (STB to SGW packets) or transmitting (SGW to STB packets) host of a
DATP packet. The session ID is the second quadlet (double word) of a DATP packet. It
indicates the session id of the DATP packet. Session id values are generated by the SGW

during the login process. Login packets have their session id field set to 0.

In DATP, a sequence number is the first word of the third quadlet of a DATP
packet. It indicates the DATP message sequence number. This number identifies a DATP
“transaction” from a packet sent to its corresponding acknowledge. Message sequence
numbers are generated by the transmitting entity and are unique only across the messages
sent on one leg of a DATP connection. This means that a DATP message sent from the
STB client to the SGW and a message sent from the SGW to the STB client can have the

same sequence number but still correspond to two separate “transactions”,

In DATP data size is the sccond double word of the third quadlet of a DATP
packet. It indicates the size of the payload data of the packet in bytes. By construction

this size is limited to 64KB to accommodate various common factor on low end STBs

25

-28-

10

20

25

WO 02/063879 PCT/US02/02725

such as slow modem links, extremely noisy communication chamnels, limited RAM
memory resources, etc. In DATP, encryption flags constitute the first byte of the fourth
quadlet of a DATP packet. The DATP data payload starts from the first byte after the 16
bytes fixed size header up to the size of the Data payload as indicated in the header data
size field. In DATP, CRC is the first quadlet after the data payload. It contains the value
of the 32 CRC checksum of the whole DATP packet (header included).

The Login packet is sent by the STB client to initiate a DATP session with the
SGW. It represents the first phase of the login process negotiation where the STB
introduces itself to the SGW. The SGW answers to a login request with an acknowledge
packet in case of success. It will decide on the negotiable attributes of the DATP

cormection and it will assign a session id to the newly created session.

The SGW will answer to a login request with a negative acknowledge packet in
case of failure. This packet is sent by the STB to close a DATP session with the SGW.
The SGW will answer to a logout request with Logout Acknowledge packet in case of
success.

The SGW ansx;vers a Jogout request with Logout Negative Acknowledge packet in
case of failure. Cases of failure include errors like unknown session id, bad crc, etc. A
data packet can be sent by any entity of a DATP connection. A STB client application
can send DATP data packets to Application Severs and Application Servers can respond
back to a STB forcing the transmission of a data packet from the SGW to the Client STB.
An entity that received a Data Packet will answer with Data Acknowledge Packet on
successful reception. An entity that received a Data Packet will answer with Data
Negative Acknowledge Packet on unsuccessful reception. If no packet has been received
from a remote DATP entity for a configurable period of time, the other remote entity
could test the DATP link by sending a DATP ping packet and waiting for areply. A
remote entity that received a ping packet must send a Ping Acknowledge packet to its
remote peer if the ping packet was successfully received. A remote entity that received a

ping packet must send a Ping Negative Acknowledge packel to its remote peer in case of

26

-29-

15

20

25

30

WO 02/063879 PCT/US02/02725

unsuccessful reception of a ping packet. Cases of failure include errors like unknown
session id, bad CRC, etc.

Tuming now to Figure 4, the following summarizes the architecture for

. DATP/SGW as shown in Figure 4. A large number of SP and STB client applications

have common needs that are more transport specific than application specific that are
addressed in the DATP/SGW architecture. DATP/SGW performs encryption, data
compression, HTTP routing, and many other functions discussed below. The architecture
for the DATP/SGW application backend framework is illustrated in Figure 4.
DATP/SGW provides Lightweight HTTP (LHTTP) at the O-code application level, store
and forward function, STB Identification (using the OpenTV Central Registry [OCRY]),
and many other functions. These functions are provided as part of or on top of the
DATP/SGW protocol.

As shown in Figure 4, the SGW 1018 provides a robust communication link
between the STB 1008 and a variety of application servers 1026, 1028, 1030 and 1032,
including the FetchMail server 1026, SGW 1018 routes requests back and forth from the
STB to application services. SGW rcceives DATP packets from the client/STR 1018,
contacts the appropriate application server, and sends/receives data to the application
server via TCP/IP connection. SGW enables a Third-Party server, or SP specific servers

such as the FetchMail server 1026, to send messages to the STB.

As shown in Figure 5, the STB/client stack architecture features a plurality of
modules as well as an extra layer, message manager 1104 between the application and the
native STB/client transport. APIs are provided to STB applications such as an LHTTP
API 1106 and a store and forward API 1108. SGW provides an asynchronous version of
the PAL layer, implements pools of threads and process isolation techniques.

In a preferred embodiment, DATP/SGW provides increased message sizes while
guaranteeing delivery reliability and addressing complex memory issues due to

constrained embedded environments in the STB. Tn order to increase DATP message
27

-30-

20

25

30

WO 02/063879 PCT/US02/02725

size, large messages are divided into smaller sections, transmitted, reordered and
delivered in a reconstructed DATP message. On a non-reliable link with a binary error
rate (BER) of 10 %, the probability of having an error on a 64KB message is roughly 7%
(1 message out of 14). Knowing that transferring 64KB takes a bit more than five
minutes over a 2400 bits/s modem, DATP avoids refransmitting the same message for
another five minutes just because one of its bits is corrupted. To avoid retransmission,

the following implementation guidelines for DATP are preferably as follows.

In a preferred embodiment, large messages, that is messages over 64Kb are
fragmented into smaller DATP packels, Smaller fragment thresholds less than 64kb may
be used. Each DATP fragment is acknowledged separately. As shown in Figure 9,
DATP/SGW keeps (rack of message sequence numbers and the time at which the
sequence number was last used. DATP messages with a “recently” used sequence
number are rejected as "already received." To implement this policy DATP/SGW hosts
maintain a sliding window of recently used sequence numbers with a timestamp on each
sequence number. Older sequence numbers are removed from the window of the remote
host if they are older than (host_max_retry+1)*host_timeout. In a preferred embodiment

the ime out value is programmable and can be set to any; value desired.

The rejection window keeps track of the sequence numbers of packets received in
a certain time frame starting from current time. When a packet is received by the DATP
core layer, its sequence number is looked up in the rejection window. If the sequence
number is found in the window, it is discarded, that is, the packet or fragment associated
with that sequence number is ignored. If the sequence number of the packet is not found
in the window, the new sequence number is added to the window. The window or
"rejection window" is periodically cleaned to get rid of packet numbers older than a
certain date depending on the time used on the communication link. The packet rejection
window algorithm provides an efficient protection against multiple reception of identical
packets which can occur frequently with retransmission/timeout based reliable message

oriented transport protocols.

28

-31-

10

15

25

30

WO 02/063879 PCT/US02/02725

DATP protocol is a message based protocol where an entity send a message to the
other entity with a delivery gua.raﬁtee. Any time the STB sends a message to the service
gateway it will receive an Acknowledge message once the message has reached its final
destination (The Service Gateway itself or an Application Server). When the message has
been processcd by an Application Server, a response message may be sent to the STB
provided that the STB session with the Service Gateway is still open. The DATP message
transmission phase will be preceded with a DATP login phase and followed by a DATP
logout phase needed to establish a DATP session. It is important to note that messages
sent through DATP are fragmented into DATP packets of at most MTU (Medium
Transmission Unit) bytes that are transmitted and acknowledged independently. This
allows DATP messagos to be as large as physically manageable by DATP entities. Figure

10 prescats a simplé cxample of DATP session.

DATP supports multiple sessions on top on the same STB Transport layer
connection. STB clients can send in the middle of an open session with the Service
Gateway login packets to start a new session on the same exact STB transport link they
are using for the first session. Both DATP session management modules in the STB
client and in the Service Gateway will be in charge of multiplexing the various session
messages on the same link,

To support large DATP message transmission, DATP relies on a packet
fragmentation / reconstruction scheme. Large messages are fragmented into small DATP
packets of at most MTU size. Each host has a MTU size and each DATP entity can have
a different one. Each fragment (DATP packet) of a DATP message is acknowledged

separately.

DATP message with “recently” used sequence number will be rejected to avoid
“multiple reception of identical fragments” type of race conditions. To implement this
policy DATP hosts maintain a sliding window of recently used (sequence number,
fragment id) with a timestamp on each entry in the window. Old (sequence number,
fragment id) entries will be removed from the window of a DATP host if they are older

than (host max_rofry+1)*host timcout.
29

-32-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

A Default DATP fragment size (i.e. MTU size) is limited to 4KB to accommodate
constrained STB environment where memory fragmentation is an issue. Fragment size

can be increased to a maximum 64KB at the application discretion.

DATP supports up to 65536 fragments per DATP message. This gives a
maximum theoretical message size 0f 4GB. A DATP message’s first fragment provides a
marker indicating that the fragment is a new message first fragment and its fragment
identification (id) field is set to the number of fragments composing this DATP message.
Incomplete DATP messages should be discarded by remote entities after

(host_max_retry+1)*host_timeout.

DATP messages are sent based on remote host memory conditions. Each
acknowledged packet of a DATP message contains a memory available field that
indicates current memory condition of the receiving entity. Active entities send messages
to SGW as to available memory which is stored at SGW. SGW checks to see if memory
is available before forwarding a message to a receiving entity. A sending entity may
check with SGW to see if sufficient memory is available at a receiving entity. Utilizing
DATP, to send a message to a peer, a remote entity first checks at SGW or at the
receiving entity to see if the size of the DATP message is smaller than the memory
available in the receiving entity. If there is sufficient memory available at the receiving
entity to receive the message, the fragments of the DATP message are sent to the
receiving host. Upon receipt of the message, the receiving host acknowledges receipt of
the message. Otherwise the transmitting host sends control packets to the receiving host
to query for the remote or receiving host's memory availability. Partial delivery based on
available memory holding only a portion of a message may also be implemented if
desired. In this case, partial messages are cached until completed. The control packets
are sent until sufficient memory is available in the remote entity or until the maximum
number of message send retries is exceeded. If the maximum number of retries is

exceeded and there is still not enough memory available at the receiving host to complete

30

-33-

20

25

30

WO 02/063879 PCT/US02/02725

message transmission, then the message transmission fails (unless partial message

delivery is authorized).

The DATP protocol stack reserves memory for DAML messages when the first
fragment of a given message is received. Default DATP fragment size is preferably
limited to 4KB to accommodate the constrained capacity of the typical STB or client
environment, where memory fragmentation is an issue. Fragment size can be increased
preferably to a maximum of 64KB by the application sending the message or by the
application receiving the message. DATP preferably supports up to 65,536 fragments per
DATP message. This provides a maximum theoretical message size of 4GB for a single

message. Larger message sizes can be configured if desired.

In a preferred embodiment, the first DATP message fragment contains a marker
indicating that the fragment is a new message first fragment, a fragment identification
field is set to the number of fragments composing this DATP message. Incomplete DATP
messages are discarded by remote entities after (host_max_retry+1)*host_timeout unless

additionally messaging time is requested.

SGW/DATP provides encryption to enable applications to send sensitive data
back to their respective application servers. Providing encryption at the transport level
addresses the challenge of providing encryption in STB or client low processing capacity
environment. Thus, encryption is addressed with a carefully designed encryption
scheme and a preferred DATP secure API. Security/encryption is provided at a session
level. Applications open a secure session using DATP secure API. DATP encryption
parameters are négotiated at session login. Secure session negotiation is provided in at
least two phases: during a standard DATP login phase, and during a key negotiation
phase.

A brief description of the main steps of the key negotiation phase follows.
SGWsends its public key server_epk to a client or STB. DATP preferably uses Rivest,
Shamir, & Adleman (public key encryption technology) RSA (others may be used).

DATP chooses the RSA exponent server_epk = (e, n) so that e=3 while maintaining a
31

-34-

20

25 .

30

WO 02/063879 PCT/US02/02725

robust level of security (security depends only on n). Since to encrypt a message with
RSA the STB needs to compute (m°®) mod n. A small "e" means that the exponentiation
phase will be small, leading to a faster computation of the encrypted message. The STB
or client initializes its random number generator with the system time plus any random
source available to the O-code layer (example: current video frame, cte.). The STB/client
picks a STB/client secret key (stb_sk). The STB encrypts the secret key, stb_sk with
server_epk using RSA. The STB sends encrypted secret key, stb_sk to the SGW. SGW
decrypts encrypted stb_sk with its private key server_dpk.

SGW initializes its random generator and picks a server secret key server_sk.
SGW encrypts server_sk with stb_sk using a secret key encryption scheme. SGW sends
encrypted server_sk to the STB. The STB decrypts encrypted server_sk with its secret
key stb_sk. Once the keys have been successfully exchanged, secret encrypted data can
be exchanged between the two entities via DATP using each other's secret keys. In a
preferred embodiment, a DATP/SGW server authentication step is added to the protocol,
to enhance key exchange scheme and make it robust against "man in the middle" attacks.
Thus, signing DATP stacks and managing authentication certificates is provided in the
DATP protocol.

To minimize communication time with SGW, the public key of the server is
preferably embedded in the stack so that encryption of the STB private key can be
performed off-line. This introduces a new key management issue since the SGW should
know the server public key used by the STB or client. Messages sent over a secure
session will preferably be encrypted at the fragment level. This means that each
individual fragment of a DATP message will be encrypted independently.

A DATP Secure API is provided with the ability to send unencrypted messages
over a secure DATP session, which provides SP applications the option of saving CPU
cycles by not encrypting non-sensitive data sent over a secure session, This is useful for

clients or STBs with limited processing power, such as the Motorola DCT 2000.

-35-

15

20

25

30

WO 02/063879 PCT/US02/02725

Once a secure session is established between a SGW and a DATP client or STB,
messages sent by the client/STB to any application server are first decrypted in the SGW
and then forwarded to application servers using asecure socket layer (SSL) connection.
The encryption layer is based on a cryptographic library available to O code developers
as well as application server developers. This library can be used by applications to
manage cneryption at the application level. This ability might be useful to manage end-

to-end encryption for security in critical applications such as banking applications.

Data compression on slow links such as the ones available on most STBs and
clients (2400 to 33600 bps) it is desirable to send compressed data to increase the total
throughput of the lie. In some cases modem data compression is available at OSI link
level. Higher-level protocols do not gain appreciably by compressing their payload. A
large mumber of client/STB modems do not offer compression at the link level so
compression is provided by higher-level protocols. The present invention provides data

compression.

The challenge is that STBs or client processors lack capacity to perform efficient
pattern searches (or other CPU-intensive operations) needed by most compression
algorithms. Decompression, however, is a relatively easy task and decompression APIs
are provided to the client/STB at the O code level. Based on these considerations DATP
support for compression is asymmetric, that is, only the downlink from the SGW to the

STB or client is preferably compressed using standard SP compression tools.

Compressed DATP packets possess a "data compressed” flag in the packet header
indicating that the payload data is compressed. Packet headers are not compressed.
Compression and decompression will use standard provided SP compression and
decompression tools and APIs. DATP packet size indicates the size of the compressed
payload. The decompressed size of the payload will be indicated in the payload’s
compression header. Compression of DATP messages is performed at the fragment

level. Each individual DATP packet of a DATP message is compressed independently.

33

-36-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

This is preferred since DATP message fragments are not necessarily stored contiguously
when received, thus, it is preferred that DATP decompress each fragment separately.
Independent decompression is possible since each DATP fragment is compressed
independently. The DATP STB stack and the DATP application server API can disable
or enable data compression on the downlink. This feature provides application servers at

least two important capabilities, the ability to transfer large amounts of data to clients or

_ STBs using the high-speed broadcast channel and the ability to send mullicast data to a

collection of clients or STBs through the broadcast channel saving overall SP bandwidth.

SGW provides an OpenStreamer application server module that manages a
configurable number of broadcast streams. These streams are used to send large chunks
of data as well as multicast data to clients and/or STBs. Multicasting is provided as a
feature important as routing over broadcast since it enables application servers to send
data to a group of STBs without addressing each STB individually. Multicast support in
DATP provides unreliable DATP packets. The SP maintains multicast group's list of
session identifiers and handles cases where an STB or client with no broadcast tuner

available is a member of a multicast group.

DATP Name Service (DNS) provides a mapping between application server
names and service identifiers. Though well known services have reserved service
identifiers, a large number of user-defined service identifiers are available and can be
used by various applications, To avoid hard coding of service identifiers in STB or O-
code applications, applications have the ability to refer to services by name after a name
resolution stage. This way the application is less dependent upon the SGW configuration
file.

The following is a description of how DNS capabilities are provided to DATP

clients. DNS is viewed as just another service from a DATP protocol standpoint. A

specific service identifier is reserved for the DNS service. The DNS service is hosted

within the SGW or may be hosted clsewhere in the SP or in a STB or other client. The

34

-37-

10

20

25

30

WO 02/063879 PCT/US02/02725

DATP client provides a simple API to resolve names of application servers. Preferably,
the main call (datp_get_asid_by_name (as_name)) retwrns a request number
synchronously. An asynchronous notification returns the status of the name resolution
including the application server identifier in successful cases. Concurrent name
rcsolutions are possible with no significant detrimental consequences on performance.
Users are able to dispatch name server notifications based on a request identifier tagged
to each request. The Application Servers’ name parameter is added to the current DNS
configuration file. The same name is not be used for different service identifiers. To
achieve redundancy or satisfy scalability issues registering several machines per service

identifier are supported.

In the preferred implementation, DNS is considercd as an instance of a yet to be
defined directory service. DNS request packet format comprises the following fields:
Query Type (indicating the type of query (0 for DNS query for instance)), Query Tag
(user provided tag to be matched against directory service responses), Query Data (data
used to perform the query operation (typically the name of the service for DNS)). The
DNS response packet format comprises the following fields: answer type (indicating the
type of answer (0 for DNS resolve OK)), answer tag (same as the query tag that
gencrated the answer) and answer data (query’s response data (typically the id of the
service for DNS)).

In an alternative embodiment of DATP, the assumption is all DATP clients are
behind a modem rack and for each connected client the modem rack terminal server
opens a dedicated TCP/IP connection with the SGW and forwards whatever it receives
from a given STB to this TCP connection. With the possible deployment in older
generation cable boxes with no TCP/IP support, but with User Datagram Protocol (UDP)
the DATP server (¢.g., SGW) provides the ability to listen on a UDP port. UDP is
supported as follows. SGW creates a new datp_socket_listener class to handle UDP
connections. A socket type abstraction layer is created to accommodate UDP sockets
(PAL_udp_socket).

35

-38-

20

25

30

WO 02/063879 PCT/US02/02725

UDP counections are processed as follows. UDP_listener reads the new
connection request datagram and creates a new AL_udp_socket. UDP_listener replies to
the connection, sending the datagram using newly created PAT,_udp_socket.
UDP_listener creates a new Session Manager thread passing the newly created
PAL _udp_socket as an attribute. The new session manager talks back directly to DATP
client using pal udp_socket send with the provided PAL_udp_socket. Note that the
remote address of the datagram need not be specified. Itis already set by the

UDP_listener while answering the connection request.

On the client side a UDP stb_transport module is created that implements the
already specified stb_transport API on top of whatever UDP API is available in the
targeted STB or client. This UDP stb_transport preferably sends a connection request
datagram to the SGW UDP listener port and waits until it receives a reply from the SGW
before notifying the DATP core that the STB transport link is up. Subsequent datagrams

are sent using the port specified in the connection request reply from the SGW.

HTTP routing is provided to provide an interface for the SGW with standard
application servers that use Web servers as their front-end. In this case, DATP preferably
does not use the standard DATP application server API that is provided to application
server developers, but instead interfaces directly with these application servers by
forwarding DATP messages to their Web server front-end nsing the HTTP POST
(HTTPP) mechanism. In this scheme, client and/or STB applications use the DATP APT .
unaware that they are talking to an HTTP server.

In order to support HTTPP, a DATP application server type function is provided
by SGW. All servers of this type are provided with an extra entry in the name server
configuration file to specify their post URL. The application server communication
module provides the ability to post DATP messages to HTTP servers depending on the
targeted server type. Preferably, this module is divided into an application server (AS)

communication manager and two AS data senders. One AS data sender sends data to the

36

-39-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

DATP AS API compatible application servers and another one sends data to HTTP based
application servers. HTTP cookies received from the HTTP server are stored in the SGW
and are resent to the HTTP server as needed. DATP messages received on a secure

DATP session are forwarded to HTTP servers using HTTPS. DATP login and logout are
preferably not anonymous, to enable the SGW to conirol access to SP interactive services

and to offer a way for application servers access to the identity of a connected client.

The following further describes STB or client identification as part of DATP.
DATP stacks contain a STB or client dependent unique hardware identifier (HID). In the
case of an STB this hardware identifier is retrieved from the STB/Network dependent
STB transport laycr. The HID format is a variable length character string. The HIDs for
a given network are stored in a FIID list. The network operator, via SP updates the HID
list from its customer database using APIs. In the case in which one cannot interface
directly with the network operator subscriber database, the SP imports the subscriber
information (including their HID) from a flat file.

To establish DATP sessions, STB or client DATP stacks include their HID within
the DATP login packet. The SGW checks the validity of the HID using a central
repository. Once the HID is cleared by the central repository, access is granted to the
STB stack. The HID enables the SGW to determine the identity of a connected STB or
client. Similar to HTTP cookies, HID does not “strongly” authenticate a remote STB or
client. Thus, formal anthentication of remote users preferably will be performed by SGW

when applications require more robust authentication of their remote peers.

DATP/SGW provides LHTTP of HTTP functions to O code application
developers that enables them to interact with remote HTTP servers. LHTTP is provided
to enable development of Web-like HTTP based applications. LHTTP completes the
H20 strategy by offering an OS independent simplified HTTP interface for back channel
communications between the client, the network operator and services. The LHTTP
interface is based on the DATP stack, encapsulating HTTP requests into DATP

messages, A special DATP service identifier is assigned to the LHTTP layer and DATP
37

-40-

15

20

25

WO 02/063879 PCT/US02/02725

messages received on this service identifier, which are routed to the destination HTTP

server using a specific LHTTP data sender module in SGW.

Preferably, a limited set of HTTP commands is supported, comprising GET and
POST commands. Additional HTTP commands can be added to LHTTP. LHTTP
requests are transformed into standard HTTP requests at SGW. HTTP requests are
generated by the SGW on the behalf of LHTTP clients. Cookies are forwarded to
LHTTP clients. SGW caches the cookies and maintains a cookie to session ID
translation table. DNS answers HID resolve requests from HTTP servers using this
translation table. HTTP servers preferably use the HID to extract user information from
the central registry server. LHTTP also provides a secure API, LHTTPS. This API is
based on the DATP encryption layer. LHTTPS requests are automatically translated to
HTTPS requests at SGW.

Simple Mail Transfer Protocol (SMTP) routing or simply forwarding messages
by email is provided to the interface between the SGW and application servers. This
interface can be used for non real-time transactions where an application sends DATP
messages to SMTP-based application servers and these messages are forwarded by e-mail

to the targeted application servers.

In order to support SMTP routing, a DATP application server type is created for
SMTP application servers, Servers of this type have exira entries in the name server
configuration file to specify their email address as well as the email subject of forwarded
messages. The application server communication module posis DATP messages to
SMTP based application servers depending on the targeted server type. A SMTP
application server data sender module is provided to support this type of transaction.
DATP messages sent to SMTP application servers are attached to multipart Multipurpose
Internet Mail Extensions (MIME) encoded emails. The first part of the message contains

the hardware identifiers of the senders as well as the DATP message ID of the messages

38

-41-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

being forwarded. The second part of the message contains MIME encoded DATP

messages.

DATP messages sent to an SMTP application server are acknowledged once the
message is decoded by a session manager and is ready to be sent by email to the targeted
application server. Subsequent SMTP related errors might occur once the SGW makes
an email delivery attempt of the DATP message to the targeted application server.
Messages sent using the DATP encryption layer will be forwarded unencrypted to the
final host. PGP encryption is also supported to securely route DATP messages over
SMTP.

The DATP/SGW store and forward service provides functionality for applications
to send non real-time messages to a specific application server. A store and forward
library is provided on top of DATP. Application uses the store and forward module to
send messages with different timing constraints depending on their needs. Timing
constraints vary from “as soon as possible”, “a specified time”, “a specified occurrence,
event or message” to “whenever we get connected” including “after a random period of

e

time”.

The store and forward module stores undelivered DATP messages into the file
system along with some specific attributes (time stamp, timing constraints, targeted AS
identifier, etc.). The file system storage path is conﬁguréble at least at compile time to
accommodate a specific network. Messages not forwarded while a given DATP store
and forward enabled application is running are not forwarded until another store and
forward enabled application starts running. The store and forward module does not alter
the content of the forwarded DATP message. The message is forwarded without

alteration to the targeted application server.
Turning now to Figure 5, the DATP architecture of the client stack comprising a

plurality of modules is illustrated. Modules below line 1121 are written in native client

39

-42-

20

25

30

WO 02/063879 PCT/US02/02725

code while modules above line 1121 are written in O-code. The lightweight HTTP
module 1106 provides lightweight HTTP capabilities to O code applications. It is
implemented on top of the DATP API. The store and forward module 1108 provides
store and forward capabilities to O code applications. It is implemented on top of the
DATP APIL. The DNS module 1110 utilizes the DATP message manager module 1104 to
provide DATP name resolution services. The DATP message manager module 1104
provides the front end of DATP. All DATP message-related API calls go through the
DATP message manager module. This module divides messages into DATP packets and
reconstructs DATP packets into messages. The DATP transport core module 1102
manages DATP sessions, sends and receives DATP packets, and manages DATP module
reception from broadcast. The DATP secure transport extension module 1120 handles
secure DATP sessions. The DATP packet library 1134 provides the functionality for
reading (parsing) and writing (composing) DATP packets to the DATP STB transport
module 1132 based on the DATP packet format specification. Upon reading a complete
DATP packet, this module will notify the DATP Transport core with the parsed DATP
packet.

The DATP broadcast library 1126 listens on selected SP streams based on the
DATP transport core 1102 specifications, waiting for modules intended for a given STB
or client and notifying the DATP transport core 1102 with the parsed DATP modules.
The DATP STB transport m'odule 1132 provides a link-level packet interface on top of
whatever native transport or data link is available on the DATP host. The event-loop
stub 1116 provides a stubbed version of the message API specified in the DATP
portability later. This stub is based on the common library event-loop. The role of the
portability layer 1114 is to abstract the DATP stack from application dependent issues
such as message dispatching mechanism, encryption APIs, ete. The cryptographic library
stub 1118 is a stubbed version of the cryptographic API specified in the DATP portability
layer. This stub is based on the common library cryptography package. The module lib
stub 1124 is a stubbed version of the multi-track module download API specified in the
DATP portability layer. This stub is based on the common library’s multi-track module

download package.
40

-43-

20

30

WO 02/063879 PCT/US02/02725

Turning now to Figure 7, DATP is a subset of the Digital TV Application
Protocol (DAP). DAP/DATP is depicted in Figure 7. DAP is used to standardize back
channel communications between SP applications and SGW. DATP and —SGW provide a
generic virtual transport mechanism to SP applications, since not all SP enabled STBs
provide a TCP/IP stack extension. Moreover, some of the STBs run their own

propristary stack or provide no communication stack at all.

DAP is a simple lightweight application protocol suite. DAP’s main purpose is to
provide a simple and effective way to leverage existing application protocols, such as
POP3, SMTP, internet message access protocol (IMAP) and others onto low-end STB’s.
STBs often possess low capacity processing resources and/or proprietary
communications protocols. DAP is designed to abstract communications complexity
from the application providers, which in turn leverages existing network infrastructure for

today’s application standards.

As shown in Figure 7, DAP is divided into Mo parts: DAML 1610 —- digital TV
application meta language and DATP 1620 - digital TV application transport protocol.
DAML 1610 is a meta language that spans many SP applications. Each SP application
has its own domain of DAML. The client application responds to and requests messages
encapsulated in an DAML domain. These request messages are translated by application

servers into the appropriate protocol for existing applications, such as SMTP or IMAP.

DATP 1620 is a 1ightwei§ht, simple transport protocol designed for low bandwidth
applications when TCP/IP or another known protocol is not available. DATP is designed
to interface with existing communication protocols in cutrent STBs. DAP comprises:
DATP, DAML-Mail (XML domain for mail); DAML- Regi (XML domain for account
registration); and DAML-Acct (XML domain for accessing SP VMS/AMS system).

Typical STBs are based on a thin client architecture, that is, possessing minimal

processing capability. The services provided by today’s STBs are often low-end,
41

-44-

10

20

25

30

WO 02/063879 PCT/US02/02725

"dumb" applications. Today’s resource intensive applications such as email, chat and
Internet browsers require more powerful processing appliances. Today’s STB cannot
provide this type of processing power, hence the need for a low-end, lightweight
application protocol. DAP is simple cnough to hide or abstract the client/server network

complexity from the application developer.

DAP is modular, flexible and adaptable to today’s emerging software
architectures. Which could be either a Common Object Request Broker Architecture
(Object Management Group) (CORBA) based model or Common Object Module
(COMY Distributed Component Object Module (DCOM) model. DAP is flexible enough
to accommodate and integrate with existing third party legacy systems. DAP provides an
interface to various open and proprietary protocols. These protocols exist for service
systems where the PC is the main client, for example, IMAP or POP3 services. DAP
leverages the SP middle ware technology. DAP server ware translates DAP protocol to

existing application specific protocols.

DAP and its subset DAML 1610 are designed to be lightweight and capable of
supporting low-end bandwidth sensitive STBs. DAML tags are preferably no larger then
4 characters and when possible limited to 2 or 3 characters. DAML incorporates binary
XML to facilitatc DAML tags. DAP is used as a communication protocol between
applications running on the STB and scrvice sub-systems, DATP 1620 controls the
communication handshaking, routing and transport specific authentication, wherc as
DAML manages the application specific requirements. DAML requests and responses
are communicated between a STB client and a service provider over an existing
communication protocol, for example, TCP, UDP, DATP or a proprietary

communications protocol.

The DAP protocol and its subset DAML can be a session oriented or "scssionless”
protocol suite. DAML domains are application dependent. New domains of the DAP
protocol can be used for new types of applications. The addition of new DAP domains

have little effect on existing DAP domains. Thus, DAP provides a unique and simplistic

42

-45-

20

25

30

WO 02/063879 PCT/US02/02725

SP for network operators to add additional services without impacting existing services.
Each DAML domain can be based on either a simplistic human readable tag or a cryptic
abbreviated tag for increasing protocol performance by decreasing the packet size when

performance is a critical factor.

The following outlines the role of DAML in the DAP architecture. DAML is an
application level communication protocol, utilized to specify communicat{on behavior
and communication data for interactive TV services. The service level communication
protocol is above the transport level protocol. It defines how the application specific

content is encapsulated between client/server communications.

DAML is a collection of domain specific protocols that enables a modular design of
the SP. For example, DAML-Mail is a subset of DAP. DAML-Mail is a mail domain
specific protocol. New domain-specific protocols can be added as a subset of DAP
simply by creating new DTD’s. DAP specifies communication behaviors through the
sending and receiving of DAP messages. The application specific data is encapsulated in
an XML format. The syntax of each XML application domain specifies the actions for
the application servers to perform. This enables design of very lightweight simplistic
protocols that today’s STBs can utilize to interface with existing infrastructure such as
SMTP services and IMAP services.

DATP is a transport/service level protocol that provides a communication platform
between SGW and multiple STBs or clients. DAML is encapsulated in a DATP packet.
In general service level protocols are above transportation protocols, but DATP is unique
in that it can sit in a typical network model either at the service level, data link level or
transport level. This makes DATP very flexible. DATP interfaces with the underlying

transportation protocols, such as TCP, UDP, X.25, raw sockets, or other protocols.

SGW provides routing and SGW technology for low-end STBs to connect to a
network backend infrastructure. SGW provides transport level protocol support between

43

-46-

10

20

25

30

WO 02/063879 PCT/US02/02725

the STB/clients and SGW, for example, a sequential-stream protocol over raw sockets.
DAML leverages this feature.

DAML-Mail is a protocol subset of DAP. DAML-Mail is a mail domain specific
protocol. This protocol is used to link STBs with IMAP, POP3 and SMTP services.
DAML-Regi is a DAP service domain protocol that specifies a generic method for the
registration of accounts for multiple services. DAML-Regi is a simple protocol between a
STB and the registratibn server. This enables complex interaction between an STB and a
variety of different application systems, with only a single point of integration, the

registration server.

DAML-Acct is a DAP service domain protocol that communicates with the SP
VMS/AMS database. DAML-Acct enables the STB/client to query and return user
specific data from the VMS/AMS system. All the DAML domains are defined using
XML document type definition (DTD) syntax. DTDs describe the message syntax but not
the logic for the exchanges of requests and responses. XML is useful in defining .‘rhe
markup of a block of text. Specific DAML requests and responses are interactions that
are related to each other, The rules for their interaction are modularized in the STB and

application server components.

The messaging manager provides various types of message communications
among the users and with outsiders (those that are not network service subscribers). For
example, it enables users to send and receive email, to chat with other non-subscribers
and to receive instant messages from non-subscribers. The email portion of the
messaging manager contains a Fetchmail component connected to an Internet based
email server such as IMAP, POP3 and other Webmail messages for the appropriate mail-

hosting server.

Fetchmail manages all SP server-side mail management. Fetchmail translates
DAP messages to IMAP, POP3 or Webmail messages for the appropriate mail hosting

server. SGW routes DAP mail messages to “Fetchmail” for processing. Fetchmail

44

47-

20

25

30

WO 02/063879 PCT/US02/02725

responds with the appropriate response to the request. Fetchrnail interfaces with IMAP
servers. An email application is provided by the SP. All SP applications can ‘send’

email via the email service offered by SGW.

The chat SP service interfaces to a chat server or alternative includes a chat
server. Chat service is accessible through a dedicated chat application, but also from any
SP application linking with the SP chat client DLL. By providing an interface between a
chat and a program listing, a chat room can be created dynamically with a broadcast
show. Applications and other services can use the SP "alert" service to trigger STB
resident mini-applications. Alert utilizes the SP OMM extension and functionality of
Open Streamer. The Email service uses alert triggers to inform the viewer of an
incoming message.

Turning now to Figure 6, SGW incorporates a plurality of modules to support
DATP features. The SGW architecture is a multi-process based architecture providing
pools of threads. The entire server runs on an asynchronous version of a platform
abstraction layer (PAL). The PAL implements a message queue process. PAL
communicates using messagc passing techniques. SGW uses three types of processes, as

shown in Figure 6.

As shown in Figure 6, application servers or services communicate with multiple
clients/STBs through the SGW using a domain-specific DAP protocol. In certain cases,
clients/STBs can directly connect to the application services. For example, if the
transport protocol between the STB and the network is TCP/IP, the STB is TCP/IP
enabled, and there is no requirement to perform complex common services provided by
SGW, faster network performance can be improved via the client/STB communicating
directly to a service via TCP/IP,

Turning now to Figure 8, the DATP Server, SGW main process is the main
DATP server process described above. SGW hosts several key modules. The TCP
socket listener module 1204 is a simple TCP socket listener thread that waits for

connections on the DATP TCP listen port, accepts them and requests the creation of new

45

-48-

15

20

25

30

WO 02/063879 PCT/US02/02725

session managers to handle new connections. The UDP socket listener 1202 waits on a
well-known port for UDP connections. Once a connection request is received, the UDP
socket listener 1202 creates a new socket and sends a connection request acknowledge to
the remote host. UDP socket listener 1202 then requests the creation of a new session

manager to handlc the conncetion.

The session manager monitor 1206 module is part of the main thread. The
primary role of this component is to monitor session manager (SM) processors 1214
population (creating and deleting SM Processors based on load), and to forward session
managet creation requests to the least busy SM Processor 1215. Each SM processor (0-
n) 1215 comprises a DATP application server communication module (ASCM) 1217 and
a separate application server data sender (ASDS) for DATP, HTTPP, LHTTP and SMTP.

The DNS name server 1212 thread maintains a matching table between
application server identifiers and their attributes (hostname, port, type, etc.) as well a
matching table between session identifiers and session manager message queue
identifiers. The name server module, DNS answers name resolve queries posted to its
message queue. The application server socket listener thread 1208 is in charge of waiting
for message post requests coming from application servers. The name server 1212 then
forwards the post requests to the targeted session managers based on the post request

session identifier.

The session manager processor process 1214, 1216 hosts a pool of session
manager threads 1215. New session manager threads are created based on requests from
the session manager monitor 1206 to the session manager processor thread. The session
manager processor 1214, 1216 thread honors requests from the session manager
processors 1214, 1216 and creates or deletes session managers based on requests from the
SM meonitor and notifies the session manager processor with the result of its requests.
Session manager threads 1215 manage DATP sessions and forward DATP messages
from STBs or clients to application servers and vice-versa. There will be one thread per
STB or client. These threads utilize several key modules to handle DATP sessions
(Packet library; Application Server Communication Module; DATP Application Server
Data Sender; HTTPP Application Server Data Sender; LHTTP Application Server Data

Sender; and SMTP Application Server Data Sender).
46

-49-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

The broadcast manager process 1210 is the main component of DATP routing
over broadcast. This process is an Opensireamer application server that manages DATP
server carousels, Broadcast Manager Process updates these carousels dynamically

depending on requests it receives from other components of the DATP Server.

The SP and SGW are preferably supported on Sun Solaris 7 data processing
system with memory, monitor, GUI, mouse, keyboard and processor, which is well
known in the art and available from Sun Microsystems. SGW runs as a UNIX daemon, is
configured using a configuration file, and is started from the command line. Once a
connection has been made between the SGW and the STB/client over a network, TCP/IP
handles all communications between the other services. Besides handling different
transport protocols, the SGW also routes messages to different service sub-systems
depending on the configuration of SGW.

SGW performs its functions at the point of entrance to the application servers.
This enables features to be easily configured and/or added since network and messaging
functionality is isolated on SGW. This frees the service sub-systems to function on core
application functionality and leaves network connectivity issues to SGW. This also
enables greater scalability by isolating specific functionality to separate hosts: email
message delivery and receiving (using the FetchMail server) from network routing and

security using SGW.

SGW is sized to support hundreds of simultaneous connections on a single server.
SGW is configurable to handle more connections depending upon the processing power
of the processor hosting SGW, This limit is based on the number of modems (typically
several hundred) per POP (Point of Presence) for major ISPs. In the case of a WAN
architecture where the SGW is located at one central point, a hardware network address
translation (NAT) based load balancing device is provided to connect several SGWs in
parallel to distribute the load.

The following is an overview of the H20 Proxy environment using a logical view
of H20 architecture and sample transactions. Requests for URI may come either from
different H20 components — for example: STB/SGW and Carousel. The following

47

-50-

20

25

30

WO 02/063879 PCT/US02/02725

context overview focuses on the STB/SGW issuing the requests — but the general flow of

information stays the same.

A viewer chooses to interact with its TV Web page, thus issuing a request from
the STB to the H20 system and waiting for a reply. STB requests are sent to the SGW,
using lightweight HTTP requests (LHTTP) encapsulated in DATP messages as transport
protocol. The requested object is returned through the same channel and protocol. The
SGW converts the LHTTP protocol to standard HTTP over TCP/IP and issues the request
to a Web Cache.

The Compiled Object Cache (COC) uses its internal disk space to service any
request it can serve (following an heuristic taking into account the time-to live of
objects). Itsrole is Lo service all static objects (standard URLs without queries, no posted
fonia) without querying the H20 proxy, thus reducing it’s processing load. In this
architecture, the COC will only store compiled objects (H20 modules). The COC

machine is I/O driven.

Now turning to Figure 11, H20 proxy 248 provides a scalable environment for
the different H2O compilers (or filters) to run. It is processing HTTP request and
responses “‘on the fly” and thus the H20 Proxy machine is process driven. The H20
HTML Compiler 1420 is in charge of HTML to SP resource compilation. To compute
the TV Layout to render 1422, this component issues HTTP requests by itself based on
the size of the embedded images. This compiler rearranges the Web based image to fit
onto the client display device, e.g. 2 TV.

The MPEG Compiler 1426 charge of the conversion from regular web images
format to SP H20 MPEG resources. Source format includes JPEG and GIF and may
include PNG. The conversion process may be driven by passing arguments through the
URL. The PIXMAP Compiler is in charge of the conversion from regular web images to
SP H20 resources. Source format comprises GIF and may include PNG.

The Request Patcher 1424 charge of completing or modifying the request or
responses to incorporate data coming from another system (e.g. credit card number...). It
communicateswith an external process or database to fetch customer information. The
SP component provides a central repository of user information. The Request Patcher

48

-51-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

communicates with this component to get the data necessary to patch the requests /
responses.

The Not Compiled Object Cache 1430 will use its internal disk space to service
any requoest he can serve (following an heuristic taking into account the time-to live of
objects). The objects cached comprise static HTML, GIT images, JPEG images and all
standard web formats files. Its role is to service all static objects (standard URLs without
queries, no posted form) without querying the Internet, thus reducing latency time to get
an object and giving a kind of fault-tolerance to the system. The Customer web site holds
the web site to publish through the H20 system.

Figure 12 illustrates a request for a static page, already cached The STB user
issues a request to load an HTML page 1520. This request is sent to the SGW 248 using
LHTTP over DATP. The SGW converts the request to HTTP over TCP/IP and forwards
it 1522 to the Compiled Object Cache 1410. The Compiled Object Cache 1410 has the
requested (compiled to a module) HTML page stored in its internal hard disk space; if the
object’s time to live has not expired and the compiled object cache service the request
with the compiled HTML page. It transmits the HTTP response 1424 to the SGW, using
HTTP over TCP/IP. The SGW translates the protocol from HTTP over TCP/IP to
LHTTP over DATP. The STB loads the requested page 1526 (compiled) in its memory
and gives it to the H20 browser engine for interpretation. The H20 browser engine
requests 1528 the SGW to get the images necessary to render the screen on TV, with
conversion options (mpeg or pixmap, width, height...) on the url. The SGW transmits
the HTTP request 1530 to the Compiled Object Cache. The Compiled Object Cache has
the requested (compiled to a module) image stored in its internal hard disk space; the
objects time to live has not expired and the compiled object cache service 1532 and 1534
the request with the compiled image. In this scenario, the H20 Proxy was spared of the

request and thus can process other requests.

As shown in Figure 13, the STB 212 user issues a request 1610 to load an HTML
page (home.asp), the host and user info of the request header hold [STB Model+ STB
Serial number] and [Access Card Id] of the user. This request 1610 is sent to the SGW

using LHTTP over DATP. The SGW converts the request to HTTP over TCP/IP and
49

-52-

15

20

25

30

WO 02/063879 PCT/US02/02725

forwards it 1612 to the Compiled Object Cache. The requested object is not available in
the disk space of the Web cache. The Web Cache then forwards the request 1614 to the
H20 Proxy. The H20 Proxy asks 1616 the SP to return 1620 the name of the user (for
the amazon.com service). The H20 Proxy patches the request with the name of the user,
and issues this request 1622 to the “Not Compiled Object Cache”. The “Not Compiled
Object Cache” does not hold the requested HTML page in its disk space and then issues
the request 1624 to the targeted web server horc amazon.com. The targeted web server
computes the HTML page, given the user information and returns 1626 it to the “Not
Compiled Object Cache”. The “Not Compiled Object Cache” returns the HTML page
1628 to the H20 Proxy.

The H20 Proxy sends the HT'TP request 1630 to the “Not Compiled Objcct
Cache” to get the images 1632, 1634, 1636 necessary for it’s layout computations (gif,
jpeg...). The H20 Proxy compiles the HTML page; computes the layout, patches the
embedded images urls and sends back to the “Compiled Object Cache” the resulting
OpenTV resource 1646 (with an SP resource mime-type). The Compiled Object Cache
stores the object in its internal disk space and sends back the compiled HTML 1648 page
to the SGW. The SGW converts the response to LHTTP over DATP and sends it back to
the 1650 STB. The STB loads the requested object in its memory and gives it to the H20
browser engine for interpretation.

The H20 browser engine issues requests 1652 to the SGW to get the images
necessary for the rendering (through the patched urls: here the logo.gif url include a
directive for pixmap resource format): pix/logo.gif. The SGW converts the request 1652
to HTTP over TCP/IP and forwards it to the Compiled Object Cache. The “Compiled
Object Cache” already has the requested gif image, in the correct resource format —
because a user already requested this image at a previous time — and the image is directly
returned 1654 to the SGW. The SGW converts the response to LHTTP over DATP and
sends it 1656 back to the STB. The H20 browser engine issues requests 1658 to the
SGW to get the images necessary for the rendering: mpg/banner.jpg. The “Compiled
Object Cache” does not hold the requested image in its disk space and therefore issues
the request 1660 to the H20 Proxy. The H20 Proxy sends the HTTP request 1662 to the
“Not Compiled Object Cache” to get the /banner.jpg image.

50

-53-

15

20

25

30

WO 02/063879 PCT/US02/02725

The “Not Compiled Object Cache” holds the image in its cache and retuns it
1664 immediately to the H20 Proxy. The H20 Proxy converts the image, using the
parameters given in the url (mpg format, width, height...) and returns the result to the
Compiled Object Cache 1668. The Compiled Object Cache stores the object in its
internal disk space and sends back 1668 the converted mpeg image to the SGW. The
SGW converts the response to LHTTP over DATP and sends it back 1670 {o the STB.
The STB renders the HTML page to screen.

The H20 Proxy component provides to other H20 components or compilers,
a robust and scalable architecture and an interfacs for “compilers” configuration
Other service provided are: the ability to log errors; the ability to alert an administrator on
defined events; and the ability to debug-trace the “compilers”. From the provided H20
Proxy environment and APTIs the compilers “patch” HTTP requests and responses on the
fly, eventually accessing an external database, file or process to do so. The compilers
patch HTTP requests by removing specific HTTP Header (STB identifier, Access Card
Identifier...); by adding specific HTTP Header (Username, Credit Card Number...); by
adding HTML Form fields to incoming post request (Visa Card number...); and by
performing string substitution (UID -> User Identifier) the compilers convert web
objects formats and mime types “on the fly” in HTTP responses and issue HTTP requests.

by themselves and get a response object in return.

As shown in Figure 14, in a preferred embodiment, the H20 Proxy is
implemented by developing an extension of enclosing software (Web Proxy,‘ Firewall,
web server or other...). This host software provides H20 threading and scheduling of the
H20 tasks as well as some of the needed functionalities to implement H20 “compilers”
and patching components.

Using the API provided by the Proxy Host Software, a set of API (the H20 Proxy
API) is provided to implement the functionalities needed by the H20 compilers missing
from the H20 Proxy Host Software Services, and provide a higher abstraction level for
the services available from the H20 Proxy Host Software. The request patcher 1424
component reads incoming HTTP requests for HTML pages and completes them with
information from another process or file or database. The HTML2RES Compiler 1420

51

-54-

20

25

30

WO 02/063879 PCT/US02/02725

compiles returned HTML pages into SP resources files and change the mime type of the
HTTP response header to suit new format: Mime-Type: text/otvres.The GIF2PIX
Compiler 1422 converts a returned GIF image into an SP resource file and changes the
mime type of the HTTP response header to suit new format: Mime-Type: image/otvpix.
The 2MPEG Compiler 1426 converts a returned GIF or JPEG image into an SP resource
file and change the mime-type of thc HTTP response header to snit new format: Mime-

Type: image/otvmpg.

Turning now to Figure 15, a dynamic request for an HTML page sequence
diagram is illustrated. The Object Caches are not displayed in the Sequence diagram,
being “passive’ components in this interaction. The User STB 212 issues a request 1810
for a page (home.asp) through HTTP request. The Request Patcher 1424 accesses an
external process/file/database/url 1812, 1814 to get user name, patches the request and
sends 1816 it to the HTML2RES Compiler. The HTML2RES Compiler sends the
request 1818 to the target web site (amazon.com). The Web site computes the request
and sends back 1820 the resulting HTML page to the HTML2RES Compiler. The
HTML2RES Compiler parses the file to get the image links URL and issue the requests
1822 to the web site to get 1824 the image files (logo.gif, banner jpg). The HIML2RES
Compiler computes the TV layout for the page, compiles it into SP resource file, and

sends it 1830 back to the STB. The STB renders the HTML page on TV.

Turning now to Figure 16, a request for an image file, sequence diagram is
illustrated. An HTML page being loaded in the User STB needs a image to render its
screen. It issues an HTTP request 1910 for the image (URL embedded conversion
options) to the 2MPG Compiler. The 2MPG Compiler requests the image 1912 from the
target site (amazon.com). The target site, returns the banner.jpg image file 1914 to the
2MPG Compiler. The 2MPG Compiler converts the banner.jpg file, nsing the options
given on the URL and returns the result 1916, with a image/otvinpg mime-iype, (o the
STB. The STB renders the image on screen. .

The different identified H20 compilers inherit from the class H20Compiler and

provide an implementation for the different pure virtual entry points of the class.

52

-55-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

Memory functions are given to compilers to allocate and free the requests/responses
buffers. The size of the allocated buffer is given to a FreeBuffer fimction so that different
schemes can be used to free the buffer (for a certain size, the buffer might be
implemented as a temporary file mapped in memory whereas for smaller sizes, it is

preferably implemented as in memory buffer).

The buffer is passed to an Execute function containing the full HTTP request /
response the compiler parses the request headers, mime-types and takes the appropriate
actions. This buffer is preferably read-only. The buffer can be writeable as well to enable
augmentation by the compiler or other functions after. The buffer returned by the
Exccute finctions contains a valid HTTP request / response, the memory will be freed by
the H20 proxy using the appropriate FreeBuffer function and has to be allocated by the
provided AllocBuffer fiunction. Debug member is provided for compiler implementers to
be able to get a debug trace from within the 1120 Proxy environment.

The parameters functions are used to get the names of the parameters, get the
current values (string) of the parameters, set a new value for a parameter, and validate a
parameter set. The URL finctions are provided for the HTML compiler to fetch images.
Those functions are available to the other compilers to provide extra services to the

components whenever needed.

For example, a network with 1 Million STBs, with an average 20,000 users
comnccted, generates 2,000 requests per second for HTML pages to the SGW and
“Compiled Object bache” (unless part of the requested pages come from broadband).
Assuming of those pages should be static and should be served immediately from the
“Compiled Object cache”, the H20 Proxy will have to serve 200 requests per second.
Assuming that a typical HTML page embeds 10 imagcs, 8 out of 10 being JPEG H20
Proxy issues 10 outgoing requests for each incoming request. The “Not Compiled Object

cache” serves 2,000 requests per second.
The MPG conversion is preferably performed in advance whenever possible. A

Web crawler may request the HTML pages and images at night to have them converted
53

-56-

15

20

25

30

WO 02/063879 PCT/US02/02725

in advance, leveraging this issue. The compilers thus interact with H20. H20 248 is the
preferred client/server solution provided in the SP that enables Internet content
developers to create interactive TV content, applications and services for network
operators running on the SP. Thus, via H20 enables the larger pool of Internet talent and
content is made available to the vast growing worldwide market of interactive TV
applications. The H20 server converts Internet content (HTML pages, ECMA scripts,
and HTML page formatting) into SP assets. The H20 client, H20C renders the assets and
interacts with the clients. In the T-Commerce/E-Commerce case scenatio, H20 enables
E/T-Commerce shops to utilize existing Web tools to create shopping services and to
interface with the preferred SP (operator), using standard Web protocols. Thus the
present invention is user friendly providing APIs through known methodologies.

H20 acts as a proxy to the SGW and the broadcasting tools to convert Web content
to SP content. Thus, Web sites developers can use their current HTTP servers and
application servers to generate interactive TV content inexpensively. In a preferred
embodiment, H20 converts HTML, JavaScript, and Internet graphics, however, any other
known or developed Internet or other content or protocol can also be added to the proxy
functionality of H20. H20 enables the SP to display Web pages on STBs that are not
fully browser capable and to create original user interfaces. H20 enables SP connection
to any commerce enginc that uscs onlty HTML. H20 is responsible for converting all now
or futurc broadband and Wcb content such as HTML pages, JPG pictures, wav audio

files, etc. into SP resources.

The server side of H20, H20S is an HTTP proxy. For other purposes, it can be
packaged as a dynamic link library (DLL) or batch tool. The client side of H20, H20C is
an STB O-Code application. H20C is built on top of other SP client components, such as
the SGW library or the Carousel Load library. H20 cnables URLS to be used to address
documents and services. H2O also enables tracking in the broadcast and onlinc
environments. H20S provides HTTP proxy functionality. SP applications request a
document through H20, upon which H20 retrieves the document, parses it, compiles it,

and returns the document to the requester. This H20 functionality enables use of the

54

-57-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

same engine for different uses, online and broadcast, facilitates scalability, and enables
flexible use of H20. The parsing depends on the type of document, parsing can be
HTML parsing, a GIF picture, or JPEG images, etc. To make it expandable, H20 is able
to "plug-in" and run new third party filters.

H20 enables scripting using different languages. Preferably, all SP server
components standardize around monitoring, especially the ability to remotely manage the
different processes. SNMP is used to handle basic functions ("process OK", and traps on
major problems). A command-line interpreter is provided on socket for inspecting status.
Setting parameters enables remote management and provides an interface with the Web
through Web scripts. In a preferred embodiment, standardized warnings and error logs

are provided.

HTML/JS does not allow sharing of information from one page to another for the
Web, as the server takes care of the context. In broadcast mode, this arrangement is
insufficient. The present invention provides a broadcast mode, preferably, wherein a
global permanent object is provided, that is not cleared when starting a new page. The
permanent object maintains context between pages. Other base objects provided by the
SP are also made permanent on transition (e.g., station control, OSD). Gadgets are
defined through an interface definition language to enable creation of new gadgets,

modification of gadgets and to enable adding methods without modifying the compiler.

The H20 Carousel feature provides real-time updating of catalogs, maintaining
consistency of catalogs during updates, and providing safe transactional models. H20
carousel enables updating a single page, or an entire set of pages in a single transaction.
Carousel management provides management of a carousel index or directory, The index
contains information for accessing and fetching data from the carousel. That is, for a
given page, Carousel Management contains a list of all modules necessary, so that H20C

requests all necessary modules at once to expedite the process.

55

-58-

10

15

20

25

30

WO 02/063879 PCT/US02/02725

Carousel provides data compression, meta data on pages (e.g., page relative
priority, how often the page is sent) and page tracking (elementary stream). The
carousel client is a STB OCOD libraty, handling the loading of resources. Carousel
client manages dynamics of resources, i.e., new resources, dcleted resources, and
changed resources. Dynamic resource management enables the client (H20C) of this
library to present dynamic content. The carouse! client manages memory allocation, pre-
fetching and caching of resources, and decompression of modules. The carousel client
manages sub-index/directories and manages a 'set' of resources instead of a 'tree' of
resources, which facilitates sharing of assets. Subsets of a single tree of resources can be

assigned to separate processes thereby enabling shared resources.

H20 monitors TV triggers performance and bandwidth, e.g. shared resources in
shared modules. H20 optimizes bandwidth utilization. H20 provides multi-tracks,
multi-priorities, and management of bid volume of data. H20 provides run-time pre-
fetching and caching at the module level. H20 supports compressed modules, H20
supports arrow and direct key navigation (e.g. digit or color), handling international
(Chinese), meta data on pages, (e.g., page relative priority, how often it is sent) and page
tracking (clementary stream). Global GUI is shared, that is, a direct key linking is

provided so that any information page can be shared by every other page.

H20 manages pages and sub-pages to handle cases where pages are too large to
fit on one screen without the need for scrolling. H20 enables use of HTML to present
content, online, point-to-point, and broadeast. H20 enables composition of a page with a
mixture of broadcast and online components. For example, a page can come from an
online server, while its background is broadcast. H20 enables merger of content in the
STB. For example, a bank application can send a viewer's last 20 credit card transactions
from its server while the HTML page is broadcast. Preferably a Java Script function
request (HTTP like) the server some XML, using the result and some DOM functions
patches a table with the result.,

56

-59-

20

25

-57-

Preferably, security is provided for secured authentication of the viewer, which is
performed at SGW rather than at H20. However, H2O can alternatively comprise
authentication functionality. H20 also sends encrypted data to (e.g., sending a credit card
number) and from a STB to an online server. For some services, it is appropriate to go
through a security proxy near the HTML to SP conversion. SP can utilize HTTPS from the
proxy to the service provider, and an SSL like OCOD library from the STB to the proxy. In
other cases (e.g., banks), security is provided from end to end, in which case H20 does not
usually perform translation. That scenario is preferably reserved for data the STB is able to
process without translation through H20. Encryption can alternatively be performed at
SGW or STB.

The present invention has been described in interactive television in a preferred
embodiment, however, the present invention may also be embodied in a distributed
computer system comprising a server and a client device. In another embodiment, the
present invention is implemented as a set of instructions on a computer readable medium,
comprising ROM, RAM, CD ROM, Flash or any other computer readable medium, now
known or unknown that when executed cause a computer to implement the method of the

present invention.

While a preferred embodiment of the invention has been shown by the above invention, it
is for purposes of example only and not intended to limit the scop of the invention, which
is defined by the following claims.

Where the terms “comprise”, “comprises”, “comprised” or “comprising” are used in this
specification, they are to be interpreted as specifying the presence of the stated features,
integers, steps or components referred to, but not to preclude the presence or addition of

one or more other feature, integer, step, component or group thereof.

31/07/03,eh13499.5pc, 57

-60-

16/11 2007 FRI 14:23 FAX +§1 3 9809 7555 CALLINANS

16 Nov 2007

2002237989

10

20

25

30

35

40

45

-58-

The claims defining the irvention are as foliows:

1. A service gateway residing in a server at a head end operator for providing
communication between a plurality of service providers and a plurality of
applications running on a plurality of client devices of the head end operator
inclading:

a server for communication between the service providers and the client
devices;

an application level meta language for communication between client
applications and service providers;

a communication link between the client devices and the server for
transmission of messages between the client devices and the service
gateway;

a transport protocol process tesiding in the client device for sending a
transport level message encapsulating the meta language to a service
provider; and

a conversion function for converting the client's message from the transport
tevel protocol into a plurality of standard protocols for transmission to
the service provider over the communication link;

wherein the service gateway reccives a LHTTP message encapsulating HTTP
requests within a transport level message and converts the LHTTP
request into a standard HTTP communication protocol.

2. The service gateway of claim 1 further including a transcoder for converting
content received from a service provider into a format suitable for display on the
client device.

3. The service gateway of claim 1 or 2 wherein the service gateway petforms
asymmetrical data cotapression wherein the service gateway compresses data
received from a client and sends the compressed data to a service provider,

4. The service gateway of any one of the preceding claims further including: a data
name service for resolving a service identifier of an application server for a client
process identifying a service in a transport communication protocol message.

5. The service gateway of any one of the preceding claims whercin the service
gateway sets up a business filter associated with a client to select information to be
captured from a broadcast data stream for the client based on at least one of the
following: client preferences, viewer profiles or transaction history.

6. The service gateway of any one of the preceding claims further including an
offline viewer identification function which enables offline viewer payment.

7. The service gateway of any one of the preceding claims further including an
offline order form.

16/11407,va w9252 speci, 58

COMS ID No: ARCS-168910 Received by IP Australia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

[@oo6/012

61-

16/11 2007 FRI 14:23 FAX +61 3 9809 7555 CALLINANS

16 Nov 2007

10

2002237989

15

20

25

30

35

40

45

-59.

8. The service gateway of any one of the preceding elaims further including a store
and forward library including messages having delivery timing constraints including
“as soon as possible”, "when connected", "after a random period of time", "after a set
period of time", "after a specified occurrence, event or message" and "spread stored
messages over available time and bandwidth.

9. The scrvice gateway of any one of the preceding claims wherein the service
gateway receives a message from a client indicating the client's available memory
and the service gateway checks incoming messages directed to the client to
determine that the available memory is sufficient to receive the message before
forwarding the message to the client,

10. The service gateway of any one of the preceding claims, wherein the service
gateway cicales a session identifier derived from a hardware identifier and inserts a
session identifier in place of the hardware identifier info each communication
between a client and a service provider. '

11. The scrvice gateway of any one of the preceding claims further including:
a registration authentication function for multiple users at a single client with
multiple users, through nicknames, personal identifiers and client
hardware identifier (HID).

12. The service gateway of any one of the preceding claims farther including:
business agents that control transactions and control access by the service provider to
user information.

13. The service gateway of any one of the preceding claims further including:
business agents which insert, replace and delete client identification information
from a message from a client to a service provider during a transaction, thereby
hiding the identity of the client from the service provider.

14. The service gateway of any one of the preceding claims3 wherein the amount and
type of client business information provided to a service provider, is guided by
business rules depending on an agreement between the service provider and a
network operator.

15. The service gateway of any one of the preceding claims4 wherein the business
agents provide default values and control access to user information.

16. The service gateway of claim 8 wherein the store and forward function enables
delivery of a message from the client to be transmitted to a service at a later time,
wherein a plurality of messages are dispersed for delivery over a period of time to
reduce peak transmission load.

17. A service gateway residing in a service platform at a head end operator for

providing communication between a plurality of service providers and a plurality of
applications running on a plurality of head end operator client devices including:

16/11207,va 19252 speci, 59

COMS ID No: ARCS-168910 Received by IP Austratia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

@oo7/012

-62-

16/11 2007 FRI 14:24 FAX +61 3 9809 7555 CALLINANS

16 Nov 2007

2002237989

15

20

25

30

35

40

45

-60-

a server for communication between the service providers and the client
devices;

an application level meta language for communication between client
applications and service providers;

a communication link between the client devices and the server for
transmission of messages between the client devices and the service
gateway;

a transport protocol process residing in the client device for sending a
transport level message encapsulating the meta language to a service
provider;

& conversion function for converting the client's message from the transport
level into a- plurality of standard protocols for transmission to the
service provider over the communication link, wherein the service
gateway compresses data received from a client and sends the
compressed data to the scrvice provider and wherein the service
gateway individually encrypts each fragment of a transport level
message.

18. A service gateway residing in a server at a head end operator for providing
communication between a plurality of service providers and a plurality of
applications running on a pluralily of client devices of the head end operator
including:

a server for communication between the service providers and the client
devices;

an application level meta language for communication between client
applications and service providers;

a communication link between the client devices and the server for
transmission of messages between the client devices and the service
gateway;

a transport protocol process residing in the client device for sending a
transport level message encapsulating the meta language to a service
provider; and

a conversion function for converting the client's message from the transport
level protocol into a plurality of standard protocols for transmission to
the service provider over the communication link;

wherein the service gateway petforms asymmetrical data routing of data sent
to the client and sent back to the service provider from the client
based on the size of the data and the availability of the broadcast
stteam and the point-to-point connections between the service
gateway and the clients.

19. A service gateway residing in a server at 2 head end operator for providing
communication between a plurality of service providers and a plurality of
applications running on a plurality of client devices of the head end operator
including:
a server for communication between (he service providers and the client
devices;

1611 1/07,va u9252 speci 60

COMS 1D No: ARCS-168910 Received by P Austrafia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

[@oos/012

63-

16 Nov 2007

2002237989

10

20

25

30

35

40

16/11 2007 FRI 14:24 FAX +51 3 9809 7555 CALLINANS

-6l -

an application level meta language for communication between client
applications and service providers;

a communication link between the client devices and the server for
transmission of messages between the client devices and the service
gateway;

a transport protocol process residing in the client device for sending a
transport level message encapsulating the meta language to a service
providet;

a conversion function for converting the client's message from the transport
level protocol into a plurality of standard protocols for transmission to
the service provider over the communication link;

sequence numbers in a message sent from a client to the service gateway,
wherein a sequence number is associated with one of a plurality of
sequence-numbered message fragments;

amessage table wherein each message fragment sequence number is stored in
a table along with a time of receipt; and

a sliding time rejection window including a plurality of sequence numbers for
rejection of message packets with sequence numbers appeating in the
rejection window,

20. A service gateway residing in a server at a head end operator for providing
communication between a plurality of service providers and a plurality of
applications running on a plurality of client devices of the head end operator
including:

a server for communication between the service providers and the client
devices;

an application level meta language for communication between client
applications and service providers;

a communication link between the client devices and the server for
transmission of messages between the client devices and the service
gateway;

a transport protocol process residing in the client device for sending a
transport level message encapsulating the meta language to a service
provider;

a conversion function for converting the client's message from the transport
level protocol into a plurality of standard protocols for transmission to
the service provider over the communication link; and

2 socket type abstraction layer created by the service gateway to
accommodate User Datagram Protocol (UDP) data, wherein the
socket type abstraction layer runs on top of UDP and encapsulates
UDP into transport level protocol messages,

21. A method for communication in a distributed computing system including:
receiving from a client device, a first message at a service gateway residing in
a server at a head end operator, wherein the first message comprises
an LHT'TP message encapsulating at least one HTTP requests;

16/41/07,v8 69252 apeci 61

COMS ID No: ARCS-168310 Received by IP Australia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

[@oo9s012

-64-

16/11 2007 FRI 14:25 TFAX +61 3 9809 7555 CALLINANS [doto/012

.62 -

converting an LHTTP request from the fiest message into a standard HTTP
communication protocol for transmission to a service provider over a
communication link.

16 Nov 2007

5 22. A method for communication in a distributed computing system including:

recciving from a client device, a first message at a service gateway residing in
a server at a head end operator, wherein the first message comprises a
transport level message encapsulating a meta language;

converting the first message from the transport level into a plurality of

10 standard protocols for transmission o a service provider over a

communication link;

individually encrypting each fragment of the transport level message;

compressing data received in the first message; and

sending the compressed data to the service provider.

2002237989

23. A method for communication in a distributed computing system including:
reeciving from a client device, a first message at a service gateway residing in
a server al a head end operator, wherein the first message comprises a
transport level message encapsulating a meta language;

20 converting the first message from the transport level into a plurality of
standard protocols for transmission to a service provider over a
communication link;

whetein the service gateway performs asymmetrical data routing of data sent
to the client and sent back to the service provider from the client

25 based on the sizc of the data and the availability of a broadcast stream
and one or more point-to-point connections between the service
gateway and the client,

24. A method for communication in a distributed computing system including:

30 receiving from a client device, a first message at a service gateway residing in
a server at a head end operator, wherein the first message comprises a
transport level message encapsulating 2 meta language;

converting the first message from the transport level into a plumality of
standard protocols for transmission to a service provider over a
35 communication link;
wherein the service gateway is configured to associate sequence numbers
with one of a plurality of sequence-numbered message fragments in a
message sent from a client to the service gateway;
wherein each message fragment sequence number is stored in a message table
40 along with a time of receipt; and
wherein the service gateway maintains a sliding time rejection window
including a plurality of sequence numbers for rejection of message
packets with sequence numbers appearing in the rejection window.

45 25. Amethod for communication in a distributed computing system including:
receiving from a client device, a first message at a service gateway residing in
a server at & head end operator, wherein the first message comprises a
transport level message encapsulating a meta language; '

16/1107,v8 09252 spcei 62

COMS ID No: ARCS-168910 Received by IP Australia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

-65-

16/11 2007 FRI 14:25 FAX +61 3 9809 7555 CALLINANS

16 Nov 2007

2002237989

-63 -

converting the first message from the transport level into a plurality of
standard protocols for transmission to a service provider over a
communicaticn link; and
crealing a socket type abstraction layer to accommodate Uscr Datagram
5 Protocol (UDP) data, wherein the socket type abstraction layer runs
on top of UDP and encapsulates UDP into transport level protoco
messages.

26. A computer readable medium containing instructions that cause a processor in a
10 service gateway residing in a server at a head end operator to:
receive from a client device, a first message including an LHTTP message
encapsulating at least one HTTP requests;
convert an LHTTP request from the first message into a standard HTTP
communication protocol for transmission to a service provider over a
15 communication link.

27. A computer readable medium containing instructions that cause a processor in a
service gateway residing in a server at a head end operator to:
receive from a client device, a first message including a transport level
20 message encapsulating a meta language;
convert the first message from the transport level into a plurality of standard
protocols for transmission to a service provider over a communication
fink;
individually encrypt each fragment of the transport level message;
25 compress data received in the first message; and
send the compressed data to the service provider.

28. A computer readable medium containing instructions that cause a processor in a
service gateway residing in a server at a head end operator to:

30 receive from a client device, a first message including a transport level
message encapsulating a meta language;

convert the first message irom the transport level into a plurality of standard
protocols for transmission to a service provider over a communication
link;

35 whercin the service gateway performs asymmetrical data routing of data sent
to the client and sent back to the service provider from the client
based on the size of the data and the availability of a broadcast stream
and one or more point-lo-point connections between the service
gateway and the client.

40

29. A computer readable medium containing instructions that cause a processor in a
service gateway residing in a server at a head end operator to:
receive from a client device, a first message including a transport level
message encapsulating a meta language;

45 convert the first message from the transport level into a plurality of standard
protocols for transmission to a service provider over a communication
link;

16111107 va w9252 speci, 63

COMS ID Ho: ARCS-168910 Received by IP Australia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

@o11/012

-66-

16/11 2007 FRI 14:26 FAX +61 3 9809 7555 CALLINANS

“64-

wherein the service gateway is configured to associate sequence numbers
with one of a plurality of sequence-numbered message fragments in a
message sent from a client to the service gateway;

wherein cach message fragment sequence number is stored in a message table

5 along with a time of receipt; and

wherein the service gateway maintains a sliding time rejection window
including a plurality of sequence numbers for rejection of message
packets with sequence numbers appearing in the rejection window.

16 Nov 2007

10 30. A computer readable medium containing instructions that cause a processor in a
service gateway residing in a server at a head end operator to:
receive from a client device, a first message including a transport level
message encapsulating a meta language;
convert the first message from the transport level into a plurality of standard
15 protocols for transmission to a service provider over a communication
link;
create a socket type abstraction layer to accornmodate User Datagram
Protocol (UDP) data, wherein the socket type abstraction layer runs
on top of UDP and encapsulates UDP into transport level protocol
20 messages.

2002237989

18/81/07,va 09252 speci,64

COMS ID No: ARCS-168910 Received by IP Australia: Time (H:m) 14:25 Date (Y-M-d) 2007-11-16

[@o12/012

67-

WO 02/063879 PCT/US02/02725

1/13

212
;m
CLIENT

S
g
Ox
S=2
=23

2 =

el I8 g

I\ S

| TRANSPORT CONVERSION

| TRANSACTION CONTROL/BUSINESS FUNGTIONS

| CONTENT CONVERSION

3
=
I\ ™~
S
© P
e L
<
K

COMMUNICATION
LINK

102

SERVICES

ERVICES
SERVICES
200—"

;

SUBSTITUTE SHEET (RULE 26)

-68-

PCT/US02/02725

2/13

WO 02/063879

¢ 9l : 998~ 892 mmm.ﬁwmm
T S oy | ¢ NAWHV
NOLYIINANHOD SBNIDYSSIN \
: ST0IA3S
N 9z~ 96—~ 8re—, VI/iE]
o ‘ ALY SN i f—] | N-0/2
SEY E%&SQ N
\m,@m 092
212 9z &
9ez ~C¥e o
monve || PP 3
avo1 dIDYNYIY AULSIDTY e
! savy EE K 1
LI E R A P = Vs -
C_swool___~9e@ m.mwsés & s | &
WOV 1d I0UAHTS Y-ELe NOILIVSNYL stvamod || | S| | 99 L2
SRELTTTES =
IS Sdd___ 118 T B
85z
_ INFITo §le~ 88~ HOLOTIT mm.N-ql.u WY
[A XA - HSIA 347173LYS INIONT HIOYNYIN FOINHTS SIAHIS
= JOuINW09- TwNOIdD | | FoIuFS I3
mqm_\u 14 cez _/ 592 002
192 YINYTLLS IDYNVI o e
N30 N ooy 7ASN0HYD N 162 - r
i&&%& M:& osz e Cee iz Ny

v

-69-

PCT/US02/02725

WO 02/063879

3/13

€914

Yo
oLz NOLYIINDNINOD B 1HOISNVHL
clc
~ zo_mmm\éoﬁ%%e_\ﬁ NOISHINGD —H #0Z
. A INIOd-OLANIOd ANIINOD
saanang
SHAITH
N9 WHOALY Td INEINGO
~re2 922 \—rez o
/ - NOLYIINRWNKOD
Lz
i~ 08¢
. R e
SNOLLINNS SSINISNG 902
HADYNYIY HIDYNYI YN HIDYNYIW
ONISILEIAGY | |NOLLOYSIYYL YIMIN 30INY3S
N—pe N—zic N—org N_gez
Thsez
SIMNY VIva vIva Iy
SSANISNG 43sn MHOMIIN 01438
B B /%
O0ce 8ic 9l

,—00¢
7

SIS

STIIAHIS

BENALES

SFOINHIS

SUBSTITUTE SHEET (RULE 26)

-70-

PCT/US02/02725

WO 02/063879

4/13

v9ld

GIAEES ISVOUT0a Ol . NOILDINNOT - SININOGNOD g STNGHOATOD]
NOLLOFNNOO YHOMLIN YHOMLIN Wwngand B A o]
2801 SHOMTAYET —~— 0001 8101
[YANYTS dINS | GNEAOYE AL NIHO Tiive | MO
ONIddOHS 90 SOUSIIVIS JOINHAS
YIS dLIH]
w01 0801 913 SH3SN o201
970, FL4IIS ddY LVHO -
R YIS ddV TV - aq a0
oz0; STONIHAd | STTHOud
SHISN SLISN
910t o101
X089
- Tas]
0 Al Q\H\NNE \wQE o001
D Jovg
TINANHO 1SVOaV0GE
a0
N 8801

TS

Ay

SUBSTITUTE SHEET (RULE 26)

-71-

PCT/US02/02725

WO 02/063879

5/13

S 9

"017 'SFOYSSTN 'STIVO Idy ~—=

FINAOW TYNOUAO d1va ||

FINGON 80NIS LiNY430 dIYa

(217 difdaL YIS Mys)
ININOINOD L1HOISNYHL FAILYN

FINAON J141934S
GISMHOMLIN dIva

N 7maowomanas dva [

gL~ 821 1~~ YovLS QYOINMOG 818 IALYN | | LHOdSNYAL ELS FALYN 011
000N | ket~ I TR
300970 ;
ozLi—" @ ; | 7mn00m sodswvut gis dva |l o)
Vel gN1S &1 IMA0N +—— | !
SirTasanomun | 1 oer—~{ auvarisvooiovs | [Auver idiows | —~—res
m..uH..H.,..u.x..lu‘....‘u.lu.t.uu.‘.‘m“.,”...,.l...w T [} 1
911 == 8nIS JOOTANIAT | I]
NOISNIDA 74N03S dlYd | FH02 1HOJSNVHL d1¥a 2011
. [[}
1]
_ FINGOW YFDYNYH FOVSSIN dIYa | —rouL
pLIL~ . | Fncomuangas | [3mnaom auvmeod FINAON dLIH
YINYT ALTIGYIHOL 30090 JNVYN dIVa gNY FHOLS AHBIIMIHOIT
T T)
0111 8011 \-90i1

SUBSTITUTE SHEET (RULE 26)

-72-

WO 02/063879

6/13

PCT/US02/02725

APPLICATION PROTOCOL 1 [APPLICETION
—7 SERVER 1
1520
1540~ 1510
OPEN TV
OPEISTER [APPLICATION PROTOCOL 2 YT
| 1621 SERVER 2
' 1522 N
OPEN TV 1511
STB EN2 AP |SERVICEGATEWAY TPRLICATION
1530~ (DAMLIDATP) PROTOCOL 8 APPLICATION
1018 SERVER 3
1512
APPLICATION PROTOCOL 4 [APPLICATION
1593 SERVER 4
1513
FIG. 6
DAP
DAML-APPLICATION
PROTOCOLS-XML MESSAGES. [~"1670
DATP LAYER Lﬁmzo

TRANSPORT LAYER (TCP/IP, RAW
MODEM, UDP

PHYSICAL LINK (CABLE RETURN, PST)

FIG. 7

SUBSTITUTE SHEET (RULE 26)

-73-

PCT/US02/02725

WO 02/063879

7/13

8 9id

HIANAS Yiva

HIIVNYW NOISSTS ‘WIS
HINHS NOIYIIIddY -SY

HIAHIS NOUY O IddY -SASY
F1NTON NOLYOINNNINGD
HINHTS NOLYOTIddY -INISY SHNIT NOLYIINNNNO O =~
dIHSNOLLY 134 NOILYIHD
SS8700Hd HO AY4HH!

SININOJNGD
TYNYIUXT HIIM,

$S7004d Qv anviS[|
avIdHL aayanvis [|

</ QYaHHL 439Ny NoiSs3s ()
SFIYSSIN “STIVO Idy =~ Q73uHL 4INTLSIT 124005 |

YIAYTS AA HLMINIT 0L
YIAHS XX 01 1S0d JLIH | kel CNOWS >
YFALES XX 0L JLIH ! 1zl . L
HIAG3S X0 OL GNIS IS | s N(.
TR oy |] | ez
Hel~<_ wosv
S1z1- [Wy0ss3208d] 040SS3004d
WP s
: T
ETRES |11
Chel— I diva HOLINOW
HIDYNYIY
HANILSTT Q(@@@W&M\E HINTLIST]
80¢k—~ 134908 sv T / 134008 dol
o1l ~_ 3 9021
7INqON

ISYoav0dd

SUBSTITUTE SHEET (RULE 26)

-74-

WO 02/063879 PCT/US02/02725

SEQ | SEQ { SEQ | SEQ | SFQ | SEQ
NUM | NUM | NUM | NUM | NUM | NUM

830—" 840850~ 860870~ 880~
REJECTION LIST
FIG. 9

246~
GATEWAY

!

COMPILED
14107 0BJECT CAGHE

I 248 /90

H20 PROXY / SERVICE
PLATFORI

1420 —~—1

HTML COMPILER
PIX COMPILER
MPEG COMPILER

85 | REQ PATCHER

1490

CUSTOMER WEB SITE [1 TI \1424

NOT COMPILED

amazon.com. |
~ OBJECT CACHE [~"1430

FIG. 11

SUBSTITUTE SHEET (RULE 26)

-75-

WO 02/063879 PCT/US02/02725

9/13

T8 0-coue STROAP Hodem Sanice Applatlon
Anplcaton Fngine Rack Gataway Senver

DATP login request

Lﬂﬁ STB nspot g et
v STB fransprt login ack
OATP logi fenake
DATP logih noffy DATP loginhanchat ack with sessn id

DATP message send o sy i) DATP hagimentisth g g) send b sy id
DA Iragmentish sy i, rag i+ 1) sand fosary if
DA frgentsh g i, g i) ok
DAP messagpsendrotfy | DATP fgmentfsh sy i g i+ 1) ack | DATP message (session g

sb mey seg numbersend
Mesgg;g DAP gty g i feg s toesson it | DATPmessge send o
Senef DA egmertisymsg I o i)sondosessi 9 |~ 56000
Pecie AP e msg i g 6+ Snd o ssson i

DATP ragmentisp msg_io frag i) ack
DATPragmentisg_msy id g i0+1) ack

DATP asscge reveie for DATPﬁagmenr(sg_még_id, frag it+2) ack

session i
DATP logout request AP !ogcui handshte
Dip DATP logout haneishate ack
Message
g} | TR ot ot et
DATP Iogout oty | STB ansport ogout ack

FIG. 10

SUBSTITUTE SHEET (RULE 26)

-76-

PCT/US02/02725

WO 02/063879

10/13

Lo~
‘woJduozewe

¢l o

H90907/97IW
41905053 vaﬁ
J]
286 @
9090797 179 ziz
0861 |\
J19°000W9TIW 13D
_gz61
rzsi~ | s
SE.ED.} TWLHINOH
22— B
WIHINOH 13 cle
OH-139 1 Y= amion 13
0cel
FHovo L0argo | | oty id AXOHd FHIVI
GTNINOD 10K | | F0IH3S o2H e AV
- ogrf 05 \—grz N7 N9

SUBSTITUTE SHEET (RULE 26)

77-

WO 02/063879 PCT/US02/02725
11/13
246~ 1410~ 248~ 30~ 1430~
3 CORLED | | gy
G2 | o s | \worcoupizs Com,
,@ GATEAAY ET | | gy | || (ko] S
1610 SRR
1612 12
CTHMERY || (oo | A1674 | e pie
212 ﬁgmommsp SERUL 122432
VRAGOHCOH
GR 12
ODEL PIEE \%ﬁ
SERAL 122432 1676 | CTHoEA® | carvonessp
(GVLBUSE) | (@MW BUSH)
\1622 | /1624
1626-
HOIEAD
1626-) EW OIS | A
kL | TLTON
1630 GeTL060GE | 7632
. . FORECH
66| meEr IO s ey
L0B0GF Viegr | | foeuy
1638~\eammenns | 1634 | M
caainen.pe| | FELET
vey | g oy | PERREL
HOMEASP [-~ \ER, :
1650: s (G,AIBUS@ RS BNERPG
212~ 5 1648~ | 1046
2 e
_1659 i~
1656~ 16521 mener 1654
PLYLOGOF ’Mégf/%“
|,
1656~ BNERPS | aipey
BAERES
212 1660 1662~ | GFT BAMIERJPG
@ 1666~ [—
1664~ | BiERJPS
VPGBAINER PG dcE\pe
670 1666~ | MACEOTIIFG hiAGE!
J—MFW—MPG/BANNER,JPG
919~ MRS
FIG. 13

SUBSTITUTE SHEET (RULE 26)

-78-

WO 02/063879

12/13

PCT/US02/02725

249~~~ H20 PROXY HOST SOFTWARE

424

14227
1426

E

e

H20 PROXY

HTML2RES COIMPILER

REQ PATCHER

GIF2PIX COMPILER

2MPEG COMPILER

248
1420

1424~

FIG. 14

1420~ 1422

GET HOME.ASP
SN:2245

MODEL: PACE
CARD: 1234

GET HONEASP
1816~ (G.W, BUSH)

1812

I

HOME.ASP
TEXT/OTVRES

212

GET HOMEASP
@

| reaparcker | | HTuiepes | | arepx | amagon.com.

1818

| BUSH)

HOME.ASP
TEXTIHTML

1620

GET LOGO.GIF

LOGO.GIF

GET BANNER.JPG

BANNERJPG

1830

FIG. 15

SUBSTITUTE SHEET (RULE 26)

-79-

PCT/US02/02725

13/13

91 "9H

SUBSTITUTE SHEET (RULE 26)

-80-

WO 02/063879

21z
BAP/IOVI | DAWALO/TOYIN
DJrYINNYE | DArHINNYS N-9;61
pier—+
ZiBL-
DI GENNYE 130
Ddr g
J0SEH/OZ LA/DIAILTD
‘woouosemie | P00 | | swemun | |wamowd oz

gz N—zzr1 N—pzrt N—pzpi

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

