
(12) STANDARD PATENT (11) Application No. AU 2017350292 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Dynamic reputation indicator for optimizing computer security operations

(51) International Patent Classification(s)
G06F 21/56 (2013.01) H04L 29/06 (2006.01)

(21) Application No: 2017350292 (22) Date of Filing: 2017.10.26

(87) WIPO No: W018/077996

(30) Priority Data

(31) Number (32) Date (33) Country
15/336,387 2016.10.27 US

(43) Publication Date: 2018.05.03
(44) Accepted Journal Date: 2021.08.26

(71) Applicant(s)
Bitdefender IPR Management Ltd

(72) Inventor(s)
Hajmasan,Gheorghe-Florin;Mondoc,Alexandra;Portase,Radu-Marian

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, COLLINS STREET WEST, VIC, 8007, AU

(56) Related Art
US 20150096018 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) OrganizationIIIIIIIIIIIDIDIDlDII1IIIIDIII

International Bureau (10) International Publication Number

(43) International Publication Date W O 2018/077996 Al
03 May 2018 (03.05.2018) WIPO I PCT

(51) International Patent Classification: sc.I, et. IV, ap. 17, Judetul Cluj, 400607 Cluj-Napoca (RO).
G06F 21/56 (2013.01) H04L 29/06 (2006.01) PORTASE, Radu-Marian; Str. Dragos Voda nr. 85A,

(21) International Application Number: Judet Maramures, 435700 Viseu de Sus (RO).

PCT/EP2017/077390 (74) Agent: TULUCA, Doina; Bd. Lacul Tei 56, bl. 19, sc. B,

(22) International Filing Date: ap. 52, sector 2, 020392 BUCURESTI (RO).

26 October 2017 (26.10.2017) (81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind ofnational protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
.30) .riority DatDZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,

(30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
15/336,387 27October2016(27.10.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

(71) Applicant: BITDEFENDER IPR MANAGEMENT MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
LTD [CY/CY]; Kreontos 12, Nicosia, 1076 (CY). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(72) Inventors: HAJMASAN, Gheorghe-Florin; Sat Lunca TR, TT, TZ, UAUG, US, UZ, VC, VN, ZA, ZM , ZW.

Muresului nr. 351, Judet Alba, 547037 Com. Lunca Mure

sului (RO). MONDOC, Alexandra; Piata Marasti nr. 3

(54) Title: DYNAMIC REPUTATION INDICATOR FOR OPTIMIZING COMPUTER SECURITY OPERATIONS

Central 412a
reputation

server s

16a20Isolated eny irotnent

Central

reputation
database

asc1N etwork

Isolated cvironent

10b

F

T 5
10a Client Client Client

system system systemi

FIG. 1
(57) Abstract: Described systems and methods allow protecting a computer system from malware such as viruses, worms, and spyware.

A reputation manager executes on the computer system concurrently with an anti-malware engine. The reputation manager associates a

dynamic reputation indicator to each executable entity seen as a unique combination of individual components (e.g., a main executable
and a set of loaded libraries). The reputation indicator indicates a probability that the respective entity is malicious. The reputation
of benign entities may increase in time. When an entity performs certain actions which may be indicative of malicious activity, the
reputation of the respective entity may drop. The anti-malware engine uses an entity-specific protocol to scan and/or monitor each target
entity for malice, the protocol varying according to the entity's reputation. Entities trusted to be non-malicious may be analyzed using
a more relaxed protocol than unknown or untrusted entities.

W O 2018/077996 A996Al|||

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
- with international search report (Art. 21(3))

Dynamic Reputation Indicator For Optimizing Computer Security Operations

BACKGROUND

[0001] The invention relates to systems and methods for protecting computer systems from

malicious software.

5 [0002] Malicious software, also known as malware, affects a great number of computer

systems worldwide. In its many forms such as computer viruses, worms, rootkits, and spyware,

malware presents a serious risk to millions of computer users, making them vulnerable to loss

of data and sensitive information, invasion of privacy, identity theft, and loss of productivity,

among others.

10 [0003] Security software may be used to detect malware infecting a user's computer system,

to remove, and/or to incapacitate such malware. Several malware-detection techniques are

known in the art. Some are content based, relying on matching a fragment of code of the

malware agent to a library of malware-indicative signatures. Other conventional techniques,

commonly known as behavioral, detect a set of suspicious or malware-indicative actions of

15 the malware agent.

[0004] Security software may place a significant computational burden on a user's computer

system, often having a measurable impact on performance and user experience. The

continuous proliferation of malicious software further increases the complexity of malware

detection routines, as well as the size of signature databases. To lower computational costs,

20 security software may incorporate various optimization procedures.

[0004a] Where any or all of the terms "comprise", "comprises", "comprised" or "comprising"

are used in this specification (including the claims) they are to be interpreted as specifying the

presence of the stated features, integers, steps or components, but not precluding the presence

of one or more other features, integers, steps or components.

25 [0004b] A reference herein to a patent document or any other matter identified as prior art, is

not to be taken as an admission that the document or other matter was known or that the

1

information it contains was part of the common general knowledge as at the priority date of

any of the claims.

SUMMARY

[0005] According to one aspect, the present invention provides a client system comprising at

5 least one hardware processor configured to execute a target entity, a reputation manager, and

an anti-malware engine, wherein: the reputation manager is configured to: in response to

receiving a first reputation indicator of a target entity from a reputation server, the first

reputation indicator indicative of a probability that the target entity is malicious, transmit the

reputation indicator to the anti-malware engine, in response to receiving the first reputation

10 indicator, update the first reputation indicator by determining a second reputation indicator of

the target entity, the second reputation indicator differing from the first reputation indicator

by a reputation change, and in response to determining the second reputation indicator,

transmit the second reputation indicator to the anti-malware engine and to the reputation

server, wherein determining the second reputation indicator comprises: in response to

15 receiving the first reputation indicator, determining a first time interval, in response to

determining the first time interval, determining whether the target entity has performed any of

a set of pre-determined actions during the first time interval, in response, if the target entity

has not performed any of the set of pre-determined actions during the first time interval,

determining a the reputation change to indicate a reduction in the probability that the target

20 entity is malicious, and if the target entity has performed a first action of the set of pre

determined actions during the first time interval, determining the reputation change to indicate

an increase in the probability that the target entity is malicious; and wherein the anti-malware

engine is configured to: in response to receiving the first reputation indicator, employ a first

protocol to determine whether the target entity is malicious, in response to receiving the second

25 reputation indicator, employ a second protocol to determine whether the target entity is

malicious, wherein the second protocol is less computationally expensive than the first

protocol when the second reputation indicator indicates a decreased probability of malice

compared to the first reputation indicator, and wherein the second protocol is more

2

computationally expensive than the first protocol when the second reputation indicator

indicates an increased probability of malice compared to the first reputation indicator.

[0006] According to a second aspect, the present invention provides a server computer system

comprising at least one hardware processor configured to perform reputation management

5 transactions with a plurality of client systems, wherein a reputation management transaction

comprises: in response to a request received from a client system of the plurality of client

systems, the client system executing a target entity, retrieving a first reputation indicator of a

target entity from an entity reputation database, the first reputation indicator indicative of a

probability that the target entity is malicious; in response to retrieving the first reputation

10 indicator, transmitting the first reputation indicator to the client system; in response to

transmitting the first reputation indicator, receiving a second reputation indicator of the target

entity from the client system; in response to receiving the second reputation indicator,

comparing the first and second reputation indicators; in response, when the second reputation

indicator indicates a lower probability that the target entity is malicious than indicated by the

15 first reputation indicator, adding the second reputation indicator to a collection of reputation

indicators received from the plurality of client systems, wherein all members of the collection

are determined for instances of the target entity; in response to adding the second reputation

indicator to the collection, determining whether a reputation update condition is satisfied; and

in response, when the update condition is satisfied, replacing the first reputation indicator in

20 the reputation database with an updated reputation indicator determined according to the

collection; wherein the second reputation indicator differs from the first reputation indicator

by a reputation change, and wherein determining the second reputation indicator comprises

employing the client system to: in response to receiving the first reputation indicator,

determine a first time interval, in response to determining the first time interval, determine

25 whether the target entity has performed any of a set of pre-determined actions during the first

time interval, in response, if the target entity has not performed any of the set of pre-determined

actions during the first time interval, determine the reputation change to indicate a reduction

in the probability that the target entity is malicious, and if the target entity has performed a

3

first action of the set of pre-determined actions, determine the reputation change to indicate an

increase in the probability that the target entity is malicious.

[0007] According to a third aspect, the present invention provides a non-transitory computer

readable medium storing a set of instructions which, when executed by a hardware processor

5 of a client system, cause the client system to form a reputation manager and an anti-malware

engine, wherein: the client system is configured to execute a target entity; the reputation

manager is configured to: in response to receiving a first reputation indicator of the target

entity from a reputation server, the first reputation indicator indicative of a probability that the

target entity is malicious, transmit the reputation indicator to the anti-malware engine, in

10 response to receiving the first reputation indicator, update the first reputation indicator by

determining a second reputation indicator of the target entity, the second reputation indicator

differing from the first reputation indicator by a reputation change, and in response to

determining the second reputation indicator, transmit the second reputation indicator to the

anti-malware engine and to the reputation server, wherein determining the second reputation

15 indicator comprises: in response to receiving the first reputation indicator, determining a first

time interval, in response to determining the first time interval, determining whether the target

entity has performed any of a set of pre-determined actions during the first time interval, in

response, if the target entity has not performed any of the set of pre-determined actions during

the first time interval, determine the reputation change to indicate a reduction in the probability

20 that the target entity is malicious, and if the target entity has performed a first action of the set

of pre• determined actions during the first time interval, determining the reputation change to

indicate an increase in the probability that the target entity is malicious; and wherein the anti

malware engine is configured to: in response to receiving the first reputation indicator, employ

a first protocol to determine whether the target entity is malicious, and in response to receiving

25 the second reputation indicator, employ a second protocol to determine whether the target

entity is malicious, wherein the second protocol is less computationally expensive than the

first protocol, when the second reputation indicator indicates a decreased probability of malice

compared to the first reputation indicator, and wherein the second protocol is more

4

computationally expensive than the first protocol when the second reputation indicator

indicates an increased probability of malice compared to the first reputation indicator.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing aspects and advantages of the present invention will become better

5 understood upon reading the following detailed description and upon reference to the drawings

where:

[0009] Fig. 1 shows an exemplary anti-malware system comprising a plurality of client

systems and a reputation server, according to some embodiments of the present invention.

[0010] Fig. 2 shows an exemplary detailed view of an isolated environment such as a corporate

10 Intranet, protected from computer security threats according to some embodiments of the

present invention.

4a

WO 2018/077996 PCT/EP2017/077390

[0011] Fig. 3 shows an exemplary reputation database entry according to some embodiments of

the present invention.

[0012] Fig. 4-A illustrates an exemplary hardware configuration of a client system according to

some embodiments of the present invention.

[0013] Fig. 4-B shows an exemplary hardware configuration of a reputation server according to

some embodiments of the present invention.

[0014] Fig. 5 shows an exemplary set of software objects executing on a client system, including

a security application configured to protect the client system from computer security threats

according to some embodiments of the present invention.

[0015] Fig. 6 shows exemplary components of a security application according to some

embodiments of the present invention.

[0016] Fig. 7 illustrates an exemplary data exchange between a reputation manager component

and an anti-malware engine component of the security application, according to some

embodiments of the present invention.

[0017] Fig. 8 illustrates an exemplary data exchange between a client system and a reputation

server according to some embodiments of the present invention.

[0018] Fig. 9 shows exemplary components of a fingerprint of an executable entity according to

some embodiments of the present invention.

[0019] Fig. 10 illustrates exemplary sets and supersets of executable entities according to some

embodiments of the present invention.

[0020] Fig. 11 shows an exemplary data structure associated to an executable entity executing on

a client system, according to some embodiments of the present invention.

5

WO 2018/077996 PCT/EP2017/077390

[0021] Fig. 12-A shows an exemplary sequence of steps performed by the reputation manager

component of the security application according to some embodiments of the present invention.

[0022] Fig. 12-B shows a continuation of the exemplary sequence of steps of Fig. 11-A

according to some embodiments of the present invention.

[0023] Fig. 12-C shows another continuation of the exemplary sequence of steps of Fig. 11-A

according to some embodiments of the present invention.

[0024] Fig. 12-D shows yet another continuation of the exemplary sequence of steps of Fig. 11

A according to some embodiments of the present invention.

[0025] Fig. 13 illustrates an exemplary temporal evolution of a reputation indicator according to

some embodiments of the present invention.

[0026] Fig. 14 shows an exemplary sequence of steps performed by the anti-malware engine

component of the security application according to some embodiments of the present invention.

[0027] Fig. 15 shows an exemplary sequence of steps performed by a reputation server

according to some embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0028] In the following description, it is understood that all recited connections between

structures can be direct operative connections or indirect operative connections through

intermediary structures. A set of elements includes one or more elements. Any recitation of an

element is understood to refer to at least one element. A plurality of elements includes at least

two elements. Unless otherwise required, any described method steps need not be necessarily

performed in a particular illustrated order. A first element (e.g. data) derived from a second

element encompasses a first element equal to the second element, as well as a first element

generated by processing the second element and optionally other data. Making a determination

or decision according to a parameter encompasses making the determination or decision

6

WO 2018/077996 PCT/EP2017/077390

according to the parameter and optionally according to other data. Unless otherwise specified,

an indicator of some quantity/data may be the quantity/data itself, or an indicator different from

the quantity/data itself. Computer security encompasses protecting users and equipment against

unintended or unauthorized access to data and/or hardware, against unintended or unauthorized

modification of data and/or hardware, and against destruction of data and/or hardware. A

computer program is a sequence of processor instructions carrying out a task. Computer

programs described in some embodiments of the present invention may be stand-alone software

entities or sub-entities (e.g., subroutines, libraries) of other computer programs. Unless

otherwise specified, a process represents an instance of a computer program, having a separate

memory space and at least an execution thread, the memory space storing an encoding of a set of

processor instructions (e.g., machine code). Unless otherwise specified, a hash is an output of a

hash function. Unless otherwise specified, a hash function is a mathematical transformation

mapping a variable-length sequence of symbols (e.g. characters, bits) to a fixed-length bit string.

Computer readable media encompass non-transitory media such as magnetic, optic, and

semiconductor storage media (e.g. hard drives, optical disks, flash memory, DRAM), as well as

communications links such as conductive cables and fiber optic links. According to some

embodiments, the present invention provides, inter alia, computer systems comprising hardware

(e.g. one or more processors) programmed to perform the methods described herein, as well as

computer-readable media encoding instructions to perform the methods described herein.

[0029] The following description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0030] Fig. 1 shows an exemplary computer security system 5 according to some embodiments

of the present invention. System 5 comprises a set of client systems 10a-c and a central

reputation server 14a, connected via a communication network 20. Central reputation server 14a

may further be communicatively coupled to a central reputation database 16a. Network 20 may

be a wide-area network such as the Internet, while parts of network 20 may also include a local

area network (LAN).

7

WO 2018/077996 PCT/EP2017/077390

[0031] System 5 may further comprise a set of isolated environments 12a-b connected to

network 20. An isolated environment may represent, for instance, a company Intranet.

Environments 12a-b may be separated from the rest of network 20 by firewalls and/or other

perimeter defense means. Fig. 2 illustrates such an isolated environment 12, comprising a set of

client systems 10d-e and a local reputation server 14b, all connected to a local network 120.

Network 120 may represent, for instance, a local area network. In some embodiments, isolated

environment 12 may further comprise an environment-specific local reputation database 16b,

communicatively coupled to local reputation server 14b.

[0032] Client systems 10a-e represent end-user computer systems protected against computer

security threats according to some embodiments of the present invention. Exemplary client

systems 10a-e include personal computers, mobile computing and/or telecommunication devices

such as tablet personal computers, mobile telephones, personal digital assistants (PDA), wearable

computing devices (e.g., smartwatches), household devices such as TVs or music players, or any

other electronic device having a processor and a memory. Client systems 10a-e may represent

individual customers of a computer security company; several client systems may belong to the

same customer.

[0033] Client systems 10a-e may use reputation data to increase the efficiency of computer

security operations. In some embodiments, reputation servers 14a-b handle reputation data at

the request of client systems 10a-e, for instance to store and selectively retrieve reputation data

to/from reputation databases 16a-b, and to transmit such data to a requesting client system.

Details of such transactions are given below.

[0034] Reputation databases 16a-b may be configured to store reputation data associated with

various executable entities (applications, components of an operating system, processes,

libraries, scripts, etc.). Reputation data may be stored as a plurality of entries, each entry

corresponding to a distinct executable entity. Fig. 3 shows an exemplary reputation database

entry 17, comprising an identity token of an executable entity (herein called entity fingerprint 70)

and a reputation indicator 60 indicative of a probability that the respective entity is malicious.

8

WO 2018/077996 PCT/EP2017/077390

Each reputation database entry may further comprise a timestamp (symbolized as TSO) indicative

of a moment when indicator 60 was created and/or a moment of the latest update of the

respective reputation indicator. Entry 17 may further comprise a reputation lifetime indicator

(RL) indicative of a duration of validity of the respective reputation indicator. By specifying a

limited lifetime for reputation data, some embodiments effectively force a periodic refresh of

such data, thus containing the spread of a potential infection with the respective entity. The

lifetime indicator may vary among executable entities; reputations of some entities that are

proven to be malicious or benign may have an unlimited lifetime. Entity fingerprints and

reputation indicators are described in more detail below.

[0035] Some embodiments distinguish between a current reputation of an entity and a historical

reputation (HR) of the respective entity. The current reputation refers to a reputation of an entity

currently residing or executing on a client system. The historical reputation is herein used to

denote a value of a reputation indicator previously computed for another instance of the

respective executable entity and stored in databases 16a and/or 16b. Historical reputations may

comprise reputation data aggregated from other client systems and/or computed at other times in

the past. Historical reputations may include a reputation determined for the respective entity by

a human security analyst. Such historical reputations may be given more weight in a decision

process than reputations determined automatically, since they are likely to be more accurate than

the latter.

[0036] The exemplary reputation management system illustrated in Figs. 1-2 is organized in a

hierarchical fashion. To minimize latency and improve user experience, client systems 10a-e

may first look up reputation data in local reputation database 16b, and then, if needed, may

request such data from central reputation database 16a. In some embodiments, local

database 16b may therefore be regarded as a local cache of central database 16a. By aggregating

reputation data from multiple client systems 10a-e, central reputation database 16a may quickly

acquire information about new threats, and distribute it to other client systems.

9

WO 2018/077996 PCT/EP2017/077390

[0037] Configurations as illustrated in Fig. 2 may enable an environment-specific manner of

handling reputation data. In some embodiments, local reputation database 16b stores reputation

indicators specifically tailored to the respective isolated environment. In one such example,

client systems 10d-e of a corporate Intranet run a widely used software application X, such as

Microsoft Office@. Application X loads an executable module Y, which is vulnerable to

malware as long as the respective client system is connected to the Internet. When client

systems 10d-e are not connected to the Internet (for instance, when environment 12 is protected

by perimeter defense means), application X no longer suffers from the vulnerabilities associated

to Internet connectivity. Therefore, monitoring application X for such vulnerabilities may not be

necessary on systems 10d-e (i.e., within isolated environment 12), whereas such monitoring may

be important in systems directly connected to the Internet. Equivalently, application X may have

a higher trustworthiness within environment 12, compared to outside of environment 12.

[0038] In another example of environment-specificity, an enterprise uses a proprietary software

application X, which is typically not encountered outside isolated environment 12. Reputation

data associated with application X is therefore not likely to be used by other client systems. In

some embodiments, such reputation data is only saved in environment-specific reputation

database 16b, and not in central reputation database 16a. Such configurations may increase the

efficiency of database lookups for clients operating outside isolated environment 12, as well as

for clients operating inside environment 12.

[0039] Fig. 4-A shows an exemplary hardware configuration of a client system 10 such as client

systems 10a-e of Figs. 1-2, according to some embodiments of the present invention. Client

system 10 may represent a corporate computing device such as an enterprise server, or an end

user device such as a personal computer or a smartphone, among others. Fig. 4-A shows a

computer system for illustrative purposes; other client systems such as mobile telephones or

wearables may have a different configuration. Client system 10 comprises a processor 32, a

memory unit 34, a set of input devices 36, a set of output devices 38, a set of storage devices 40,

and a set of network adapters 42, all connected by a controller hub 44.

10

WO 2018/077996 PCT/EP2017/077390

[0040] Processor 32 comprises a physical device (e.g. microprocessor, multi-core integrated

circuit formed on a semiconductor substrate) configured to execute computational and/or logical

operations with a set of signals and/or data. In some embodiments, such logical operations are

delivered to processor 32 in the form of a sequence of processor instructions (e.g. machine code

or other type of software). Memory unit 34 may comprise non-transitory computer-readable

media (e.g. RAM) storing data/signals accessed or generated by processor 32 in the course of

carrying out instructions. Input devices 36 may include computer keyboards, mice, and

microphones, among others, including the respective hardware interfaces and/or adapters

allowing a user to introduce data and/or instructions into client system 10. Output devices 38

may include display screens and speakers among others, as well as hardware interfaces/adapters

such as graphic cards, allowing system 10 to communicate data to a user. In some embodiments,

input devices 36 and output devices 38 may share a common piece of hardware, as in the case of

touch-screen devices. Storage devices 40 include computer-readable media enabling the non

transitory storage, reading, and writing of software instructions and/or data. Exemplary storage

devices 40 include magnetic and optical disks and flash memory devices, as well as removable

media such as CD and/or DVD disks and drives. The set of network adapters 42 enables client

system 10 to connect to networks 20, 120, and/or to other devices/computer systems. Controller

hub 44 generically represents the plurality of system, peripheral, and chipset buses, and/or all

other circuitry enabling the inter-communication of the illustrated hardware devices. For

example, hub 44 may comprise the northbridge connecting processor 32 to memory 34, and/or

the southbridge connecting processor 32 to devices 36-38-40-42, among others.

[0041] Fig. 4-B shows an exemplary hardware configuration of a reputation server 14, which

may represent central reputation server 14a in Fig. 1 or local reputation server 14b in Fig. 2.

Server 14 comprises a server processor 132, a server memory 134, a set of server storage

devices 140, and a set of network adapters 142, all connected by a server controller hub 144.

The operation of devices 132, 134, 140, and 142 may mirror that of devices 32, 34, 40, and 42

described above. For instance, server processor 132 may comprise an integrated circuit

configured to execute computational and/or logical operations with a set of signals and/or data.

11

WO 2018/077996 PCT/EP2017/077390

Server memory 134 may comprise non-transitory computer-readable media (e.g. RAM) storing

data/signals accessed or generated by processor 132 in the course of executing computations.

Network adapters 142 enable server 14 to connect to a computer network such as

networks 20, 120. In some embodiments, reputation server 14 consists of a software component

executing on a client system, as further shown below.

[0042] Fig. 5 shows an exemplary set of software objects executing on client system 10

according to some embodiments of the present invention. A guest operating system (OS) 46

comprises software that provides an interface to the hardware of client system 10, and acts as a

host for a set of software applications 52a-c and 54. OS 46 may include any widely available

operating system such as Windows@, MacOS@, Linux@, iOS@, or AndroidTM, among others.

Applications 52a-c generically represent any user application, such as word processing, image

processing, database, browser, and electronic communication applications, among others. In

some embodiments, a security application 54 is configured to perform anti-malware and/or other

operations as detailed below, in order to protect client system 10 from computer security threats.

Security application 54 may be a standalone program or may form part of a software suite.

Security application 54 may execute, at least in part, at a kernel level of processor privilege.

[0043] In an alternative embodiment to the one illustrated in Fig. 5, OS 46 and applications 52a

c may execute within a virtual machine (VM) exposed by a hypervisor executing on client

system 10. Such embodiments may be suited for protecting cloud-based architectures such as

server farms and infrastructure as a service (IAAS) systems, among others. A virtual machine is

commonly known in the art as an abstraction (e.g., software emulation) of a physical computing

system, the VM comprising a virtual processor, virtual storage, etc. In such embodiments,

security application 54 may execute within or outside the respective VM. When executing

outside, security application 54 may execute at the processor privilege level of the hypervisor, or

within a separate virtual machine. A single security application may protect a plurality of VMs

executing on the respective client system.

12

WO 2018/077996 PCT/EP2017/077390

[0044] Fig. 6 shows exemplary components of security application 54 according to some

embodiments of the present invention. Application 54 comprises an anti-malware engine 56

communicatively coupled to a reputation manager 58. Anti-malware engine 56 is configured to

determine whether client system 10 comprises malicious software. In some embodiments,

engine 56 may further remove or otherwise incapacitate malware. To perform malware

detection, engine 56 may employ any method known in the art. Anti-malware methods generally

fall under two broad categories: content-based and behavioral. Content-based methods typically

scan the code of a software entity for malware-indicative patterns, commonly known as

signatures. Behavioral methods typically monitor an executing entity to detect certain malware

indicative actions performed by the respective entity. A software entity is considered malicious

if it is configured to perform any of a set of malicious operations, for instance operations

conducive to a loss of privacy, a loss of personal or sensitive data, or a loss of productivity on the

part of a user. Some examples include modifying, erasing, or encrypting data without the

knowledge or authorization of a user, and altering the execution of legitimate programs

executing on client system 10. Other examples of malicious operations include extracting a

user's personal or sensitive data, such as passwords, login details, credit card or bank account

data, or confidential documents, among others. Other examples of malicious actions include an

unauthorized interception or otherwise eavesdropping on a user's conversations and/or data

exchanges with third parties. Other examples include employing client system 10 to send

unsolicited communication Spamm, advertisements), and employing client system10 to send

malicious data requests to a remote computer system, as in a denial-of-service attack.

[0045] In some embodiments, engine 56 monitors and/or analyzes a set of executable entities

residing and/or in execution on client system 10. Exemplary executable entities include

applications, processes, and executable modules, among others. An executable module is a

component or a building block of a process, the respective component comprising executable

code. Executable modules may be loaded and/or unloaded to/from memory during the launch

and/or execution of the respective process. Exemplary executable modules include a main

executable of a process (such as an EXE file in Windows@), and a shared library (such as a

13

WO 2018/077996 PCT/EP2017/077390

dynamic-linked library - DLL), among others. In some embodiments, the main executable

module of a process comprises the first machine instruction executed when the respective

process is launched. Libraries are self-contained sections of code implementing various

functional aspects of a program. Shared libraries may be used independently by more than one

program. Other examples of executable entities include, among others, executable scripts called

by the respective process (e.g., Perl, Visual Basic, JavaScript@ and Python scripts), interpreted

files (e.g. Java@ JAR files), and pieces of code injected into the respective process by other

entities. Code injection is a generic term used in the art to indicate a family of methods for

introducing a sequence of code into the memory space of another entity to alter the original

functionality of the respective entity. A person skilled in the art will appreciate that the systems

and methods described here may be translated to other kinds of executable modules.

[0046] In some embodiments, reputation manager 58 is configured to determine reputation data

for a variety of executable entities (software objects) including applications, processes, and

libraries, to store and/or retrieve such data to/from reputation databases, and to transmit such data

to anti-malware engine 56. In some embodiments, reputation manager 58 comprises an entity

manager 62, an activity monitor 64, a fingerprint calculator 66, and a reputation update

scheduler 68. The operation of these components will be further described below. In an

alternative embodiment to the one illustrated in Fig. 6, entity manager 62 and activity monitor 64

may be part of anti-malware engine 56.

[0047] In some embodiments, a client reputation database 16c communicatively coupled to

reputation manager 58 is configured to temporarily store reputation data on computer-readable

media of the respective client system. A client reputation server 14c comprises a computer

program executing on client system 10, server 14c configured to selectively add and/or retrieve

reputation data to client reputation database 16c. Database 16c forms a part of the database

hierarchy described above, and may function, at least in part, as a cache of local and/or central

reputation databases 16a-b. In the exemplary configuration shown in Fig. 6, reputation

manager 58 employs a communication manager 69 to exchange data with remote servers 14a-b.

14

WO 2018/077996 PCT/EP2017/077390

[0048] Fig. 7 shows an exemplary data exchange between manager 58 and engine 56.

Reputation manager 58 cooperates with anti-malware engine 56 to increase the efficiency of

anti-malware operations, for instance by communicating a reputation indicator 60 associated

with a target entity to engine 56. In some embodiments, reputation indicator 60 is indicative of a

probability that the respective executable entity is malicious. Exemplary reputation indicators 60

include a numerical reputation score ranging from a minimum value (e.g., 0) to a maximum

value (e.g., 100). In one exemplary embodiment, a high reputation score indicates a high

probability that the respective entity is benign (not malicious), while low scores indicate a

suspicion of malice or an unknown/currently indeterminate probability of malice. Other

embodiments may use a reversed scale wherein a low score indicates a higher degree of trust

than a high score. Reputation indicators may vary continuously between the minimum and the

maximum, or may jump among a set of pre-determined discrete plateaus (e.g., 10, 25, 50, 100).

In another embodiment, reputation indicator 60 may take values from a plurality of labels, for

instance "trusted", "moderately trusted", "untrusted", and "unknown".

[0049] In response to receiving reputation indicator 60, some embodiments of anti-malware

engine 56 give preferential treatment to trusted entities, as opposed to untrusted or unknown

entities. For instance, engine 56 may use a relaxed security protocol to scan/monitor a trusted

object, and a strict security protocol to scan/monitor an unknown or an untrusted object, wherein

the relaxed security protocol is less computationally expensive than the strict security protocol.

In one such example, a relaxed security protocol may instruct engine 56 to employ only a subset

of malware detection methods and/or only a subset of malware-identifying heuristics to scan a

trusted object, whereas a strict security protocol may use a full set of methods and/or heuristics

available to engine 56. Computational cost may be generally formulated according to a count of

processor clock cycles and/or a memory required to execute a particular procedure.

Procedures/protocols requiring more clock cycles and/or more memory may thus be considered

more computationally expensive than procedures/protocols requiring fewer clock cycles and/or

less memory.

15

WO 2018/077996 PCT/EP2017/077390

[0050] In some embodiments, reputation indicator 60 varies in time, for instance in response to

various actions performed by the respective executable entity. In one example wherein high

reputations indicate trust, the reputation of a target entity increases in time, provided that the

respective entity does not perform any malware-indicative actions. The respective reputation

may also decrease in response to certain actions of the target entity. In some embodiments, the

reputation of a target entity may change in response to actions of other entities related to the

respective target entity, for instance in response to receiving an injection of code from another

entity, in response to a malware-indicative action performed by a child entity of the respective

entity, etc. Reputation manager 58 may receive security notifications about various actions of

target entities from anti-malware engine 56, as illustrated in Fig. 7.

[0051] In some embodiments, reputation manager 58 looks up the reputation indicator of a target

entity in a hierarchy of reputation databases. To minimize communication delays and data

traffic, reputation manager 58 may first attempt to retrieve reputation data from client

database 16c. When it cannot find matching data in client database 16c, manager 58 may then

query local database 16b. Then, when the sought-after data is still not found, manager 58 may

proceed to request it from remote, central reputation database 16a. Fig. 8 illustrates data

exchanges between client system 10 and a remote reputation server 14 (generically representing

servers 14a-b-c in Figs. 1, 2, and 6 respectively). In some embodiments, such communication

between clients and remote reputation servers is encrypted to avoid man-in-the-middle attacks.

Client system 10 may transmit a reputation request 71 to server 14, request 71 indicating an

identification token such as an entity fingerprint of a target entity. In response, server 14 may

selectively retrieve reputation indicator 60 corresponding to the respective target entity from

database 16 (generically representing databases 16a and/or 16b in Figs. 1 and 2, respectively),

and transmit indicator 60 to client system 10. Client system 10 may also transmit a reputation

report 73 to server 14, report 73 indicating an updated reputation indicator intended for storage in

database 16.

16

WO 2018/077996 PCT/EP2017/077390

[0052] To allow an unambiguous association between executable entities and reputation

indicators, each executable entity is identified by way of a unique token herein called entity

fingerprint. In some embodiments, fingerprint calculator 66 is configured to compute such

fingerprints for target entities and executable modules. Fingerprints may be generated using any

method known in the art, for instance via hashing. Hashing comprises applying a hash function

to a part of an object (e.g., to a section of code or to the whole object) to obtain a fixed-size

number or bit string known as a hash of the respective object. Exemplary hash functions include

secure hash (SHA) and message digest (MD) algorithms.

[0053] In a preferred embodiment, an entity fingerprint 70 is determined according to a set of

fingerprints of individual components/building blocks of the respective entity. In the example

shown in Fig. 9, an executable entity 80 comprises a set of executable modules 82a-c. For

instance, in a Windows@ environment, modules 82a-c may comprise a main executable and two

DLLs, respectively. In other exemplary embodiments, modules 82a-c may represent other entity

components (e.g., scripts, JAR files, injected pieces of code, etc.). A person skilled in the art

will appreciate that the systems and methods described here may be translated to other kinds of

building blocks and other levels of granularity.

[0054] In some embodiments, a module fingerprint 74a-c (e.g., a hash) is computed for each of

the components of executable entity 80. Fingerprint calculator 66 may then determine entity

fingerprint 70 as a combination of module fingerprints 74a-c, for instance by arranging module

fingerprints 74a-c as an ordered list and/or by concatenating module fingerprints 74a-c. To

facilitate fingerprint comparison and lookup, some embodiments may apply a second hash

function to the concatenation/list of module fingerprints 74a-c. In some embodiments, entity

fingerprint 70 further comprises a list of path indicators, each path indicator indicating a path or

location of a corresponding component/module. When the respective component is a piece of

injected code, entity fingerprint 70 may encode a memory address and/or a size of the respective

piece.

17

WO 2018/077996 PCT/EP2017/077390

[0055] Each entity fingerprint 70 configured as above uniquely represents a particular

composition or arrangement of components/building blocks, rather than the executable entity

itself as seen, for instance, by operating system 46. Typically, the operating system assigns each

executable entity a unique identifier (e.g., a process ID), which remains unchanged during the

whole lifetime of the respective entity, even in cases where the composition of the respective

entity changes during the entity's lifetime. In contrast, in some embodiments of the present

invention, when the composition of an executable entity changes (e.g., when a process

dynamically loads and unloads libraries), entity fingerprint 70 and therefore the identity of the

respective entity may change accordingly. Stated otherwise, in some embodiments, when the

composition of an entity changes, the original entity ceases to exist and a new entity is created.

Since some embodiments uniquely associate a reputation indicator with each entity fingerprint,

when the composition of an executable entity changes, its reputation may change as well.

[0056] A particular combination of components/building blocks may appear in multiple

executable entities, as shown in Fig. 10. An entity Y having all components of another entity X is

herein said to be a member of an entity superset of entity X. In the example of Fig. 9, set 84a is

an entity superset of entity 80a, while set 84b is an entity superset of both entities 80a and 80b.

In contrast, entity 80d is not a member of an entity superset of either entities 80a-c, since

entity 80d does not contain module A.exe. In some embodiments, the reputation of an entity

may affect the reputation of members of an entity superset of the respective entity, and in turn

may be affected by the reputation of said members, as shown in detail below. In the example of

Fig. 9, a change in the reputation of entity 80a may cause changes in the reputation of

entities 80b-c.

[0057] In some embodiments, entity manager 62 (Fig. 6) maintains a data structure herein called

reputation table, describing a plurality of executable entities residing and/or executing on client

system 10, as well as a set of relationships between such entities. An exemplary reputation table

comprises a plurality of entries, each entry corresponding to an executable entity. One such

reputation table entry 86 is illustrated in Fig. 11. Entry 86 comprises an entity fingerprint 70 of

18

WO 2018/077996 PCT/EP2017/077390

the respective entity and an entity ID (EID) assigned to the respective executable entity by

operating system 46. When the respective entity is a process, an exemplary EID comprises the

process ID - PID in Windows@. Such a configuration may be desirable because it allows an

immediate association between fingerprint 70 and the EID. Since the composition of an entity

may change in time (for instance by dynamically loading a library), there may be multiple

reputation table entries having the same EID but distinct fingerprints. Furthermore, there may be

multiple instances of the same entity executing concurrently on client system 10, thus there may

be multiple reputation table entries having the same fingerprint but distinct ELIDs. In principle,

each such object may have its own behavior and reputation and therefore may be

monitored/analyzed distinctly from other objects.

[0058] In some embodiments, entry 86 may further store a filiation indicator of the respective

entity, for instance an identifier of a parent entity of the respective entity (parent ID - PID)

and/or an identifier of a child entity of the respective entity. Exemplary child entities are child

processes, for instance created by a parent entity via the CreateProcess function of the

Windows@ OS, or via the fork mechanism in Linux@. Entry 68 may also include a set of

identifiers of executable entities which have injected code into the respective entity, and/or a set

of identifiers of entities into which the respective entity has injected code. These identifiers,

which may be entity fingerprints, are represented by an injected entity ID - INJID.

[0059] Reputation table entry 68 may further include a set of identifiers of members of an entity

superset of the current entity (superset member ID - SMID). In some embodiments, each SMID

may consist of an entity fingerprint of the respective superset member. In an alternative

embodiment, each SMID may comprise a pointer to the reputation table entry associated with the

respective entity superset member. Associating fingerprint 70 with a PID, SMID, and/or INJID

may facilitate the propagation of reputation information between parent and children entities,

between entities and superset members, and between entities which participate in code injection,

as shown in more detail below.

19

WO 2018/077996 PCT/EP2017/077390

[0060] The current reputation of a target entity may vary in time, according to the behavior of

the respective entity and/or according to the behavior of other instances of the respective entity.

In some embodiments, when the target entity does not carry out any suspect or malware

indicative actions, the reputation of the respective entity may increase in time, for instance

according to a pre-determined schedule. Reputation update scheduler 68 (Fig. 6) may be

configured to schedule reputation updates for target entities, for instance by determining a

moment in time when the next update of the reputation indicator should take place, and an

increment AR by which the current reputation indicator should change.

[0061] Temporal data may be stored (e.g., as a timestamp) in a set of fields of reputation table

entry 86; see, e.g., time indicators 88 in Fig. 11. One such time indicator may indicate a time of

the latest update of the reputation indicator corresponding to the respective entity fingerprint.

Another time indicator may indicate a time for the next scheduled update of the respective

reputation indicator. A plurality of such reputation update times may thus chronicle in detail the

reputation dynamics of each target entity. Another exemplary time indicator may indicate an

expiration time of a historical reputation of the respective entity, e.g., the moment when the next

database lookup for the historical reputation is due. Historical reputation lifetimes may vary

among executable entities. By specifying a limited lifetime for cache reputation data, some

embodiments effectively force a refresh of reputation data from local or remote reputation

servers 14, thus containing a potential infection.

[0062] In some embodiments, activity monitor 64 (Fig. 6) is configured to detect the occurrence

of life-cycle events of entities such as applications and processes executing within client

system 10. Exemplary life-cycle events include the launch and/or termination of an executable

entity, dynamic loading and/or unloading of libraries by the respective entity, the spawning of

child entities, and code injection, among others.

[0063] Activity monitor 64 may further determine inter-object relationships, such as which

process loaded which executable module, which entity is a parent or a child of which entity,

which entity has injected or received injected code from which entity, etc. In some

20

WO 2018/077996 PCT/EP2017/077390

embodiments, activity monitor 64 collaborates with entity manager 62 to populate reputation

table entry 68 of each entity with the required data (e.g., EID, PID, SMID, INJID etc.). To

perform tasks such as detecting the launch of an entity and/or detecting code injection,

monitor 64 may employ any method known in the art, such as calling or hooking certain OS

functions. For instance, in a system running a Windows@ OS, monitor 64 may intercept a call to

a LoadLibrary function or to a CreateFileMapping function to detect the loading of an executable

module. In another example, monitor 64 may register a PsSetCreateProcessNotifyRoutine

callback to detect the launch of a new process, and/or may hook the CreateRemoteThread

function to detect execution of injected code.

[0064] Fig. 12-A shows an exemplary sequence of steps performed by reputation manager 58 in

some embodiments of the present invention. A sequence of steps 302-304 may wait for a

notification. In some embodiments, reputation manager 58 is notified by activity monitor 64

about the occurrence of an entity life-cycle event, such as a launch of a process, loading of a

DLL, etc. Manager 58 may be also notified by scheduler 68 that a certain reputation table entry

is due for update. Manager 58 may further receive notifications from anti-malware engine 56

when a target entity performs certain actions which may be relevant to computer security (see

Fig. 7). When a notification is received, step 304 may identify a source and/or type of the

respective notification, and may further identify target entities causing the respective notification

and/or entities being affected by the respective notification. In some embodiments, entity

monitor 64 may determine the identity of such entities from data structures used by OS 46 to

represent each entity currently in execution. For instance, in Windows, each process is

represented as an executive process block (EPROCESS), which comprises, among others,

handles to each of the threads of the respective process, and a unique process ID allowing OS 46

to identify the respective process from a plurality of executing processes. Similar process

representations are available in Linux@ and in other operating systems. When more than one

entity is affected by the notification, step 304 may further include determining a relationship

between the respective entities. For instance, when a parent process launches a child process,

21

WO 2018/077996 PCT/EP2017/077390

entity monitor 64 may record the identity of child and parent, and the type of their relationship

(filiation).

[0065] Fig. 12-B shows an exemplary sequence of steps carried out by reputation manager 58 in

response to receiving a notification from activity monitor 64. Such notifications typically

communicate the occurrence of a life-cycle event concerning a target entity. In a step 322,

fingerprint calculator 66 may compute an entity fingerprint of the respective target entity.

Step 322 may comprise listing modules/building blocks of the target entity, identifying a

memory section holding each such module, computing module fingerprints, and assembling the

entity fingerprint according to individual module fingerprints (see Fig. 9 and associated

description). In a step 323, entity manager 62 may look up the entity ID (EID) of the target

entity in the reputation table, to determine whether an object with the same EID is already being

tracked/analyzed. The entity ID is used by the operating system to identify the target entity; in a

Windows@ environment, an exemplary EID is the process ID (PID) of a process currently in

execution. When the respective EID is new (indicating that the target entity is a new instance of

an executable object), in a step 325, entity manager 62 may create a new reputation table entity

to represent the target entity. When the respective EID is not new (for instance when the module

composition of the target entity is changing, e.g. a process is loading a library), a step 324 may

determine whether the reputation table currently lists an entity with the same fingerprint 70 as

the target entity. When the reputation table already contains an entry with the same fingerprint,

reputation manager 58 may advance to a step 326 described below. Such situations may arise,

for instance, when the detected lifecycle event refers to an already executing target entity. When

the fingerprint of the target entity is new (no entity with the same fingerprint is listed in the

reputation table), entity manager 62 may create a new table entry for the respective target entity.

[0066] In some embodiments, a change in the module composition of an entity causes a change

in the entity fingerprint. Therefore, although the respective entity has not been terminated, from

the perspective of fingerprints it may appear as if the old entity has ceased to exist, and a new

entity has appeared on client system 10. In such cases, as well as in cases when a new entity has

22

WO 2018/077996 PCT/EP2017/077390

been launched, in a step 336 reputation manager 58 may attempt to look up historical reputation

data associated with the respective entity fingerprint. Step 336 may comprise, for instance,

reputation manager 58 sending reputation request 71 to reputation server 14 (see e.g., Fig. 8).

When historical reputation data does exist for the respective fingerprint, server 14 may

selectively retrieve such data from database 16 and transmit indicator 60 to client system 10.

Such a situation may arise when an instance of the respective entity (combination of executable

modules) has been observed before, possibly executing on a distinct client system, and a

reputation of the respective entity has been computed and stored in database 16. Upon receiving

reputation indicator 60, in a step 338, reputation manager 58 may set the current reputation

indicator of the target entity to a value determined according to the historical reputation of the

respective entity. In one exemplary embodiment, the current reputation is set to be equal to the

historical reputation.

[0067] When step 337 determines that no historical reputation is available for the target entity,

reputation manager advances to a step 339. This situation may arise, for instance, when new

software appears on the market (e.g., a new product or a software update), when a database entry

for the respective entity has expired, or when server 14 is not available (e.g., lack of network

connection, server down). In step 339, entity manager 64 may determine whether the target

entity is a child entity of a parent entity currently listed in the reputation table. When yes, in a

step 340 some embodiments set the reputation of the target entity to a value determined

according to a reputation of the parent entity (e.g. equal to or lower than the parent's reputation).

[0068] In a step 341, entity manager 64 may determine whether there are any members of an

entity superset of the target entity currently present in the reputation table. When yes, some

embodiments of reputation manager 58 set the current reputation of the target entity to a value

determined according to a reputation of the superset member entity (e.g. equal to the superset

member's reputation). A reasoning supporting such a choice of reputation considers that since

superset members comprise a substantial majority (or all) of executable modules of the target

23

WO 2018/077996 PCT/EP2017/077390

entity, the reputation of the target entity may be deduced from the reputation of a superset

member.

[0069] When there are no parent entities or superset member entities, in a step 344 reputation

manager 58 may set the current reputation of the target entity to a pre-determined, default value.

For instance, the reputation of an unknown entity may be set to a value indicative of a low

degree of trust (e.g., untrusted, unknown, R=0). The initial reputation may also depend on a type

of the target entity, or on a set of features of the target entity. For instance, an entity downloaded

from the Internet may receive an initial reputation value R=0 if it is not digitally signed, and an

initial reputation value R=20% when it is signed.

[0070] In a step 326, update scheduler 68 may schedule a next update of the target entity's

reputation table entry. In some embodiments, the reputation of a target entity varies in time. For

instance, when the respective entity does not perform any action deemed suspect or malware

indicative, and/or when the target entity does not comprise any code pattern matching a

malware-indicative signature, the reputation indicator of the respective entity may progress

towards values indicating a higher level of trust (e.g., R may increase toward 100% trust). An

exemplary variation scenario for the reputation indicator in an embodiment wherein higher R

values indicate more trust is shown in Fig. 13. The illustrated reputation indicator may jump

between a set of predetermined values R 1, R2, R3, etc. Such changes in reputation may occur at

pre-determined moments, for instance R may increase from value R2 to value R3 at a time

instance t2 (e.g., measured with respect to the moment of creation of the respective target entity).

[0071] The value R may be determined according to a time elapsed since the creation/launch of

the respective target entity. In an alternative embodiment, R may increase after a time interval At

has elapsed since the occurrence of a previous event (e.g., a previous increase in reputation, a

security event, etc.). In some embodiments, time intervals At may themselves vary in time. For

example, reputation increases may be less frequent in the early life of an entity than at a later

stage. In another example, the length of the time interval may depend on the current value of the

24

WO 2018/077996 PCT/EP2017/077390

reputation. Reputation increments may be proportional to a current reputation value (e.g., each

time, R may increase by 20%). Reputation increments AR may also vary in time. For instance,

R may increase by small amounts in the early life of an entity and by larger amounts at later

times. A rationale supporting such reputation dynamics is that malicious software typically

performs its activity in the early stages of existence (i.e., soon after launch), so when an entity

behaves well for a long enough time, it may be safe to assume it is not malicious.

[0072] In some embodiments, time intervals At and/or reputation increments AR may be entity

type-specific, in the sense that they may vary according to a type of the respective target entity.

For instance, the reputation dynamics of an entities which is digitally signed may differ from the

reputation dynamics of an entity that is not. In another example, the reputation dynamics of an

entity may differ according to whether the respective entity is configured to access the Internet or

not.

[0073] In some embodiments, scheduling a reputation update (step 326 in Fig. 12-B) comprises

determining a time interval for the next update and/or a reputation increase. A step 328 then

updates a reputation table entry of the respective entity accordingly. Changes in the current

reputation of a target entity may trigger changes in current reputation of other entities, for

instance a parent entity of the target entity or an entry of a superset member of the target entity.

When so, in a step 330, reputation manager 58 carries out such updates. In a sequence of

steps 332-334, reputation manager 58 transmits reputation indicator 60 to anti-malware

engine 56 and to reputation server 14.

[0074] Fig. 12-C shows an exemplary sequence of steps executed by reputation manager 58 in

response to a notification from update scheduler 68 (label B in Fig. 12-A). Such a notification

typically identifies a target entity, and indicates that the reputation indicator of the respective

target entity is due for an update. In a step 356, reputation manager 58 may update the reputation

indicator of the respective entity, for instance according to a reputation increment stored in a

field of the reputation table entry of the respective entity (see, e.g., Fig. 11). In a step 358,

25

WO 2018/077996 PCT/EP2017/077390

reputation update scheduler 68 may schedule the next reputation update, for instance by

determining a time interval At and a reputation increment AR, and writing these values to the

corresponding fields of the reputation table entry of the respective target entity (step 360).

Reputation increment AR may be determined as an absolute value or as a fraction of the current

reputation (e.g., 20%). A sequence of steps 360-364 updates table entries of other entities related

to the target entity, and transmits reputation indicator 60 to anti-malware engine 56.

[0075] In a further step 366, reputation manager 58 may trigger an update of reputation

database 16 to reflect the change of reputation of the target entity and possibly of other related

entities. Step 366 may comprise sending reputation report 73 comprising the updated reputation

indicators to reputation server 14 (e.g., Fig. 8). Such updating makes the new reputations

available to other client systems running other instances the same target entity, thus propagating

computer security knowledge throughout the network of clients. For an exemplary manner in

which reputation server 14 handles report 73, see below in relation to Fig. 15.

[0076] Fig. 12-D shows an exemplary sequence of steps performed by reputation manager 58 in

response to a security notification from anti-malware engine 56 (see e.g., Fig. 7). Such

notifications may be generated when anti-malware engine determines that a particular target

entity is suspected of malice. In some embodiments, engine 56 may notify reputation

manager 58 about the occurrence of an event relevant for security, or of an event which is

malware-indicative. Exemplary events comprise, among others, an attempt to access memory in

a manner which violates a memory access permission, an attempt to execute certain function of

the operating system (e.g., creating a disk file, editing a registry entry, etc.), an attempt to

perform certain operations (e.g., to inject code into another entity, to download a file from a

remote server). Notification 72 may comprise an identifier of an entity that caused or that is

affected by the respective event, and an indicator of a type of the respective event. Another

example of notification may be generated in response to a signature scanner finding a malicious

code signature while parsing the code of a target entity.

26

WO 2018/077996 PCT/EP2017/077390

[0077] In response to receiving security notification 72, in a step 372 reputation manager 58 may

determine a new value for the reputation indicator of the respective target entity. In some

embodiments, when an entity performs an action which is malware indicative or which otherwise

renders the respective entity suspect of malice, the reputation of the respective entity changes in

the direction of lower trustworthiness. This aspect is illustrated in Fig. 13, wherein the value of

R drops in response to a security event. The magnitude of the drop may be determined by

reputation manager 58 according to a set of rules/security policy. The magnitude of the drop

may be expressed as an absolute value or as a fraction of a current reputation value (e.g., 50%).

[0078] In some embodiments, the size of the drop in reputation occurring on such an occasion

varies according to a type of event or to a type of security notification. Some events/actions are

more clearly malware-indicative and therefore may trigger larger drops in reputation. Other

events are not necessarily indicative of malice, but may be so when occurring alongside other

events or alongside certain actions performed by the target entity. The change in reputation

triggered by such events or actions may be relatively smaller than the one associated with a

clearly malicious event/action. Some security notifications may cause a total loss of reputation

for the respective target entity. In some embodiments, the drop in reputation may be determined

according to whether the respective reputation indicator has suffered other drops in the past,

according to a time elapsed since the previous drop in reputation, and/or according to a type of

security notification that triggered the previous drop in reputation. Some malware agents

orchestrate malicious actions across a plurality of entities and spread such actions in time so as to

avoid detection. Conditioning a current drop in reputation on a previous history of security

notifications may address some such sophisticated malware scenarios. In some embodiments,

the change in reputation occurring in step 372 is computed according to a current reputation of

the target entity and/or according to a current reputation of other entities. In one such example,

when an entity X injects code into an entity Y, the reputation of the more trustworthy of the two

entities may become equal to the current reputation of the less trustworthy one.

27

WO 2018/077996 PCT/EP2017/077390

[0079] In a step 374, reputation manager 58 may schedule an update of the reputation of the

respective target entity, for instance by generating a time interval At and a reputation increment

AR. A further step 376 may save such data to the reputation table entry of the respective entity.

In some embodiments, the values of At and/or AR may vary according to a type of security

notification. In one such example, when an entity has performed an action which is clearly

indicative of malice, it may remain untrusted for a relatively long period of time. In contrast,

after a drop caused by a less security-critical event, the reputation of a target entity may increase

again relatively fast.

[0080] In some embodiments, a sequence of steps 376-380-382 may update reputation table

entries of other entities related to the target entity (if existing), may transmit reputation

indicator 60 to anti-malware engine 56, and may report changes in reputation to server 14.

[0081] Fig. 14 shows an exemplary sequence of steps carried out by anti-malware engine 56

according to some embodiments of the present invention. Engine 56 may be configured to carry

out malware detection, prevention, and/or cleanup activities according to entity-specific

reputations (step 392). Stated otherwise, anti-malware engine 56 may monitor and/or analyze

each executable entity according to an entity-specific protocol/policy, wherein the respective

policy/protocol may vary from one entity to another according to a reputation indicator of each

entity. In some embodiments, entities having a reputation that indicates a high trustworthiness

may be analyzed using less computationally-expensive procedures than entities which are less

trustworthy.

[0082] Behavioral malware detection typically uses a set of rules to determine whether a target

entity is malicious. Such rules are often referred to as heuristics. One exemplary heuristic may

say, for instance, that if a first entity injects a piece of code into a second entity, and the

respective code attempts to download a file from the Internet, then the first entity is probably

malicious. To implement such heuristics, anti-malware engine 56 may need to monitor a variety

of events (e.g., code injection and an attempt to connect to a remote serve, in the above

28

WO 2018/077996 PCT/EP2017/077390

example). Some such events are more computationally costly to monitor than others.

Furthermore, some heuristics may be intrinsically more complex and/or more difficult to apply

than others. Complex heuristics may include a combination of simpler heuristics, e.g. "apply

method A; if outcome of A is X, apply method B; if outcome of B is Y, further check condition Z,

etc."

[0083] Some examples of expensive heuristics include heuristics used to detect ransomware

(comprising monitoring all file system activity - every file read, write, and/or copy) and

heuristics concerning OS registry keys (e.g., comprising intercepting every write to the registry

and determining whether it comprises an attempt to modify a particular key). Another example

of an expensive heuristic requires detecting a call to a frequently used OS function (e.g.,

CreateFile, ReadFile) - detecting such calls may result in substantial overhead. In contrast,

detecting a call to an OS function which is used very sparingly in regular operation (e.g.,

CreateRemoteThread) may place a much lower burden on client system 10.

[0084] In some embodiments, obtaining a reputation-dependent detection protocol comprises

varying event monitoring and/or the complexity of heuristics according to a reputation indicator.

Stated otherwise, anti-malware engine 56 may monitor a trusted entity using fewer and relatively

simpler heuristics than an untrusted entity. Engine 56 may also disable detection of certain

events or behaviors when monitoring trusted entities. Content-based anti-malware methods may

also be made reputation-specific, for instance by adjusting the size of a signature database

according to reputation. In one such example, trusted entities may be checked for the presence

of a relatively small set of malware-indicative signatures, while untrusted entities may be

checked using a substantially larger signature set.

[0085] One example of adjusting monitoring protocol with the reputation indicator is shown in

Table 1.

29

WO 2018/077996 PCT/EP2017/077390

Table 1

Reputation indicator Protocol

0% trusted Maximum monitoring, employ all available heuristics

10% trusted Disable a few expensive heuristics

80% trusted Monitor for code injection and drop/copy files

90% trusted Only monitor for code injection

100% trusted No monitoring at all

[0086] Returning to Fig. 14, in a sequence of steps 392-394, anti-malware engine 56 is

configured to wait for the occurrence of an event as described in a reputation-specific protocol.

Beside such security-relevant events, engine 56 may receive reputations indicators from

reputation manager 58. Receiving a reputation indicator may indicate that the reputation of a

particular entity has changed. In response to receiving a reputation indicator (step 396), in a

step 398 anti-malware engine may identify the respective target entity and update the monitoring

protocol/policy that applies to the respective entity according to the received value of the

reputation indicator.

[0087] When the detected event comprises a security event (e.g., an entity has injected code into

another entity), in a step 402 anti-malware engine 56 may identify a target entity that caused the

respective event and/or that was affected by the respective event. A further step 404 may

formulate a security notification according to the identity of the target entity and to a type of the

detected event, and transmit the respective security notification to reputation manager 58.

30

WO 2018/077996 PCT/EP2017/077390

[0088] Fig. 15 shows an exemplary sequence of steps carried out by reputation server 14 (e.g.,

servers 14a-b in Figs. 1-2) according to some embodiments of the present invention. In a

sequence of steps 412-414, server 14 may listen for communication from client systems 10.

When a communication is received, a step 416 may determine whether the respective

communication is a reputation request (see, e.g., Fig. 8). When yes, server 14 may look up

historical reputation data associated with entity fingerprint included in the respective request, and

transmit the data to the requesting client (steps 418-420).

[0089] When the communication comprises a reputation report, in a step 424, server 14 may

look up reputation data associated with the entity fingerprint included in the respective reputation

report. When report 73 indicates a current reputation value which indicates less trust than the

historical reputation stored in database 16, in a step 428 some embodiments of reputation

server 14 may immediately change the respective database entry to include the value of the

reputation indicator received in the report from client 10.

[0090] When report 73 comprises a reputation indicator indicative of more trust than the

currently stored value, in some embodiments a step 430 may add reputation report 73 to a

collection of reports received from various clients. In a step 432, reputation server 14 may then

determine whether an update condition is satisfied, and update the database entry only when the

update condition is satisfied. The update condition may be formulated according to a time

constraint and/or according to a count of reports received for each individual entity fingerprint.

For instance, an update may happen only after a certain time interval has elapsed since the latest

update of the reputation indicator corresponding to the respective entity fingerprint. In another

example, the update may happen only after a certain time interval has elapsed since the latest

security notification regarding the respective target entity. In one exemplary embodiment

wherein high reputation equates to more trust, when the update condition is satisfied, the

historical reputation of a target entity is updated to a value equal to the minimum of all

reputations reported for the respective target entity during the latest update period.

31

WO 2018/077996 PCT/EP2017/077390

[0091] The exemplary systems and methods described above allow protecting a client system

such as a personal computer, tablet, or smartphone, from malicious software. In some

embodiments, a reputation manager executes concurrently with an anti-malware engine. The

anti-malware engine performs operations such as detecting malware executing on the respective

client system and/or removing or incapacitating such malware. For each entity (e.g., application,

process, script) executing on the client system, the reputation manager may transmit a reputation

indicator to the anti-malware engine, the reputation indicator indicative of a level of trust that the

respective entity is not malicious.

[0092] In conventional security systems, software entities are scanned and/or monitored

regardless of their reputation. In contrast, in some embodiments of the present invention, the

anti-malware engine may give preferential treatment to trusted entities. For instance, the anti

malware engine may use a less computationally expensive protocol (e.g., requiring more

processor clock cycles and/or more memory) to scan/monitor a trusted entity, compared to an

untrusted or unknown/previously unseen entity. In one such example, a subset of rules may be

disabled when scanning/monitoring trusted entities. This approach may substantially improve

anti-malware performance, by reducing the computational burden associated with

scanning/monitoring trusted entities.

[0093] In some embodiments of the present invention, each executable entity is seen as a unique

combination of components/building blocks. Examples of such building blocks include, among

others, a main executable, a shared library, a script, and a section of injected code. Each

combination of components may be identified via an entity fingerprint comprising, for instance,

a combination of hashes of individual components. A reputation indicator may then be

associated with each entity fingerprint. When the composition of an entity changes (e.g., when a

process dynamically loads a library or receives a piece of injected code), its fingerprint changes

and so does its reputation.

[0094] In some embodiments, the reputation of an entity changes in time. While an entity does

not perform any suspect or malware-indicative actions, its reputation may shift towards values

32

WO 2018/077996 PCT/EP2017/077390

indicative of more trust. In contrast, when an entity performs malware-indicative or otherwise

security-relevant action, its reputation may be downgraded towards values indicating less trust.

Such changes in reputation may be saved in a local cache and/or transmitted to a central

reputation database. Such configurations allow any change in reputation to propagate swiftly to

other local processes using instances of the respective shared library, and further to other client

systems connected to the reputation server.

[0095] In some embodiments, a drop in reputation (which may indicate a suspicion of malice)

propagates relatively fast to reputation databases and from there to other client systems, while

increases in reputation (which may indicate an increase in trust) may take effect only after

enough time has elapsed without security incidents, or after the respective entity has been

reported as well-behaved by a sufficient number of client systems.

[0096] Systems and methods described herein may readily apply to a broad variety of malicious

software, including emerging threats. Furthermore, since the reputation manager operates

independently from the anti-malware engine, the anti-malware engine may be upgraded to

incorporate new scanning/monitoring methods and procedures, without affecting the operation of

the reputation manager.

[0097] It will be clear to one skilled in the art that the above embodiments may be altered in

many ways without departing from the scope of the invention. Accordingly, the scope of the

invention should be determined by the following claims and their legal equivalents.

33

CLAIMS

What is claimed is:

1. A client system comprising at least one hardware processor configured to execute a

5 target entity, a reputation manager, and an anti-malware engine, wherein:

the reputation manager is configured to:

in response to receiving a first reputation indicator of a target entity from a

reputation server, the first reputation indicator indicative of a

probability that the target entity is malicious, transmit the reputation

10 indicator to the anti-malware engine,

in response to receiving the first reputation indicator, update the first reputation

indicator by determining a second reputation indicator of the target

entity, the second reputation indicator differing from the first reputation

indicator by a reputation change, and

15 in response to determining the second reputation indicator, transmit the second

reputation indicator to the anti-malware engine and to the reputation

server,

wherein determining the second reputation indicator comprises:

in response to receiving the first reputation indicator, determining a first time

20 interval,

in response to determining the first time interval, determining whether the

target entity has performed any of a set of pre-determined actions during

the first time interval,

in response, if the target entity has not performed any of the set of pre

25 determined actions during the first time interval, determining a the

reputation change to indicate a reduction in the probability that the

target entity is malicious, and

if the target entity has performed a first action of the set of pre-determined

actions during the first time interval, determining the reputation change

34

to indicate an increase in the probability that the target entity is

malicious; and wherein

the anti-malware engine is configured to:

in response to receiving the first reputation indicator, employ a first protocol to

5 determine whether the target entity is malicious,

in response to receiving the second reputation indicator, employ a second

protocol to determine whether the target entity is malicious, wherein the

second protocol is less computationally expensive than the first protocol

when the second reputation indicator indicates a decreased probability

10 of malice compared to the first reputation indicator, and wherein the

second protocol is more computationally expensive than the first

protocol when the second reputation indicator indicates an increased

probability of malice compared to the first reputation indicator.

15 2. The client system of claim 1, wherein the reputation manager is further configured,

in response to determining the second reputation indicator, to update the second

reputation indicator by determining a third reputation indicator of the target

entity, the third reputation indicator differing from the second reputation

indicator by another reputation change, wherein determining the third

20 reputation indicator comprises:

determining a second time interval subsequent to the first time interval;

in response to determining the second time interval, determining whether the target

entity has performed any of the set of pre-determined actions during the second

time interval;

25 in response, if the target entity has not performed any of the set of pre-determined

actions during the second time interval, determining the another reputation

change to indicate another reduction in the probability that the target entity is

malicious; and

35

if the target entity has performed a second action of the set of predetermined actions,

determining the another reputation change to indicate another increase in the

probability that the target entity is malicious.

5 3. The client system of claim 1, wherein the reputation manager is further configured to

determine the reputation change is according to a time elapsed since a launch of the

target entity on the client system.

4. The client system of claim 1, wherein the first time interval is determined according to

10 a time elapsed since a launch of the target entity on the client system.

5. The client system of claim 1, wherein the first time interval is determined according to

the first reputation indicator.

15 6. The client system of claim 1, wherein the first time interval is determined according to

whether the target entity has performed a second action of the set of pre• determined

actions prior to the first time interval.

7. The client system of claim 1, wherein the reputation change is determined according

20 to a type of the first action.

8. The client system of claim 1, wherein the reputation change is determined according

to whether the target entity has performed a second action prior to the first action.

25 9. The client system of claim 1, wherein the reputation manager is further configured,

in response to determining the second reputation indicator, to update another reputation

indicator of another entity executing on the client system, the another entity

comprising a component of the target entity, the another reputation indicator

indicative of a probability that the another entity is malicious.

36

10. The client system of claim 1, wherein the first action comprises the target entity

injecting a section of code into another entity executing on the client system, and

wherein the reputation manager is further configured, in response to determining the

5 third reputation indicator, to determine another reputation indicator of the another

entity executing on the client system, the another reputation indicating indicates that

the another entity is as likely to be malicious as the target entity.

11. A server computer system comprising at least one hardware processor configured to

10 perform reputation management transactions with a plurality of client systems,

wherein a reputation management transaction comprises:

in response to a request received from a client system of the plurality of client systems,

the client system executing a target entity, retrieving a first reputation indicator

of a target entity from an entity reputation database, the first reputation

15 indicator indicative of a probability that the target entity is malicious;

in response to retrieving the first reputation indicator, transmitting the first reputation

indicator to the client system;

in response to transmitting the first reputation indicator, receiving a second reputation

indicator of the target entity from the client system;

20 in response to receiving the second reputation indicator, comparing the first and second

reputation indicators;

in response, when the second reputation indicator indicates a lower probability that the

target entity is malicious than indicated by the first reputation indicator, adding

the second reputation indicator to a collection of reputation indicators received

25 from the plurality of client systems, wherein all members of the collection are

determined for instances of the target entity;

in response to adding the second reputation indicator to the collection, determining

whether a reputation update condition is satisfied; and

37

in response, when the update condition is satisfied, replacing the first reputation

indicator in the reputation database with an updated reputation indicator

determined according to the collection;

wherein the second reputation indicator differs from the first reputation indicator by a

5 reputation change, and wherein determining the second reputation indicator

comprises employing the client system to:

in response to receiving the first reputation indicator, determine a first time

interval,

in response to determining the first time interval, determine whether the target

10 entity has performed any of a set of pre-determined actions during the

first time interval,

in response, if the target entity has not performed any of the set of pre

determined actions during the first time interval, determine the

reputation change to indicate a reduction in the probability that the

15 target entity is malicious, and

if the target entity has performed a first action of the set of pre-determined

actions, determine the reputation change to indicate an increase in the

probability that the target entity is malicious.

20 12. The server computer system of claim 11, wherein determining whether the update

condition is satisfied comprises determining a time elapsed since adding the first

member to the collection.

13. The server computer system of claim 11, wherein determining whether the update

25 condition is satisfied comprises determining a count of the members of the collection.

14. The server computer system of claim 11, wherein determining the updated reputation

indicator comprises formulating the updated reputation indicator to indicate a highest

probability that the target entity is malicious of all members of the collection.

38

15. The server computer system of claim 11, further configured, in response to receiving

the second reputation indicator, to receive from the client system a third reputation

indicator determined for the target entity, the third reputation indicator differing from

5 the second reputation indicator by another reputation change, and wherein determining

the third reputation indicator by the client system comprises:

determining a second time interval subsequent to the first time interval;

in response to determining the second time interval, determining whether the target

entity has performed any of the set of pre-determined actions during the second

10 time interval;

in response, if the target entity has not performed any of the set of pre-determined

actions during the second time interval, determining the another reputation

change to indicate another reduction in the probability that the target entity is

malicious; and

15 if the target entity has performed a second action of the set of predetermined actions,

determining the another reputation change to indicate another increase in the

probability that the target entity is malicious.

16. The server computer system of claim 11, wherein the reputation change is determined

20 according to a time elapsed since a launch of the target entity on the client system.

17. The server computer system of claim 11, wherein the first time interval is determined

according to a time elapsed since a launch of the target entity on the client system.

25 18. The server computer system of claim 11, wherein the first time interval is determined

according to the first reputation indicator.

39

19. The server computer system of claim 11, wherein the first time interval is determined

according to whether the target entity has performed a second action of the set of pre•

determined actions prior to the first time interval.

5 20. A non-transitory computer-readable medium storing a set of instructions which, when

executed by a hardware processor of a client system, cause the client system to form a

reputation manager and an anti-malware engine, wherein:

the client system is configured to execute a target entity;

the reputation manager is configured to:

10 in response to receiving a first reputation indicator of the target entity from a

reputation server, the first reputation indicator indicative of a

probability that the target entity is malicious, transmit the reputation

indicator to the anti-malware engine,

in response to receiving the first reputation indicator, update the first reputation

15 indicator by determining a second reputation indicator of the target

entity, the second reputation indicator differing from the first reputation

indicator by a reputation change, and

in response to determining the second reputation indicator, transmit the second

reputation indicator to the anti-malware engine and to the reputation

20 server,

wherein determining the second reputation indicator comprises:

in response to receiving the first reputation indicator, determining a first time

interval,

in response to determining the first time interval, determining whether the

25 target entity has performed any of a set of pre-determined actions during

the first time interval,

in response, if the target entity has not performed any of the set of pre

determined actions during the first time interval, determine the

40

reputation change to indicate a reduction in the probability that the

target entity is malicious, and

if the target entity has performed a first action of the set of pre• determined

actions during the first time interval, determining the reputation change

5 to indicate an increase in the probability that the target entity is malicious;

and wherein

the anti-malware engine is configured to:

in response to receiving the first reputation indicator, employ a first protocol to

determine whether the target entity is malicious, and

10 in response to receiving the second reputation indicator, employ a second

protocol to determine whether the target entity is malicious, wherein the

second protocol is less computationally expensive than the first

protocol, when the second reputation indicator indicates a decreased

probability of malice compared to the first reputation indicator, and

15 wherein the second protocol is more computationally expensive than the

first protocol when the second reputation indicator indicates an

increased probability of malice compared to the first reputation

indicator.

20 21. The client system of claim 2, wherein a size of the second time interval IS determined

according to a size of the first time interval.

22. The client system of claim 2, wherein the another reputation change IS determined

according to a size of the first time interval.

41

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

