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The microprocessor (100) executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. The CPU
instruction sets are hardwired, allowing most instructions to execute in a single cycle. A "flow-through" design allows the next instruction
to start before the prior instruction completes, thus increasing performance. MPU (108) contains 52 general-purpose registers, including 16
global data registers (104), an index register (132), a count register (134), a 16-deep addressable register/return stack ( 124), and an 18-deep
operand stack (122). Both stacks contain an index register (128, or 130) in the top elements, are cached on chip, and, when required,
automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during
procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register (136) and 41 locally
addressed registers (102) for VO, control, configuration, and status. The CPU (100) contains both a high-performance, zero-operand, dual-
stack architecture microprocessing unit (MPU) (108), and an input-output processor (IOP) (1 10) that executes instructions to transfer data,
count events, measure time, and perform other timing-dependent functions. A zero-operand (stack) architecture eliminates operand bits.
Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running
code. Instructions are simple to decode and execute, allowing the MPU (108) and IOP (110) to issue and complete instructions in a single
clock cycle - each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU (100) obtains up to four instructions from memory
each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This
maintains high performance when connected directly to DRAM, without a cache.
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RISC MICROPROCESSOR ARCHITECTURE

CROSS-REFERENCE TO RELATED APPLICATIONS

This invention is directed to improvements in the inventions disclosed
and/or claimed in U.S. Application Serial No. 07/389,334, filed August 3, 1989,
now U.S. Patent 5,440,749, and the following divisional applications of that
application: U.S. Application Serial Nos. 08/480,462; 08/480,911: 08/480,015;
08/485,031; 08/484,918; 08/484,230; 08/484,920; 08/480,206; 08/484,935:
08/482,185; 08/480,901 and 08/486,454, all filed June 7, 1995, and is based on
U.S. Provisional Application Serial No. 60/005,408, filed October 6, 1995.

INTRODUCTION
Technical Field

This invention relates to an improved form of a simplified, reduced

instruction set computer (RISC) microprocessor. More particularly, it relates to

such a microprocessor implemented with a stack architecture.

Background
Since the invention of the microprocessor described in the above related

applications, all based on a common disclosure which is hereby incorporated by
reference herein, improvements have been made in that microprocessor to enhance
its performance and manufacturability. The following description discloses those
improvements in the context of a presently preferred embodiment of that

microprocessor.

SUMMARY OF THE INVENTION

In one aspect of the invention, a microprocessor system includes a

microprocessing unit and an input-output processor (IOP). A global memory unit
is coupled to the central processing unit and to the IOP. A means arbitrates access
of the central processing unit and the IOP to the global memory unit. In one

form, the global memory unit comprises a plurality of global registers.
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In another aspect of the invention, a microprocessor system, has a
microprocessing unit and an input-output processor (IOP). A memory interface
unit selectively couples the central processing unit and the IOP to a system bus. A
means grants the IOP access to the system bus at predetermined intervals.

In a further aspect of the invention, a microprocessor system has a
microprocessing unit in which is included an arithmetic logic unit coupled to a
stack cache. A means, coupled to the arithmetic logic unit and to the stack cache,
determines the availability of stack cache resources by determining whether a
value is included in at least one cell of the stack cache and whether at least one
other cell of the stack cache is empty. A means, coupled to the means for
determining the availability of the stack cache resources, selectively inhibits
instruction execution by the arithmetic logic unit based on the availability of the
stack cache resources.

In still another aspect of the invention, a microprocessor system has a
microprocessing unit in which is included an arithmetic logic unit coupled to a
stack cache. The stack cache is allocated at least a first portion of system
memory. A means, coupled to the microprocessing unit and to the stack cache,
executes a stack management trap when a stack pointer of the stack cache assumes
an address within a boundary region of the first portion of the system memory.
The stack management trap determines availability of at least one other portion of
the system memory. A means, coupled to the means for executing the stack
management trap, prevents another execution of the stack management trap until
after the stack pointer has assumed an address within a predefined region of the
first portion of the system not included within the boundary region.

In a still further aspect of the invention, a microprocessor system has a
microprocessing unit and a memory interface unit coupling the microprocessing
unit to system random access memory (RAM). The microprocessor system
includes means, coupled to the memory interface unit, for converting logical row
addresses provided by the microprocessing unit to physical row addresses of the
system RAM so as to define virtual system memory using the system RAM.

In yet another aspect of the invention, a microprocessor system, includes a

register unit. The register unit has at least one storage location containing a value
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to be interpreted as a memory address. A memory interface unit is coupled to the
register unit. A memory bus is coupled to the memory interface unit. A system
memory is coupled to the memory interface unit by the memory bus. The
memory interface unit comprises transfer logic to increment the memory address
and to generate a boundary detected signal when, after a memory bus transaction
to the system memory using the memory address, the memory address after
incrementing has a value that is an even multiple of 2", where n is a nonnegative
integer.

In a still further aspect of the invention, a microprocessor system includes a
central processing unit and a bit input register coupled to the central processing
unit. The bit input register receives logical input over at least one bit line. The
bit input register has a latch coupled to the at least one bit line, which initially
samples the at least one bit line in order to determine a logic level thereof. A zero
persistence control unit is coupled to the latch for storing the logic level in a
register assigned to the at least one bit line. The logic level remains stored in the
register until the zero persistence control unit is provided with a predefined signal
by the central processing unit.

In another aspect of the invention, a microprocessor system, comprising a
microprocessing unit, an input-output processor (IOP), and a memory interface
unit selectively coupling said central processing unit and said IOP to a system bus,
said TOP including program counter means for providing system address
information to said memory interface unit.

In a further aspect of the invention, a microprocessor system includes a
microprocessing unit having a stack cache. A system for effecting floating-point
mathematical instructions includes an arithmetic logic unit means for performing
floating-point operations upon values within cells of the stack cache. A means,
coupled to the arithmetic logic unit means, generates floating point exceptions in
response to performance of selected ones of the floating point operations. A
mode register means, coupled to the arithmetic logic unit means and to the means
for generating floating point exceptions, enables the microprocessing unit to
execute predefined floating point routines in response to the floating point

exceptions.
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In still another aspect of the invention, a microprocessor system includes a
microprocessing unit having a stack cache. A method for executing a breakpoint
instruction comprises the steps of:

pushing into the stack cache a memory address of the breakpoint
instruction; and

executing a breakpoint service routine.

In a still further aspect of the invention, a microprocessor system includes
system memory and a microprocessing unit having one or more internal registers.
The system memory is assigned a first address space for communication with the
microprocessing unit. A method for transferring data within the microprocessing
unit comprising the steps of:

assigning the one or more internal registers a second address space
different from the first address space; and

transferring data to and from portions of the one or more internal registers
identified by addresses within the second address space.

In yet another aspect of the invention, a microprocessor system including a
microprocessing unit having a stack cache. A method for address arithmetic
comprises the steps of:

storing a first address value in a first cell of the stack cache;

storing a second address value in a second cell of the stack cache; and

adding the first address value to the second address value and ‘storing a
resultant sum value in the first cell of the stack cache.

In a yet further aspect of the invention, a microprocessor system includes a
microprocessing unit having a stack cache. A method for performing a copy byte
operation comprises the steps of:

reading a least significant one of a plurality of data bytes stored in a cell;

replacing at least one other of the plurality of data bytes with the least
significant data byte.

In still another aspect of the invention, a microprocessor system includes a
microprocessing unit having a stack cache and a carry register. A method for
performing a test byte operation comprises the steps of:

reading each of a plurality of bytes stored within a cell of the stack cache;
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and

storing a first logical value in the carry register when any of the bytes are
of zero value, and storing a second logical value in the carry register otherwise.

In a still further aspect of the invention, a microprocessor system including
a system memory and a microprocessing unit coupled to the system memory. A
stack cache is coupled to the system memory and a program counter coupled to the
stack cache. A single step processing system includes a means, coupled to the
stack cache and to the program counter, for loading a first memory address from a
first cell of the stack cache into the program counter. A means is coupled to the
program counter for executing a first instruction stored in the system memory of
the microprocessor system at a location corresponding to the first memory address.
A means executes a single-step trap routine during which a second memory
address is loaded into the first cell wherein a second instruction following the first
instruction is stored at a location in the system memory corresponding to the
second memory address.

In another aspect of the invention, a microprocessor system includes system
memory and a microprocessing unit coupled to the system memory having a stack
cache. A stack cache management system includes a means, coupled to the stack
cache, for determining a number of cells currently included within the stack cache.
A means, coupled to said means for determining the number of cells, performs a
comparison of the number of cells to a predefined depth of the stack cache. A
means, coupled to said means for performing the comparison, provides an
indication of a current stack depth based on said comparison.

In a further aspect of the invention, a microprocessor system includes
system memory and a microprocessing unit coupled to the system memory having
a stack cache. A stack cache management system includes a stack depth means,
coupled to said stack cache, for determining a number of cells currently included
within said stack cache. A means, coupled to the stack depth means, provides an
indication of the stack depth.

In another aspect of the invention, a microprocessor system includes system
memory, and a microprocessing unit having a stack cache. A stack cache

management system comprises means, coupled to the stack cache, for determining
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a current number cells in the stack cache. A means is coupled to the means for
determining the current number of cells, for computing a number of cells capable
of being added to the stack cache by comparing the current number of cells to a
maximum stack depth. A means is coupled to the stack cache and to the means
for computing the number of cells capable of being added to the stack cache, for
adding to the current number of cells in the stack cache a number of the cells
equivalent to the number of cells capable of being added to the stack cache.

In still another aspect of the invention, a microprocessor includes a
microprocessing unit that has an arithmetic logic unit and a push-down stack
coupled to the arithmetic logic unit. The arithmetic logic unit includes a bit-
shifting means to shift bits. The bit shifting means shifts a count of bits in one or
more partial shifts with the count reducing by the number of bits shifted each
partial shift. The shifting is performed by multiple bits while the count is greater
than the multiple. The multiple then is reduced, and then the shifting and the

reductions of the count repeat until the count reaches zero.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a microprocessor central processing unit
(CPU) in accordance with the invention.

Figure 2 is a block diagram of a microprocessing unit (MPU) portion of
the microprocessor CPU shown in Figure 1.

Figure 3 is a diagrammatic representation of registers in the MPU portion
shown in Figure 2.

Figure 3a is a diagrammatic representation of an add operation using
certain of the registers shown in Figure 3

Figure 4 is a diagrammatic representation of a memory map for the CPU
shown in Figure 1.

Figure 5 is a diagrammatic representation of stack exception regions in the
memory for the CPU shown in Figure 1.

Figure 6 is a diagrammatic representation of instruction formats for the
MPU of Figure 2.

Figure 6a is a diagrammatic representation of floating point number formats
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used with the MPU of Figure 2

Figure 7 is a more detailed diagrammatic representation of a mode register
shown in Figure 5.

Figure 8 is a block diagram of an input-output processor (IOP) shown in
Figure 1.

Figure 9 is a diagrammatic representation of register usage in the IOP of
Figure 8.

Figure 10 is a diagrammatic representation of instruction formats for the
IOP of Figure 8.

Figure 11 is a block diagram of a direct memory access controller (DMAC)
shown in Figure 1.

Figure 12 is a diagrammatic representation of an input-output (I/0)-channel
transfer data format utilized in the microprocessor of Figure 1.

Figure 13 is a block diagram of an interrupt controller (INTC) shown in
Figure 1.

Figure 14 is a block diagram of bit inputs for the bit input register ioin
shown in Figure 8.

Figure 15 is a block diagram of bit outputs for the bit output register ioout
shown in Figure 8.

Figure 16 is a diagrammatic representation of group-select and bank-select
bits used in memory accesses with the microprocessor of Figure 1.

Figure 17 is a block diagram of a single memory bank system using the
microprocessor of Figure 1.

Figure 18 is a block diagram of a multiple memory bank system using the
microprocessor of Figure 1.

Figure 19 is a set of signal timing diagrams for memory accesses using the
systems of Figures 17-18.

Figure 20 is a diagrammatic representation of on-chip resource registers
shown in Figure 1.

Figures 21-46a are more detailed diagrammatic representations of the on-
chip resource registers shown in Figure 20 and reserved register addresses.

Figures 47-62 are sets of signal timing diagrams for memory accesses using
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the systems of Figures 17-18.

Figures 63-65 are block diagrams of systems incorporating the
microprocessor of Figure 1.

Figures 66-76 are sets of signal timing diagrams useful for understanding

operation of the microprocessor of Figure 1.

DESCRIPTION OF SPECIFIC EMBODIMENTS

The ShBoom Microprocessor 100 (Figure 1) is a highly integrated 32-bit
RISC processor that offers high performance at low system cost for a wide range
of embedded applications. At 100 MHz internally, the processor executes with
100 native MIPS peak performance. The 32-bit registers 102 and 104 and data
paths 106 fully support 32-bit addresses and data types. The processor 100
addresses up to four gigabytes of physical memory, and supports virtual memory
with the use of external mapping logic.

Conventional high-performance microprocessors are register-based with
large register sets, and are pipelined or superscaler. These complex architectures
consume costly silicon with multiple-operand instructions, muitiple execution units,
or lengthy execution pipelines. All these features diminish the fastest possible
execution of individual instructions and increase silicon size, thus increasing chip
cost.

The ShBoom CPU 100 architectural philosophy is that of simplification and
efficiency of use. A zero-operand design eliminates most operand bits and the
decoding time and instruction space they require. Instructions are shrunk to 8-
bits, significantly increasing instruction bandwidth and reducing program size. By
not using pipeline or superscalar execution, the resulting control simplicity
increases execution speed to issue and complete an instruction in a single clock
cycle - as often as every clock cycle - without a conventional instruction cache.
To ensure a low-cost chip, a data cache and its cost are also elminated in favor of
efficient register caches.

The ShBoom CPU 100 operates up to four groups of programmable bus
configurations from as fast as 20 ns to as slow as 810 ns, allowing any desired

mix of high-speed and low-speed memory. Minimum system cost is reduced, thus
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allowing the system designer to trade system cost for performance as needed.

By incorporating many on-chip system functions and a "glueless" bus
interface, support chips are elminated further lowering system cost. The CPU 100
includes an MPU 108, an 1/0 processor 110, a DMA controller 112, an interrupt
controller 114, bit inputs 116, bit outputs 118, and a programmable memory
interface 120. It can operate with 32-bit-wide or 8-bit-wide memory and devices,
and includes hardware debugging support. A minimum system consists of
ShBoom CPU, an 8-bit-wide EPROM, an oscillator, and optionally one x8 or two
x16 memories - a total of 4 or 5 active components. The small die, which
contains only 137,500 transistors, produces a high-performance, low-cost CPU,

and a high level of integration produces a high-performance, low-cost system.

FEATURES

Microprocessing Unit (MPU) 108 (Figure 2)

Zero-operand dual-stack 122 and 124 architecture
10-ns instructions cycle
52 General-Purpose 32-Bit Registers
16 global data registers (g0-g15) 104
16 local registers (r0-r15) double as return stack cache 124
10 is an index register 128 with predecrement and postincrement
Automatic local-register stack 124 spill and refill
18 operand stack cache registers (s0-s17) 122
sO is an address register 130
Automatic operand stack spill and refill
Index register (x) 132 with predecrement and postincrement
Count register (ct) 134
Stack paging traps
Cache-management instructions
MPU 108 communicates with DMA 112 and IOP 110 via global registers 104
Hardware single- and double-precision IEEE floating-point support
Fast multiply
Fast bit-shifter
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Hardware single-step and breakpoint
Virtual-memory support

Posted write

Power-on-reset flag

Instruction-space-saving 8-bit opcodes

Direct Memory Access Controller (DMAC) 112 (Figure 11)
Eight prioritized DMA channels

Fixed or revolving DMA priorities

Byte, four-byte or cell DMA devices

Single or back-to-back DMA requests

Transfer rates to 200 MB/second

Programmable timing per channel

Interrupt MPU on transfer boundary/count reached

Terminate DMA on transfer boundary/count reached

Channels can be configured as event counters

DMA 112 communicates with MPU 108 and IOP 110 via global registers 104

Input-Output Processor (IOP) 110

Executes instruction stream independent of MPU 108
Deterministic execution

Used to perform timing, time-synchronous data transfers, bit output operations,
DRAM refresh

Eight transfer channels

Byte, four-byte or cell device transfers
Programmable timing per channel

Interrupt MPU on transfer boundary/count reached
Set/reset output bits

Set MPU interrupt

Test and branch on input bit

Looping instructions

Load transfer address, direction, interrupt on boundary
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IOP 110 communicates with DMA 112 and MPU 108 via global registers 104 or

memory
Channels can be configured as timers

Instruction-space-saving 8-bit opcodes

Input-Output 116 and 118/Interrupts

Eight input 116 bits
Bits can be configured as zero-persistent
Register- and bit-addressable

Eight output 118 bits
Register- and bit-addressable

I/O bits available on pins or multiplexed on bus

Eight prioritized and vectored interrupts

Programmable Memory Interface (MIF) 120

Programmable bus interface timing to 1/4 external clock
Four independently configurable memory groups:
Any combination of 32-bit and 8-bit devices
Any combination of EPROM, SRAM, DRAM, VRAM
Almost any DRAM size/configuration
Fast-page mode access for each DRAM group
Glueless support for one memory bank per group
1.25 gates per memory bank for decoding up to 16 memory banks (four per
memory group)
Virtual-memory support
DRAM refresh support (via IOP)
VRAM support includes DSF, OF, WE, Cas before RAS control

Signals shown in Figure 1 are described below in Table 1.
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Signal pinouts from the single chip microprocessor 100 when packaged in a
National Semiconductor type VIG/VJU 100 Pin Plastic Quad Flat Package are

shown below in Table 2.
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Purpose

The following material describes the architecture, hardware interface, and
programming of the ShBoom Microprocessor 100. The processor is targeted for
embedded applications that require high MPU performance and low system cost.
These include laser printers, graphics accelerators, ignition controllers, network
routers, personal digital assistants, set-top cable controllers, video games, and
many other applications. This material provides the information required to design
products that will use the ShBoom CPU 100, including functional capability,
electrical characteristics and ratings, and package definitions, as well as

programming both the MPU 108 and IOP 110.

Overview

The ShBoom Microprocessor 100 is a highly integrated 32-bit RISC
processor that executes at 100 native MIPS peak performance with a 100-MHz
internal clock frequency. The CPU 100 is designed specifically for use in
embedded applications for which MPU performance and system cost are deciding
selection factors.

The ShBoom CPU instruction sets are hardwired, allowing most
instructions to execute in a single cycle, without the use of pipelines or superscalar
architecture. A "flow-through" design allows the next instruction to start before
the prior instruction completes, thus increasing performance.

The ShBoom MPU 108 (see Figure 2) contains 52 general-purpose
registers, including 16 global data registers 104, an index register 132, a count
register 134, a 16-deep addressable register/return stack 124, and an 18-deep
operand stack 122. Both stacks contain an index register 128 or 130 in the top
elements, are cached on chip, and, when required, automatically spill to and refill
from external memory. The stacks minimize the data movement typical of
register-based architectures, and also minimize memory access during procedure
calls, parameter passing, and variable assignments. Additionally, the MPU
contains a mode/status register 136 and 41 locally addressed registers 102 for 1/0,

control, configuration, and status.
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KEY FEATURES
Dual-Processor Architecture: The CPU 100 contains both a high-

performance, zero-operand, dual-stack architecture microprocessing unit
(MPU)108, and an input-output processor (IOP) 110 that executes instructions to
transfer data, count events, measure time, and perform other timing-dependent
functions.

Zero-Operand Architecture: Many RISC architectures waste valuable
instruction space - often 15 bits or more per instruction - by specifying three
possible operands for every instruction. Zero-operand (stack) architectures
eliminate these operand bits, thus allowing much shorter instructions - typically
one-fourth the size - and thus a higher instruction-execution bandwidth and smaller
program size. Stacks also minimize register saves and loads within and across
procedures, thus allowing shorter instruction sequences and faster-running code.

Fast, Simple Instructions: Instructions are simpler to decode and execute
than those of conventional RISC processors, allowing the ShBoom MPU 108 and
IOP 110 to issue and complete instructions in a single clock cycle - each at 100
native MIPS peak execution.

Four-Instruction Buffer: Using 8-bit opcodes, the CPU 100 obtains up to

four instructions from memory each time an instruction fetch or pre-fetch is
performed. These instructions can be repeated without rereading them from
memory. This maintains high performance when connected directly to DRAM,
without the expense of a cache.

Local and Global Registers: Local and global registers minimize the
number of accesses to data memory. The local-register stack 124 automatically
caches up to sixteen registers and the operand stack 122 up to eighteen registers.
As stacks, the data space allocated efficiently nests and unnests across procedure
calls. The sixteen global registers 104 provide storage for share data.

Posted Write: Decouples the processor from data writes to memory,
allowing the processor to continue executing after a write is posted.

Programmable Memory/Bus Interface: Allows the use of lower-cost
memory and system components in price-sensitive systems. The interface supports
many types of EPROM/SRAM/DRAM/VRAM directly, including fast-page mode
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on up to four groups of DRAM devices. On-chip support of RAS cycle OE and
WE, CAS-before-RAS, and the DSF signal allow use of VRAM without additional
external hardware. Programmable bus timing and driver power allow the designer
a range of solutions to system design challenges to match the time, performance
and budget requirements for each project.

Clock Multiplier: Internally doubles and quadruples the external clock.
An on-chip PLL circuit eliminates typical stringent oscillator specifications, thus
allowing the use of lower-cost oscillators.

Fully Static Design: A fully static design allows running the clock from
DC up to rated speed. Lower clock speeds can be used to drastically cut power
consumption.

Hardware Debugging Support: Both breakpoint and single-step capability
aid in debugging programs.

Virtual Memory: Supported through the use of external mapping SRAMs
and support logic.

Floating-Point Support: Special instructions implement efficient single- and
double-precision IEEE floating-point arithmetic.

Interrupt Controller: Supports up to eight prioritized levels with interrupt
responses as fast as eight 2X-clock cycles.

Eight Bit Inputs 116 and Eight Bit Outputs 118: 1/O bits are available for
MPU and IOP application use, reducing the need for external hardware.

CENTRAL PROCESSING UNIT

The ShBoom CPU 100 architectural philosophy is that of simplification and
efficiency of use: implement the simplest solution that adequately solves the
problem and provides the best utilization of existing resources. In hardware, this
typically equates to using fewer transistors, and fewer transistors means a lower-
cost CPU.

Early RISC processors reduced transistor counts compared to CISC
processors, and gained their cost and performance improvements therein. Today,
interconnections between transistors dominate the silicon of many CPUs. The

ShBoom MPU architectural philosophy results in, along with fewer transistors, the
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minimization of interconnections compared to register-based MPUs.

Resources

The ShBoom CPU 100 (Figure 1) contains ten major functional units:
microprocessing unit (MPU) 108, input-output processor (IOP) 110, global
registers 104, direct memory acces controller (DMAC) 112, interrupt controller
(INTC) 114, on-chip resources 102, bit inputs 116, bit outputs 118, programmable
memory interface (MIF) 120, and clock 140. In part, the ShBoom CPU gains its
small silicon size and capability from the resource sharing within and among these
units. For example:

- The global registers 104 are shared by the MPU 108, the IOP 110, and
transfer logic 142 within the MIF 120. They are used by the MPU 108 for data
storage and control communication with the DMAC 112 and the IOP 110; by the
IOP 110 for transfer information, loop counts, and delay counts; and by the
DMAC 112 for transfer information. Further, the transfer information is used by
the transfer logic in the MIF 120 that is shared by the IOP 110 and DMAC 112.

- The MIF 120 is shared by the MPU 108, the IOP 110, the DMAC 112,
the bit outputs 118 and the bit inputs 116 for access to the system bus. Bus
transaction requests are arbitrated and prioritized by the MIF 120 to ensure
temporally deterministic execution of the IOP 110.

- The DMAC 112 transfer-termination logic is significantly reduced by
using specific termination conditions and close coupling with the MPU 108 for
intelligent termination action.

- The INTC 114 is shared by the bit inputs 116, the IOP 110, and the
DMAC 112 (through the MIF 120 transfer logic 142) for interrupt requests to the
MPU 108.

- The bit outputs 118 are made available to the system through the On-Chip
Resources Registers 102. They are shared by the MPU 108 and the IOP 110 for
programmed output, and are bit-addressable.

Although the maximum usage case requiring a complex IOP 110 program,
many interrupt sources, many input bits, many output bits, all available DMA
channels, and maximum MPU 108 computational ability might leave a shortage of
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resources, such applications are not typical. The sharing of resources among
functional units significantly reduces transistor count, package pin count, and thus
silicon size and cost, and increases CPU capability and flexibility. The ability to
select among available resources, compared to the fixed resource set of other

CPUs, allows the ShBoom CPU 100 to be used for a wider range of applications.

Clock Speed
The clock speed of a CPU is not a predictor of its performance. For

instance, the PowerPC 604, running at about half the speed of the DEC Alpha
21064 A, achieves about the same SPECint95 benchmark performance. In this
respect, the ShBoom CPU 100 is more like the DEC Alpha than the PowerPC.
However, the ShBoom CPU 100 is based on a significantly different design
philosophy than either of these CPUs.

Most processors historically have forced the system designer to maintain a
balanced triangle among CPU execution speed, memory bandwidth, and I/O
bandwidth. However, as system clock rate increases so typically does bus speed,
cache memory speed and system interface costs. Typically, too, so does CPU
cost, as often thousands of transistors are added to maintain this balance.

The ShBoom CPU 100 lets the system designer select the performance
level desired, while maintaining low system cost. This may tilt the triangle
slightly, but cost is not part of the triangle-balancing equation. The ShBoom
CPU’s programmable memory interface permits a wide range of memory speeds to
be used, allowing systems to use slow or fast memory as needed. Slow memory
will clearly degrade system performance, but the fast internal clock speed of the
ShBoom CPU 100 causes internal operations to be completed quickly. Thus the
muiti-cycle multiply and divide instructions always execute quickly, without the
silicon expense of a single-cycle multiply unit. At up to eight times the clock rate
of competing parts with single-cycle multipliers, the difference in multiply/divide
performance diminishes while the remainder of the application executes
correspondingly faster. Although higher performance can sometimes be gained by
dedicating large numbers of transistors to functions such as these, silicon cost also

increases, and increased cost did not fit the design goals for this version of the
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ShBoom CPU 100.

MICROPROCESSING UNIT

The MPU 108 (Figure 2) supports the ShBoom CPU architectural
philosophy of simplification and efficiency of use through the basic design in
several interrelated ways.

Whereas most RISC processors use pipelines and superscalar execution to
execute at high clock rates, the ShBoom MPU 108 uses neither. By having a
simpler architecture, the ShBoom MPU issues and completes most instructions in a
single clock cycle. There are no pipelines to fill and none to flush during changes
in program flow. Though more instructions are sometimes required to perform
the same procedure in ShBoom MPU code, the MPU operates at a higher clock
frequency than other processors of similar silicon size and technology, thus giving
comparable performance at significantly reduced cost.

A microprocessor’s performance is often limited by how quickly it can be
fed instructions from memory. The MPU 108 reduces this bottleneck by using 8-
bit instructions so that up to four instructions (an instruction group) can be
obtained during each memory access. Each instruction typically takes one 2X-
clock cycle to execute, thus requiring four 2X-clock cycles to execute the
instruction group. Because a memory access can take four 2X-clock cycles, the
next instruction-group completes. This makes it possible to feed instructions to the
processor at maximum instruction-execution bandwidth without the cost and
complexity of an instruction cache.

The zero-operand (stack) architecture makes 8-bit instructions possible.
The stack architecture eliminates the need to specify source and destination
operands in every instruction. By not using opcode bits on every instruction for
operand specification, a much greater bandwidth of functional operations - up to
four times as high - is possible. Table 3 depicts an example ShBoom MPU
instruction sequence that demonstrates twice the typical RISC CPU instruction
bandwidth. The instruction sequence on the ShBoom MPU requires one-half the
instruction bits, and the uncached performance benefits from the resulting increase

in instruction bandwidth.
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Table 3 - Instruction Bandwidth Comparison

g5 =gl -(g2 + 1) + g3 - (gd4*2)
Typical RISC MPU ShBoom MPU
push gl
5 push g2
add g2, #1, g5 inc #1
sub g5, gl, g5 sub
push g3
add g5, g3, g5 add
shko g4, #1, temp shl #1
sub
sub temp, g5, g5 pop g5
20 bytes 10 bytes
Example of twice the instruction bandwidth
15 available on the ShBoom MPU

Stack MPUs are thus simpler than register-based MPUs, and the ShBoom
MPU 108 has two hardware stacks 122 and 124 to take advantage of this: the
operand stack 122 and the local-register stack 124. The simplicity is widespread
and is reflected in the efficient ways stacks are used during execution.

ALU 150 processes data from primarily one source of inputs - the top 130
of the operand stack 122. The ALU 150 is also used for branch address

calculations. Data bussing is thus greatly reduced and simplified. Intermediate
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results typically "stack up” to unlimited depth and are used directly when needed,
rather than requiring specific register allocations and management. The stacks 122
and 124 are individually cached and spill and refill automatically, eliminating
software overhead for stack manipulation typical in other RISC processors.
Function parameters are passed on, and consumed directly off of, the operand
stack 122, eiminating the need for most stack frame management. When
additional local storage is needed, the local-register stack 124 supplies registers
that efficiently nest and unnest across functions. As stacks, the stack register
spaces are only allocated for data actually stored, maximizing storage utilization
and bus bandwidth when registers are spilled or refilled - unlike architectures
using fixed-size register windows. Stacks speed context switches, such as
interrupt servicing, because registers do not need to be explicitly saved before use -
additional stack space is allocated as needed. The stacks thus reduce the number
of explicitly addressable registers otherwise required, and speed execution by
reducing data location specification and movement. Stack storage is inherently
local, so the global registers 104 supply non-local register resources when
required.

Eight-bit opcodes are too small to contain much associated data.
Additional bytes are necessary for immediate values and branch offsets. However,
variable-length instnictions usually complicate decoding and complicate and
lengthen the associated data access paths. To simplify the problem, byte literal
data is taken only from the rightmost byte of the instruction group, regardless of
the location of the byte literal opcode withing the group. Similarly, branch offsets
are taken as all bits to the right of the branch opcode, regardless of the opcode
position. For 32-bit literal data, the data is taken from a subsequent memory cell.
These design choices ensure that the required data is always right-justified for
placement on the internal data busses, reducing interconnections and simplifying
and speeding execution.

Since most instructions decode and execute in a single clock cycle, the
same ALU 150 that is used for data operations is also available, and is used, for
branch address calculations. This eliminates an entire ALU normally required for

branch offset calculations.
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Rather than consume the chip area for a single-cycle multiply-accumulate
unit, the higher clock speed of the MPU 108 reduces the execution time of
conventional multi-cycle multiply and divide instructions. For efficiently
multiplying by constants, a fast multiply instruction will multiply only by the
specified number of bits.

Rather than consume the chip area for a barrel shifter the counted bit-shift
operation is "smart" to first shift by bytes, and then by bits, to minimuze the
cycles required. The shift operations can also shift double cells (64 bits), allowing
bit-rotate instructions to be easily synthesized.

Although floating-point math is useful, and sometimes required, it is not
heavily used in embedded applications. Rather than consume the chip area for a
floating-point unit, MPU instructions to efficiently perform the most time-
consuming aspects of basic IEEE floating-point math operations, in both single-
and double-precision, are supplied. The operations use the "smart" shifter to
reduce the cycles required.

Byte read and write operations are available, but cycling through individual
bytes is slow when scanning for byte values. These types of operations are made

more efficient by instructions that operate on all of the bytes within a cell at once.

Address Space
The MPU 108 fully supports a linear four-gigabyte address space for all

program and data operations. I/O devices are selected by mapping them into
memory addresses. By convention, the uppermost address bits select I/0 device
addresses decoded in external hardware. This convention leaves a contiguous
linear program and data space of two gigabytes with a sparse address space above
two gigabytes. It also allows simultaneous addressing of an I/0O device and a
memory address for I/O channel transfers. See Memory and Device Addressing,
below.

Several instructions of operations expect addresses aligned on four-byte
(cell) boundaries. These addresses are referred to as cell-aligned. Only the upper
30 bits of the address are used to locate the data; the two least-significant address

bits are ignored. Within a cell, the high order byte is located at the low byte



10

15

20

25

30

WO 97/15001 PCT/US96/16013

26

address. The next lower-order byte is at the next higher address, and so on. For
example, the value 0x12345678 would exist at byte addresses in memory. from
low to high address, as 12 34 56 78.

Registers and Stacks
The register set contains 52 general-purpose registers 122, 124, 104, 132

and 134 (Figure 3), mode/status register 136, and 41 local address-mapped on-chip
resource registers 102 (Figure 20) used for I/0, configuration, and status.

The operand stack 122 contains eighteen registers s0-s17 and operates as a
push-down stack, with direct access to the top three registers (sO-s2). These
registers and the remaining registers (s3-s17) operate together as a stack cache.
Arithmetic, logical, and date-movement operations, as well as intermediate result
processing, are performed on the operand stack. Parameters are passed to
procedures and results are returned from procedures on the stack, without the
requirement of building a stack frame or necessarily moving data between other
registers and the frame. As a true stack, registers are allocated only as needed for
efficient use of available storage.

The local-register stack 124 contains sixteen registers r0-rl15 and operates
as a push-down stack with direct access to the first fifteen registers (r0-r14).
These registers and the remaining register (r15) operate together as a stack cache.
As a stack, they are used to hold subroutine return addresses and automatically
nest local-register data.

Both cached stacks 122 and 124 automatically spill to memory and refill
from memory, and can be arbitrarily deep. Additionally, sO and rO can be used
for memory access. See Stacks and Stack Caches below.

The use of stack-cached operand and local registers improves performance
by eliminating the overhead required to save and restore context (when compared
to processors with only global registers available). This allows for very efficient
interrupt and subroutine processing.

In addition to the stacks are sixteen global registers 104 and three other
registers. The global registers (g0-g15) are used for data storage, as operand

storage for the MPU multiply and divide instructions (g0), and for the IOP 110.
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Since these registers are shared, the MPU 108 and the IOP 110 can also

communicate through them. Remaining are mode register 136, which contains
mode and status bits; x register 132, which is an index register (in addition to sO
and r0); and ct register 134, which is a loop counter and also participates in

floating-point operations.

Programming Model
For those familiar with American National Standard Forth (ANS Forth), or

Hewlett-Packard calculators that use postfix notation, commonly known as Reverse
Polish Notation (RPN), programming the ShBoom MPU will in many ways be
very familiar.

An MPU architecture can be classified as to the number of operands
specified within its instruction format. Typical 16-bit and 32-bit CISC and RISC
MPUs are usually two- or three-operand architectures, whereas smaller
microcontrollers are often one-operand archictectures. In each instruction, two-
and three-operand architectures specify a source and destination, or two sources
and a destination, whereas one-operand architectures specify only one source and
have an implicit destination, typically the accumulator. Architectures are also
usually not pure. For example, one-operand archictectures often have two-operand
instructions to specify both a source and destination for data movement between
registers.

The ShBoom MPU 100 is a zero-operand architecture, known as a stack
computer. Operand sources and destinations are assumed to be on the top of the
operand stack, which is also the accumulator. See Figure 3a. An operation such
as add uses both source operands from the top of the operand stack 122, adds
them as indicated at 152, and returns the resuit to the top of the operand stack
122, thus causing a net reduction of one in the operand stack depth.

Most ALU 150 operations behave similarly, usiing two source operands
and returning one result operand to the operand stack. A few ALU operations use
one source operand and return one result operand to the operand stack. Some
ALU and other operations also require a non-stack register, and a very few do not

use the operand stack at all.
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Non-ALU operations are also similar. Loads (memory reads) either use an
address on the operand stack or in a specified register, and place the retrieved data
on the operand stack. Stores (memory writes) use either an address on the
operand stack or in a register, and use data from the operand stack. Data
movement operations push data from a register onto the operand stack, or pop data
from the stack into a register.

Once data is on the operand stack it can be used for any instruction that
expects data there. The result of an add, for instance, can be left on the stack
indefinitely, until needed by a subsequent instruction. See Table 3 above.
Instructions are also available to reorder the data in the top few cells of the
operand stack so that prior results can be accessed when required. Data can also
be removed from the operand stack and placed in local or global registers to
minimize or eliminate later reordering of stack elements. Data can even be
popped from the operand stack and restacked by pushing it onto the local-register
stack.

Computations are usually most efficiently performed by executing the most
deeply nested computations first, leaving the intermediate results on the operand
stack, and then combining the intermediate results as the computation unnests. If
the nesting of the computation is complex, or if the intermediate results need to be
used sometime later after other data will have been added to the operand stack, the
intermediate results can be removed from the operand stack and stored in global or
local registers.

Global registers are used directly and maintain their data indefinitely.

Local registers are registers within the local-register stack cache and, as a stack,
must first be allocated. Allocation can be performed by popping data from the
operand stack and pushing it onto the local-register stack one cell at a time. It can
also be performed by allocating a block of uninitialized stack registers at one time;
the uninitialized registers are then initialized by popping data, one cell at a time,
into the registers in any order. The allocated local registers can be deallocated by
pushing data onto the operand stack and popping it off of the local register stack
one cell at a time, and then discarding from the operand stack the data that is

unneeded. Alternatively, the allocated local registers can be deallocated by first
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saving any data needed from the registers, and then deallocating a block of
registers at one time. The method selected will depend on the number of registers
required and whether the data on the operand stack is in the required order.

Registers on both stacks 122 and 124 are referenced relative to the tops of
the stacks and are thus local in scope. What was accessible in r0, for example,
after one cell has been push onto the local-register stack 124, is accessible asrl;
the newly pushed value is accessible as r0.

Parameters are passed to and returned from subroutines on the operand
stack 122. An unlimited number of parameters can be passed and returned in this
manner. An unlimited number of local-register allocations can also be made.
Parameters and allocated local registers thus conveniently nest and unnest across
subroutines and program basic blocks.

Subroutine return addresses are pushed onto the local-register stack 124 and
thus appear as r0 on entry to the subroutine, with the previous r0 accessible as rl,
and so on. As data is pushed onto the stacks and the available register space fills,
registers are spilled to memory when required. Similarly, as data is removed from
the stacks and the register space empties, the registers are refilled from memory as
required. Thus from the program’s perspective, the stack registers are always

available.

Instruction Set Overview
Table 4 lists the MPU instructions; Table 34, below, and Table 37, below,

list the mnemonics and opcodes. All instructions consist of eight bits, except for

those that require immediate data. This allows up to four instructions (an
instruction group) to be obtained on each instruction fetch, thus reducing memory-
bandwidth requirements compared to typical RISC machines with 32-bit
instructions. This characteristic also allows looping on an instruction group (a
micro-loop) without additional instruction fetches from memory, further increasing

efficiency. Instruction formats are depicted in Figure 6.
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Table 4 - MPU Instruction Set

ARITHMETIC/SHIFT CONTROL TRANSFER LOGICAL

ADD BRANCH AND

ADD with carry BRANCH ON ZERO OR

ADD ADDRESS BRANCH INDIRECT XOR

SUBTRACT CALL NOT AND

SUBTRACT with borrow  CALL INDIRECT TEST BYTES

INCREMENT DECREMENT AND EQUAL ZERO

DECREMENT BRANCH

NEGATE SKIP DEBUGGING

SIGN EXTEND BYTE SKIP ON CONDITION STEP

COMPARE MICRO-LOOP BREAKPOINT

MAXIMUM MICRO-LOOP ON

MULTIPLY SIGNED CONDITION DATA MANAGEMENT

MULTIPLY UNSIGNED RETURN LOAD

FAST MULTIPLY RETURN FROM STORE

SIGNED INTERRUPT STORE INDIRECT, pre-

DIVIDE UNSIGNED dec/post-inc

SHIFT LEFT/RIGHT FLOATING POINT PUSH

DOUBLE SHIFT TEST EXPONENT REGISTER/STACK

LEFT/RIGHT EXTRACT EXPONENT POP REGISTER/STACK

INVERT CARRY EXTRACT SIGNIFICAND EXCHANGE
RESTORE EXPONENT REVOLVE

MISCELLANEOUS DENORMALIZE SPLIT

CACHE CONTROL NORMALIZE REPLACE BYTE

FRAME CONTROL RIGHT/LEFT PUSH LITERAL

STACK DEPTH EXPONENT STORE ON-CHIP

NO OPERATION DIFFERENCE RESOURCE

ENABLE/DISABLE ADD EXPONENTS LOAD ON-CHIP

INTERRUPTS SUBTRACT EXPONENTS RESOURCE
ROUND

ALU Operations

Almost all ALU operations occur on the top of the operand stack 122 in s0
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and, if needed, sl. A few operands also use g0, ct 134, or pc.

Only one ALU status bit, carry, is maintained and is stored in mode 136.
Since there are no other ALU status bits, all other conditional operations are
performed by testing sO on the fly. eqz is used to reverse the zero/non-zero state
of sO. Most arithmetic operations modify carry from the result produced out of bit
31 of s0. The instruction add pc is available to perform pc-relative data
references. adda is available to perform address arithmetic without changing
carry. Other operations modify carry as part of the result of the operation.

s0 and sl can be used together for double-cell shifts, with sO containing the
more-significant cell and sl the less-significant cell of the 64-bit value. Both
single-cell and double-cell shifts transfer a bit between carry and bit 31 of s0.
Code depicting single-cell rotates constructed from the double-cell shift is given
below.

All ALU instructions opcodes are formatted as 8-bit values with no
encoded fields.

Table 5 - ALU Instructions

add add pc adda addc
and dec #1 dec #4 dec ct
divm eqz iand inc #1
inc #4 mulfs muls mulu
mxm neg notc or
sexb shift shiftd shl #1
shl #8 shr #1 shr #8 shid #1
shed #1 sub subb testb
|Lxor
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Table 6 - Code Examples: Rotate

:Rotate single cell left by specified number of bits
;(nl #bits -- n2)rotate_left::

push #0 ;space for bits
Xcg ;get count
shiftd

or ;combine parts

;:Ratate single cell right by specified number of bits

;(nl #bits -- n2)

rotate_right::

push #0 ;space for bits
rev

revs

shl  #1 ;make a negative
notc ;sign magnitude
shr #1 ;number

shiftd

or20

Table 7 - Branch, Loop and Skip Instructions
25

br br (] bz call
call [] dbr mioop mloopc
mloopn mloopnc mloopnn mioopnz
mloopz ret reti skip
skipc skipn skipnc skipnn

| skipnz skipz
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Branches, Skips. and Loops (Table 7)

The instructions br, bz. call and dbr are variable-length. The three least-
significant bits in the opcode and all of the bits in the current instruction group to
the right of the opcode are used for the relative branch offset. See Figure 6.
Branch destination addresses are cell-aligned to maximize the range of the offset
and the number of instructions that will be executed at the destination. The offset
is 3, 11, 19 or 27 bits long, depending on the location of the opcode within the
current instruction group. The address of the destination is offset from the address
of the beginning of the cell containing the branch opcode. The offsets have a
range of +12/-16, +4092/-4096, +1048572/-1048576, and +268435452/-
268435456 bytes, respectively. If an offset is not of sufficient size for the branch
to reach the destination, the branch must be moved to an instruction group where
more offset bits are available, or br (] or call [] can be used.

Register-indirect branches are available with br [} and call []. They use an
absolute byte address from s0. The instruction add pc can be used if a computed
pc-relative branch is required.

The mloop_ instructions are referred to as micro-loops. If specified, a
condition is tested, and then ct is decremented. If a termination condition is not
met, execution continues at the beginning of the current instruction group. Micro-
loops are used to re-execute short instructions sequences without re-fetching the
instructions from memory. See Table 10.

Other than branching on zero with bz, other conditional branching is
performed with the skip_ instructions. They terminate execution of the current
instruction group and continue execution at the beginning of the next instruction
group. They can be combined with the br, call, dbr, and ret (or other

instructions) to create additional flow-of-control operations. ~ Table 8 - Literal Instruction
Literals (Table 8) || Push.b push.1 push.n

To maximize opcode bandwidth, three sizes of literals are available. The
data for four-bit (nibble) literals, with a range of -7 to +8, is encoded in the four
least-significant bits of the opcode; the numbers are encoded as two's-complement

values with the value 1000 binary decoded as +8. The data for eight-bit (byte)
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literals, with a range of 0-255, is located in the right-most byte of the instruction
group, regardless of the position of the opcode within the instruction group. The
data for 32-bit (long, or cell) literals, is located in a cell following the instruction
group in the instruction stream. Multiple push.1 instructions in the same
instruction group access consecutive cells immediately following the instruction

group. See Figure 6.
Table 9 - Load and Store Instructions

1d [--x] 1d [0+ +] 1d [r0]
1d [x] Id {1 Id.b []
st [--x] st {rO++] st [r0]
st [x] st {] replb

Loads and Stores (Table 9)

r0 and x support register-indirect addressing and also register-indirect
addressing with predecrement by four our postincrement by four. These modes
allow for efficient memory reference operations. Code depicting memory move
and fill operations is given in Table 10.

Register indirect addressing can also be performed with the address in s0.
Other addressing modes can be implemented using adda. Table 11 depicts the
code for a complex memory reference operation.

The memory accesses depicted in the examples above are cell-aligned, with
the two least-significant bits of the memory addresses ignored. Memory can also
be read at byte addresses with 1d.b [] and written at byte addresses using x and
replb. See Byte Operations.

The MPU contains a one-level posted write. This allows the MPU to
continue executing while the posted write is in progress and can significantly
reduce execution time. Memory coherency is maintained by giving the posted
write priority bus access over other MPU bus requests, thus writes are not
indefinitely deferred. In the code examples in Table 10, the loop execution
overhead is zero when using posted writes. Posted writes are enabled by setting
mspwe.

All load and store instruction opcodes are formatted as 8-bit values with no
encoded fields.
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;Memory Move

move_cells::

pop
pop
pop

move_cell_loop::
Id 10

st
mloop

;Memory Fill

filkscells::

xcg

pop
Xcg

pop
filkocells_loop::
push

st

mloop

pop
---25

;(cell_source cell_dest cell_count--)

ct
X
Istack

[0+ +]
[x++]
move_cell_loop

;(cell_dest cell_count cell_value --)

ct

[x++]
fill_cell_loop

scount
;dest
;source to r0

-push

pop
--Istack
.discard source

;count

;dest

:keep fill value

.discard fill value
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Table 11 - Code Example: Complex Addressing Mode

PCT/US96/16013

:addc [g0+g2+20].#8,[g0-g3-4]

push
push
adda
push.b
adda
Id

pusik.n
addc

g0
g2

#20

0

#8push
push
neg
adda
dec
stg0

g3

#4
{

:The carry into and out of addc is maintained.
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Table 12 - Data Movement Instructions
pop ct pop gi pop ri’ pop x
push ct push gi push ri push si
push x

10

15

20

25

30

Data Movement (Table 12)

Register data is moved by first pushing the register onto the operand stack,
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and then popping it into the destination register. Memory data is moved similarly.
See Loads and Stores, above.

The opcodes for the date-movement instructions that access gi and ri are 8-
bit values with the register number encoded in the four least-significant bits. All
other date-movement instruction opcodes are formatted as 8-bit values with no
encoded fields.

Table 13 - Stack Data Management Instructions

Iframe

push Istack rev sframe xcg

pop pop Istack push

15

20

25

30

Stack Data Management (Table 13)

Operand stack data is used from the top of the stack and is generally
consumed when processed. This can require the use of instructions to duplicate,
discard, or reorder the stack data. Data can also be moved to the local-register
stack to place it temporarily out of the way, or to reverse its stack access order, or
to place it in a local register for direct access. See the code examples in Table 10.

If more than a few stack data management instructions are required to
access a given operand stack cell, performance usually improves by placing data in
a local or global register. However, there is a finite supply of global registers,
and local registers, at some point, spill to memory. Data should be maintained on
the operand stack only while it is efficient to do so. In general, if the program
requires frequent access to data in the operand stack deeper than s2, that data, or
other more accessible data, should be placed in directly addressable registers to
simplify access.

To use the local-register stack, data can be popped from the operand stack
and pushed onto the local-register stack, or data can be popped from the local-
register stack and push onto the operand stack. This mechanism is convenient to
move a few more cells when the resulting operand stack order is acceptable.
When moving more data, or when the data order on the operand stack is not as

desired, 1frame can be used to allocate or deallocate the required local registers,
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and then the registers can be written and read directly. Using Iframe also has the
advantage of making the required local-register stack space available by spilling
the stack as a continuous sequence of bus transactions. which will minimize the
number of RAS cycles required when writing to DRAM.

The instruction sframe behaves similarly to 1frame and is primarily used to
discard a number of cells from the operand stack.

All stack data management instruction opcodes are formatted as 8-bit values

with no encoded fields.

Table 14 - Stack Cache Management Instructions

lcache ldepth pop la pop sa
push la push sa scache sdepth

Stack Cache Management (Table 14)

Other than initialization, and possibly monitoring of overflow and
underflow via the related traps, the stack caches do not require active
management. Several instructions exist to efficiently manipulate the caches for
context switching, status checking, and spill and refill scheduling.

The _depth instructions can be used to determine the number of cells in the
SRAM part of the stack caches. This value can be used to discard the values
currently in the cache, to later restore the cache depth with _cache, or to compute
the total on-chip and external stack depth.

The _cache instructions can be used to ensure either that data is in the
cache or that space for data exists in the cache, so that spills and refills will occur
at preferential times. This allows more control over the caching process and thus
a greater degree of determination during the program execution process.
Scheduling stack spills and refills in this way can also improve performance by
minimizing the RAS cycles required due to stack memory accesses.

The _frame instructions can be used to allocate a block of uninitialized
register space at the top of the SRAM part of the stack, or to discard such a block

of register space when no longer needed. They, like the _cache instructions, can
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be used to group stack spills and refills to improve performance by minimizing the
RAS cycles required due to stack memory accesses.

See Stacks and Stack Caching for more information.

All stack cache management instruction opcodes are formatted as 8-bit
5 values with no encoded fields.

Table 15 - Byte Operation Instructions

1d.b [] replb copyb shl #8
shr #8 testb '

Byte Operations (Table 15

Bytes can be addressed and read from memory directly and can be

15 addressed and written to memory with the code depicted in Table 16.

Table 16 - Code Example: Byte Store

;Byte store
;(byte byte_addr -- )

byte_store::

;address
pop X -2
id 15 [x] ;get data
replb ;insert byte

st [x] ;replace data
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Table 17 - Code Example: Byte Search

;Byte search
;(cell_source cell_count byte -- )

byte_search::

Xcg
pop ct ;count

xcg
pop X ;source

byte_search_loop::

push ;keep data pattern
id [x++]
xor

copyb
byte_search_loop::

push ;keep data pattern
id [x++]
xor
20
testb
pop
skipnc _
dbr byte_search_loop
;camry set if byte found

pop ;discard pattern
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Instructions are available for manipulating bytes within cells. A byte can
be replicated across a cell, the bytes within a cell can be tested for zero, and a cell
can be shifted by left or right by one byte. Code examples depicting scanning for

5 a specified byte, scanning for a null byte, and moving a null-terminated string in
cell-sized units are given in Tables 17-19.
All byte operation instruction opcodes are formatted as 8-bit values with no

encoded fields.

10 Table 18 - Code Examples: Null Search

;Null search
;(cell_search -- )

null_search::

pop X ;address

push.n #-1

pop ct ;a very long loop

;loop terminates when null found or after a
;Jong time if not found.

null_search_loop::
id1s - [x+ 4]
testb

pop
mloopnc null_search_loop

|-
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Table 19 - Code Example: Null-Terminated String Move

:Move cell-aligned null-termined string
;(cell_source cell_dest -- )

mull_move::

pop X .destination
pop Istack ;source

null_move_loop::id
testb

st

mioopnc

-[r0++]

[x#s+]
:check for zero

null move loop
e ——
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Table 20 - Floating-Point Math Instructions

addexp denorm expdif extexp
extsig norml normr replexp
rnds subexp testexp
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Floating-Point Math (Table 20)

The instructions above are used to implement efficient single- and double-
precision IEEE floating-point software for basic math functions (+, -, *, /), and to
5 aid in the development of floating-point library routines. The instructions
performs primarily the normalization, denormalization, exponent arithmetic,
rounding and detection of exceptional numbers and conditions that are otherwise
execution-time-intensive when programmed conventionally. See Floating-Point
Math Support.
10 All floating-point math instruction opcodes are formatted as 8-bit values

with no encoded fields.

Table 21 - Debugging Instructions

|Lbkpr step

Debugging Features (Table 21)

Each of these instructions signals an exception and traps to an application-
20 supplied execution-monitoring program to assist in the debugging of programs.
See Debugging Support.
Both debugging instruction opcodes are formatted as 8-bit values with no

encoded fields.

Table 22 - On-Chip Resources Instructions

“ ido [] 1do.i [] sto [] sto.i []

30 On-Chip Resources (Table 22)

These instructions allow access to the on-chip peripherals, status registers,

and configuration registers. All registers can be accessed with the ido [] and sto []
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instructions. The first six registers each contain eight bits, which are also bit
addressable with ldo.i [] and sto.i []. See On-Chip Resource Registers.
All on-chip resource instruction opcodes are formatted as 8-bit values with

no encoded fields.

Table 23 - Miscellaneous Instructions

ei nop pop mode

push mode split

|

Miscellaneous (Table 23)

The disable- and enable-interrupt instructions are the only system control
instructions; they are supplied to make interrupt processing more efficient. Other
system control functions are performed by setting or clearing bits in mode, or in
an on-chip resource register. The instruction split separates a 32-bit value into
two cells, each containing 16 bits of the original value.

All miscellaneous instruction opcodes are formatted as 8-bit values with no
encoded fields.

Stacks and Stack Caches

The stack caches optimize use of the stack register resources by minimizing
the overhead required for the allocation and saving of registers during
programmed or exceptional context switches (such as call subroutine execution and
trap or interrupt servicing).

The local-register stack 124 (Figure 3) consists of an on-chip SRAM array
that is addressed to behave as a conventional last-in, first out queue. Local
registers r0-r15 are addressed internally relative to the current top of stack. The
registers r0-r14 are individually addressable and are always contiguously allocated
and filled. If a register is accessed that is not in the cache, all the lower-ordinal
registers will be read in to ensure a contiguous data set.

The operand stack 122 is constructed similarily, with the addition of two
registers in front of the SRAM stack cache array to supply inputs to the ALU.
These registers are designated sO and s1, and the SRAM array is designated s2-
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s17. Only registers sO, sl and sw are individually addressable, but otherwise the
operand stack behaves similarly to the local-register stack. Whereas the SRAM
array, s2-s17, can become "empty" (see below), sO and sl are always considered
to contain data.

The stack caches are designed to always allow the current opertion to
execute to completion before an implicit stack memory operation is required to
occur. No instruction explicitly pushes or explicitly pops more than one cell from
either stack (except for stack management instructions). Thus to allow execution
to completion, the stack cache logic ensures that there is always one or more cells
full and one or more cells empty in each stack cache (except immediately after
power-up, see below) before instruction execution. If, after the execution of an
instruction, this is not the case on either stack, the corresponding stack cache will
be automatically spilled to memory or refilled from memory to reach this
condition before the next instruction is allowed to execute. Similarly, the
instructions _cache, _frame, pop sa, and pop la, which explicitly change the stack
cache depth, will execute to completion, and then ensure the above conditions
exist.

Thus r15 and s17 can be filled by the execution of an instruction, but they
will be spilled before the next instruction executes. Similarly, rO and s2 can be
emptied by the execution of an instruction, but they will be filled before the next
instruction executes.

The stacks can be arbitrarily deep. When a stack spills, data is written at
the address in the stack pointer and then the stack pointer is decremented by four
(postdecremented stack pointer). Conversely, when a stack refills, the stack
pointer is incremented by four, and then data is read from memory
(preincremented stack pointer). The stack pointer for the operand stack is sa, and
the stack pointer for the local-register stack is la.

Since the stacks are dynamically allocated memory areas, some amount of
planning or management is required to ensure the memory areas do not overflow
or underflow. Alternatively, stack memory can be dynamically allocated or

monitored through the use of stack-page exceptions.

Stack-Page Exceptions
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Stack-page exceptions occur on any stack-cache memory access near the
boundary of any 1024-byte memory page to allow overflow and underflow
protection and stack memory management. To prevent thrashing stack-page
exceptions near the margins of the page boundary areas, once a boundary area is
accessed and the corresponding stack-page exception is signaled, the stack pointer
must move to the middle region of the stack page before another stack-page
exception will be signaled. See Figure 5.

Stack-page exceptions enable stack memory to be managed by allowing
stack memory pages to be reallocated or relocated when the edges of the current
stack page are approached. The boundary regions of the stack pages are located
32 cells from the ends of each page to allow even a _cache or _frame instruction
to execute to completion and to allow for the corresponding stack cache to be
emptied to memory. Using the stack-page exceptions requires that only 2 KB of
addressable memory be allotted to each stack at any given time: the current stack
page and the page near the most recently encroached boundary.

Each stack supports stack-page overflow and stack-page underflow
exceptions. These exception conditions are tested against the memory address that
is accessed when the corresponding stack spills or refills between the execution the
execution of instructions mode contains bits that signal local-stack overflow, local-
stack underflow, operand stack overflow and operand stack underflow, as well as
the corresponding trap enable bits.

The stack-page exceptions have the highest priority of all of the traps. As
this implies, it is important to consider carefully the stack effects of the stack trap
handler code so that stack-page boundaries will not be violated during its

execution.
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Table 24 - Code Example: Stack Initialization

—— e

init_stacks::

;Create a stack area below xx_base in
:mamory. Once cell of garbage will be read in to
;initialize s2/10.

push.1 #os_base-8

pop sa ;read os_base-4 on-chip
;s0 and sl also contain garbage

push.| #is_base-8 ;allow dead zone

pop la ;read is_base-4 on-chip

Stack Initialization (Table 24)

After CPU reset both of the MPU stacks should be considered uninitialized
until the rest corresponding stack pointers are loaded, and this should be one of
the first operations performed by the MPU.

After a reset, the stacks are abnormally empty. That is, rO nd s2 have not
been allocated, and will be allocated on the first push operation to, or stack
pointer initialization of, the corresponding stack. However, popping the pushed
cell will cause that stack to be empty and require a refill. The first pushed cell
should therefore be left on that stack, or the corresponding stack pointer should be
initialized, before the stack is used further.

Stack Depth

The total number of cells on each stack can readily be determined by

adding the number of cells that have spilled to memory and the number of cells in

the on-chip caches. See Table 25.
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Table 25.
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Code Example: Stack Depth

;Operand stack depth
os_depth::

push.n
scashe

pop
.quad
sdepth

push.1
push
sub

15

shr
shr

add

- 20
is_depth::
Idepth

push.1

sub

shr
shr

30
add

#-2

#02_base-4
sa

#1
#1

#is_base-4
la

#1
#1

;ensure three spaces

available

;keep up to push sa

;uninterruptable

;compute memory used

;convert to cells

;total on-chip & off

;compute memory used

;convert to cells

;total on-chip & off
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Stack Flush and Restore

When performing a context switch, it is necessary to spill the data in the
stack caches to memory so that the stach caches can be reloaded for the new
context. Attention must be given to ensure that the parts of the stack caches that
are always maintained on-chip, 10 and s0-s2, are forced into the spillable area of
the stack caches so that they can be written to memory. Code examples are given

for flushing and restoring the caches in Table 26 and Table 27, respectively.
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Table 26. Code Example: Stack Flush

;Flush stacks to memory

flush_stacks::
push.l #sp_save_area
pops X

;add one cell to local-register stack so on-chip
;part can spill

push.b #-14
pop Istack
10
push 0
sensure no interrupts between flush and sp read
.quad 2
Icache
push la
st [x++]

;add three cells to stack so on-chip part can spill

push

push

push 10

;ensure no interrupts between flush and sp read
.quad 2

scache

push sa

st [x++]

;count for _cache

;count for lcache

,write out spillable area
;save off local-register stack

ptr

;count for scache

;write out all of spillable
area

;save off operand stack
pointer
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Table Z¥ Code Example: Stack Restore

;Restore stacks from memory

restore_stacks::

push.l #sp_save_area

pop X

Id [x++] ;get saved la

pop la ;restore it, r0 refills
10

Id [x++] ;get saved sa

pop sa ;restore it, s2 refills...

pop

pop ;bring s2 to sO

-- 15

Table 28. Traps Dependent on System State

STACK DEPTH CHANGE

) TRAPS
Operand Local-Register

Sgack Stack

+n 0 0OS Ovf

-n 0 OS Unf

0 +1 L.S. Ovf

0 -1 LS Unf

161 -n LS Unf, OS Ovf,
LS Unf & OS Ovf

-1 -n LS Unf, OS Unf,
LS Unf & OS Unf

1. +n >0, -n <0
2. If the instruction reads or writes memory or if a posted
15 write is in progress. a memory fault can also occur.

3. If the instruction is single-stepped, a single-step trap will
also occur.

4. If any trap occurs, a local-register stack overflow could also
occur.

5. 20 LS = Local-Register Stack, OS = Operand Stack, Ovf =
Overflow, Unf = Underflow.
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Exceptions and Trapping

Exception handling is precise and is managed by trapping to executable-
code vectors in low memory. Each 32-bit vector location can contain up to four
instructions. This allows servicing the trap within those four instructions or by
branching to a longer trap routine. Traps are prioritized and nested to ensure
proper handling. The trap names and executable vector locations are shown in
Figure 4.

An exception is said to be signaled when the defined conditions exist to
cause the exception. If the trap is enabled, the trap is then processed. Traps are
processed by the trap logic causing a call subroutine to the associated executable-
code vector address. When multiple traps occur concurrently, the lowest-priority
trap is processed first, but before the executable-code vector is executed, the next-
higher-priority trap is processed, and so on, until the highest-priority trap is
processed. The highest-priority trap’s executable-code vector then executes. The
nested executable-code vector return addresses unnest as each trap handler
executes ret, thus producing the prioritized trap executions.

Interrupts are disabled during trap processing and nesting until an
instruction that begins in byte one of an instruction group is executed. Interrupts
do not need to nest with the traps since their request state is maintained in the
INTC registers.

Table 29.lists the priorities of each trap. Traps that can occur explicitly
due to the data processed or instruction executed are listed in Table 30. Traps that
can occur due to the current state of the system, concurrently with the traps in
Table 30, are listed in Table 28.
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Table 29. Trap Pnorites

!l

10 Priority Trap
1 local-register stack overflow
2 operand stack overflow
3 local-register stack underflow
4 operand stack overflow
15 S memory fault
6 floaring-point exponent
floating-point underflow
floating-point overflow
floating-point round
7 floating-point normalize
8 breakpoint
9 single step
Table 3@ Traps Independent of System State
Instruction Trap Combinations
5 addexp FP Unf, FP Ovf
bkpt Breakpoint
denorm FP Nm
norml FP Unf, FP Nm, FP Unf & FP Nm
normr FP Ovf, FP Nm, FP Ovf & FP Nm
10 md FP Round
step Single Step
subexp FP Unf, FP Ovf
testexp FP Exponent
Notes:
FP #5 Floating Point, Unf = Underflow, Ovf = Overflow,
Nm = Normalize




WO 97/15001 PCT/US96/16013

57

Floating-Point Math Support
The MPU supports single-precision (32-bit) and double-precision (64-bit)

IEEE floating-point math software. Rather than a floating-point unit and the
5 silicon area it would require, the MPU contains instructions to perform most of
the time-consuming operations required when programming basic floating-point
math operations. Existing integer math operations are used to supply the core add,
substract, multiply and divide functions, while the exponents and detect exception
conditions. Additionally, a three-bit extension to the top one or two stack cells
10 (depending on the precision) is used to aid in rounding and to supply the required
precision and exception signaling operations.
Data Formats
Though single- and double-precision IEEE formats are supported. from the
perspective of the MPU, only 32-bit values are manipulated at any one time
15 (except for double shifting). See Figure 6a. The MPU instructions directly
support the normalized data formats depicted. The related denormalized formats
are detected by testexp and fully supportable in software.
Staws and Control Bits
mode register 136 contains 13 bits that set floating-point precision,
20 rounding mode, exception signals, and trap enables. See Figure 7.

Table 31. GRS Extension Bit Manipulation Instructions

clear&d by:
testexp replexp
shifted into by:

denorm normr shift shiftd
shr #1 shr #8 shrd #1

shifQd out of by:
norml
tested by:
md
read by:
piksh mode
written by:

pop mode
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GRS Extension Bits
To maintain the precision required by the IEEE standard, more significand

bits are required than are held in the IEEE format numbers. These extra bits are
used to hold bits that have been shifted out of the right of the significand. They
are used to maintain additional precision, to determine if any precision has been
lost during processing, and to determine whether rounding should occur. The
three bits appear in mode so they can be saved, restored and manipulated.
Individually, the bits are named guard_bit, round_bit and sticky_bit. Several
instructions manipulate or modify the bits. See Table 31.

When denorm and normr shift bits into the GRS extension, the source of
the bits is always the least-significant bits of the significand. In single-precision
mode the GRS extension bits are taken from s0, and in double-precision mode the
bits are taken from s1. For conventional right shifts, the GRS extension bits
always come from the least significant bits of the shift (i.e., sO if a single shift and
sl if a double shift). The instruction norml is the only instruction to shift bits out
of the GRS extension; it will shift into s0 in single-precision mode and into si in

double-precision mode. Conventional left shifts will always shift in zeros and do

not affect the GRS extension bits.
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Table 32. Rounding-Mode Actions
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Rounding

The GRS extension maintains three extra bits of precision while producing
a floating-point result. These bits are used to decide how to round the result to fit
the destination format. If one views the bits as if they were just to the right of the
binary point, then guard bit has a position value of one-half, round_bit has a
positional value of one-quarter, and sticky_bit has a positional value of one-eighth.
The rounding operation selected by fp_round_mode uses the GRS extension bits
and the sign bit of ct to determine how rounding should occur. If guard bit is
zero the value of GRS extension is below one-half. If guard bit is one the value
of GRS extension is one-half or greater. Since the GRS extension bits are not part
of the destination format they are discarded when the operation is complete. This
information is the basis for the operation of the instruction rnd.

Most rounding adjustments by rnd involve doing nothing or incrementing
sO. Whether this is rounding downn or rounding up depends on the sign of the
loating-int result that in ct. If the GRS extension bits are non-zero, then doing
nothing has the effect of "rounding down" if the result is positive, and "rounding
up" if the result is negative. Similarly, incrementing the result has the effect of
"rounding up" if the result is positive and "rounding down" if the result is
negative. If the GRS extension bits are zero then the result was exact and
rounding is not required. See Table 32.

In practice, the significand (or lower cell of the double-precision
significand) is in sO, and the sign and exponent are in ct.carry is set if the
increment from rnd carried out of bit 31 of sO; otherwise, carry is cleared. This
allows carry to be propagated into the upper cell of a double-precision significand.
Exceptions

To speed processing, exception conditions detected by the floating-point
instructions set exception signaling bits in mode and, if enabled, trap. The

following traps are supported:

Exponent signaled from testexp
Underflow  signaled from norml, addexp, subexp
L Overflow signaled from normr, addexp, subexp
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Normalize signaled from denorm. norml, normr
* Rounded signaled from md

Exceptions are prioritized when the instruction completes and are processed
with any other system exceptions or traps that occur concurrently. See Exceptions
5 and Trapping.
. Exponent Trap: Detects special-case exponents. If the tested exponent is
all zeros or all ones, carry is set and the exception is signaled. Setting carry

allows testing the result without processing a trap.

. Underflow Trap: Detects exponents that have become too small due to
10 calculations or decrementing while shifting.
. Overflow Trap: Detects exponents that have become too large due to

calculations or incrementing while shifting.
Table 33. Code Example: Floating-Point Multiply

;Floating-Point Multiply
;(r1 12 -- product)

§-=

testexp

addexp

pop ct :save sign & exp sum

;A184-bit x 24-bit multiply makes a 47 to 48-bit product,
;leaving 16-bits in the high cell. If we multiply 32-bit x 24-bit
;we will get a 56-bit product with 24-bits in the high part,
;which is what we want.)

;make into a 32-bit multiplier

1sshl #8
pop g0

shl #1
push.n #0
20
muju
xcg
pop ;discard low part

2snormr
md
normr

push ct
oreplexp
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. Normalize Exception: Detects bits lost due to shifting into the GRS
extension. The exception condition is tested at the end of instruction execution
and is signaled if any of the bits in the GRS extension are set. Testing at this time
allows normal right shifts to be used to set the GRS extension bits for later
floating-point instructions to test and signal.

. Rounded Exception: Detects a change in bit zero of sO due to rounding.

HARDWARE DEBUGGING SUPPORT

The MPU 100 contains both a breakpoint instruction, bkpt, and a single-
step instruction, step. The instruction bkpt executes the breakpoint trap and
supplies the address of the bkpt opcode to the trap handler. This allows execution
at full processor speed up to the breakpoint, and then execution in a program-
controlled manner following the breakpoint. step executes the instruction at the
supplied address, and then executes the single-step trap. The single-step trap can
efficiently monitor execution on an instruction-by-instruction basis.

Breakpoint

The instruction bkpt performs an operation similar to a call subroutine to
address 0x134, except that the return address is the address of the bkpt opcode.
This behavior is required because, due to the instruction push.1, the address of a
call subroutine cannot always be determined from its return address.

Commonly, bkpt is used to temporarily replace an instruction in an
application at a point of interest for debugging. The trap handler for bkpt will
typically restore the original instruction, display information for the user, and wait
for a command. Or, the trap handler could implement a conditional breakpoint by
checking for a termination condition (such as a register value or the number of
executions of this particular breakpoint), continuing execution of the application
until the condition is met. The advantage of bkpt over step is that the applications
executes at full speed between breakpoints.

Single-Step
The instruction step is used to execute an application program one

instruction at a time. It acts much like a return from subroutine, except that after
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executing one instruction at the return address, a trap to address 0x138 occurs.
The return address from the trap is the address of the next instruction. The trap
handler for step will typically display information for the user, and wait for a
command. Or, the trap handler could instead check for a termination condition
(such as a register value or the number of executions of this particular location),
continuing execution of the application until the condition is met.

step is processed and prioritized similarly to the other exception traps.

This means that all traps will execute before the step trap. The result is that step
cannot directly single-step through the program code of other trap handlers. The
instruction step is normally considered to be below the operating-system level,
thus operating-system functions such as stack-page traps must execute without its
intervention.

Higher-priority trap handlers can be single-stepped by re-prioritizing them
in software. Rather than directly executing a higher-priority trap handler from the
corresponding executable trap vector, the vector would branch to code to rearrange
the return addresses ont he return stack to change the resulting execution sequence
of the trap handlers. Various housekeeping tasks must also be performed, and the
various handlers must ensure that the stack memory area boundaries are not

violated by the re-prioritized handlers.

VIRTUAL-MEMORY SUPPORT

The MPU 100 supports virtual memory through the use of external
mapping logic that translates logical to physical memory addresses. During MPU
RAS memory cycles, the CPU-supplied logical row address is translated by an
external SRAM to the physical row address and a memory page-fault bit. The
memory page-fault bit is sampled during the memory cycle to determine if the
translated page in memory is valid or invalid. Sufficient time exists in the normal
RAS prechange porition of DRAM memory cycles to map the logical pages to
physical pages with no memory-cycle-time overhead.

An invalid memory page indication causes the memory-fault exception to
be signaled and, if enabled, the trap to be executed to service the fault condition.

Posted-write faults are completed in the trap routine; other types of faulting
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operations are completed by returning from the trap routine to re-execute them.
Whether the fault is from a read or write operation is indicated by mflt_write.
The fault address and data (if a write) are stored in mfltaddr and mfltdata.

Memory-fault traps are enabled by mflt_trap en. See the code example in Table
5 34.

Table 34. Code Example: Memory-Fault Service Routine

;Memory-fault trap handier

memfit_handler::

push mode
di

;Get data (if any) and fault address.

push.] #mflidata ;must be read first
10ldo (1

push.1 #mfltaddr ;must be read last

ldo 0

;Now go and get the faulted page from disk into memory,
;update the mapping SRAM, etc.
;(mode data addr -- mode data addr)

;If memory fault occurred while attempting a posted write,
;perform the write in the handler.
20
;check if fault was read or write
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push s2 ;duplicate mode
push.l #mflt_write
and
sbz discard_location ;write fault?
push.1 #miscc
Ido 1
1opush.b #mspwe
and ;posted write?
.quad 3
skipz stack, discard_location
158t (] ;complete it
push ;maintain 2 items
discard_location::
pop ;discard "address”
pop ;discard "data"
20;Reset exception-signal bit.
push.] #mflt exc_sig
iand
pop mode

;For non-posted-write faults, the load/store/pre-fetch will
;refry on return.

ret
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Table 35. VRAM Commands

i Atfa!imgeds of;

RAM read/write

color register set

masked write

flasie write

read transfer

split read transfer

block write

== R=>BN B ol N ol - -J <2 . - N .
cijic e ln e e

masked block write

o =R =R == =l <R < O e O e o
[onl B ol =~ e o (< = Il I N B o I .

set bit-bit mode
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VIDEO RAM SUPPORT

Video RAM (VRAMs) are DRAMs that have a second port that provides
serial access to the DRAM array. This allows video data to be serially clocked
out of the memory to the display while normal MPU accesses occur to the DRAM
array. To prevent DRAM array access contentions, the MPU periodically issues
read transfer requests, which copy the selected DRAM row to the serial transfer
buffer. To eliminate read transfer synchronization problems, many VRAMs have
split transfer buffers, which allow greater timing flexibility for the MPU’s read
transfer operations. The MPU instructs the VRAM to perform a read transfer or a
split read transfer by encoding the command on the state of the VRAM OE, WE,
and DSF (device special function) during the time RAS falls. These operations are
encoded by writing vram and performing an appropriate read or write to the
desired VRAM memory address. See Figure 27.

Some VRAMs have more advanced operations - such as line fills, block
fills, and bit-blts - which are encoded with other combinations of ‘WE, OE, DSF,

RAS, and CAS. A basic set of operations and commands is common among
manufacturers, but the commands for more advanced functions vary. The MPU

supports all 32 combinations of possible encodings.

mode Register
mode contains a variety of bits that indicate the status and execution
options of the MPU. Except as noted, all bits are writable. The register is shown

in Figure 7.

mflt_write
After a memory-fault is signaled, indicates that the fault occurred due to a

Memory write.

guard_bit
The most-significant bit of a 3-bit extension below the least-significant bit

of sO (s1, if fp_precision is set) that is used to aid in rounding floating-point
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numbers.

round_bit
The middle bit of a 3-bit extension below the least-significant bit of s0 (sl,

if fp_precision is set) that is used to aid in rounding floating-point numbers.

sticky _bit

The least-significant of a 3-bit extension below the least-significant bit os s0
(s1, if fp_precision is set) that is used to aid in rounding floating-point numbers.
Once set due to shifting or writing the bit directly, the bit stays set even though

zero bits are shifted right through it, until it is explicity cleared or written to zero.

mflt_trap_en

If set, enables memory-fault traps.

mflt_exc_sig

Set if a memory fault is detected.

Is_boundary

Set if Is_ovf_exc_sig or Is_unf exc_sig becomes set as a result of a stack
spill or refill. Cleared when the address in la, as the result of a stack spill or
refill, has entered the middle region of a 1024-byte memory page. Used by the
local-register stack trap logic to prevent unnecessary stack overflow and underflow
traps when repeated local-register stack spills and refills occur near a 1024-byte

memory page boundary. Not writable.

Is_unf trap en
If set, enables a local-register stack underflow trap to occur after a local-

register stack underflow exception is signaled.

Is_unf _exc_sig

Set if a local-register stack refill occurs. Is_boundary is clear, and the
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accessed memory address is in the last thirty-two cells of a 1024-byte memory

page.

Is_ovf trap_en
If set, enables a local-register stack overflow trap to occur after a local-

register stack overflow exception is signaled.

Is_unf_exc_sig
Set if a local-register stack refill occurs, Is_boundary is clear, and the

accessed memory address is in the last thirty-two cells of a 1024-byte memory

page.

Is ovf trap_en
If set, enables a local-register stack overflow trap to occur after a local-

register stack overflow exception is signaled.

Is_ovf_exc_sig
Set if a local-register stack spill occurs, 1s_boundary is clear, and the

accessed memory address is in the first thirty-two cells of a 1024-byte memory

page.

os_boundary
Set if os_ovf_exc_sig or os_unf_exc_sig becomes set as the result of a

stack spill or refill. Cleared when the address in sa, as the result of a stack spill

or refill, has entered the middle region of a 1024-byte memory page. Used by the

operand stack trap logic to prevent unnecessary stack overflow and underflow
traps when repeated operand stack spills and refills occur near a 1024-byte

memory page boundary. Not writable.

os_unf trap_en
If set, enables an operand stack underflow trap to occur after an operand

stack underflow exception is signaled.
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os_unf_exc_sig
Set if an operand stack refill occurs, os_boundary is clear, and the accessed

memory address is in the last thirty-two cells of a 1024-byte memory page.

os_ovf_trap en
If set, enables an operand stack overflow trap to occur after an operand

stack overflow exception is signaled.

os_ovf_exc_sig
Set if an operand stack spill occurs, os_boundary is clear, and the accessed

memory address is in the first thirty-two cells of a 1024-byte memory page.

carry
Contains the carry bit from the accumulator. Saving and restoring mode

can be used to save and restore carry.

power _fail
Set during power-up to indicate that a power failure has occurred. Cleared

by any write to mode. Otherwise, not writable.

interrupt_en
If set, interrupts are giobally enabled. Set by the instruction ei, cleared by
di.

fp_md_exc_sig
If set, a previous execution of rnd caused a change in the least significant

bit of sO (sl1, if fp_precision is set).

fp_rnd_trap en
If set, enables a floating-point round trap to occur after a floating-point

round exception is signaled.
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fp_nrm_exc_sig
If set, one or more of the guard_bit, round_bit and sticky bit were set after

a previous execution of denorm, norm! or normr.

fp_nrm_trap_en
If set, enables a floating-point normalize trap to occur after a floating-point

normalize execption is signaled.

fp_ovf _exc_sig
If set, a previous execution of normr, addexp or subexp caused the

exponent field to increase to or beyond all ones.

fp_ovf _trap_en
If set, enables a floating-point overflow trap to occur after a floating-point

overflow exception is signaled.

fp unf exc_sig
If set, a previous execution of norml, addexp or subexp caused the

exponent field to decrease to or beyond all zeros.

‘fp_unf trap _en.

If set, enables a floating-point underflow trap to occur after a floating-point

underflow exception is signaled.

fp_exp_exc_sig
If set, a previous execution of testexp detected an exponent field containing

all ones or all zeros.

fp_exp_trap_en
If set, enables a floating-point exponent trap to occur after a floating-point

exponent exception is signaled.



10

15

20

25

30

WO 97/15001 PCT/US96/16013

73

fp_round_mode
Contains the type of rounding to be performed by the MPU instruction rnd.

fp_precision
If clear, the floating-point instructions operate on stack values in IEEE
single-precision (32-bit) format. If set, the floating-point instructions operate on

stack values in IEEE double-precision (64-bit) format.

MPU RESET

After reset, the IOP 110 begins executing at address 0x80000004, before
the MPU begins execution. The IOP must be programmed to execute delay before
the MPU can access the bus and begin execution. Once the IOP executes delay,
the MPU begins executing at address 0x80000008. Details of various startup
configurations are detailed in Processor Startup, below.

INTERRUPTS

The CPU 100 contains an on-chip prioritized interrupt controller 114 that
supports up to eight different interrupt levels from twenty-four interrupt sources.
Interrupts can be received through the bit inputs, from I/O-channel transfers, from
the IOP, or can be forced in software by writing to ioin. For complete details of

interrupts and their servicing, see Interrupt Controller, below.

BIT INPUTS

The CPU 100 contains eight general-purpose bit inputs 116 that are shared
with the INTC 114 and DMAC 112 as requests for those services. The bits are
taken from 'IT\I'[7:O], or if so configured, are sampled from AD[7:0] on the bus.
Sampling from the bus can allow the use of smaller, less-expensive packages for
the CPU; it can also reduce PWB area requirements through reuse of the AD bus

rather than routing a separate bit-input bus. See Bit Inputs, below.

BIT OUTPUTS
The CPU 100 contains eight general-purpose bit outputs 118 that can be
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written by the MPU 108 or IOP 110. The bits are output on OUT[7:0] and are

also available on AD[7:0] during RAS inactive. Taking the bits from the bus can
allow the use of smaller, less-expensive packages for the CPU: it can also reduce
PWB area requirements through reuse of the AD bus rather than routing a separate

bit-output bus. See Bit Outputs, below.

ON-CHIP RESOURCES

The non-MPU hardware features of the CPU 100 are generally accessed by
the MPU 108 through a set of 41 registers 102 located in their own address space.
Using a separate address space simplifies implementation, preserves opcodes, and
prevents cluttering the normal memory address space with peripherals.
Collectively known as On-Chip Resources, these registers 102 allow access to the
bit inputs, bit outputs, INTC, DMAC, MIF, system configuration, and some
functions of the IOP. These registers and their functions are referenced
throughout this manual and are described in detail in On-Chip Resource Registers,
below.

INSTRUCTION REFERENCE

As a stack-based MPU architecture, the ShBoom MPU instructions have
documentation requirements similar to stack based programming languages, such
as American National Standards Institute (ANSI) standard Forth. Not
surprisingly, many of the American National Standard (ANS) Forth core
operations are instructions on the ShBoom MPU. As a result, the ANS Forth
stack notation used for language documentation is useful for describing ShBoom
MPU instructions. The basic notation adapted for the ShBoom MPU is:

(input_operands -- output_operands)

(L:input_operands -- output_operands)
where "--" indicates the execution of the instruction. "Input_operands" and
"output_operands” are lists of values on the operand stack (the default) or local
register stack (preceded by "L:"). These are similar, though not always identical,
to the source and destination operands that can be represented within instruction

mnemonics. The value held in the top-of-stack register (sO or r0) is always on the
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right of the operand list with the values held in the higher ordinal registers
appearing to the left (e.g., s2 sl s0). The only items in the operand lists are those
that are pertinent to the instruction; other values may exist under these on the
stacks. All of the input_operands are considered to be popped off the stack, the
operation performed, and the output_operands pushed on the stack. For example,
a notational expression:

nl n2 -- n3
represents two inputs operands, nl and n2, and one output operand, n3. For the
instruction add, nl (taken from sl) is added to n2 (taken from s0), and the result
is n3 (left in s0). If the name of a value on the left of either diagram is the same
as the name of a value on the right, then the value was required, but unchanged.
The name represents the operand type. Numeric suffixes are added to indicate
different or changed operands of the same type. The values may be bytes,
integers, floating-point numbers, addresses, or any other type of a value that can

be placed in a single 32-bit cell.

addr address

byte character or byte (upper 24 bits zero)
r real number (floating-point number)
flag true/false flag (non-zero = true)

n integer or 32 arbitrary bits

other text integer or 32 arbitrary bits

ANS Forth defines other operand types and operands that occupy more than one
stack cell; those are not used here.

Note that typically all stack action is described by the notation and is not
explicitly described in the text. If there are multiple possible outcomes then the
outcome options are on separate lines and should be considered as individual
cases. If other regions or memory variables are modified, then that effect is
documented in the text.

Also on the stack diagram line is an indication of the effect on carry, if
any, as well as the opcode and execution time in the right margin. A timing with
an "m" indicates the specified number of required memory cycles. The timing of
a memory cycle depends on and the programmed cycle time and whether a RAS or

CAS cycle occurs.
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See Appendix A for mneomic stacks code.
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Table 36. MPU Mnemonics and Opcodes (Mnemonic Order)

Mnemonx Oncode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
add 0 imame be pop 0 0 push 3] 83 scache 45
add pc bb mioop 38 pop 1] al push " 84 sdepth 9
adda eB mioopc 39 pop 72 a2 push 2] [ sexd a8
addc c? mioopn la pop 2] a3 push 1) 86 sframe bt
addexp d2 micopnc 34 pop [ ad push 7 .14 shn e
and el mioopnn 3e pop [ as push 8 88 shiftd ef
bt k" micopnp b5 pop L) 26 push ” 89 shi ”l [ 2]
be offset 00 micopnz ki pop ” a7 push rio 8 shi ”» ec
br il 4ab miopp 3e pop 8 a8 push [2}] & shid " 6
bz offset 10 micopz 3b pop 9 a9 | puwsh 12 & shr nl el
call offse 08 mulfs a6 pop rio a push 3 8 shr ” ed
all 1t L mis ds pop it a push rl4 e shed 1" e?
cmp cb mulu a7 pop 712 " push 50 R skip 0
copyd a0 mxm df pop i3 a push sl 93 skipc k]|
dbr offsel 18... neg 9 pop rl4 x push 82 % skipn 32
dec n of nop e pop 4y be puth n 9% skipnc 35
dec ” cd norm| <7 push x b8 push x 93 skopnn 3%
dec ct cl normr c6 puth ” push.b oy %0 skipnp 2
denorm c$ notc dad push c o4 push. | #eeli af skipnz »
di b? o 0 ) push g0 70 | push.n [ & b3 skipp 36
divu de pop b3 push gl T push.n (2 2 skipz k]
) b6 pop ct ] push 2 n push.n [ 3] b} pin 9
Q@ eS pop 0 50 | pwh 2} n pusn.n ” 3 st |-r0] 64
oxpdif o4 pop st 51 push g4 74 push.n ” u st 1-x] 68
exexp <4 pop 2 52 push [~ s push.n [ B 2 L 110+ +) [
ooy d pop (3] 53 pursh 26 % push.n 1 i 1l {r0] (Y]
iand 9 pop 4 54 push 57 n push.n ] 20 Y [x++] &
inc n ce pop P> 55 push g8 7 push.n [} 2 st ) €l
nc ~ < pop g6 56 push ” » push.n n n 3t ] 60
leache ad pop 87 57 Push glo Ta push.n n pal »nep 34
[} [~¢0} 4“4 pop ' S8 push st n push.n ” 24 0 il b0
d {=x} 4 pop (14 59 puth 812 T push.n ” 2 $80.¢ }] bl
W iro++) 4% pop gi0 S puwh §i3 74 push.n (] 26 | swb <8
1] 0] 42 pop gl 5b push g4 Te pash.n n b4 subb ca
1 Ix++| 49 pop gl2 S¢ push sis " push.n ” 2 subexp a3
] Ixl 41 | pop PY5) sd | pusn N 9o | repib da | sesth )
W 1l © | pop "y Se | push Istack % | repiexp bS | seswexp ™
id.b i} 43 pop - gls 5f | puwh mode 9l et e xcg b2
o 1l 9% pop la bd push 0 1] reti 6f xor 3]
ido.i {l 97 pop istack ba push 2} 81 rev 3

depth % pop mode 5 ] pah 7] 2 md dl
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Table 37. MPU Mnemonics and Opcodes (Opcode Order)

Opoade Mnemonic Opcode Mnemonc Opcode Mnemonic Opcode Mnemonic Opoode Muemonsc
00...07 be offset a” 76 push [ M pop 4 d3 suberp

08..0f call ofser 48 b I} n push 8?7 as pop 5 - tesiexp

10..17 bz offset 9 18 ix++) k] push 8 26 pop % a8 muls

181 dbr ofser 4 Id I-x] ad push 19 a7 pop 7 ) mulls

2 push.n L] % be 1l 71 push [y a8 pop ] a mulu

k1 push.n ] 4 Ul push 1l a9 pop " d8 sexd

2 pah.n n « keache T push g2 a pop 10 49 s

pi ) push.n n 4 call 1 d push g3 ab pop 1y da repid

u push.n »” 4 push | el Te push gid a pop 12 db suerp

25 push.n ”» 50 pop 80 " push F1k o pop 3 & ey

26 push.n ”» H pop 8! 0 push 0 » pop r14 ad now

n push.n n 52 pop 82 8l push rl af de divu

2 push.n ” 53 pop ) 2 push [ b0 w0 I df mxm

% push.n -1 4 pop 'y 5] puh 5] bl "o 1] 0 o

h push.n =6 s5 pop (1) “ push 2] b2 xcg el and

- push.n rs 56 pop % LY push [¢] b3 pap e? shl n
% pah.n ”~ s? pop [y L push 6 b4 pop a 3 she n
w push.n 1”3 S8 pop F Ly push "7 bs repiexp et rev

2 push.n ”2 59 pop f 34 1) push 1] () ¢l 5 eq

o push.n ” Sa pop slo 8® puh It b? di e shid n
» skip S pop gl & push 110 b8 pop x 17 shrd ”n
n skipc S pop g2 »n pash i (] pop mode ed adds

n skipe sd pop (k) & push " be pop tsmack (] and

2 skiprp Se pop (103 & pah (2B bb add 3 ] ~p

n skipz st pop gis % push 4 be pop n w

M ep ©0 st 1] u ] pop fa « shi ”n
b} skpnc (3] " 1] 0 push.d ovie be Hrame od shr ”
3% skpon (4] " (L] 9t push mode of sframe o shift

3 skipp [ ” push ] add ef sofid

» skpr [ st 0] push 0 <l doc ot ©

3 mioop [Y] ” push sl '3 addc fl

» mioopc 6 " 10+ +) ™ psh cl [} Ror n
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INPUT-OUTPUT PROCESSOR

The Input-Output Processor (IOP) 110 (Figure 8) is a special-purpose
processing unit that executes instructions to transfer data between device and
memory, refresch dynamic memory, measure time, manipulate bit inputs and bit
outputs, and perform system timing functions. IOP programs are usually written
to be temporally deterministic. Because it can be difficult or impossible to write
programs that contain conditional execution paths that execute in an efficient
temporally deterministic manner, the IOP contains no computational and minimal
decision-making ability. IOP programs are intended to be relatively simple, using
interrupts to the MPU 108 to perform computation or decision making.

To ensure temporally deterministic execution, the IOP exercises absolute
priority over bus access. Bus timing must always be deterministic; wait states are
not even available on the ShBoom CPU 100. Temporal determinism is achieved
by counting IOP execution and bus clock cycles between the timed IOP events.
Bus access is granted to the IOP 110 unless it is executing delay, which allows
MPU and DMA requests access to the bus during a specified time. Thus, when a
memory access is needed, the IOP simply seizes the bus and performs the required
operation at precisely the programmed instant.

The MIF 120 ensures that the bus will be available when the IOP 110
requires it. The MPU 108 and the DMAC 112 request the bus from the MIF 120,
which prioritizes the requésts and grants the bus while the IOP 110 is executing
delay. The MIF 120 ensures that any transactions will be complete before the IOP
next requires the bus.

When transferring data, the IOP 110 does not modify any data that is
transferred; it only causes the bus transaction to occur at the programmed time. It
performs time-synchronous I/0-channel transfers, as opposed to DMAC 112,
which prioritizes and performs asynchronous I/0O-channel transfers. Other than

how they are initiated, the two types of transfers are identical.

Usage
An IOP program can be used to eliminate an extensive amount of external

logic and simply system designs. Further, by using the IOP 110 for timing-
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dependent system and application operations, timing constraints on the MPU
program can often be eliminated or greatly relaxed.

For example, an IOP program of about 150 bytes supplies the data
transfers and timing for a video display. The program produces vertical and
horizontal sync, and transfers data from DRAM to a video shift register or palette.
Additionally, the IOP supplies flexibility. Video data from various areas of
memory could be displayed, without requiring that the data be moved to create a
contiguous frame buffer. As new data areas are specified, the IOP instructions are
rewritten by the MPU 108 to change the program the IOP 110 will execute for the
next video frame. While this is executing, the MPU still has access to the bus to
execute instructions and process data, and the DMAC 112 still has access to the
bus to transfer data.

Many other applications are possible. The IOP 110 is best used for
applications that require data to be moved, or some other event to occur, at
specific times. For example:

o sending digitized 16-bit data values to a pair of DACs to play CD-quality
stereo sound,
. sampling data from input devices at specified time intervals for the MPU to

later process,

o sending data and control signals to display images on an LCD display,

. transferring synchronous data blocks for an intelligent SCSI controller,

. sending multiple channels of data to DACs for a wave-table synthesizer,

. controlling video and I/O for serial and X-Windows video terminals or PC

video accelerators,

. controlling timed events in process-control environments,

. controlling ignition and fuel for automotive engines, or

. combining several of the above applications to create a PC multimedia
board.

The IOP 110 is designed to dictate access to the bus (to ensure temporally
deterministic execution), but to be a slave to the MPU 108. The IOP can
communicate status to the MPU by:

* the status changing on a device the IOP has accessed,
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o loading a value in a global register,
o setting a bit output, or
. consuming a bit input.
The MPU 108 can control the IOP 110 by:
o rewriting IOP instructions in memory,

. modifying the global registers the IOP is using,
. clearing a bit input, or
o resetting the IOP.

The events controlled do not need to occur at a persistent, constant rate.
The IOP is appropriate for applications whose event rates must be consistently
controlled, whether once or many times. As an example of the former, the IQP
can take audio data from memory and send it to a DAC to play the sound at a
continuous rate, for as long as the audio clip lasts. As an example of the latter,
the IOP 110 can be synchronized to the rotation of an automotive engine by the
MPU 108 in order for the IOP to time fuel injection and ignition, with the
synchronization constantly changed by the MPU (by changing global registers or
rewriting the IOP program) as the MPU monitors engine performance.

Resources

The IOP consists of instruction decode and execution processes, and control
paths to other CPU resources, as shown in Figure 8. The IOP 110 and related
registers include:
o Bit input register, ioin: bit inputs configured as DMA or interrupt requests,
or general bit inputs. See Figure 21.
o Interrupt pending register, ioip: indicates which interrupts have been

recognized but are waiting to be prioritized and serviced. See Figure 22.

o Bit output register, ioout: bits that were last written by either the MPU or
the IOP. See Figure 24.
. IOP reset register, iopreset: writing any value causes the IOP to begin

execution at the IOP software reset address. See Figure 46.
. Global registers g1 through g7: contain values used by delay.
o Global registers g8 through g15: contain loop counts or I/0-channe]
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transfer specifications. Transfer specifications consist of device and memory

transfer addresses and control bits. See Figure 12.

Register Usage (Figure 9)
The IOP 110 shares global registers gl-g15 with the MPU 108, and uses

them for loop counts, delay initialization counts, and transfer information. See
Figure 9. Loop counts and delay counts are 32 bits. Transfer addresses in bits
31-2 typically address cells, but can also address bytes, depending on the 1/0-
channel configuration. Bit one determines whether the transfer is a memory write
or a memory read, and bit zero enable interrupts on 1024-byte memory page
boundary crossings (see Interrupts, below). See Figure 12.

The MPU can read or write any registers used by the IOP at any time. If
there is a register-access contention between the MPU and the IOP, the MPU is

held off until the IOP access is complete.

Table 38. 10P instructions

DELAY

DECREMENT AND SKIP
INTERRUPT MPU

JUMP

LOADMREGISTER
MICRO-LOOP

NO OPERATION
OUTPUT TRUE
OUTPUT FALSE
REFRESH

TEST INPUT AND SKIP
TRANSFER

25

30

Instruction Set

Table 38 lists the IOP instructions; Table 40 and Table 41 list the
mnemonics and opcodes. Details of instruction execution are given in Instruction
Reference, below.
Instruction Formats

All instructions consist of eight bits except for 1d, which requires 32-bit
immediate data, and jump, which requires a page-relative destination address. The
use of eight-bit instructions allows up to four instructions (referred to as an
instruction group) to be obtained on each instruction fetch, thus reducing memory-
bandwidth requirements compared to typical 32-bit processors. This characteristic

also allows looping on the instruction group (a micro-loop) without additional
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instruction fetches, further increasing efficiency. Instruction formats are depicted
in Figure 10.
Jumps

The instruction jump is variable-length. The jump opcode can occur in any
position within the instruction group. The four least-significant bits in the opcode
and all of the bits in the current instruction group to the right of the opcode are
used for the page-relative destination address. See Figure 10. These destination
addresses are cell-aligned to maximize the range of the destination address bits and
the number of instructions that will be executed at the destination. The page-
relative destination address is 4, 12, 20 or 28 bits long, depending on the location
of the opcode within the current instruction group. The bits are used to replace
the same cell-address bits within the next IOP pc. The next IOP pc is the cell
address following the current instruction group, incremented for each Id instruction
that preceded the jump in the current instruction group. The destination address
bits can reach any locations within the current 64-byte memory page, within the
current 4KB memory page, within the current IMB memory page, or within the
current 256MB memory page, depending on the number of bits in the instruction.
If the destination address bits are not of sufficient range for the jump to reach the
destination, the jump must be moved to an instruction group where more
destination address bits are available.
Literals

The instruction Id requires a total of 40 bits, eight bits for the opcode in
the current instruction group, and 32 bits following the current instruction group
for the literal data. The Id opcode can occur in any position within the instruction
group. The data for the first 1d in an instruction group immediately follows the
instruction group in memory; the data for each subsequent 1d occupies successive
locations. The four least-significant bits in the opcode contain the number of the
global register that is the destination for the data. Global register zero (g0) is not
allowed.
Others

All other instructions require eight bits. Most have a register or bit

number encoded in the three or four least-significant bits of the opcode. See
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Instruction Reference, below, for details on the other individual instructions.
Execution Timing

Counting execution clock cycles is the key to programming the IOP. Each
instruction requires execution time as described in Instruction Reference. In
general, instructions require one 2X-clock cycle to execute plus the time for any
delay or explicit or implicit bus transaction. Bus transaction times are as
programmed and described in Programmable Memory Interface, below and Bus
Operation, below.

Additionally, instruction fetch between the execution of instruction groups
must be considered. There is no instruction pre-fetch in the IOP, so timing
computation is simplified. When execution of the instructions in an instruction
group has completed, instruction fetch begins. It requires one 2X-clock cycle for
the bus request, plus the time for the bus transaction (including the slot check).

To ensure temporally deterministic execution, after the execution of delay
or refresh, the first IOP access to each memory group will result in a RAS cycle,
even if one is otherwise not required. RAS cycles will also occur for other
reasons. See Table 49. Thus, the primary timing concerns are the memory
addresses accessed (whether a RAS or CAS cycle will be implicitly required), and
whether or not delay or refresh has been executed since the last access to a

memory group. A code example of a typical refresh routine is given in Table 39.
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Table 39. Code Exampie: IOP DRAM Retresh
:1OP DRAM Refresh
Exeernad_clock = 50000000 ‘M2
TwoX_clack =¢External_clock “2)/100000:
10 100K Hz
HadrdKHz_per_ns = 10000 :scaling factor
0P _saart
:Enmer hare from an IOP software reset,
:A typical 256K DRAM requires S12 refreshes
wtfey $ ms. That mears we meed 8 refresh every
:15.625 us. or & woual hoop tme betow of 31.250 us
Since we do two refreshes per loop.
.Assuming 8 RAS cyche with the siot check takes
111 clocks, the loop delow tmkes | + 11 + 1 + 1] +
;128 delay + | + |1, or 37 + delay 2X clocks 1o
saacwe 31.250 w - 37 2Xclocks u the deiay
I W .t we.
:Total ume 10 be wken by one loop meration in
nihaseconds
Loop_re =31250
:Number of 2X-clocks requirsd by instrucuons
‘escept deiay ume.
Overiveed_ciocis =37
:iirucuon overtesd i RascsecERds
Overhaed s ={Overhsad_clocks®
HndrdK Hz_per_mVTwoX_cleck
2X<clock deisy valws required 0 achweve
iLoop_ms above.
Ratresh_detay =(Loop_re - Overhead_m)/
(HndrdK Hz_per_me/TwoX_clock)
s Mefresa_deley.g7 HIET
sinet. FEsch,
BIE ]
10P_Ratresh_Loop::
refrush A+
redrud Al
oy [y a+
:Refresh_deiny
) d 10P_Refresh_Loop el




10

15

20

25

30

WO 97/15001 PCT/US96/16013

86

Address Space, Memory and Device Addressing
The IOP 110 uses the same 32-bit address space as the MPU 108, but has

it own program counter 154 and executes independently and concurrently. 1/0
devices addressed during the execution of xfer are within the same address space.
xfer bus transactions are identical to I/O-channel bus transactions except for how
they are initiated. See Direct Memory Access Controiler, below.
Interrupts

The IOP 110 can request any of the eight MPU interrupts by executing int.
The IOP can also request an MPU interrupt by accessing the last location in a
1024-byte memory page during the execution of xfer. xfer transfer interrupts and
1/0-channel transfer interrupts are identical. See Direct Memory Access
Controller, below, for more information. The MPU 108 can respond to interrupt
requests when the IOP 110 next executes delay.
Bus Transactions

IOP 110 instruction-fetch bus transactions are identical to MPU 108
memory-read bus transactions. xfer bus transactions are identical to DMA bus
transactions except for how they are intitiated. See Bus Operations, below.
Bit Inputs and Bit Outputs

The bit inputs in ioin are accessed by the IOP 110 with tskipz. This
instruction tests an input bit, consumes it, and conditionally skips the ‘remainder of
the instruction group. This allows for polled device transfers or complex device-
transfer sequences rather than the simple asynchronous transfers available with the
DMAC 112. See Bit Inputs, below. Note that since tskipz causes conditional
execution, care must be taken when designating program code that contains tskipz
if deterministic execution is expected.

The bit outputs in ioout can be individually set or cleared by the IOP 110
with outt and outf. They can be used to activate external events, generate
synchronization pulses, etc. See Bit Outputs, below.

IOP Hardware and Software Reset

After hardware reset, the IOP 110 begins executing an address
0x80000004, before the MPU 108 begins execution. The IOP can then perform
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the RAS cycles required to initialize DRAM, and begin a program loop to
maintain DRAM refresh, before executing delay to allow the MPU to configure
the system.

Once the MPU 108 has configured the system, the IOP 110 typically is
required to begin execution of its application program code. The IOP power-on-
reset address selects the boot memory device, usually because A31 is set and other
high address bits are zero. To clear A31 and thus begin execution in non-boot
memory, a software reset must be issued by the MPU. See Table 39. The
software reset is the only way to clear A31. The software reset can also be used
in other instances to cause the IOP to begin execution of a new program. See
Processor Startup, below.

Instruction Reference

The following text contains a description of each of the IOP instructions.
In addition to a functional description, at the right margin is the instruction opcode
and the number of 2X-clock cycles required to execute.

See Appendix B for mnemonic codes.
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Table 40. IOP Mnemonics and Opcodes (Mnemonic Order)

Mnemonic Upcode Mnemonic Opcode Mnemonic Opcode Mnemons Opcode Mnemonic Ovcode
delay ! 51 nt 2 2 id £ g0 2 oulf i bl skipz 0 80
delay 82 52 nt 3 93 id 1. g1l » oulf 2 b2 skipz i 81
deisy 83 53 nt 4 9 Id 1 g2 % oult 3 b3 skipz 2 8
deizy [ 54 0l 5 95 ld 1313 2d | oun 4 b4 ) wskipz 3 33
delay ] s nt 6 % Id ¥ gl4 - % ) owf s 3] skipz 4 u
delay 86 56 n 7 9 Id s 515 2 outl 6 b6 skipz s 85
deiay 37 57 Jump dest 30 mioop it ki outf 7 b7 1skipz 6 86
dakipz Fi 68 Id 17 2 mioop 34 » outt 0 20 skipz 7 87
dkipz g9 6 | g 2 miocp  gl0 Ta | oun 1 al | xier 1] 08
dskipz 810 6 ¢ fg3 23 miocop gl n outlt 2 a2 xfer 89 2]
dakipz gl 6 id [N L] micop g2 T outt 3 a3 xfer 810 'Y
dakipz F13] &« id [ 2] ] mioop g3 7 outt 4 a4 aler gl %
dekipz  gl3 6 | 036 2 | mioop gl4 % | out ] as | wter g2 o
dekuipz gl 6 1d 137 n emioop gls " outt 6 ab fer F1s) od
dskipz sis of 1é 1. 38 b1} nop (/] outt 7 a7 afer gl [+
nt 0 %0 1d 1.5 29 outf 0 0 refresh 10 xfer gls of
nt | 9




PCT/US96/16013

WO 97/15001
89
Table 41. IOP Mnemonics and Opcodes (Opcode Order)
Opcode Mnemo | Opcode Mnem | Opcode Mnem | Opcode Mnem | Opcode Mnem
nic onic onic onic onic
00...07 29 Id #, 69 dski g9 82 tskip 2 a2 outt 2
08 xfer g8 2a 1d g9 pz z 3 a3 outt 3
09  xfer g9 |26 Id #, 6a  dski glO 83 tskip 4 lad  oun 4
0a xfer 2c Id #, pz z 5 | as outt 5
0b  xfer gio 2d Id #, 6b  dski gll 84  tskip 6 | a6  out 6
Oc xfer 2e 1d #, pz z 7 | a7 outt 7
0d xfer gll 2f Id #, 6¢ dski gl2 85 tskip a8...af
Oe xfer 30... jum #, pz z 0 | b0 ouf 0
of xfer gl2 ] 6d dski gl3 86 tskip 1 | bl outf 1
10 refresh 40...50 dest pz b4 2 102  outf 2
11...20 gl3 51 dela 6e dski gl4 87 tskip 3 b3  ouf 3
21 d y gl pz z 4 | b4 outf 4
2 W gl4 52 dela g2 | 6f dski gI5 88...8f 5 1b5 outf 5
23 id y g3 pz 90 int 6 | b6 outf 6
24 ud gls 53 dela g4 | 70...77 g8 |91 int 7 1b7 ouf 7
25 Id y g5 |78 mlo g9 192 int b8...ef
26 Id 54 dela g6 op 93 int 0| f0 nop
27 Id #, y g7 79 mio gl0 94 int 1 f1...ff
28 Id gl 55 dela op 95 int
#, y g8 | 7a mlo gll 96 int
g2 56 dela op 97 int
#, y 7 mlo gI2 98...9f
g3 57  dela op a0  oun
#, y 7c mlo gi3 al outt
g4 58...67 op
#, 68  dski 7d  mio gi4
g5 pz op
#, Te mlo gl15
g6 op
#, 7f  mio
87 op
#, 80 ki
g8 pz
81 tski
pz
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DIRECT MEMORY ACCESS CONTROLLER

A Direct Memory Access Controller (DMAC) 112 (Figure 11) allows I/0O
devices to transfer data to and from system memory without the intervention of the
MPU. The DMAC supports eight I/O channels prioritized from eight separate
sources. Direct memory access (DMA) requests are received from the bit inputs
through ioin. DMA and MPU bus request priorities are either fixed, which allows
higher-priority requests to block lower-priority requests, or revolving, which
prevents higher-priority requests that cannot be satisfied from blocking lower-
priority requests.

DMA is supported for both cell-wide and byte-wide devices in both cell-
wide and byte-wide memory. Each I/0 channel can be individually configured as
to the type of device and bus timing requirement. Byte-wide devices can be
configured as either one-byte byte-transfer or four-byte byte-transfer devices.
Transfers are flybys or are buffered, as required for the 1/0-channel bus
transaction. See Table 52. DMAC and IOP xfer transfers are identical except for
how they are initiated. DMAC transfers occur from asynchronous requests
whereas xfer transfers occur at their programmed time.

Resources

The DMAC consists of several registers and associated control logic.
DMA request zero, which corresponds to bit zero of the registers, has the highest
priority; DMA request seven, which corresponds to bit seven of the registers, has
the lowest priority. The DMAC and related registers include:

o Bit input register, ioin: bit inputs configured as DMA or interrupt requests,
or general bit inputs. See Figure 21.

o Interrupt enable register, ioie: indicates which ioin bits are to be recognized
as interrupt requests. See Figure 25.

. DMA enable register, iodmae: indicates which ioin bits are to be
recognized as DMA requests. If DMA is enabled on an join bit, interrupt enable
by ioie on that bit is ignored. See Figure 26.

o DMA enable expiration register, iodmaex: indicates which iodmae bits will
be cleared following a DMA transfer involving the last location in a 1024-byte

memory page occurs on that channel. See Figure 44.
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. Global registers g8 through g15: contain I/0-channel transfer
specifications. Transfer specifications consist of device and memory transfer
addresses and control bits. See Figure 12.

. Fixed DMA priorities bit, fdmap, in register miscellaneous B, miscb:
prevents or allows lower-priority bus requests to contend for access to the buss if a
higher-priority request cannot be satisfied (i.e., the available bus transaction siot is
too small). See Figure 29.

DMA Requests

An ioin bit is configured as a DMA request source when the corresponding
iodmae bit is set and the corresponding ioie bit is clear (though ioie is ignored
when iodmae is set). Once a zero reaches ioin, it is available to request a DMA
I/O-channel transfer. See DMA Usage, below. A DMA request is forced in
software by clearing the corresponding ioin bit. Individually disabling DMA
operations on an I/O channel by clearing its iodmae bit prevents a corresponding
zero bit in ioin from being recognized as a DMA request, but does not affect the
zero-persistence of the corresponding bit in ioin.

Prioritization

A DMA request is prioritized with other pending DMA requests, and, if
the request has the highest priority or is the next request in revolving-priority
sequence (see below), its corresponding I/0 channel will be the next to request the
bus. DMA request prioritization requires one 2X-clock cycle to complete. When
the I/0 channel bus request is made, the MIF 120 waits until the current bus
transaction, if any, is almost complete. It then checks iopdelay to determine if the
available bus slot is large enough for the required I/O channel bus transaction. If
the bus slot is large enough, the bus is granted to the I/O channel, and the bus
transaction begins.

The IOP always seizes the bus when iopdelay decrements to zero.
Otherwise, a DMA I/0 channel bus request and an MPU 108 bus request contend
for the bus, with the DMA I/O channel bus request having higher priority.

If fdmap is set and the bus slot is too small, the DMA I/0 channel does not
get the bus. Until a higher-priority DMA I/0 channel request is made that fits the

shrinking available bus slot, no bus transactions occur until the IOP seizes the bus.
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When the IOP 110 next executes delay, the highest-priority DMA request, or the
MPU 108 if there are no DMA requests, repeats the bus request process.

If fdmap is clear and the bus slot is too small, the DMA 1/0 channel does
not get the bus. The next lower-priority bus request is then allowed to request the
bus, with the MPU 108 as the lowest-priority request. The process repeats until
the bus is granted or the IOP 110 seizes the bus. When the IOP 110 next executes
delay, the highest-priority DMA request, or the MPU 108 if there are no DMA
requests, repeats the bus request process.

Memory and Device Addressing

Addresses used for I/O channel transfers contain both the I/O device
address and the memory address. By convention, the uppermost address bits
(when A3l is set) select I/0 device addresses, while the lower address bits select
the memory source/destination for the transfer. Multi-cycle transfer operations
(e.g., transferring between a byte device and cell memory) assume A3l is part of
the external I/0-device address decode and pass/clear A31 to select/deselect the
I/0 device as needed during the bus transaction. See I/O Addressing, below, and
1/0-Channel Transfers, below.

1024-byte memory page boundaries have special significance to I/O channel
transfers. When each I/0-channel bus transaction completes, bits 15-2 of the
memory address in the global register are incremented. The new address is
evaluated to determine if the last location in a 1024-byte memory page was just
transferred (by detecting that bits 9-2 are now zero). When the last location in a
1024-byte memory page was just transferred, and MPU interrupt can be requested
or DMA can be disabled. See Interrupts and Terminating DMA 1/O-Channel
Transfers, below.

Interrupts

An MPU 108 interrupt can be requested after an I/O channel transfer
accesses the last location in a 1024-byte memory page. The interrupt requested is
the same as the I/O-channel number, and occurs if interrupts are enabled on that
channel (i.e., if bit zero of the corresponding global register is set). See Figure
12, and Interrupt Controller, below. This allows, for example, the MPU to be

notified that a transfer has completed (by aligning the end of a transfer memory
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area with the end of a 1024-byte memory page), or to inform the MPU of
progress during long transfers.

Note that for the interrupt to be serviced, the MPU 108 must obtain the bus
for sufficient time to execute the ISR. If the IOP 110 does not execute delay, or
continuous DMA transfers occur, the MPU will be unable to get the bus.

Bus Transaction Types

The type of bus transaction performed with an I/O device depends on
whether the memory group involved is cell-wide or byte-wide and the whether the
device is a one-byte byte-transfer, four-byte byte-transfer, or one-cell cell-transfer
device. See I/0-Channel Transfers, below.

Device Access Timing

Any I/0O device accessed during an I/O-channel transfer must complete the
transfer by the end of the programmed bus cycle. Wait states are not available.
Since I/O devices generally have longer access times than memory, during an I/0-
channel bus cycle the programmed bus timing for the accessed memory group is
modified by substituting ioXebt for the corresponding value in mgXebt. Note that
ioXebt must be adequate both for the I/0 device and for any memory group
involved in the transfer. See Programmable Memory Interface, below.

Maximum Bandwidth Transfers

When the external input source for ioin is TN[7:0], maximum-bandwidth,
back-to-back DMA transfers are possible. To achieve this, at the end of the DMA
bus transaction an internal circuit bypasses the input sampling circuitry to check
the DMA request bit directly on W[7:0]; if the signal is low and no higher-
priority requests are pending, another DMA bus request occurs immediately
without the usual sampling and prioritization delays. This requires that the
external DMA hardware ensure the bit is valid at this time. See Figure 76 78,
page 192. If the remaining bus slot is large enough, the DMA bus request is
granted, and the transfer starts immediately. To terminate back-to-back DMA bus
transactions, the DMA request input must go high before the end of the current
DMA bus transaction, or the corresponding DMA enable bit must be cleared. See
Terminating DMA 1/0-Channel Transfers, below. The maximum possible transfer

rate is four bytes every two 2X-clock cycles. For example, with a 50-MHz 1X
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clock, the maximum transfer rate is 200 MB/second.

Terminating DMA 1/0-Channel Transfers

DMA 1/0 channel bus transactions occur on an I/O channel while DMA
remains enabled and DMA requests are received. To limit DMA transfers to a
specified number of transactions:

o program the DMA transfer address so that the last data transfer desired

occurs using the last location in a 1024-byte memory page, and

° set the corresponding iodmaex bit.

When the above transaction completes, the DMA enable bit in iodmae is cleared.
If the transfer interrupt is enabled in the global register for the corresponding 1/0
channel, a corresponding MPU interrupt will also be requested.

If more than 1024 bytes are to be transferred, enable the transfer interrupt
for the I/0 channel in the corresponding global register. Program the interrupt
service routine to check the global register for the next-to-last 1024-byte page,
and, at that time, set the corresponding iodmaex bit. When the last location in the
next 1024-byte page is transferred, the corresponding bit in iodmae will be
cleared, disabling DMA on that channel. Note that this assumes the bus is
available to the MPU to execute the ISR
during the DMA transfers.

Other Capabilities’

The DMAC 112 can also be used to count events, and to interrupt the
MPU 108 when a given count is reached. To do this, events are designed to
produce a normal DMA memory read request, and the resulting transfer cycle
increments the "address" in the corresponding global register. This "address”
becomes the event counter. The MPU can also examine the register at any time to
determine how many events have occurred. To interrupt the MPU after a given
event count, program the global register for a negative count value within bits 9-2,
and enable the page-boundary interrup. The MPU 108 will be interrupted when

the counter reaches zero.

INTERRUPT CONTROLLER
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An interrupt controller (INTC) 114 (Figure 13) aliows multiple external or
internal requests to gain, in an orderly and prioritized manner, the attention of the
MPU. The INTC supports up to eight prioritized interrupt requests from twenty-
four sources. Interrupts are received from the bit inputs through ioin, from I/O-
5 channel transfers, or from the IOP interrupt instruction int.
Resources
The INTC 114 consists of several registers and associated control logic.
Interrupt zero, which corresponds to bit zero of the registers, has the highest
priority; interrupt seven, which corresponds to bit seven of the registers, has the
10 lowest priority. The INTC 114 and related registers include:
o Bit input register 116, ioin: bit inputs configured as DMA or interrupt
requests, or general bit inputs. See Figure 21.
. Interrupt enable register 158, ioie: indicates which ioin bits are to be
recognized as interrupt requests. See Figure 25.
15 . Interrupt pending register, ioip: indicates which interrupts have been
recognized, but are waiting to be prioritized and serviced. See Figure 22.
* Interrupt under service register, ioius: indicates which interrupts are
currently being serviced. See Figure 23.
° Global registers g8 through g15: contain I/0-channel transfer
20 specifications. Transfer specifications consist of device and memory transfer
addresses and control bits. Bit zero enables interrupts during I/O-channel transfers
on the corresponding channel. See Figure 12.
o DMA enable register, iodmae: indicates which ioin bits are to be
recognized as DMA requests. If DMA is enabled on an ioin bit, interrupt enable

25 by ioie on that bit is ignored. See Figure 26.

Table 42. Sources of Interrupts

Interrupt Source

ioin bit X '
1/0 channel X (register g(8+X))
IOP instruction int X
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Operation

Each interrupt request is shared by three sources. A request can arrive from a
zero bit in ioin (typically from an external input low), from an 1/O-channel
transfer interrupt, or from the IOP instruction int. Interrupt request zero comes
from ioin bit zero, I/O channel zero (using g8), or int 0; interrupt request one
comes from ioin bit one, I/0 channel one (using g9), or int 1; the other interrupt
requests are similarly assigned. See Table 42. Application usage typically
designates only one source for an interrupt request, though this is not required.
Associated with each of the eight interrupt requests is an interrupt service
routine (ISR) executable-code vector located in external memory. See Figure 4.
A single ISR executable-code vector for a given interrupt request is used for all
requests on that interrupt. It is programmed to contain executable code, typically
a branch to the ISR. When more than one source is possible, the current source
might be determined by examining associated bits in ioin, ioie, iodmae and the

global registers.

Interrupt Request Servicing

When an interrupt request from any source occurs, the corresponding bit in
ioip is set, and the interrupt request is now a pending interrupt. Pending
interrupts are prioritized each 2X-clock cycle. The interrupt en bit in mode holds
the current global interrupt enable state. It can be set with the MPU enable-
interrupt instruction, ei; cleared with the disable-interrupt instruction, di; or
changed by modifying mode. Globally disabling interrupts allows all interrupt
requests to reach ioip, but prevents the pending interrupts in ioip from being
serviced.

When interrupts are enabled, interrupts are recognized by the MPU
between instruction groups, just before the execution of the first instruction in the
group. This allows short, atomic, uninterruptable instruction sequences to be
written easily without having to save, restore, and manipulate the interrupt state.
The stack architecture allows interrupt service routines to be executed without

requiring registers to be explicitly saved, and the stack caches minimize the
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memory accesses required when making additional register resources available.

If interrupts are globally enabled and the highest-priority ioip bit has a
higher priority than the highest-priority ioius bit, the highest-priority ioip bit is
cleared, the corresponding ioius bit is set, and the MPU is interrupted just before
the next execution of the first instruction in an instruction group. This nests the
interrupt servicing, and the pending interrupt is now the current interrupt under
service. The ioip bits are not considered for interrupt servicing while interrupts
are globally disabled, or while none of the ioip bits has a higher priority than the
highest-priority ioius bit.

Unless software modifies ioius, the current interrupt under service is
represented by the highest-priority ioius bit currently set. reti is used at the end of
ISRs to clear the highest-priority ioius bit that is set and to return to the
interrupted program. If the interrupted program was a lower-priority interrupt
service routine, this effectively "unnests" the interrupt servicing.

External Interrupts

An ioin bit is configured as an interrup request source if the corresponding
ioie bit is set and the corresponding iodmae bit is clear. Once a zero reaches ioin,
it is available to request an interrupt. An interrupt request is forced in software by
clearing the corresponding ioin bit or by setting the corresponding ioip bit.
Individually disabling an interrupt request by clearing its ioie bit prevents a
corresponding zero bit in ioin from being recognized as an interrupt request, but
does not affect a corresponding interrupt request from another source.

While an interrupt request is being processed, until its ISR terminates by
executing reti, the corresponding ioin but is not zero-persistent and follows the
sampled level of the external input pin. Specifically, for a given interrupt request,
while its ioin bit is not zero-persistent. This effect can be used to disable zero-
persistent behavior on non-interrupting bits.

For waveforms, see Figure 75 and Figure 76.

[/O-Channel Transfer Interrupts

If an ioin bit is configured as a DMA request, or if that 1/0 channel is used

by xfer, interrupt requests occur after a transfer involving the last location in a

1024-byte memory page, provided bit zero in the corresponding global register is
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set (i.e., transfer interrupts are enabled). The request occurs by the corresponding
ioip bit being set, and is thus not disabled by clearing the corresponding ioie bit.
See Direct Memory Access Controller, above, and Input-Output Processor, above.
IOP int Interrupts

The IOP can also directly request any of the eight available interrupts by
executing int. The request occurs by the corresponding ioip bit being set, and is
thus not disabled by clearing the corresponding ioie bit. The MPU will be able to
respond to the interrupt request when the IOP next executes delay.

ISR Processing

When an interrupt request is recognized by the MPU, a call to the
corresponding ISR executable-code vector is performed, and interrupts are blocked
until an instruction that begins in byte one of an instruction group is executed. To
service an interrupt without being interrupted by a higher-priority interrupt:

. the ISR executable-code vector typically contains a four-byte branch, and
. the first instruction group of the interrupt service routine must globally
disable interrupts. See the code example in Table 43.

If interrupts are left globally enabled during ISR processing, a higher-
priority interrupt can interrupt the MPU during processing of the current ISR.
This allows devices with more immediate servicing requirements to be serviced
promptly even when frequent interrupts at many priority levels are occurring.

Note that there is a delay of one 2X-clock cycle between the execution of
ei, di, or pop mode and the change in the global interrupt enable state taking
effect. To ensure the global interrupt enable state change takes effect before byte
zero of the next instruction group, the state-changing instruction must not be the
last instruction in the current instruction group.

If the global interrupt enable state is to be changed by the ISR, the prior
global interrupt enable state should be saved with push mode and restored with
pop mode within the ISR. Usually a pop mode, reti sequence is placed in the
same instruction group at the end of the ISR to ensure that reti is executed, and
the local-register stack unnests, before another interrupt is serviced. Since the
return address from an ISR is always to byte zero of an instruction group (because

of the way interrupts are recognized), another interrupt can be serviced
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immediately after execution of reti. See the code example in Table 43.
Table 43. Code Example: ISR Vectors

;Interrupt Vectors

.quad 4
5
.text vectors ;org 0x100 set in linker
.opt mpu
br int 0 ISR shighest-priority ISR
10br int_1"ISR 8 priority
br int_7 ISR ;lowest-priority ISR
15.text ISRs ;org set in linker file
.opt mpu
int 0_ISR::
push mode :save carry

;This ISR can’t be interrupted because int O has
20;the highest priority.

pop mode .restore carry
retl
inesA_ISR::
push mode ,save carry
»This ISR can be interrupted by a higher priority
;interrupt
30 mode
et
int B ISR::
gush mode ;save ¢ & ei state
3sdi » : s :

;Don’t allow this ISR to be interrupted at all.
sensure return before interrupts re-enabled

40.quad 2
pop mode
ret

int C_ISR::

45push mode ;save carry & ei state

gpp Istack ;place accessible
i

;Don’t allow this critical part of the ISR to be
;interrupted.

50--
push r0 .
pop mode ‘restore ei state

;ISR can be interrupted by higher-priority interrupts
55,now
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As described above for processing ISR executable-code vectors, interrupt
requests are similarly blocked during the execution of all traps. This allows
software to prevent, for example, further data from being pushed on the local-
register stack due to interrupts during the servicing of a local-register stack-
overflow exception. When resolving concurrent trap and interrupt requests,

interrupts have the lowest priority.

BIT INPUTS

Eight external bit inputs are available in bit input register 116 ioin (Figure
14). They are shared for use as interrupt requests, as DMA request, as input to
the IOP instruction tskipz, and as bit inputs for general use by the MPU. They
are sampled externally from one of two sources determined by the state of pkgio.
Resources

The bit inputs consist of several registers, package pins, and associated
input sampling circuitry. These resources include:
4 Bit input register 116, ioin: bit inputs configured as DMA or interrupt
requests, or general bit inputs. See Figure 21.
° Interrupt enable register, ioie: indicates which ioin bits are to be recognized
as interrupt requests. See Figure 25.
. Interrupt pending register, ioip: indicates which interrupts have been
recognized, but are waiting to be prioritized and serviced. See Figure 22.
. Interrupt under service register, ioius: indicates which interrupts are

currently being serviced. See Figure 23.
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. DMA enable register, iodmae: indicates which ioin bits are to be
recognized as DMA requests for the corresponding I/0 channels. If DMA is
enabled on an ioin bit, interrupt enable by ioie on that bit is ignored. See Figure
26.
° Package 170 pins bit, pkgio, in register miscellaneous B, miscb: selects
whether the bit inputs are sampled from the dedicated inputs IN[7:0] or
multiplexed off AD[7:0]. See Figure 29.
Input Sources and Sampling
If pkgio is clear, the bit inputs are sampled form AD[7:0] while RAS is
low and CAS is high. External hardware must place the bit inputs on AD[7:0]
and remove them at the appropriate time. Using AD[7:0] for bit inputs can reduce
PWB area and cost compared with using IN[7:0]. AD[7:0] are sampled for input:
. while CAS is high, four 2X-clock cycles after RAS transitions low,
. every four 2X-clock cycles while CAS remains high,
. immediately before CAS transitions low if at least four 2X-clock cycles
have elapsed since the last sample, and

] four 2X-clock cycles after CAS transitions high, provided CAS is still high.

This ensures:

d time for external hardware to place data on the bus before sampling,

) continuous sampling while CAS is high, and

. at least one sample every ‘CAS bus cycle when four 2X-clocks have elapsed

since the last sample.

To ensure sampling in a given state, an input bit must be valid at the designated
sample times or remain low for a worst-case sample interval, which, as described
above, depends on the programmed bus timing and activity. See Figure 79 81,
page 196, for waveforms.

If pkgio is set, the bit inputs are sampled from -I_I\-I'[7:0] evéry four 2X-clock
cycles. To ensure sampling in a given state, a bit input must be valid for just
more than four 2X-clock cycles. See Figure 78 80, page 194, for waveforms.

All asynchronously sampled signals are susceptible to metastable
conditions. To reduce the possibility of metastable conditions resulting from the

sampling of the bit inputs, they are held for four 2X-clock cycles to resolve to a
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valid logic level before being made available to ioin and thus for use within the
CPU. The worst-case sampling delay for bit inputs taken from AD[7:0] to reach
ioin depends on the bus cycle times. The worst-case sampling delay for bit inputs
from 'IT\I'[7:O] to reach ioin is eight 2X-clock cycles. The sample delay causes bit-
input consumers not to detect an external signal change for the specified period.

The bit inputs reaching ioin are normally zero-persistent. That is, once an
ioin bit is zero, it stays zero regardless of the bit state at subsequent samplings
until the bit is "consumed" and released, or is written with a one by the MPU.
Zero-persistent bits have the advantage of both edge-sensitive and level-sensitive
inputs, without the noise susceptibility and non-shareability of edge-sensitive
inputs. Under certain conditions during DMA request servicing and ioin interrupt
servicing, the ioin bits are not zero-persistent. See DMA Usage and Interrupt
Usage below. An effect of the INTC can be used to disable zero-persistent
behavior on the bits. See General-Purpose Bits below.
DMA Usage

An ioin bit is configured as a DMA request source when its corresponding
iodmae bit is set. After the DMA bus transaction begins, the ioin bit is consumed.

When the external input source for ioin is Tﬁn:m, maximum-bandwidth
back-to-back DMA transfers are possible. To achieve this, an internal circuit
bypasses the sampling and zero-persistence circuitry to check the DMA request bit
on IN[7:0] at the end of the DMA bus transaction without the usual sampling and
prioritizing delays. See Maximum Bandwidth Transfers, above.
Interrupt Usage

An ioin bit is configured as an interrupt request source when the
corresponding ioie bit is set and the corresponding iodmae bit is clear. While an
interrupt request is being processed, until its ISR terminates by executing reti,
corresponding ioin bit is not zero-persistent and follows the sampled level of the
external input. Specifically, for a given interrupt request, while its ioie bit is set,
and its ioip bit or ioius bit is set, its ioin bit is not zero-persistent. This effect can

be used to disable zero-persistent behavior on non-interrupting bits (see below).
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Table 44. Code Example: Bit Input Without Zero-Persistence

:Disable zero-persistence for bit input 7

spush.n #-1 :true flag
push.b L
sto.i #io7ius_i
1} ;set under service bit
e #ioTie_i _
pop 0 Spable merp
10
General-Purpose Bits
If an ioin bit is configured neither for interrupt requests nor for the DMA
requests. then it is a zero-persistent general-purpose ioin bit. Alternatively, by
using an effect of the INTC, general-purpose ioin bits can be configured with
15 zero-persistence. Any bits so configured should be the lowest-priority ioin bits in
order to prevent blocking a lower-priority interrupt. They are configured by
setting their ioie and ioius bits. The ioius bit prevents the ioin bit from zero-
persisting and from being prioritized and causing an interrupt request. See the
code example in Table 44.
20 IOP Usage

25

An ioin bit can be used as input to tskipz. This instruction reads, tests,
and consumes the bit. The ioin bits cannot be written by the IOP 110. General-
purpose ioin bits are typically used for tskipz, but there are no hardware

restrictions on usage.
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MPU Usage
Bits in ioin are read and written by the MPU 108 as a group with Ido [ioin)

and sto [ioin], or are read an written individually with ldo.i [ioXin_i] and sto.i
[ioXin_i]. Writing zero bits to ioin has the same effect as though the external bit
inputs had transitioned low for one sampling cycle, except that there is no
sampling delay. This allows software to simulate events such as external interrupt
or DMA requests. Writing one bits to ioin, unlike data from external inputs when
the bits are zero-persistent, releases persisting zeros to accept the current sample.
The written data is available immediately after the write completes. The MPU can
read ioin at any time, without regard to the designations of the ioin bits, and with
no effect on the state of the bits. The MPU does not consume the state of ioin bits
during reads. See the code examples in Table 45.

Table 46. Code Example: MPU "Real Time" Bit Input Read

S—

push.n

push.n

sto

35pop

F&lsh.n
0

;Read current state of zero&persistcncc input pins.
;(Assumes pkgio is set, and b

10;Assume we just tickled a device and we want to
;see if it just responded, but we have the bits
;configured as zero-persistent. The sample interval
;of four 2X-clock cycles and the sample holding
;delay of four 2X-clock cycles means there is a

15;worst-case delay of eight 2X-clock cycles before
;the data will be available in ioin. So...

its are zero-persistent)

;Tickle device...

;wait the delay time

;6 here, two below

;Rend last sampled state of all zero-persistent bit inputs
;(Assumes all bits are configured as zero-persistent

#-1 ;all ones for all bits (7)

#ioin :(2X-clock cycle #8
:...data is now available
o ioin.

0 ;Temporarily remove

;persistence, latest
;sample latches,
;discard-1

#ioin :
0 ;get last sample
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To perform a "real-time" external-bit-input read on zero-persistent bits,
ones bits must be written to the bits of interest in ioin before reading ioin. This
releases any persisting zeros, latches the most recently resolved sample, and reads
that value. Bits that are not configured as zero-persistent do not require this write.
Note that any value read can be as much as two worst-case sample delays old. To
read the values currently on the external inputs requires waiting two worst-case

sample delays for the values to reach ioin. See the code example in Table 46.

BIT OUTPUTS

Eight general-purpose bit outputs can be set high or low by either the MPU
or the IOP. The bits are available in the bit output register 118, ioout (Figure
15).
Resources

The bit outputs consist of a register, package pins, and associated circuitry.
These resources include:
. Bit output register, ioout: bits that were last written by either the MPU or
the IOP. See Figure 24.
. Outputs, OUT[7:0]: the dedicated output pins.
° Address Data bus, AD[7:0]: multiplexed bit outputs on these pins while
RAS is high.

. Output pin driver current bits, outdrv, in driver current register, driver:
sets the drive capability of OUT[7:0]. See Figure 45.
Usage

The bits are read and written by the MPU as a group with ldo [ioout] and
sto [ioout], or are read and written individually with Ido.i [ioXout_i] and sto.i
[ioXout_i].

The bit outputs are written individually by the IOP with outt and outf. The
bit outputs cannot be read by the I0P.

When written, the new values are available immediately after the write
completes. Note that if both the MPU and IOP write the same bit during the same

2X-clock cycle, any one bit written prevails.
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The bits are always available on OUT[7:0], and on AD[7:0] when RAS is
high. When sampled from ADI[7:0], external hardware is required to latch the bits
when RAS falls. Note that (by definition) these bits are only updated when a RAS
cycle occurs. Using AD([7:0] for output cna reduce PWB area and cost compared
to using OUT[7:0]. See Figure 74 for waveforms.

The drive capability of OUT[7:0] can be programmed in driver.

PROGRAMMABLE MEMORY INTERFACE

The programmable Memory Interface (MIF) 120 allows the timing and
behavior of the CPU bus interface to be adapted to the needs of peripheral devices
with minimal external logic, thus reducing system cost while maintaining
performance. A variety of memory devices are supported, including EPROM,
SRAM, DRAM and VRAM, as well as a variety of 1/0 devices. All operations
on the bus are directed by the MIF 120. Most aspects of the bus interface are
programmable, including address setup and hold times, data setup and hold times,
output buffer enable and disable times, write enable activation times, memory
cycle times, DRAM-type device address multiplexing, and when DRAM-type RAS
Cycles occur. Additional specifications are available for I/O devices, including
data setup and hold times, output buffer enable and disable times, and device

transfer type (one-byte, four-byte or one-cell).

Resources

The MIF consists of severa] registers, package pins, and associated control
logic. These resources include:
° VRAM control bit register, vram: controls OE, LWE, CASes, RASes, and
DSF to initiate special VRAM operations. See Figure 27.
° Miscellaneous A register, misca: controls refresh and RAS-cycle
generation. See Figure 28.
U Miscellaneous B register, miscb: selects each memory group data width
(cell-wide or byte-wide), and the memory bank-select architecture. See Figure 29.
. Memory system group-select mask register, msgsm: indicates which

address bits are decoded to select groups of memory devices. See Figure 32.
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o Memory group device size register, mgds: indicates the size and
configuration of memory devices for each memory group. See Figure 33.

. Miscellaneous C register, miscc: controls RAS-cycle generation and the
location of bank-select address bits for SRAM memory groups. See Figure 34.

. Memory group X extended bus timing register mgXebt: indicates memory-
cycle expansion or extension values, which create longer data setup and hold times
and output buffer enable and disable times for the memory devices in the
corresponding memory group. See Figure 35.

o Memory group X CAS bus timing register, mgXcasbt: indicates the
unexpanded and unextended address and data strobe activation times for the CAS
portion of a bus cycle. See Figure 36.

. Memory group X RAS bus timing register, mgXrasbt: indicates the RAS
precharge and address hold times to be prepended to the CAS part of a bus cycle
to create a RAS cycle. See Figure 37.

. I/O channel X extended bus timing register, ioXebt: indicates memory
cycle expansion or extension values, which create longer data setup and hold times
and output buffer enable and disable times for the I/0 device on the corresponding
I/0 channel. See Figure 38.

o Memory system refresh address, msra: indicates the row address to be

used during the next DRAM refresh cycle. See Figure 39.

. 1/0 device transfer types A register iodtta: indicates the type of transfer
for each of 1/0 channels 0, 1, 2 and 3. See Figure 41.
] I/O device transfer types B register, jodttb: indicates the type of transfer

for each of I/0O channels 4, 5, 6 and 7. See Figure 42.
. Driver current register, driver: indicates the relative drive current of the

various output drivers. See Figure 45.

Memory System Architecture
The MIF 120 supports direct connection to a variety of memory and

peripheral devices. The primary requirement is that the device access time be
deterministic; wait states are not available because they would create non-

deterministic timing for the IOP 110. The MIF 120 directly supports a wide range
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of sizes for multiplexed-address devices (DRAM, VRAM, etc.) up to 128 MB, as
well as sizes for demultiplexed-address devices (SRAM, EPROM, etc.) up to 1
MB. Fast-page mode access and RAS-only refresh to DRAM:-type devices are
supported. SRAM-type devices appear to the MIF as DRAM with no RAS
address bits and a larger number of CAS address bits. See Figure 33.

Address bits are multiplexed out of the CPU on ASD[31:9] to reduce
package pin count. DRAM-type devices collect the entire memory address in two
pieces, referred to as the row address (upper address bits) and a column address
(lower address bits). Their associated bus cycles are referred to as Row Address
Strobe (RAS) cycles and Column Address Strobe (CAS) cycles. With the
exception of memory faults, refresh and CAS-before-RAS VRAM cycles, a RAS
cycle contains, enclosed within the RAS active period, a CAS cycle. Thus RAS
cycles are no longer than CAS cycles. While RAS cycles are not required for the
operation of SRAM-type devices, RAS cycles can occur for several reasons which
are discussed below.

Though I/0 devices can be addressed like memory for access by the MPU,
I/O-channel transfers require addressing an 1/0 device and a memory location
simuitaneously. This is achieved by splitting the available 32 address bits into two
areas: the lower address bits, which address memory, and the higher address bits,
which address 1/0 devices. The location of the split depends upon application
requirements for-the quantity of addressable memory and I/0 devices installed.
The areas can overlap, if required, with the side effect that an I/0 device can only
transfer data with the side effect that an I/0 device can only transfer data with a

corresponding area of memory. These higher address bits are discussed below.

Memory Groups

The MIF 120 operates up to four memory groups, maintairiing for each the
most recent RAS address bits and a unique configuration. Up to two address bits
are decoded to determine the current group. The address bits for this function are
set in the memory system group-selected mask register, msgsm. Each memory
group is programmed for device width, bus timing, and device size (which

specifies how address bits are multiplexed onto AD [31:9]). Address bits below
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the group-selected mask are typically used to address memory devices or portions
of an I/0 device, and bits above the group-select mask are typically used to

address 1/0O devices.

Memory Banks
Each memory group can have one or more memory banks, which are

selected in a manner dependent upon the bus interface mode. All memory banks
within a memory group share the configuration and most recent RAS address of
that group. Two address bits are decoded to determine the current memory bank.

In Single Memory Bank (SMB) mode (mmb = 0), msgsm sets the group-
select bits to be the same bits. This allows up to four groups at one bank per
group, totalling four banks: group 0, bank 0; group 1, bank 1; group 2, bank 2;
and group 3, bank 3. m/msignals for direct connection to memory
devices. See Figure 17.

In Muitiple Memory Bank (MMB) mode (mmb = 1), depending on
whether msgsm overlaps the bank-select bits, one, two or four banks can be
selected in each group. This allows up to sixteen banks for all groups combined;
more banks can be decoded by defining additional bank-select bits with external
logic. The address bits that select the current memory bank either located
immediately above the row-address bits for DRAM devices (mgXds values 0-
0x0e), or are specified by the mssbs bits for all SRAM devices in the system
(mgXds value OxOf). The group-selected bits determine the M_G?x./m(which
output the MGSX signal), and the bank-select bits determine the CASX that
activates in any given bus cycle. See Figure 20. Gating the four MGSx signals
with the four CASX signals creates up to sixteen memory bank selects. See Figure
18.

A hybrid of the two modes can also be programmed by selecting MMB
mode and placing the msgsm bits overlapping the banks bits. This allows using
MGSx directly as a faster chip select for SRAM-type devices than CASx strobes
can be connected directly to the memory device and only one NOR gate per group

is needed to create the RAS for that group.
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Device Requirements Programming

Each memory group can be programmed with a unique configuration of
device width, device size, and bus timing. After a CPU reset, the system operates
in byte-wide mode, with the slowest possible bus timing, and executes from the
memory group zero, typically from an external PROM. See Processor Startup,
below. Usually, the program code in the PROM will Initially execute code to
determine and set the proper configuration for the memory groups, I/0 devices,

and other requirements of the system.

Device Sizes

Memory device sizes are programmed to one of sixteen settings in mgds.
Most currently available and soon to be available DRAM-type device sizes can be
selected, as well as an SRAM-type option. The selection of the device size and
width determines the arrangement of the address bits on AD [31:9]. See Table 47
and Table 48.

For DRAM, during both RAS and CAS cycles, some or al] of the high
address bits are on AD above those AD used for the RAS and CAS address bits.
These high address bits can be used by the application, e.g., for decoding by
external hardware to select I/0 devices. On high-performance systems with fast
CAS cycles, RAS cycles are often required for I/0 address decoding. If the
external decoding hardware is sufficiently fast, however, CAS-cycle I/0 is
possible.

For SRAM, to allow addressing as much as memory as possible with CAS
cycles, the only high address bit that appears during CAS address time is 31. /O
devices can still be selected on CAS cycles by translating the device addressing
bits in software to lower address bits, provided that these translated bits do not
interfere with the desired SRAM memory addressing. The device addressing bits
must be translated to those address bits that will appear during SRAM access on

the AD that are externally decoded for I/0 addressing.

Device Width
Memory device widths are either 8-bits (byte) or 32-bits (cell), and are
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programmed using mgXds in miscb.

As shown in Table 47, cell-wide memory groups do not use Al or AQ to
address the memory device. All accesses to cell-wide devices are cell-aligned and
transfer the entire cell. Memory device address lines are attached to the CPU on
AD [x:11] (x is determined by the device size).

Access to a byte-wide memory group are also cell-aligned and transfer all
four bytes within the cell, from most significant to least significant (i.e., 0, 1, 2,
3). The only exception is for an 1/O-channel transfer with a one-byte byte-transfer
device, in which case only one arbitrarily addressed byte is transferred. See Bus
Operation, below.

As shown in Table 48, byte-wide memory devices require the use of Al
and AO. Since for DRAM the RAS and CAS memory device address bits must be
on the same AD, the address lines (except A31) are internally rotated left two bits.
This properly places A0 on AD11 for connection to DRAM. This also means,
however that the high address bits used for 1/O address decoding appear on AD
differently for a byte-wide memory group than for a cell-wide memory group.
Since I/0 device address decoding hardware is wired to fixed AD, the address bits
used to access a device are different when transferring data with a byte-wide

memory device than when transferring data with a cell-wide memory device.
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Programmable Timing
The timing for RAS and CAS cycles on each memory group, as well as

data setup and hold times for each I/0 channel, is programmable. Depending on
the parameter, timing granularity is in either 2X-clock cycles or 4X-clock cycles.
In some cases, timing is specified in 2X-clock cycles with a modifier available to
advance the event by one 4X-clock cycle.

Timing specification is broken into three pieces: RAS prefix, basic CAS
cycle, and CAS extension/expansion timing. All CAS cycles consist of the basic
CAS cycle timing and the appropriate CAS extension/expansion timing. This
combination is referred to as the CAS part of the memory cycle. All RAS cycles
consist of a RAS prefix plus a CAS part. Bus transactions of multiple bus cycles
are simply the required sequence of RAS prefixes and CAS parts in immediate
succession. Only discrete read cycles or write cycles are performed; read-modify

write cycles are not performed.

RAS Prefix Timing
This timing for a memory group is specified by programming the fields in

the corresponding mgXrasbt. The RAS prefix of a RAS cycle consists of a
leading 2X-clock cycle; the RAS inactive portion, also referred to as RAS
precharge (mgbtras); and the RAS address hold time (mgbtrhld). The last two are
modified by the -early’ RAS bit (mgbteras). For computation of the RAS-cycle
duration, mgbtrast must contained the sum of mgbtras and mgbtrhld plus one.
During this time the DRAM RAS address bits, high address bits, and bit outputs
are on AD. See Figure 37.

CAS Part Timing
This timing for a memory group is specified by programming the fields in

mgXcasbt and mgXebt. The CAS part of the cycle begins with the timing for the
CAS inactive portion, also referred to as CAS precharge (mgbtcas). Next is the
CAS address hold time/beginning of data time (mgbtdob), when DOB, and
possibly OE or LWE, go active. Then CAS, DOB, and either OE (if a memory
read) or both EWE and LWE (if a memory write) go inactive again (mgbtcast).
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To accommodate longer data setup and buffer delay times, the CAS cycle can be
expanded at DOB fall (mgebtdobe). To accommodate longer data hold and output
buffer disable times, the CAS strobes can be extended following DOB inactive
(mgebtcase). Memory write cycles can be programmed to have ngo active
either at the beginning of the CAS cycle (before RAS rise if a RAS cycle) or at
CAS fall (mgbtewea). Sixnilarly,_I:W—Ef can be programmed to go active either at
DOB fall plus expansion or at DOB fall plus expansion plus one 4X-clock cycle

(mgbtlwea). EWE generally accommodates DRAM-type devices. Further, DOB

going inactive tracks EWE/LWE or OE, either of which can be made to go
inactive earlier than the unextended CAS time by one 4X-clock cycle duration,
mgbtcast is added to mgebtsum, the latter of which must contain the sum of
mgebtdobe and mgebtcase. See Figure 36 and Figure 35.

When MPU bus transactions or IOP instruction-fetch bus transactions
occur, the bus cycle timing for the memory group uses the values in mgXebt, as
described above. When an I/O channel bus transaction occurs, the values in
ioXebt for the appropriate I/O channel are substituted for the mgXebt values. The
ioXebt values must be programmed to accommodate any memory group that might

be involved in the transfer, as well as the I/O device.

DRAM Refresh

DRAM requires periodic accesses to each row within the memory device to
maintain the memory contents. Most DRAM devices support several modes of
refresh, including the RAS-only refresh mode supplied by the IOP instruction
refresh. The IOP must be programmed to execute refresh at intervals short
enough for the most restrictive DRAM in the system. The timing during the
refresh cycle uses the RAS cycle timing of the memory group indicated by msrtg,
which must be long enough for the slowest DRAM refresh cycle in the system.
Refresh on each memory group can be individually enabled or disabled. See
Figure 28.

msra contains data used during each refresh cycle. refresh increments the
14-bit row address in msrra after the refresh cycle completes. The address bits in

msra31l and msrha are normally zero, but can be written if the zero values
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interfere with other system hardware during refresh cycles.

Video RAM Support
Special VRAM operating modes are supported through the use of vram.

See Figure 27 and Table 35. Many VRAM modes use a RAS cycle to set an
operating state in the VRAM device. Unexpected RAS cycles can thus cause
undesirable results.

Refresh cycles are one source of unexpected RAS cycles; these can be
disabled on groups containing VRAM by setting the appropriate mgXrd bits. See
Figure 28.

Changes in the high address bits are a second source of unexpected RAS
cycles; these can be prevented from occurring on memory group msvgrp by setting
msevhacr. The high address bits are typically used for I/0 device addresses, and
will require a RAS cycle when these bits change if mshacd is clear. An I/O-
channel transfer immediately prior to a VRAM group access is an example of such
an occurrence. The RAS cycle might be required for proper system operation, but
the VRAM group can be prevented from receiving the RAS cycle by setting
msevhacr. The RAS precharge portion of the cycle will occur on RAS and RAS,
but not on the MGSX/RASx of the VRAM group. Note that if more than one
memory group is used for VRAM then this protection will not be effective. See

Figure 34.

System Requirements Programming

RAS Cycle Generation

RAS cycles are primarily required to bring new row addresses onto AD for
DRAM-type devices. They are also required, in certain instances, to ensure
temporally deterministic execution of the IOP, or to ensure correct operation after
certain events. The MIF handles these cases automatically. RAS cycles can also
be configured to occur in order to supply additional time for decoding 1/0
addresses, for example. Since RAS cycles generally take considerably longer than
CAS cycles, it is desirable to minimize their use. The various sources of RAS

cycles are listed in Table 49.
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Table 49. Sources of RAS cycles
=
Groups Access Reason Configuration Requirement MPU. DMA 10P
all any High address bits changed mshacd clear S all
all any A3l changed mshacd clear. msexadihacclear s all
all any A3l set msras31d clear S all
all any Memory group row address changed C all
pgm first Afier VRAM CAS before RAS msvgrp C All
pgm first afier refresh on enabled group mgXrd set C MPU.DMA
al! first after refresh executes T 1op
all first after memory fault on group C all
ail first mgds written C all
all first CPU hardware reset C all
al first delay completes T 0P
all first IOP software reset T iop
KEY:
all any group or device with which the evem might occur
pgm any group programmed for the event 10 occur
any any arbirary access creating the specified condition
first first access on each specified group afier the specified event
S might be required by system hardware
C might be required for correct operation of devices
T qQuired for temporail inistic I0P :

¥
e —
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When the current and previous addresses are compared to determine if a
RAS cycle is required, the MIF uses the following rules:
o The current DRAM RAS address bits are compared to those from the most
recent RAS cycle on the current memory group. If the bits are different, a RAS
cycle occurs.
o The middle address bits are not compared (see Figure 16). The middle
address bits are: for DRAM, above the RAS address bits up to and including
msgsm; for SRAM, from A22 up to and including msgsm. If msgsm is zero there
are no middle address bits in either case. If msgsm includes A31, A31 becomes
part of the high address bits and is optionally compared.
o The current high address bits are compared to those from the most recent
RAS cycle, depending on the configuration options discussed below. The location
of the high address bits depends on msgsm. See Figure 32.

Three high-address-bit configuration options are available to minimize the
occurrence of RAS cycles caused by high-address-bit comparisons.
o The high address bits are typically used for 1/0 device addresses, and thus
when they change, a RAS cycle might be required for their proper decoding by
external hardware. The high address bits can be excluded from RAS-cycle
determination by setting the memory system high-address-bit compare disable
(mshacd). ' See Figure 28.
o During bus transactions between four-byte-transfer devices and cell
memory or between one-cell cell-transfer devices and byte memory, A31 is passed
(taken from the global register, usually set) or cleared (by the MIF) to select or
deselect the I/0 device when required. Decoding A31 externally for this purpose
can be done more quickly than a full address decode, so this separate option is
available. A31 can be included in or excluded from the high-address- bit compare
(msexa3lhac). See Figure 34.
o In systems that require a RAS cycle to decode I/O device addresses but not
to decode changes in A31 (mshacd clear and msexa31lhac set), it might be
necessary for the memory address bits and I/O addressing bits to overlap if the

system contains a large amount of memory and 1/0 devices. This can prevent a
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RAS cycle from occurring because some of the overlapped address bits do not
cause a RAS (middle address bits), or do not require a RAS (DRAM RAS address
bits), or do not require a RAS (DRAM RAS address bits), even though they
changed from the last system RAS cycle. In this case, a RAS can be forced to
ensure that I/O device addresses will be decoded by setting A31 (msras31d clear).

This option can also be useful any other time forcing a RAS cycle is desirable.

Driver Current
The drive capability of all the package output drivers is programmable.

See Figure 45.

Memory Faults
Virtual memory page-fault detection is enable through mflt_enable in mode.

The memory fault input can either come from AD8 or MFLT, depending on the
state of pkgmflt. See Figure 34.

1/0-Channel Programming
As previously discussed, the normal memory-group bus timing is changed

during an I/0O-channel bus transaction by substituting the values in the
corresponding ioXebt for the values in mgXebt for the memory group involved.
This allows each I/O channel to be programmed to meet the requirements of the
device. The ioXebt values must be adequate for the I/O device, as well as any
memory group with which a data transfer might occur. See Figure 38.

In addition to timing, the type of transfer on each I/O channel can be
specified in iodtta or iodttb. Transfer can either be one byte or four bytes per
transaction for byte-wide devices, or one cell per transaction for cell-wide devices.
Four-byte byte-transfer devices might need to contend for the bus less often than
one-byte byte-transfer devices, and thus can transfer data more efficiently. Also,
with cell-wide memory, four-byte byte transfers are cell-aligned and pack the data
into the memory cells, whereas one-byte byte transfers place only one byte per
memory cell. See Bus Operation, below.

See Direct Memory Access Controller, above, for other I/O-channel
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transfer options

On-Chip Resource Registers

The on-chip resource registers 102 (Figure 20) comprise portions of
various functional units on the CPU 100 including the MPU 108, I0P 110,
DMAC 112, INTC 114, MIF 120, bit inputs 116, and bit outputs 118. The
registers are addressed from the MPU in their own address space using the
instructions Ido [} and sto [] at the register level, or Ido.i [] and sto.i [] at the bit
level (for those registers that have bit addresses). On other processors, resources
of this type are often either memory-mapped or opcode-mapped. By using a
separate address space remains uncluttered, and opcodes are preserved. Except as
noted, all registers are readable and writable. Areas marked "Reserved Zeros"
contain no programmable bits and always return to zero. Areas marked
"Reserved” contain unused programmable bits. Both areas might contain
functional programmable bits in the future.

The first six registers are bit addressable in addition to being register
addressable. This allows the MPU to modify individual bits without corrupting
other bits that might be changed concurrently by the IOP, DMAC, or INTC logic.

Bus activity should be prevented to avoid an invalid bus cycle when
changing the value in any register that affects the bus configuration or timing of a
bus cycle that might be in progress. Bus activity can be prevented by ensuring:
L no DMA requests will be serviced,

. the IOP will not seize the bus (because iopdelay goes to zero),
. no writes are posted, and
. pre-fetch will not occur.

This is typically not a problem because most changes are made just after
power-up when no DMA or IOP activity of concern is occurring. Posted writes
can be ensured complete by ensuring an MPU memory access (such as an
instruction fetch) occurs after the write is posted.

Bit Input Register ioin (Figure 21 contains sampled data from IN [7:0] or

AD [7:0], depending on the value of pkgio.ioin is the source of inputs for all
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consumers of bit inputs. Bits are zero persistent: once a bit is zero in ioin it stays
zero until consumed by the IOP, DMAC, or INTC, or written by the MPU with a
one. Under certain conditions bits become not zero-persistent. See Bit Inputs,
above.

The bits can be individually read, set and cleared to prevent race conditions
between the MPU and other CPU logic.

Interrupt Pending Register ioip (Figure 22) contains interrupt requests that
are waiting to be serviced, Interrupts are serviced in order of priority (0 =
highest, 7 = lowest). An interrupt request from an I/O channel transfer or from
int occurs by the corresponding pending bit being set. Bits can be set or cleared
to submit or withdraw interrupt requests. When an ioip bit and corresponding ioie
bit are set, the corresponding ioin bit is not zero-persistent. See Interrupt
Controller, above.

The bits can be individually read, set and cleared to prevent race conditions
between the MPU and INTC logic.

Interrupt Under Service Register ioius (Figure 23) contains the current
interrupt service request and those that have been temporarily suspended to service
a higher-priority request. When an ISR executable-code vector for an interrupt
request is executed, the ioius bit for that interrupt request is set and the
corresponding ioip bit is cleared. When an ISR executes reti, the highest-priority
interrupt under-service bit is cleared. The bits are used to prevent interrupts from
interrupting higher-priority ISRs. When an ioius bit and corresponding ioie bit are
set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller,
above.

The bits can be individually read, set and cleared to prevent race conditions
between the MPU and INTC logic.

Bit Output Register ioout (Figure 24) contains the bits from MPU and IOP
bit-output operations. Bits appear on OUT [7:0] immediately after writing and on
AD [7:0] while RAS is inactive. See Bit Outputs, above.

The bits can be individually read, set and cleared to prevent race conditions

between the MPU and IOP.
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The Interrupt Enable Register ioie is shown in Figure 25. If the
corresponding iodmae bit is not set, allows a corresponding zero bit ioin to request
the corresponding zero bit in ioin to request the corresponding interrupt service.
When an enabled interrupt request is recognized, the corresponding ioip bit is set
and the corresponding ioin bit is no longer zero-persistent. See Interrupt
Controller, above.

The bits can be individually read, set and cleared. Bit addressability for
this register is an artifact of its position in the address space, and does not imply
any race conditions on this register can exist.

Figure 26 shows the DMA Enable Register iodmae. It allows a
corresponding zero bit in ioin to request a DMA I/O-channel transfer for the
corresponding 1/0 channel. When an enabled DMA request is recognized, the
corresponding zero bit in ioin is set. If the corresponding iodmaex bit is set, the
iodmae bit will be cleared (to disable further DMA requests from that channel)
when an I/0-channel transfer on that channel accesses the last location in a 1024-
byte memory page. See Direct Memory Access Controller, above. When a
iodmae bit is set the corresponding ioie bit is ignored.

Figure 27 shows the VRAM Control Bit Register vrcam. These bits control
the behavior of OE, LWE, the CASes, and DSF at CAS fall time. They can be
used in any combination to activate the various modes on VRAMs.

The bits from vram move through a hidden register prior to controlling the
memory strobes during a subsequent MPU memory cycle. The bits stored for
msvgrp in the hidden register determine which memory group is the current
VRAM memory group, whose strobes will be affected by the accompanying data
in the hidden register. The hidden register is locked once data has been
transferred into it from vram until an MPU access to the VRAM memory group
occurs, thus consuming the data in the hidden register.

When a sto [] to vram occurs and the hidden register is not currently
locked, the data from vram is transferred into the hidden register immediately if a
posted write (to any memory group) is not waiting or in process, or at the end of
the posted write if a posted write is waiting or in process. When a sto [] to vram

occurs and the hidden register is already locked, the data in vram is not
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transferred (and is replaceable) until after the next access to the VRAM memory
group occurs. The next access to the VRAM memory group will use the data in
the hidden register, and when the memory access is complete, the data in vram
will be transferred to the hidden register.

Only MPU memory accesses have an effect on vram or the hidden register.
Immediately after transferring vram to the hidden register, dsfvras, casbvras,
wevras, and oevras in vram are cleared. After the VRAM group access,
additional CAS or RAS cycles can occur on the VRAM memory group without
rewriting the register, and will use the current (cleared) vram data. When writes
to vram are paired with one or more accesses to the VRAM memory group of the
required RAS or CAS type, the internal operations described above will be
transparent to the program. Note that RAS precharge must be at least three 2X-
clock cycles in duration for proper VRAM operation. See Video RAM Support,
above and below.

msvgrp
Specifies the memory group containing the VRAM that is controlled by this

register. IOP and MPU instructions should not be fetched from the memory group
used for VRAM because the VRAM operations will likely occur on an instruction-
fetch bus transaction rather than the intended VRAM transaction.

dsfvcas

Contains the state applied to DSF at the start of the next CAS-part of a
memory cycle on the VRAM memory group. The bit is persistent and is not
automatically cleared after being transferred to the hidden register. DSF is low

when not accessing the VRAM memory group.

dsfvras

Contains the state applied to DSF two 2X-clock cycles after the RAS rises
during the next RAS cycle on the VRAM memory group. DSF changes to the
dsfvcas state at the expiration of the row-address hold time. The bit is

automatically cleared after being transferred to the hidden register.
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casbvras
If set, during the next RAS cycle on the VRAM memory group all CAS

signals are active two 2X-clock cycles after RAS rises, and are inactive at the

normal expiration time. OE, EWE and LWE go inactive at the expiration of the
row-address hold time. The next access to the memory group msvgrp is forced by
internal logic to be a RAS cycle.

Note that since all read and write strobes are inactive throughout their
normally active times during the bus cycle, no data I/O with memory can occur.
The data associated with the ST or LD used to cause the cycle is lost or
undefined. The casbvras bit is automatically cleared after being transferred to the

hidden register.

wevras

If set, LWE is low two 2X-clock cycles after RAS rises during the next
RAS cycle on the VRAM memory group, and is high at the expiration of the row-
address hold time. Otherwise, LWE is high until the expiration of the row-
address hold time during the next RAS cycle on the VRAM memory group. In
either case, during the CAS portion of the cycle LWE behaves normally and the
data transferred is part of the function performed. The bit is automatically cleared
after being transferred to the hidden register.

oevras
If set, OF is low two 2X-clock cycles after RAS rises during the next RAS
cycle on the VRAM memory group, and is high at the expiration of the row-
address hold time. Otherwise, OE is high until the expiration of the row-address
hold time during the next RAS cycle on the VRAM memory group. In either
case, during the CAS portion of the cycle OF behaves normally and the date
transferred is part of the function performed. The bit is automatically cleared

after being transferred to the hidden register.

The Miscellaneous A Register misca is shown in Figure 28.

mgXrd
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Allows (if clear) or prevents (if set) a refresh cycle from occurring on the
corresponding memory group when refresh executes. Allowing refresh on some
memory groups can be undesirable or inappropriate. For example, the primary
side effect of refresh is that the current row address latched in the memory device
is changed. This can be undesirable on VRAM devices when a RAS cycle sets
persistent operational modes and addresses. Another refresh side effect is that the
next memory cycle to the memory group will need to be a RAS cycle to reselect
the operational memory row. This is usually undesirable in SRAM because
refresh is unneeded; the refresh and RAS cycles only slow execution, or make

otherwise predictable timing unpredictable.

msras31d

If set, allows non-RAS cycles when A31 is a one. If clear, forces a RAS
cycle on both one-bus-cycle transactions and the first cycle of four-bus-cycle byte
transactions when A31 is a one. In large memory systems in which the I/O-device
addressing bits overlap the group, bank, or DRAM RAS bits, this option forces a
RAS cycle when one might not otherwise occur because these various bits either
are excluded from the RAS comparison logic or could inadvertently match the I/0O-
device address bits. RAS cycles might be required by design to allow enough time
for I/0 decode and select. A31 is used in selecting I/O addresses.

mshacd

If clear, enables the comparison of the high address bits to those of the
most recent RAS cycle to determine if a RAS cycle must occur. If set, disables
this comparison. These bits are typically used for I/O addresses that require
external decoding logic, which might need the additional time available in a RAS
cycle for this decoding. However, with high-speed logic it is often possible to
decode the I/0 address in the time available within a CAS cycle, thus speeding I/0
access. A31 can be excluded from the high address-bit compare by setting

msexa3lhac.

msrtg
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Contains the number of the memory group whose RAS cycle timing is to
be used for refresh cycles produced by refresh. The memory group specified must

be the group with the most-restrictive (slowest) refresh timing.

The Miscellaneous B Register miscb is shown in Figure 29.
mmb

If clear, selects Single Memory Bank (SMB) mode for all memory groups.
RASKX signals appear on the corresponding package pins. Bank-select bits
correspond with the msgsm bits. Up to four memory banks (i.e., one memory
bank per memory group) can be directly connected and accessed. See Figure 17.

If set, selects Multiple Memory Bank (MMB) mode for all memory groups.
MGSx signals appear on the corresponding package pins. Bank-select bits are
located immediately above the DRAM RAS bits, or for SRAM in the mssbs
location. Up to sixteen memory banks (i.e., four banks per memory group) can
be connected with 1.25 two-input gates per bank. With additional inputs per gate
and additional decoding, an arbitrarily large number of memory banks can easily

be connected. See Figure 20.

fdmap

DMA requests contend for the bus; the highest-priority request gets the
first chance at access. If iopdelay is large enough to allow bus access by the
highest-priority request, the bus is granted to the device.

If fdmap is set and iopdelay is too small for the highest-priority DMA
request, the DMA request does not get the bus. Unless a higher-priority DMA
request occurs that fits the shrinking available bus slot, no bus transactions occur
until the IOP seizes the bus. When the IOP next executes delay, the highest-
priority DMA request--or the MPU if there are no DMA requests--repeats the bus
request process.

If fdmap is clear and iopdelay is too small for the highest-priority DMA
request, the request does not get the bus. The next lower-priority bus request is
then allowed to request the bus, with the MPU as the lowest-priority request. The

process repeats until the bus is granted or the IOP seizes the bus. When the IOP
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next executes delay, the highest-priority DMA request--or the MPU if there are no

DMA requests--repeats the bus request process.

pkgio
If set, inputs to ioin are taken from IN [7:0]. If clear inputs are taken
from AD [7:0] when RAS is low and CAS is high. See Bit Inputs, above.

oed

If set, disables OF from going active during bus cycles. If clear, OE
behaves normally. On CPU reset, the OE signal is disabled to prevent
conventionally connected memory from responding; this allows booting from a

device in I/O space. See Processor Startup, below.

mgXbw

If clear, the corresponding memory group is cell-wide and is read and
written 32-bits per bus cycle. If set, the corresponding memory group is byte-
wide and is read and written in a single bus transaction of four bus cycles, one
byte per cycle.

The Memory Fault Address Register is shown in Figure 30. When a
memory page-fault exception occurs during a memory read or write, mfltaddr
contains the address that caused the exception. The contents of mfltaddr and
mfltdata are latched until the first read of mfltaddr after the fault. After reading
mfltaddr, the data in mfltaddr and mfltdata are no longer valid.

The Memory Fault Data Register is shown in Figure 31. When a memory
page-fault exception occurs during a memory write, mfltdata contains the data to
be stored at mfltaddr. The contents of mfltdata and mfltdata are latched until the
first read of mfltaddr after the fault.

The Memory System Group-Select Mask Register is shown in Figure 32.
It contains zero, one, or two adjacent bits that locate the memory group-select bits
between A16 and A31.

When no bits are set, all memory accesses occur in memory group zero.

The memory system high address bits occur in the address bits: for DRAM,
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above the memory group zero DRAM RAS address: for SRAM, above A21.

When one bit is set, it will determine the address bit that selects accesses
between memory group zero and memory group one. The memory system high
address bits occur in the address bits higher than the bit selected, but always
include A31.

When two adjacent bits are set, they are decoded to select one of four
memory groups that will be accessed. The memory system high address bits occur
in the address bits higher than the bits selected, but always include A31.

The Memory Group Device Size Register is shown in Figure 33. It
contains 4-bit codes that select the DRAM address bit configuration, or SRAM,
for each memory group. The code determines which bits are used during RAS
and CAS addressing and which bits are compared to determine if a RAS cycle is
needed (due to the DFRAM row-address changing). See Table 47 and Tabie 48.

The Miscellaneous C Register is shown in Figure 36.
pkgmflt
If set, the memory-fault input is sampled from MFLT. If clear, the

memory-fault input is sampled from AD8 when RAS falls. See Figure 70.

mspwe
'If set, enables a one-level MPU posted-write buffer, which allows the MPU

to continue executing after a write to memory occurs. A posted write has

precedence over subsequent MPU reads to maintain memory coherency. If clear,

the MPU must wait for writes to complete before continuing.

msexa3lhac

If set, A31 is not included in the high-address-bit compare. If clear, A3l
is included in the high-address-bit compare. See mshacd for more information.
The high address bits are typically used for I/O addresses, and require external
decoding logic that might need the additional time available in a RAS cycle for
decoding. Some bus transactions contain adjacent bus cycles whose high address

bits will differ by only the state of A31, and could thus require a RAS cycle due
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solely to the change in this bit. However, some system designs can decode the

A31 change in the time available in a CAS cycle, thus speeding 1/0 access.

mssbs

For multiple memory bank mode only, these bits contain the offset from
Al4 (A12 for a byte-mode group) to the two address bits used to select banks
within any memory group containing SRAM devices. Typically set to place the
bits immediately above the address bits of the SRAM devices used.

The Memory Group 0-3 Extended Bus Timing Registers are shown in
Figure 35. These values compensate for propagation, turn-on, turn-off, and other
delays in the memory system. They are specified separately for each memory
group. When an I/O-channel bus transaction occurs, the I/O-channel extension,
ioXebt, is substituted the corresponding value. The I/O-channel extensions must

be sufficient for any memory group into which that I/O channel might transfer.

mgebtsum
Programmed to contain the sum of mgebtcase and mgebtdobe. This value
is used only during the slot check to compute the total time required for the bus

cycle.

mgebtdobe

Expands the CAS cycle at DOB fall by the specified time. This parameter
is used to compensate for memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a memory read cycle, OE is
expanded. If the bus cycle is a memory write cycle, EWE is expanded and LWE

fall is delayed the specified time.

mgebtcase
Extends the CAS cycle by the specified amount after the unextended CAS
time. DOB, OE, EWE and LWE will rise unextended. This parameter is used to

allows for data hold times or to allow for devices to disable their output drivers.

When used in combination with mgbtewe or mgbteoe, hold or disable times can be
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set in most increments of 4X-clock cycles.

The Memory Group 0-3 CAS Bus Timing Registers are shown in Figure
36. They define the basic timing for CAS-only cycles and the CAS portion of
RAS cycles. Timing is specified separately for each memory group. The values
that refer toa-s-apply to CAS, CASO, CAS1, CAS2 and CAS3, appropriately.
The basic CAS cycle timing is augmented by mgXebt and ioXebt values.

mgbtcas
Specifies the CAS-cycle precharge time, the time from the start of the

CAS-timed portion of the memory cycle until CAS goes low.

mgbtdob

Specifies the end of address time (column address hold) and the beginning
of data time on the bus relative to the start of the CAS portion of the memory
cycle. This is the time the CPU places write data on the bus or begins accepting

read data from the bus.

mgbtcast

Specifies the total unexpanded and unextended time of a CAS cycle, ]-ﬁf
OE, EWE and LWE will rise at this time unless modified by mgbteoe or
mgbtewe. This. value is also used during the slot check to compute the total time "

required for the bus cycle.

mgbtewea
In a system with fast SRAM, EWE fall at cycle start is needed to have an
adequate write enable. Other devices require their addresses to be valid before

write enable falls; in these cases CAS low is required.

mgbtiwea
Specifies a delay of zero or one 4X-clock cycle after DOB fall, plus
expansion for LWE fall. Expansion refers to the value of mgebtdobe or

ioebtdobe. as appropriate. Allows adjustment for system and device delays. For
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example, DRAM expects data valid at its write-enable fall. In small systems DOB
plus one 4X-clock cycle (with an expansion of zero) might be appropriate. In a
large system with a heavily loaded (or buffered) LWE, DOB might be appropriate
for the fastest memory cycle. If a larger delay is needed, an expansion value can

be set. Allows resolution of one 4X-clock cycle in expansion timing.

mgbteoe

If set, OE rises one 4X-clock cycle before the end of the unextended CAS
cycle. If clear, OE rises with the end of the unextended CAS cycle. One 4X-
clock cycle is sufficient output-driver disable time for some devices; if not, output-
driver disable time can be created in most increments of 4X-clock cycles by

combining mgebtcase and mgbteoe.

mgbtewe.
If set, EWE and LWE rise one 4X-clock cycle before the end of the
unextended CAS cycle. If clear, EWE and LWE rise with the end of the

unextended CAS cycle. One 4X-clock cycle is sufficient hold time for some
devices; if not, hold time can be created inmost increments of 4X-clock cycles by

combining mgebtcase and mgbtewe.

Figure 37 shows the Memory Group 0-3 RAS Bus Timing Registers. They
define the timing for the RAS-prefix portion a of RAS memory cycle. Timing is
specified separately for each memory group. The values are selected as needed
for the memory devices used. Timing values that refer to RAS apply to RAS,
RASO, RAS1, RAS2 and RAS3, appropriately.
mgbtrast

Programmed to contain the sum of mgbtras and mghtrhld plus one. At the
end of this time the CAS portion of the memory cycle begins. This value is used

only during the slot check to compute the total time required for the bus cycle.

mbgtras

Specifies the RAS precharge time, the time RAS is high at the beginning of
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a RAS cycle. The time can be shortened with mgbteras.

mghtrhld
Specifies the row-address hold time of a RAS cycle, immediately preceding

the CAS timing portion of the cycle. The time can be lengthened with mgbteras.

Immediately following this time the CAS address is placed on the bus, if

appropriate.

mgbteras
If set, reduces the RAS precharge time (specified by mgbtras) and extends
the row-address hold time (specified by mgbtrhld) by one 4X-clock cycle.

Figure 38 shows the I/O Channel 0-7 Extended Bus Timing Registers.

These values compensate for signal propagation, turn-on, turn-off, device,
and other delays in the memory and I/O systems. They are substituted for the
memory group values, mgXebt, during I/O channel transfers and thus must be
sufficient for the I/O device, as well as any memory group with which the I/O

device will transfer.

ioebtsum
Programmed to contain the sum of ioebtcase and ioebtdobe. This value is
used only during the slot check to compute the total time required for the bus

cycle.

ioebtdobe

Expands the CAS cycle at DOB fall by the specified time. This parameter
is used to compensate for memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a memory read cycle, OE is
expanded. IF the bus cycle a is memory write cycle, EWE is expanded and LWE

fall if delayed the specified time.

1oebtcase
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Extends the CAS cycle by the specified amount after the unextended CAS

time. DOB. OE, EWE and LWE will rise unextended. This parameter is used to
allow for data hold times or to allow for devices to disable their output drivers.
When used in combination with mgbtewe or mgbteoe, hold or disable times can be

set in most increments of 4X-clock cycles.

Figure 39 shows a Memory System Refresh Address. This contains the
next address used for memory-system refresh. The values are placed on the
specified pins when refresh executes, and msrra is incremented by one. Time
timing for a refresh cycle is set by msrtg, and those memory groups that are

refreshed are set by mgXrd.

Figure 40 shows an IOP Delay Count Register. This contains the number
of 2X-clock cycles until the IOP seizes the bus. The counter is decremented once
each 2X-clock cycle. The counter can be used, for example, to determine if a
time-critical task can be completed before the IOP seizes the bus, or to measure

time in 2X-clock increments.

Figure 41 shows an I/O Device Transfer Types A Register. Figure 42
shows an 1/0 Device Transfer Types B Register. These registers specify one of
three transfer types for the device attached to the corresponding 1/0 channel.

. Four-Byte Byte-Transfer Type: Transfers four bytes of data, one byte at a
time, between the device and memory in a single bus transaction. The transaction
consists of four bus cycles accessing the device, plus one additional busy cycle to
access memory if the memory is cell-wide. All initial transfer addresses are to
cell boundaries.

. One-Byte Byte-Transfer Type: Transfers one byte of data between the
device and memory in a single bus transaction. The transaction consists of a
single bus cycle. Transfers to cell-wide memory are to byte zero of the addressed
cell, with the remaining 24 bits undefined. Transfers to byte-wide memory are to
the specified byte.

. One-Cell Cell-Transfer Type: Transfers one cell of data between the device
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and memory in a single bus transaction. The transaction consists of one bus cycle
to access the device, plus four additional busy cycles to access memory if the

memory is byte-wide. All initial transfers are to cell boundaries.

Figure 43 shows Reserved Register Addresses. These addresses are

reserved.

Figure 44 shows a DMA Enable Expiration Register. This register clears
the corresponding DMA enable bit in iodmae after a DMA I/O channel transfer is
made to the last location in a 1024-byte memory page. This allows DMA on the
corresponding I/0 channel to be disable after transferring a predetermined number

of bytes. See Direct Memory Access Controller, above.

Figure 45 shows a Driver Current Register. This register allows
programming the relative amount of current available to drive the various singles
out of the package. The programmed driver current has several effects.

. The amount of current selected determines the rise and fall times of the
signals into a given load. The rise and fall times, PWB wire lengths, and PWB
construction determine whether the signals will need to be treated as transmission
lines, and whether signal terminations are required.

. Greater driver current increase di/dt, and thus increases package and
system electrical noise. Though total power consumption does not change when
driver current is changed (since the same load is charged, just slower or faster),
there is less noise produced when di/dt is decreased. Reducing output driver pre-
driver current also reduces package and system electrical noise, and can thus
facilitate approval of electromagnetic compliance for products.

Programmable drivers allow the system designer to trade among system
design complexity, system cost, and system performance.

Output drivers consist of a pre-driver and an output driver. The current-
supply capability of each part of the output driver can be programmed separately.
The low bit of each filed selects full- or half-drive capability on the pre-drivers for

that set of signals. The upper one or two bits select 1/3-, 2/3- or full-drive
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capability.

The pre-drivers are supplied by the core logic power, and the noise
generated by their operation can affect the performance of the CPU in systems
with an inadequate power supply or decoupling. In such systems, lowering pre-
driver current can possibly compensate for system design flaws.

The drivers are on two separate power buses: one for AD and one for
control signals and all other output pins. As a result, inside the package, electrical
noise caused by AD driver switching is prevented from corrupting the quality of
the control signals. This separation, however, does not preclude noise coupling
between the power pins outside the package. Depending on system loading, the
output drivers account for 50% to 95% of the power consumed by the CPU, and

thus are a potentially large noise source.

Figure 46 shows an IOP Reset Register. Writing any value causes the JOP
to begin executing at its software reset executable-code vector (location
0x00000010) at the end of the current memory cycle. This is the mechanism used
to clear bit 31 in the IOP PC after hardware reset, and to direct the IOP to execute
a new procedure. The value of the register is -1 during the IOP reset process
(i.e., from the time iopreset is written until the IOP begins execution of the

software reset executable-code vector); otherwise, its value is zero.

Table 50 shows a Bit Field to On-Chip Register Cross Reference.
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Table 50. Bit Field to On-Chip Register Cross-Reference

Bit Field " Register l Bit Field Register I Bit Field l Register
addrv drivers ioXout_i wout mmb misch
banixdrv drivers mfliaddr miladdr msexallhac misec
casbvras vram mflidata mflidata msexvhacr misce
ctriadrv drivers mgbcas mgXcasbt msgsm msgsm
cribdry drivers mgbicast mgXcasht mshacd misca
dsfvcas vram mghudob mgXcasbt mapwe misce
dsfvras vram mgbeoe mgXcasbt msra3l msra
fdmap miscb mgbieras mgXrasbt msras3ld misca
ioebtcase ioXebt mgbtwe mgXcasbt msrha msra
ioebidobe ioXebt mgbiewea mgXcasbt ~ msma msra
woebesum oXebt mgbtiwea mgXcasby msrig misca
iopdelay iopdeiay mgberas mgXrasbt mssbs misce
iopreset iopreset mgbtrast mgXrasbt msvgrp vram
ioXdmae_i iodmae mgberhld mgXrasbt oed misch
oXdmaex iodmaex mgebecase mgXebt ocvras vram
oXdn iodua/b mgebidobe mgXebt outdry drivers
oXie_i iote mgebuum mgXebt pkgoo misch
ioXin_i ioin mgXbw misch pkgmft misce
ioXip_i oip mgXds ‘ mgds rasbcasbdrv drivers
ioXius_i tojus mgXrd misca wevras vaam
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BUS OPERATION

The MIF 120 handles requests from all sources for access to the system
bus. Requests arrive and are prioritized, respectively, from the IOP 110, DMAC
112 and MPU 108. This order ensures that the IOP always has predictable
memory timing, that DMA has bus availability (because the MPU can saturate the
bus), and that memory coherency is maintained for the MPU.

Operation

The MIF 120 must always grant the bus to the IOP 110 immediately when
required in order to guarantee temporally deterministic IOP execution. To allow
this, the IOP has exclusive access to the bus except when it is executing delay.
When a DMA or MPU bus request is made, the MIF determines the type of bus
transaction, computes the estimated time required (see Table 51), and compares
this to iopdelay-the amount of time before the IOP seizes the bus. This available
bus time is called the slot. If iopdelay is zero, the IOP currently has the bus. If
iopdelay is larger than the value computed for the bus transaction, the bus is
granted to the requestor. Otherwise, the bus remains idle until a bus request
occurs that can be satisfied, or until the IOP seizes the bus. This slot check
requires one 2X-clock cycle to complete. Once a bus request has passed the slot
check, the bus transaction begins on the next 2X-clock cycle.

The slot check computation is an estimate because for I/0 channel bus
transactions i0Xebt is used for all parts of the computation even though a mix of
ioXebt and mgXebt times might be used during the transaction. The effect of this
simplified computation is that the slot requested might be larger than the bus time
actually sued. The bus becomes immediately available for use when the actual bus

transaction completes.
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Within the MPU, bus requests arrive from and are prioritized, from highest
to lowest: posted-write, instruction pre-fetch, local-register stack spill or refill,
operand stack spill or refill, 1d, st, and instruction fetch.

The address lines out of the CPU are multiplexed to reduce package pin
count and provide an easy interface to DRAM. DRAM:s have their addresses split
into two pieces: the upper-address bits, or row address, and the lower-address bits,

or column address. The two pieces of the address are clocked in the DRAM with

two corresponding clock signals: RAS and CAS. AD [31:0] also output higher-
order address bits than the DRAM now and column addresses during RAS and
CAS times, as well as data input or output during the last portion of each bus
cycle while DOB is active. Bit outputs and bit inputs are also available on AD
[7:0].

I/0 Addressing

All the address bits above the msgsm bits are referred to as the high
address bits. These bits are typically used to address I/O devices with external
decoding hardware. They can be configured to be included in RAS-cycle
determination, or excluded for faster I/0 cycles, to match the requirements of the
external decoding hardware. See System Requirements Programming, above, for

the available configuration options.

Bus Transaction Types

The CPU supports both cell-wide and byte-wide memory, cell-wide and
byte-wide devices, and single-or multi-bus-cycle transactions. Various
combinations of these are allowed; they require one, four, or five bus cycles to
complete the bus transaction, which can include zero, one, or two RAS cycles.
The underlying structure of all bus cycles is the same. Depending on the
programmed system configuration, device-memory combination, and current
system state, RAS prefix and CAS parts of bus cycles are combined to provide
correct address generation and memory device operation. Table 53 lists the

various combinations of RAS and CAS cycles that are possible within a given bus
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transaction.

MPU and IOP (non-xfer) Memory Cycles

The MPU and the IOP can read and execute programs stored in cell-wide
or byte-wide memory. The MPU can also read data from and write data to cell-
wide and byte-wide memory. All accesses to cell-wide or byte-wise memory
involve an entire cell. Accesses to cell-wide memory involve an entire cell.
Accesses to cell-wide memory thus require one bus cycle, while accesses to byte-

wide memory require four busy cycles.

Cell Memory Write from MPU
Cell Memory Read to MPU/IOP
Table 53 and the referenced figures provide details regarding these bus

transactions. These transactions require on bus cycle.

Byte Memory Write from MPU
Byte Memory Rad to MPU/IOP

Table 53 and the referenced figures provide details regarding these bus
transactions. These transactions require four bus cycles. Byte address bits A1 and
AOQ are incremented from O to 3 to address the most-significant through the least-

significant byte of the accessed cell.

I/0-Channel Transfers

Depending on the device transfer type and memory device width, a variety
of bus cycle combinations occur between 1/0 devices and memory, as shown in
Table 52. These starting address for the transaction comes from the global
register that corresponds to the I/O channel involved (g8 corresponds to I/0
channel 0, ..., g15 corresponds to 1/0 channel 7). The direction of the transfer
relative to memory is indicated by bit one of the same register. See Figure 12.
The device transfer type for the transactions comes from the corresponding field in
iodtta or jodttb. The bus transaction proceeds with the cycles and strobes listed in
Table 55.
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Cell Memory Write from Four-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires five bus cycles. Data is collected from the
device and stored in the MIF during the first four bus cycles, and is written to
memory by the MIF during the fifth bus cycle. Data that is written to memory
while being collected from the device during the first four bus cycles is replaced
during the fifth bus cycle. A31 is cleared to deselect the I/O device in order to
prevent contention with the MIF during the fifth busy cycle. Byte address bits A1
and AQ are incremented from O to 3 to address the most-significant through the

least-significant byte of the accessed cell while the data is being transferred from

the device.

Table 52.

Cell Memory Read to Four-byte Byte Transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires five bus cycles. Data is collected from
memory and stored in the MIF during the first bus cycle and written to the device
by the MIF during the last four bus cycles. OE is suppressed during the last four
bus cycles to prevent bus contention between memory and the MIF while the
device is written. A31 is cleared to deselect the I/0 device in order to prevent
contention with memory during the first bus cycle. Byte address bits A1 and AQ
are incremented from O to 3 to address the most-significant through the least-
significant byte of the accessed cell while the data is being transferred to the

device.

Byte Memory Write from Four-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires four bus cycles. Byte address bits A1 and AQ
are incremented from O to 3 to address the most-significant through the least-
significant byte of the accessed cell on both the device and memory. The data is
transferred on the bus directly from the device to memory without the intervention
of the MIF.
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Byte Memory Read to Four-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires four bus cycles. Byte address bits A1 and AO
are incremented from O to 3 to address the most-significant through the least-
significant byte of the accessed cell on both the device and memory, The data is
transferred on the bus directly from memory to the device without the intervention
of the MIF.

Cell Memory Write from One-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires bus cycle. Data is typically supplied by the
device on AD [7:0], and is written to the corresponding bits in memory. AD
[31:8] are also written to memory, and, if not driven by an external device, will

still hold the address bits.

Cell Memory Read to One-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires one bus cycle. Data is typically taken by the
device from AD [7:0], which come from the corresponding bits in memory. The

other memory bits are driven by memory, but are typically unused by the device.

Byte Memory Write from One-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires one bus cycle. Addresses in the global
registers normally address cells because the lowest two bits are unavailable for
addressing. However, for this transaction, the address in the global register is a
modified byte address. That is, the address is shifted left two bits (pre-shifted in
software) to be correctly positioned for the byte-wide memory connected to AD.
The address is not shifted again before reaching AD.A31 remains in place, A30
and A29 become unavailable, and the group bits exist two bits to the right of their
normal position due to the pre-shifting in the supplied address. This transaction

allows bytes to be transferred, one byte per bus transaction, and packed into byte-
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wide memory.

Byte Memory Read to One-byte Byte-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires one bus cycle. Addresses in the global
registers normally address cells because the lowest two bits are unavailable for
addressing. However, for this transaction, the address in the global register is a
modified byte address. That is, the address is shifted left two bits (pre-shifted in
software) to be correctly positioned for the byte-wide connected to AD). The
address is not shifted again before reaching AD. A31 remains in place, A30 and
A29 become unavailable, and the groups bits exist two bits to the right of their
normal position in the due to the pre-shifting in the supplied address. This
transaction allows bytes to be transferred, one byte per bus transaction, and

unpacked from byte-wide memory to a device.

Cell Memory Write from One-cell Cell-transfer Device
Table 53 and the referenced figure provide details regarding the bus

transaction. The transaction requires one bus cycle.

Cell Memory Read to One-cell Cell-transfer Device
Table 53.and the referenced figure provide details regarding the bus

transaction. The transaction requires one bus cycle.

Byte Memory Write from One-cell Cell-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires five bus cycles. Data is collected from the
device and stored in the MIF during the first bus cycle and written to memory by
the MIF during the last four bus cycles. Data that is written to memory while
being collected from the device during the first bus cycle is replaced during the
second cycle. A31 is cleared to deselect the I/O device in order to prevent
contention with the MIF during the last four bus cycles. Byte address bits A1 and

AOQ are incremented from O to 3 to address the most-significant through the least-
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significant byte of the accessed cell while the data is being transferred from the

MIF to memory.

Byte Memory Read to One-cell Cell-transfer Device

Table 53 and the referenced figure provide details regarding the bus
transaction. The transaction requires five bus cycles. Data is collected from
memory and stored in the MIF during the first four bus cycles and written to the
device by the MIF during the last bus cycle. OE is suppressed during the fifth bus
cycle to prevent a bus contention between the memory and MIF while the device
is written. A31 is cleared to deselect the I/O device in order to prevent contention
with memory during the first four bus cycles. Byte address bits A1 and AQ are
incremented from O to 3 to address the most-significant through the least-
significant byte of the accessed cell while the data is being transferred from the

memory to the MIF.
Bus Reset

External hardware reset initializes the entire CPU to the power-on
configuration, except for power_fail in mode. While the reset is active (external or
power-on self-reset), the AD go to a high-impedance state, OUT [7:0] go high,

RASes go active, and all other outputs go inactive. See Figure 66 for waveforms.

Video RAM Support

VRAMs increase the speed of graphics operations primarily by greatly
reducing the system memory bandwidth required to display pixels on the video
display. A VRAM command is used to transfer an entire row of data from the
DRAM array to an internal serial access memory to be clocked out to the video
display. VRAMs also support other commands to enhance graphics operations.
The VRAM operations are encoded by writing vram and performing an
appropriate read or write to the desired VRAM memory address. Basic timing for
VRAM bus cycles is the same as any similar bus transaction in that memory

group. See Figure 27. Refresh and RAS cycles might also affect VRAM
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operations. See Video RAM Support, above. Waveforms representing the effects

of the various vram options are in Figure 72.

Virtual-Memory Page Faults Input

The MIF detects memory page faults that are caused by MPU memory
accesses by integrating fault detection with RAS cycles. The mapped page size is
thus the size of the CAS page. The memory system RAS page address is mapped
from a logical page address to a physical page address during RAS precharge
through the use of an external SRAM. A memory fault signal supplied from the
SRAM is sampled during RAS fall and, if low, indicates that a memory page fault
has occurred. See Figure 46a. The memory fault signal is input from MFLT or
AD8. See Alternate Memory Fault Input, below.

When a memory fault is detected, the bus transaction completes without
any of the signals that would nor-really go active during the C*S part of the bus
cycle. A memory fault exception is then signaled to the MPU, which will execute

a trap to service the fault condition. See Figure 70, for waveforms.
Alternate Inputs and Outputs

The bit inputs, bit outputs, memory fault input, and reset input can be
multiplexed on AD rather than using the dedicated pins. This feature can be used
to reduce the number of tracks routed on the PWB (to reduce PWB size and cost),
and can allow the ShBoom CPU to be supplied in smaller packages. See Figure 74

for waveforms.

Alternative Bit Inputs
The bit inputs can be sampled either from IN [7:0] or from AD [7:0] while
RAS is low and CAS is high. The source is determined by pkgio. See Figure 29

and Bit Inputs, above.

Alternative Bit Outputs
The bit outputs appear both on OUT [7:0] and on AD [7:0] while RAS is
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high. Since they appear in both places. no selection bit is required. See Bit

Outputs, above.

Alternative Memory Fault Input
The memory fault signal can be sampled either from MFLT or from ADS
during RAS fall. The source is determined by pkgmflt. See Figure 34.

Alternative Reset Input
External hardware reset can be taken either from RESET or from ADS; the
determination is made at power-on. The power-on and reset sequence is described

in detail in Processor Startup, below.

PROCESSOR STARTUP
Power-on Reset

The CPU self-resets on power-up (see Reset Process, below). The CPU
contains an internal circuit that holds internal reset active and keeps the processor
from running, regardless of the state of the external hardware reset, until the
supply voltage reaches approximately 3 V. Once the supply reaches 3 V, RESET
is sampled and, if active, is used as the source of external reset for the CPU.
Otherwise, external reset is multiplexed on AD8. This determination applies until
power is cycled again. If one of the resets is active, the CPU waits until that reset
goes inactive before continuing. If neither reset source is active, the processor
immediately begins the reset sequence. The clock input at CLK, therefore, must
be stable before that time.

If the system is capable of running as the power supply rises from 3 V to

normal supply voltage, and the system does not require an external reset, then

RESET need not be connected and AD8 need not be driven as a reset source.
Otherwise, external reset must be held low long enough for the clock, power, and
other system components to power up properly before reset rises to logic high and
allows the CPU to run.

During the power-on-reset process, the mode bit power fail is set to

indicate that the power had previously failed. The bit is cleared by any write to
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mode.

Boot Memory

The CPU supports booting from byte-wide memory that is configured as
either an OE-activated or boot-only memory device. The boot-only memory
configuration is primarily used to keep the typically slow boot EPROMs out of the
heavily used low-address memory pages.

Boot-only memory is distinct from OE-activated memory in that it is wired

into the system to place data on the bus without the use of OE or memory bank-

or group-specific (RAS x or CASx) signals. OED is initially set during a CPU
reset to disable OE during the boot-up process to allow the described operation.
The boot-only memory select signal is externally decoded from the uppermost
address bits that contain Ox800 .... The number of uppermost address bits used
depends on the system’s I/0 device address decoding requirements. The lowest
address bits are connected so as to address individual bytes and cells as they are
for a normal memory. Thus the boot-only memory device will be selected

regardless of which memory group is accessed.

Reset Process

When reset occurs, the CPU leaves on-chip RAM uninitialized and clears
most registers to zero, except for strategically placed bits that assist in the reset
sequence. Specifically, the CPU resets to the most conservative system
configuration. See Table 54. The mode bit power_fail is set only by the power-on-
Teset process and can be checked to determine whether the reset was caused by a
power failure or reset going active.

The first bus transaction after reset is a cell read of four bytes from byte-
wide memory in memory group zero, memory bank zero, starting from addresses
0x80000000, with 6Edisabled, in SMB mode. This address consists of I/0 device
address 0x800... and memory device address 0x...N. Because OE is disabled, OF-
activated memory will not respond, thus allowing a boot-only memory to respond.

The CPU tests the byte returned from address Ox80000000. If the byte is

Oxa$ then a boot-only memory responded and execution continues with OE
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disabled. Otherwise, a boot-only memory did not respond, and the CPU assumes
booting will occur from OE-activated memory. The CPU then clears OED to

activate OE for this memory to respond on subsequent bus cycles.

Bootstrap Programs

With either boot-only or OE-activated memory, bus accesses continue in
SMB mode from the byte-wide memory device. The second bus transaction is to
the hardware reset address for the IOP at 0x80000004. This typically contains a
jump to a small refresh/delay loop. The delay makes the bus available and allows
the MPU to begin executing at its reset address, 0x80000008.

If the system is wired in MMB mode, booting is simpler from a boot-only
memory. Booting from ‘OE-activated memory is also possible, but requires
external gating to prevent bank zero of memory groups one, two, and three from
being selected when memory group zero is accessed.

Next, the MPU begins executing and typically is programmed to branch to the
system bootstrap routine. The MPU bootstrap is programmed to:

* set the configuration registers needed for the system hardware,

e set the software reset vector for the 10P,

e copy the initial MPU and IOP application programs from the boot device into
memory (if needed),

* branch to the application program for the MPU, and

¢ reset the IOP in software to begin IOP program execution.
System startup is now complete.

The following pages describe several startup configurations. For actual
code see Example ShBoom CPU System, below. The configurations described
below are:
¢ Boot from byte-wide boot-only memory and copy the application program to
cell-wide R/W memory.

® Boot from cell-wide boot-only memory and copy the application program to cell-
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wide R/VV memory.
* Boot and run from byte-wide memory.
* Boot and run from cell-wide memory.
Boot from Byte-Wide Boot-Only Memory and Copy the Application Code to Cell-
Wide RA/V Memory

This process requires external decoding hardware to cause the boot-only
memory to activate as previously described.

To indicate that boot-only memory is present, the memory must have Oxa5
at location zero. This signature byte must be detected at startup to continue the

boot process from a boot-only memory.
Construct the boot program execution sequence to be as follows:

1. The IOP executes JUMP from is power-on-reset location to code that performs
eight RAS cycles on each memory group (by performing refresh cycles) to initial-
ize system DRAM. It then enters a micro-loop that includes refresh for DRAM,
and delay to allow the MPU to execute. The micro-loop repeats refresh and delay,
and eliminates the need for the 1OP to access the bus for further instructions
during configuration delay allows the MPU bus access to begin configuring the
system before more refresh cycles are required. The refresh cycles are not

required if the system does not contain DRAM.

2. The MPU executes br from its reset location to the program code to configure
the system. The br should contain bits that address memory group three. This will
later allow the configuration for memory group three to be used for boot-only
device access timing while memory groups zero, one and two are programmed for
the system timing requirements. Although memory group one or two could be
used instead of three in the manner described herein, only memory group three

will be discussed for simplicity.

The MPU configuration program code should be arranged to hold off instruction

pre-fetch so that the configurations of the current memory group and the global
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memory system are not changed during a bus cycle.

3. When programming miscb, set mmb if required. In systems wired for MMB

mode this allows RAS-type cycles to occur properly on all memory groups.

4. Set msgsm to define four memory groups, even if the system will ultimately not
have them. During the next instruction fetch the boot-only memory will again be
selected. However, the address bits for memory group three placed in the PC by

br in step two will cause the configuration for memory group three to be used.

5. Program the timing of memory group three to optimize access to the boot-only
memory. Then program the remainder of the system configuration. During this
Process the 1OP will typically perform three or so sets of refresh cycles. Though it
is possible for the MPU to be changing pertinent configuration registers during a
refresh cycle, it is very unlikely due to the long bus cycle times of EPROMs
typically used for boot-only memory. Further, the worst result would be
inappropriate timing on a single refresh cycle, which is of little actual consequence

since there is no data yet in DRAM to be protected.

If memory group three is used by the application, it will need to be configured

later from the loaded application code.

6. Read the final boot code (if any) and the application program from the boot-
only memory and write them to the appropriate locations in RAN memory. The
entire application program can be loaded into R/W RAM, except for that part, if
any, that is destined for memory group three, where the boot-only memory is

running. This will need to be copied by the application once it is running.

7. Layout a single instruction group that contains programming to clear O£0 and
to branch to the application program. Using br [ ] clears A31 so that the boot-only

memory will not activate at the branch destination.
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8. Now the application program is executing. Configure memory group three, if
needed. If loading memory group three from the boot-only memory is necessary,
then arrange the code between two instruction groups to first ensure pre-fetch is
complete, then set OED, then execute a micro-loop to transfer the application to

memory group three, and reenable OED when the micro-loop completes.

9. Reset the 10P in software to begin execution of its application program. A
software reset of the IOP causes it to begin executing at Ox10, and as a result

clears A31 from the I0P PC so the boot-only memory will no longer be selected.

The boot process is complete.

Boot from Cell-Wide Boot-Only Memory and Copy the Application Program to
Cell-Wide R/W Memory
This process requires external decoding hardware to cause the boot-only memory

to activate as previously described.

The CPU always initially boots from byte-wide memory since this is the reset
configuration. The CPU will execute instructions from the low byte of each
address until the configuration for the current memory group is programmed to be
cell wide. Up to this point, the upper 24 bits of the boot-device data will be
unused. The boot process is otherwise the same as booting from byte-wide boot-
only memory, except that at step 3, when writing miscb, also set memory groups
zero and three to be cell-wide. In the instruction group with the sto to mcb place a
br to the next instruction group. This will hold off pre-fetch so that the next
instruction fetch will be cell-wide. Note that the boot-only memory must be
carefully programmed so that the instructions before the br are represented as

byte-wide and after the br are represented as cell-wide.

Boot and Run from Byte-Wide Memory

This process requires the boot/run memory device to be activated by

MGSO/RASO/CASO. A31 is not used when selecting the boot/run memory.
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To indicate that OE-activated memory is present, the memory must not respond
with Oxa$5 at location zero when OE is not asserted. The lack of this signature
byte is detected at startup to indicate that OE is required to continue the boot
process. OED is set during a CPU reset to disable OED during the boot-up
process, and cleared when the signature byte Oxa5 is not detected, re-enabling
OE.

Construct the boot program execution sequence to be as follows:

1. The 10P executes JUMP from its power-on-reset location to code that perform
eight RAS cycles on each memory group (by performing refresh cycles) to initial-
ize system DRAM. It the enters a micro-loops that includes refresh for DRAM,
and delay to allow the MPU to execute. The micro-loop repeats refresh and delay,
and eliminates the need for the 1OP to access the bus for further instructions
during configuration delay allows the MPU bus access to begin configuring the
system before more refresh cycles are required. The refresh cycles are not

required if the system does not contain DRAM.

2. The MPU executes br from its reset location to the program code to configure

the system.

The MPU configuration program code should be arranged to hold off instruction
pre-fetch so that the configurations of the current memory group and the global

memory system are not changed during a bus cycle.

3. When programming miscb, set mmb if required. In systems wired for MMB

mode this allows RAS-type cycles to occur properly on all memory groups.

4. Program the timing of memdry group zero to optimize access to the memory.
Then program the remainder of the system configuration. During this process the
I0P will typically perform three or so sets of refresh cycles. Though it is possible
for the MPU to be changing pertinent configuration registers during a refresh

cycle, it is very unlikely due to the long bus cycle times of EPROMs. Further, the



10

15

20

25

30

WO 97/15001 PCT/US96/16013

153

worst result would be inappropriate timing on a single refresh cycle, which is of

little actual consequence since there is no data yet in DRAM to be protected.
5. Reset the 10P in software to begin execution of its application program. A
software reset of the IOP causes it to begin executing at 0xI0, and as a result
clears A31 from the IOP PC so the boot-only memory will no longer be selected.
6. Begin execution of the application program.

The boot process is complete.
Boot and Run from Cell-Wide/Memory

This process requires the boot/run memory device to be activated by
MGSO/RASO/CASO. A3l is not used when selecting the boot/run memory.

The CPU always initially boots from byte-wide memory since this is the
reset configuration. The CPU will execute instructions from the low byte of each
address until the configuration for the current memory group is programmed to be
cell wide. Up to this point, the upper 24 bits of the boot-device data will be
unused. The boot process is otherwise the same as booting and running from byte-
wide memory, except that at step 3, when writing miscb, also set memory group
zero to be cell-wide. In the instruction group with the sto to miscb place abrto
the next instruction group. This will hold off pre-fetch so that the next instruction
fetch will be cell-wide. Note that the boot-only memory must be carefully
programmed so that the instructions before the br are represented as byte-wide and

after the br are represented as cell-wide.

Stack Initialization

After CPU reset both of the MPU stacks should be considered uninitialized
until the corresponding stack pointers are loaded, and this should be one of the
first operations performed by the MPU.

After a reset, the operand stack is abnormally empty. That is, s2 has not

been allocated, and will be allocated on the first push operation. However,
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popping this item will cause the stack to be empty and require a refill. The first
pushed item should therefore be left on the stack, or sa should be initialized,

before the operand stack is used further.
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Table 52. 1/0-Channel Transfer Characteristics

Device: Widkh . Joevioe Tremstor Fype' Memory Wideh Fiyby Batered’ Bus Cycies* Bies Dhoved
byte 0 bvte F 4 »
byte o cell B s 32
bvie 1 byt F ! 8
byte 1 cel! F 1 8
cell 2 by B ] 2
cell 2 cell F i 3

s

Refers 10 device type specified In jodita of jodtth.

Duta 1 ransierred directly between device and memory.
Data u swored in the MIF during pan of the oansfer.

The enure sequence of cycles 18 an atomic bus transaction.
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VRAM memory group set 10 memory group three, 0 VRAM options set.
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Whﬂummuwmmmmm refresh address bics sianing & zer0.
Potted writes disabled.

Cause RAS cycle when A3) = |,
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A3} included i high-address-bit compare.
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Al memory device sizes set 10 SRAM.
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address hold time of eigit 4X-clock cycles. EWE fall st CAS fall, mmymmmnmeszduzx
clock cycles. mymmmuun:wtmiLwlmufwlx-cwcimu OF active ime of 39 2X-clock
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Table 54. System Configuration after CPU Reset
Unialtialized
32517 sdepth rl-r1$ Idepth gl-gls
Initialized Zero
mode 301 0 20 x ct ‘op rotus
odmae misca mfladdr mildata migsm misce msra
wopdelay [ odud odmacx drivers
Initislized Nem-sero
n [otidid
b OxtfFrffc
ioin Oxff
oo Oxff
wmam
nwvgrp 0x03 dsfvcas wro dsfvras ro casbvras ro
wevras 2er0 cevras 2ero
misch
mb ze10 (dmap 10 pkgio 2¢r0 oed one
mgibw one mg2bw one mg lbw one mglbw one
mpds
mgdds Ox0f mglds OxOf mglds OxOf mgOds ox0f
L
mgsbaem’ oxiIf mgebidobe OxOf mgebucase ox03
mgXcanbt
mghecas 0x07 mghedob Ox0f mgbecast oxIf mgbewes one
mgbalwea zETO mgheeoe =10 mgbeewe 210
mgXrasix
mgbtrast oxIf mgberas Ox0f mgbohid OxOe mgbeeras 2er0
nXade
iosbaum’ Ooxtf iosbedobe Ox0f . oebcase 0x0)
The CPU reset conditions produce the following
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EXAMPLE ShBoom CPU SYSTEMS
Example System 1

Figure 68 depicts a minimal system with an 8-bit wide EPROM in memory
group zero, and 256K of 8-bit-wide DRAM in memory group one. Memory
group zero and memory group one should be configured with timing appropriate
for the devices used, and mglds set to 0x02 appropriate for the devices used, and
mglds set to 0x02 (256K DRAM). Otherwise, the default system configuration is
suitable. The system can boot and run directly from the EPROM, or, since
EPROMs are generally slower than DRAM, can copy the EPROM into DRAM for

faster code execution.

Example System 2
Figure 69 depicts a minimal system with 32-bit-wide DRAM in memory

group zero, an 8-bit-wide-EPROM as a boot-only memory device, and an I/O
address decoder. The I/0 address decoding is performed by a 74HC137, a 3-to-8
decoder with latch. The decoder is wired to supply four device selects when A31
is set, and another four when A31 is clear. The sets of four selects are latched
during RAS precharge and enabled during CAS active. They are decoded from
A30 and A29 when a 32-bit-wide memory group is involved and from A28 and
A27 when an 8-bit-wide memory group is involved. The device select with A31
set and the other decoded address bits clear is used to select the EPROM as a
boot-only memory device.

The EPROM must be programmed with 0xa5 at location zero. Memory
group zero should be configured with timing appropriate for the devices used,
mgObw set to zero (cell wide), and mgOds set to 0x02 (256K DRAM). Since RAS
is used to latch the I/0 address, msras31d, mshacd and msexa3lhac must remain

in their default configuration of clear.

Example System 3
Figure 70 depicts a system with 32 KB of 32-bit-wide SRAM in memory

group zero, 1 MB of 32-bit-wide DRAM in memory group one, an 8-bit-wide
EPROM as a boot-only memory device, and an I/0 address decoder. Address
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latching of the CAS address for the SRAM is performed by two 74ACT841
transparent laiches. The address inputs of the DRAM and EPROM are also
connected to the outputs of the latches, though they could have been connected to
the corresponding AD instead. The I/O address decoding is performed by a
74FCT138A, a 3-to-i decoder, using the latched CAS address bits. The decoder is
wired to supply eight device selects when A3] is set. The selects are enabled
during CAS active. They are decoded from A30 and A29 when the DRAM
memory group is involved and from A20 and A21 when the SRAM memory group
is involved. Since the EPROM is 8-bit-wide, the selects are decoded address bits
clear is used to select the EPROM as a boot-only memory device.

The EPROM must be programmed with Oxa5 at location zero. The
memory groups should be configured with timing appropriate for the devices used,
mgObw and mglbw set to zero (cell wide), mg0ds set to 0xOf (SRAM), and mglds
set to 0x02 (256K DRAM). Since RAS is not used to latch the I/0 address,
msras31d, mshacd and msexa31hac can be set to reduce the number of RAS cycles

involved in I/O.

ELECTRICAL CHARACTERISTICS
Power and Grounding

The ShBoom CPU is implemented in CMOS for low average power
requirements. However, the high clock-frequency capability of the CPU can
require large switching currents of as much as eleven amperes, depending on the
output loading. Thus, all V,_, and V,, should be connected to planes within the
PWB (printed wire board) for adequate power distribution.

The switching current required by ¢V and cV,, is characterized by the
internal clock and output driver pre-drivers. The internal clock requires
approximately 500 mA with significant 5-GHz frequency components every clock
transition. The output driver pre-drivers require as much as 3 A with significant
1-GHz frequency components every output transition. Package diagrams indicate
which of ¢V, and cV; are closest to the internal clock drivers.

The switching current required by ctrV,, and ctrlV is characterized by the

supplied output drivers and externally attached loads. Assuming a worst-case
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average load of 100 pF and 16 pins switching at once, these drivers would require
2.67 A with significant 300-MHz frequency components every output transition.
Switching-current requirements reduce substantially linearly with a reduction in
external loading.

The switching power required by adV,. and adV, is characterized by the
supplied output drivers and externally attached loads. Assuming a worst-case
average load of 100 pF and 32 pins switching at once, these drivers would require
5.33 A with significant 300-MHz frequency components every output transition.
Switching-current requirements reduce substantially linearly with a reduction in

external loading.

Power Decoupling
Due to the switching characteristics discussed above, power decoupling at

the CPU is typically required. Surface-mount capacitors with low ESR are
preferred. Generally, smaller-sized and smaller-valued capacitors have better
frequency characteristics (i.e., lower series inductance, resulting in higher self-
resonance frequency) than larger-sized and larger-valued capacitors, making it
preferable to use an assortment of smaller to larger capacitor values. The
smallest-valued capacitors and the local charge in teh PWB power planes (typically
about 100 pF/in’) will supply the current requirements of the initial highest-
frequency components of the switching signals, while the larger capacitors will
supply the lower-frequency components. Appropriate decoupling also reduces
EMC problems.

The charge supply required by the decoupling capacitors can be calculated
from the relation C = I/(fAV), where I is the current required, f is the frequency,
and AV is the allowed voltage drop, typically .1 V. Thus, cV  and cV require
1000 pF for the internal clock and .03 uF for the output driver pre-drivers, while
ctrlV,. and ctrlV, together with adV_ and adV require .24 uF. These
requirements can generally be met with:

U four 100 pF NPO capacitors, or equivalent capacitance in smaller
capacitors, mounted, one each, as close to each of the sets ¢V and ¢V, as
possible, on the same side of the PWB as the ShBoom CPU package, if
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appropriate;
. four 4700 pF X7R capacitors, mounted as above, on the opposite side of
the PWB from the ShBoom CPU package, if appropriate;
. four 4700 pF X7R capacitors, mounted as above, on the opposite side of
the PWB from the ShBoom CPU package: and,
o six .047 uF X7R capacitors, distributed amound ctrlV,. and ctrlV,, and

among adV, and adV,, as close to those pins as practical.
Note that the above represent essentially worst-case requirements. If the average
output driver loading is 50 pF rather than 100 PF. the six .047 uF X7R capacitors
could be reduced to three or four; other engineering trade-offs can also be made.

Note that mounting capacitors on teh same PWB surface as the ShBoom
CPU package can allow connecting traces of about 25 mils in length, while
mounting capacitors on the opposite PWB surface requires traces of over 100 mils
in length. At the switching frequencies listed, the difference in trace lengths
creates significant differences in decoupling effectiveness. The package and
capacitor power and ground connections should be fabricated with VIP (via-in-

pad), if possible, for the same reasons.

Connection Recommendations

All output drivers are designated to directly drive the heavy capacitive
loads of memory systems, thus minimizing the external components and
propagation delays associated with buffering logic. However, with increased
loading comes increased power dissipation, and trade-offs must be made to ensure
that the ShBoom CPU operating temperature does not exceed operating limitations.
Systems with heavy CPU bus loads might require heat sinks or forced air
ventilation. Note that reducing output driver current does not reduce total power
dissipation because power consumption is dependent on output loading and not on
signal transition edge rates.

To reduce system cost, all inputs have internal circuitry to provide a stable
input voltage if the input is unused. Thus, unused inputs do not need pull-ups.

RESET contains an approximately 10K ohm pull-up tocV,, and is a
CMOS Schmitt-trigger.
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MELT contains an approximately 20K ohm pull-up to cV_.
IN[7:00] each contain a TBD K ohn pull-up to cV,..
AD each have repeaters with an impedance of approximately 5K ohms to

¢V, and cV. These will maintain the last bus state when the pin is otherwise

undriven.

Clock
The ShBoom CPU requires an external CMOS oscillator at one-haif the

processor frequency. The oscillator is doubled internally (2X-clock cycle) to
operate the MPU and the IOP, and doubled again to provide fine-granularity
programmable bus timing (4X-clock cycle).

Inexpensive oscillators typically have guaranteed duty cycles of only 60/40.
The narrower half of the clock cycle would normally represent at clock period at
which the CPU appears to be operating. A 100-MHz CPU would thus be limited
with a 60/40 oscillator to 80 MHz (40 MHz externally), because with an 80 MHz
2X-clock the 40% clock period would be 10 ns. To obtain 100-MHz speed, a
much more-expensive oscillator would be needed. To reduce system cost and
increase system performance, the CPU intenally uses a phase-locked loop circuit to
stabilize the oscillator input an lock in a 50/50 duty cycle.

The 2X-clock frequency selected should depend on application and system
hardware requirements. A clock frequency might be selected for the IOP t
produce appropriate application timing, or for the MIF to optimize bus timing.

For instance, if the system requires a 35 ns bus cycle, it might be more efficient to
operate at 84 MHz with a three 2X-clock cycle long bus cycle (35.7 ns) than to
operate at 100 MHz with a four 2X-clock cycle long bus cycle (40 ns).
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Table 55. Absolute Maximum Ratings
Characteristic Symbol Min Max Unit Notes
Core Logic Supply Volage cVee 0.5 +6.5 v 1
Control Driver Supply Voitage ctrlVee 0.5 +6.5 \Y 1
AD Dniver Supply Volage adV 0.5 +6.5 v 1
DC Input Volage v, 0.5 +6.5 \Y
DC Ourput Volage Vo 0.5 +6.5 v output Hi-Z
0.5 V. +0.5 v output dniven
DC Input Diode Current I -50 mA Vi<V
DC Output Diode Current Lox -50 mA
+50 mA
Sworage Temperature Tere -65 +150 °C
Case Temperature Under Bias Te -65 +125 °C
Operating Junction Temperature T, TBD +125 °C

Notes:

Stressing the device beyond Absolute Maximum Ratings can cause the device o sustain permanent damage. Operating the device beyond
Openating Conditionsis not recommenced and can reduce device reliability. Functional operation at Absolute Maximum Raangs is not

guaranteed.

1. ¢cVy, ctrlVy, and adV are required tobe at the same porential.
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Table 56. Operating Conditions
Characteristic Symbol Min Max Unit Notes
Core Logic Supply Voitage cVec 3.0 5.5
Control Driver Supply Voitage cemVee 3.0 5.5 \Y
AD Driver Supply Voltage adV. 3.0. 55 v
Input Voluage . 0 55 v
Output Voltage ° 0 55 A ourput Hi-Z
0 Vee v output dnven

Output Current Low TBD mA

Lo TBD mA
input Clock L 100 MHz
Case Temperature Under Bias T 0 +85 °C
Free-Air Operating Temperature Ta 4.0 +85 °C
Input Edge Rate AVAV 0 TBD ns/V 1
Notes:

Lo Ve = Vs - Viwax
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Table 57. DC Specifications

Characteristic Symbol Min Max Unit Notes
Input Low Voltage Vi Y 0.8 v except CLK
0 TBD CLK only

Input High Voltage Vin 2.0 cVee \ except CLK

2.5 cVee v CLK only
Output Low Voltage Voo 0.45 \% Lo = x.xmA
QOutput High Volage Vou 2.4 v L, = xxmA
Input Leakage Current Iy +10 pA 0< =V, <=V
Output Leakage Current It +10 uA 0.45< Vor < Vee
Power Supply Current Lec TBD mA
Input Capacitance Cw 8 pF 1
1/0 or Output Capaciaance Cour 10 pF !

Notes:

1. fo = 1 MH,. Capacitance values are not tested.
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See boot code in Appendix C.

To the extent not already incorporated herein, further details on this
embodiment of the invention are available in the publication "ShBoom™
Microprocessor”, Poway CA 92064, 1995, Patriot Scientific Corporation. All

5 publications and patent applications mentioned in this specification are herein
incorporated by reference to the same extent as if each individual publication or
patent application was specifically and individually indicated to be incorporated by
reference.

The invention now being fully described, it will be apparent to one of

10 ordinary skill in the art that many changes and modifications can be made thereto

without departing from the spirit or scope of the appended claims.
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WHAT IS CLAIMED IS:

1. A microprocessor system, comprising a microprocessing unit, an input-output
processor (IOP), a global memory unit coupled to said central processing unit and
to said IOP, and means for arbitrating access of said central processing unit and

said IOP to said global memory unit.

2. The microprocessor system of claim 1 in which said global memory unit

comprises a plurality of global registers.

3. The microprocessor system of claim 1 wherein said central processing unit
includes an arithmetic logic unit and a push-down stack coupled to said arithmetic

logic unit.

4. The microprocessor system of claim 1 further including a memory interface
unit coupled to said global memory unit, to said microprocessing unit, and to said
IOP.

5. The microprocessor system of claim 4 further including a means for arbitrating
access of said memory interface unit and said microprocessing unit to said global

memory unit.

6. The microprocessor system of claim 5 additionally comprising a system
memory and at least one input-output device coupled to said memory interface unit
and wherein each storage location in said global memory unit holds a single
address comprised of a first grouping of address bits coupled to address said
system memory and a second grouping of address bits coupled to address said at

least one input-output device.

7. The microprocessor system of claim 5 additionally comprising a system
memory, at least one input-output device and a system bus coupled to said

memory interface unit, said system bus having a first grouping of address lines
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coupled to address said system memory and a second grouping of address lines

coupled to address said at least one input-output device.

8. A microprocessor system, comprising a microprocessing unit, an input-output
processor (IOP), a memory interface unit through which said central processing
unit and said IOP are selectively coupled to a system bus, and means for granting

said IOP access to said system bus at predetermined intervals.

9. The microprocessor system of claim 8 wherein said memory interface unit
includes means for defining available time slots during which said system bus may
be accessed, said available time slots being defined as being between accesses to

said system bus by said IOP at said predetermined intervals.

10. The microprocessor system of claim 8 wherein said memory interface unit
includes means for computing a bus access time required for one or more bus
cycles involving said system bus, and for allocating one of said available time slots
equal to or longer than said access time for execution of said one or more bus

cycles.

11. The microprocessor system of claim 10 wherein said one or more bus cycles

are memory cycles.

12. The microprocessor system of claim 11 in which the computation of said
means for computing modifies the bus access time to provide sufficient time for

input-output cycles.

13. In a microprocessor system having a microprocessing unit in which is
included an arithmetic logic unit coupled to a stack cache, the improvement
comprising:

means, coupled to said arithmetic logic unit and to said stack cache, for

determining the availability of stack cache resources by determining whether a
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value is included in at least one cell of said stack cache and whether at least one
other cell of stack cache is empty; and

means, coupled to said means for determining the availability of said stack
cache resources, for selectively inhibiting instruction execution by said arithmetic

logic unit based on said availability of said stack cache resources.

14. The microprocessor system of claim 13 wherein said arithmetic logic unit
includes means for executing instructions which generally push and pop only
individual cells of said stack cache, said availability of stack cache resources being

determined prior to initiating execution of each of said instructions.

15. In a microprocessor system having a microprocessing unit in which is
included an arithmetic logic unit coupled to a stack cache, said stack cache being
allocated at least a first portion of system memory, the improvement comprising:

means, coupled to said microprocessing unit and to said stack cache, for
executing a stack management trap when a stack pointer of said stack cache
assumes an address within a boundary region of said first portion of said system
memory, said first stack management trap determining availability of at least one
other portion of said system memory; and

means, coupled to said means for executing the stack management trap, for
preventing another execution of said stack management trap until after said stack
pointer has assumed an address within a predefined region of said first portion of

said system not included within said boundary region.

16. A microprocessor system, comprising a microprocessing unit and a memory
interface unit coupling said microprocessing unit to system random access memory
(RAM), said microprocessor system including means, coupled to said memory
interface unit, for converting logical row addresses provided by said
microprocessing unit to physical row addresses of said system RAM so as to

define virtual system memory using said system RAM.

17. The microprocessor system of claim 16 further including means, coupled to
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said memory interface unit, for accessing said system RAM wherein each row
address strobe (RAS) cycle includes a RAS precharge interval, said logical row
addresses being converted to said physical addresses of said system RAM during

said RAS precharge intervals.

18. A microprocessor system, comprising

a register unit, said register unit comprising at least one storage location
containing a value to be interpreted as a memory address;

a memory interface unit coupled to said register unit;

a memory bus coupled to said memory interface unit; and

a system memory coupled to said memory interface unit by said memory
bus;

said memory interface unit comprising transfer logic to increment said
memory address and to generate a boundary detected signal when, after a memory
bus transaction to said system memory using said memory address, said memory
address after incrementing has a value that is an even multiple of 2", where n is a

nonnegative integer.

19. The microprocessor system of claim 18 further comprising a microprocessing
unit coupled to said memory interface unit and including means to interrupt said
microprocessing unit after said boundary detected signal is generated by said

memory interface unit.

20. The microprocessor system of claim 18 further comprising means coupled to
said memory interface unit for generating a transfer request signal as an input to

said memory interface unit for requesting said memory bus transaction to occur.

21. The microprocessor system of claim 20 further comprising an input-output
processor (IOP) coupled to said memory interface unit, and said means for
generating the transfer request signal is a means to execute instructions, one of

said instructions activating said transfer request signal.
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22. The microprocessor system of claim 18 wherein said incrementing of said
memory address and the resulting said boundary detected signal is used to count an

event.

23. The microprocessor system of claim 18 additionally comprising means
coupled to said memory interface unit to disable said transfer logic to prevent

further transfers after said boundary detected signal is generated.

24. The microprocessor system of claim 18 further comprising an input-output
device coupled to said memory bus wherein said memory address is further
comprised of a first grouping of address bits used to address said system memory

and a second group of address bits used to address said input-output device.

25. In a microprocessor system including a central processing unit and a bit input
register coupled to said central processing unit, said bit input register receiving
logical input over at least one bit line, said bit input register comprising:

latch means, coupled to said at least one bit line, for initially sampling said
at least one bit line in order to determine a logic level thereof; and

a zero persistence control unit, coupled to said latch means, for storing said
logic level in a register assigned to said at least one bit line, said logic level
remaining stored in said register until said zero persistence control unit is provided

with a predefined signal by said central processing unit.

26. The microprocessor system of claim 25 further including a direct memory
access controller (DMAC) coupled to said zero persistence controller, said DMAC

including means for generating said predefined signal

27. A microprocessor system, comprising a microprocessing unit, an input-output
processor (IOP), and a memory interface unit selectively coupling said central
processing unit and said IOP to a system bus, said IOP including program counter

means for providing system address information to said memory interface unit.
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28. The microprocessor system of claim 27 further including means, coupled to
said IOP and to said system bus, for granting said IOP access to said system bus

at predetermined intervals.

29. The microprocessor system of claim 27 wherein said IOP includes latch
means, coupled to said system bus, for latching data received from said system

bus.

30. The microprocessor system of claim 27 wherein said IOP includes a
multiplexer controlled by said program counter means, an instruction latch, and a
decode/execute module, said multiplexer coupled between said instruction latch

and said decode/execute module.

31. In a microprocessor system including a microprocessing unit having a stack
cache, a system for effecting floating-point mathematical instructions comprising:

arithmetic logic unit means for performing floating-point operations upon
values within cells of said stack cache;

means, coupled to said arithmetic logic unit means, for generating floating
point exceptions in response to performance of selected ones of said floating point
operations; and

mode register means, coupled to said arithmetic logic unit means and to
said means for generating floating point exceptions, for enabling said
microprocessing unit to execute predefined floating point routines in response to

said floating point exceptions.

32. The system of claim 31 wherein said means for performing floating-point
operations includes means, coupled to said stack cache, for executing test

€xponent, extract exponent, add exponents, and restore exponent instructions.

33.  In a microprocessor system including a microprocessing unit having a stack
cache, a method for executing a breakpoint instruction comprising the steps of:

pushing into said stack cache a memory address of said breakpoint
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instruction; and

executing a breakpoint service routine.

34.  In a microprocessor system including system memory and a microprocessing
unit having one or more internal registers, said system memory being assigned a
first address space for communication with said microprocessing unit, a method
for transferring data within said microprocessing unit comprising the steps of:
assigning said one or more internal registers a second address space
different from said first address space; and
transferring data to and from portions of said one or more internal registers

identified by addresses within said second address space.

35. In a microprocessor system including a microprocessing unit having a stack
cache, a method for address arithmetic comprising the steps of:
storing a first address value in a first cell of said stack cache;
storing a second address value in a second cell of said stack cache; and
adding said first address value to said second address value and storing a

resultant sum value in said first cell of said stack cache.

36. In a microprocessor system including a microprocessing unit having a stack

cache, a method for performing a copy byte operation comprising the steps of:
reading a least significant one of a plurality of data bytes stored in a cell;
replacing at least one other of said plurality of data bytes with said least

significant data byte.

37. In a microprocessor system including a microprocessing unit having a stack
cache and a carry register, a method for performing a test byte operation
comprising the steps of:

reading each of a plurality of bytes stored within a cell of said stack cache;
and

storing a first logical value in said carry register when any of said bytes are

of zero value, and storing a second logical value in said carry register otherwise.
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38. In a microprocessor system including a system memory, a microprocessing
unit coupled to said system memory, having a stack cache coupled to said system
memory and a program counter coupled to said stack cache, a single step
processing system comprising:

means, coupled to said stack cache and to said program counter, for
loading a first memory address from a first cell of said stack cache into said
program counter;

means, coupled to said program counter, for executing a first instruction
stored in said system memory of said microprocessor system at a location
corresponding to said first memory address; and

means for executing a single-step trap routine during which a second
memory address is loaded into said first cell wherein a second instruction
following said first instruction is stored at a location in said system memory

corresponding to said second memory address.

39. In a microprocessor system including system memory, and a microprocessing
unit coupled to said system memory having a stack cache, a stack cache
management system comprising:

means, coupled to said stack cache, for determining a number of cells
currently included within said stack cache;

means, coupled to said means for determining the number of cells, for
performing a comparison of said number of cells to a predefined depth of said
stack cache; and

means, coupled to said means for performing the comparison, for providing

an indication of a current stack depth based on said comparison.

40. In a microprocessor system including system memory, and a microprocessing
unit coupled to said system memory having a stack cache, a stack cache
management system comprising:

stack depth means, coupled to said stack cache, for determining a number
of cells currently included within said stack cache; and

means, coupled to said stack depth means, for providing an indication of



10

15

20

25

30

WO 97/15001 PCT/US96/16013

190
said stack depth.

41. In a microprocessor system including system memory, and a microprocessing
unit having a stack cache, a stack cache management system comprising:

means, coupled to said stack cache, for determining a current number cells
in said stack cache;

means, coupled to said means for determining the current number of cells,
for computing a number of cells capable of being added to said stack cache by
comparing said current number of cells to a maximum stack depth; and

means, coupled to said stack cache and to said means for computing the
number of cells capable of being added to said stack cache, for adding to said
current number of cells in said stack cache a number of said cells equivalent to

said number of cells capable of being added to said stack cache.

42. The system of claim 41 further including means, coupled to said stack cache,
for removing from said current number of cells in said stack cache an additional
number of said cells in said stack cache, and means for loading from said system

memory into said stack cache said additional number of new cells.

43. A microprocessor comprising

a microprocessing unit that includes an arithmetic logic unit and a push-
down stack coupled to said arithmetic logic unit,

said arithmetic logic unit including a bit-shifting means to shift bits, said bit
shifting means shifting a count of bits in one or more partial shifts with said count
reducing by the number of bits shifted each partial shift, said shifting being
performed by mulitiple bits while said count is greater than said multiple, said
multiple then being reduced, and then said shifting and said reductions of said

count repeating until said count reaches zero.

44. The microprocessor of claim 43 wherein said multiple is initially eight and

said multiple is reduced to one when said count is less than eight.
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: 788 egmanx VO OMA Grable Expirasen Reglonr
J Srvers

lpmen

fr6. 2.0

=" "8It Input Reglster” - -
Reserved Zeros J
T o BR Address Ilnomonch ' D“Ml;ﬂ-- T

‘ 07 io7inJ) 1O bit 7 input .J
08 io8in_J 1/O bit 6 inpuyt  —~——o
05 ioSin_ O bit Sinput e
04 lodin_ 1O bit 4 Input ——e |
03 lo3iny VO bit 3Pt ——— |
02 io2in) /O bit 2 input
01 loting -~ 1/0 bit 1 Input
00 Io0in) 1/0 bit 0 input
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/(a/ﬁ

TR e W M - -t s

Interrupt Pending Register - =700 o

8768685 43210

Reserved Zeros g

- BR Address Mnemonic Description 1
27 io%ip_} /0 bit 7 interrupt pendng —

26 iobip_| 17O bit § interrupt pendng ——

25 ioSip_| /O bit S interrupt pending

24 iodip) 1O bit 4 imerrupt pendng

23 io3ipJ 1/0 bit 3 interrupt pending

lo2ip_) 1/O bit 2 imerrupt pending

21 lotip_i /0 bit 1 intarrupt pending

loOlp_J 1/0 bit 0 imerrupt pending

ﬁé‘ 22 -

-

F;e._lo lolus’'  Interrupt Under Service Reglater = == =X EIEAuNIIE
31 _ 876543210
Reserved Zers .;L

BR Address Mnemonic - Description

io7ius_J 1/O bit 7 Interrupt under service —
lo8ius_) 120 bit 6 interrupt under service ——

loSius_} 170 bit § interrupt under service ———

iodlus_) 1/O bit 4 imemrupt under senvice
io3iue_J 1/O bit 3 inmrrupt under service
lo2ius_j 1/0 bit 2 interrupt under service
iotive_j /O bit 1 imarrupt under senvice
ioOlus_| 1/Q bRt 0 imMerupt under service

EEZR8L&45S

Fre 23

60 loout” - Bit Output Register-. - -
3
Reserved Zeros
T [.].4 Add;; thhc.nl'd Duefﬁﬁcn -

67 lo7out 1/Q bit 7 output —
66 ioSout_) 1/Q bit 8 output ~———
€S ioSou ) /O bit 8 output ——————
64 iodout | 1/0 bit 4 output ———"—
66 lo3out 1/0 bit 3 outpyt ——————
62 lo2out) /O bit 2 output

/"/.6- 20'74 61 lotout 1/0 bit 1 output

60 ioOout_| 170 bit 0 output
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WO 97/15001
= 80}?"_‘0'0 S
e}
[ Reserved Zems -
T BRaddress Mnemonte " Description _J e 17T
87 ioZie_} I/ bit 7 interrupt enable
88 ioSle_| /0 bit 6 interrupt enable ——-
85 loSie_) 170 bit S interrupt enable ————!
84 iodie_i /0 bit 4 interrupt enable ———o—
83 io3ie_i 11O bit 3 interrupt enable ——————ou
82 Jjo2ie_i 17O bit 2 interrupt enable
81 iotie 170 bit 1 imerrupt enable
/76 - ;'5 80 ioOie_J 1/ bit O Interrupt enable

876543210

I Reserved Zeros

1171

!
B8R Address Mnemonic Description .' [ [ ll f
A7 io7dmae_i /O bit 7 DMA enable ? .
A8 io8dmae_i /O bit § DMA enable . ;
AS icSdmas_| 1O bit S DMA enabie ‘ !
I

N

A4 loddmas |  OBt4OMAenable — | | | |
A3 ic3dmae 1/O bit 3 DMA enable — | ’ l
A2 lo2dmas_  1/O bit 2 DMA enablie |
|

Al iotdmas_l 1/ bt 1 DMA enabie
Fre. 26 A0 icOcmas_ O bit O DMA enabie

[ COZvram™""  VRAM Control BIt Register . TR T A

31
Reserved Zeros ’ ’ ] ’ '
T 7 Mnemonie Description Y S S e 2k o
dshvcas sate of 5ST # VRAM 5 fall ——nu |
dsivras state of DST at next VRAM i3 fall —_——
casbvras CAS fall belore RAS next VRAM RAS

\ wevras LWE low &t next VRAM 735 fall
/6. A7 oevras St low at next VRAM 7 fal
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/s
E.EOL misca:  Miscellaneous A Register - — o
31
Reserved Zeros H
{3
T Mnemonio Description - o —[ -
mg3rd memory group 3 refresh dsable
mg2rd memory group 2 refresh disable ———
mgird memory group { refresh dsable —
mgOrd memory group O refresh dsable —— |
msras3id  memory system don't force RAS cycloifAl1e !l ——
mshacd memory system high address compare dsable
msrtg memory systpm refresh §ming group
fre. 28
100 misob"~ Miscellaneous B Register ™ .oiom.. . iert gt Y
31 876865 4321090
Reserved Zeros
Mnemonie Description _’
mmb multiple memory bank
tdmap fixed DMA priorites
pkgio ' package has VO pins
oed ‘ J¢ dsable ———
mgidbw  memory group 3 bytewide — |
mg2bw memory group 2 byte wide

mgibw memory group 1 byte wide
mgObw memory group 0 byte wide

Fre. &9

20 mfltaddr < Memory Fault Address Register 7
31

Memory Fault Acdress ﬁ

Register is read-only. Reading mg1taddr aftera memory fault releases the data lock on mf1taddr and
mfltdata, alowing data to flow inD the registers.

Fre. 30
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WO 97/15001

/7
,ﬁ,agpﬁmtdau Memory Fauit Data Register

e}

’ Memory Fault Data h

Register is read-only. Reading me1taddr aftera memory fault releases the data lock on mfltaddr and
mfltdata, allowing data to flow inp the registers.

Fra. 3/

3t 16 15 0

L Reserved Zeros Memory System Group-Select Mask I

Contains zerm, one, or two adjrcent bits © determine which, if any, of the Upper 18 address bits will be
decoded to select memory groups.

0 msgsm3* Memory System Group Sélec 'M"as"k;_l‘!ig,rgt._.‘i;*

Fr6. 32_

«_Memory Group Devics SB% Hagfs

16 18 12 11 8 7 "4 3 0

[ ez I —

v ———— . a—y o

Mnemonic Description _J

mg3ds memory group 3 device eize

mg2ds memory group 2 device size —0mnon |
mgids memory.group 1 device size
mgOds memory group 0 device size

Device Sizes
0x00 64K DRAM 0x04 1M DRAM 0x08 8M DRAM Ox0c  64M DRAM (2sym)
0x01 128K DRAM 0x05 2M DRAM 0x09 16MORAM (asym) 0x0d 64M DRAM
0x02 256K DRAM 0x05 4MORAM(asym) Ox0s 16M DRAM Ox0s  128M DRAM
0x(3 512K DRAM 0x07 4MDRAM 0x0b 32 DRAM 0xOf SRAM

Fre. 33
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2L/(5d

1A0 misoo - Miscellaneous C Register.” . -

31
L Reserved Zeros
T T Mnemonie Oescription
pkgmfit Package has memory fautt pin —-]
mspwe memory system posted-write enable
msexvhacr memory system exciude VRAM from high

address compare RAS cycies
msexalthac memory system exciude A31 from
high ackiress compare

mssbs memory system SRAM bank select
offset from A14 (A12 for byts mode)

to he two bits for SRAM bank

select (0-9 vald, Oxa-Oxt invaid)

fre. 3%

R Mg Xebt: Memory Group 0-3 Extended Bus Tim)

: ¢4 Registers ST
1COmgoOebt 180 mgiebt 200 mg2ebt 220 mglebt

R

31 1110 6 s 210
Reserved Zems ’
.;__Mn.mon“... I Dmmm . . S esd e e aemapemmm——
mgebtsum memory group extended bus tming sum

{0,1, 2, .., 31) 2X-clocks

mgebtdobe memory group extended bus timing 508 expansion
{0.1, 2, .., 15) 2X-clocks

mgebtcase memory group extended bus timing As extension
pv 10 2. ‘) u(m

/6. 375
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NVt%4

<. mgXcasbt Memory Group 0-3 CAS Bus Timing lhgbton,

240 mgOoasbt 260 mg1ioasbt 280 mg2ocasbt 2A0 mgloasbt

31 1618 1312 9 8 43210
Reserved Zeros l ,,.L ' I]E
Mnemonio Description | ' il
mgbtcas memory group bus timing XS low start
(1.2, 3, .., 8) 4X-clock cycies
mgbidob - memory group bus timing 5B low start
(1,2, 3, ., 16} 4X-clock cycies
mgbtcast memory group bus timing CAS cycie otal
{1,2, 3, ... 32} 2X-clock cycies
mgbtewes memory group bus timing iate fall EWE actve
(O=active at cycie start, 1=active at XS low)
mgbtwea memory group bus timing EWE actve, delay by one 4X-clock cycle ——
mgbteoce memory group bus timing early rise O by one 4X-dock cycle

mgbtewe memory group bus timing early rise write enables by one 4X-clock cyde ———

Fre. 36

s sy TGStk TOUDE

k Momory Groyp. D=3 | -Reg
zco m'olv-sln 2!0 mgirasbt 300 mg2rasbt 320 m'ansbt
31 . 13 98 S 4 10

Reserved Zems: k

T Y T T S . - — = [N o o

Mnemonio Deseription

mgbtrast memory group bus timing RAS prefix cycie total + 1
0,1, 2,.., 31} 2X-clock cycies

mgbtras maemory group bus timing RAS low start
(‘ [ 2' 30 cang 1 q a'** ey“.

mgbtrhid memory group bus timing row address hold
(O. 1. 2' owy 15' a’*« cy*‘

mgbteras memory group bus timing early RAs low
Ve by one 4X-dock cycle

re. 37
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chl/é_U
~3i%.10Xebt... .1/0 Channel 0-7 Extended Bis Timin;

340 ioOebt 360 lotebt 380 io2ebt 3A0 lo3ebt
3C0 jodebt JEO loSebt 400 joGebt 420 lo7ebt

31
L Reserved Zerms

11 10 6 s 210

LT TR—

Mnemonic Description ’ T -
losbtsum 1/0 channei extended buys timing sum
0,1, 2,...31 2X<cioek cycles)
loebtdobe  1/0 channe! extended bus timing 508 expansion
0,1, 2..., 15 2X<¢lock cycles)
loebtcase 1’0 channel extended bus timing -CAS extension

0,1, 2, 4 2X-clock Cycies)
Fre. 38

N i
O.msra" 5

84

e, can

Memory System hc’ih‘ﬂifjA‘ R

WRITE ONLY
31 30 221 16 18 210
’ Reserved . 00
P e e Mo Ducmtlon
msrra memory system RAS rekresh addr on AD{24:11) —
mstha  memory system refresh high address on AD(30:25)
msra31 memary system refresh address on AD31

Fre. 39

E:“‘L'{P*hw 1OP Delay.Counter Regl \

READ ONLY

31 0
[ IOP Delay Counter

mis 84

i.
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023 /50

| 480 lodtta 1/0 Device Transfer Types A Register: - < %o aas

PP RSN PR

2 876543210
Reserved Zaros I k
84T @taibeam.n cmem - Mmon‘e D.‘c'btion B -J wiinatsanininacneetfron v
Device Transfer Types o3ttt OMA channel 3 device transfer type
0 fourbytebye-ransier oy  DMA channel 2 device transter type
1 one-byte byte-transfer )
2 one-cel celi-transfer iotcdtt  DMA channel 1 device ransfer type
3 illegai ioQdtt DMA channel 0 device ransier type

Fre. 4/

480 lodttb”  1/O Device Transfer Types B Register:™™

31 8765 43210
Reserved Zsros Ji
Mnemonic Description
Device Transter Types io7dtt  DMA channel 7 device transfer type -
0 fourbyte bye-transfer ; )
1 one-byte byte-ransfer io8dtt DMA channel 8 device transfer type
2 one-cel cell-transfer loSdtt OMA channel 8 device ransfer type
3 illegal iodcht DMA channel 4 device transfer type

fre. 9’2/

T

55 . Reserved Register Addresses ™ -

4A°-7 80

fre. 3
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244/ 5T

 7A0 lodmaex DMA Enable !xplratlon Register.: }
31 _ 876543 210

L Reserved E
Mnemonie Description _J I
io7 dmaex 110 bit 7 DMA enable expiration
io6dmaex 170 bit 8 DMA enable expiration
ioSdmaex 1/0 bit S DMA enabie expiration
ioddmaex /0 bit 4 DMA enable expiration
ioJdmaex 1/Q bit 3 DMA enabie expiration
io2dmaex 120 bit 2 DMA enable expiration
iotdmaex 170 bit 1 DMA enabie expiration J

io0dmaex 110 bit 0 DMA enable expiration

7CO drivers .. - Driver Current Register = "% N e

31 2928 2828 2322 2019 18 17 18 18 o
, ’ Reserved h
{— Mnemoiic Description
outdry bit output pin drive
_ rasbcasbdrv  RAS, TAS pin drive
e ciribdrv control B pin drive (aas, 5o, psr)
banlodiv . WESWIRSx, T3x pin drive
criadry- control A pin drive (OZ. EWE. TWE. cAs)
addrv AD pin drive
J3-Bt Fleld 2-8R Fleid Wheren =

0on 1 0f3drivers Oon 1013 drivers 0 1012 pre-drvers
OIn 2003 arvers in  Jolddrivers 1 2012 pre-drvers
110 Jotddivers '

7EQ lopreset 10P Reset Roglstor T AT ‘_..”.‘..f‘."’..’:::-? ——

31

write reset {OP on any write
read OxffIA while waiting (0 reset, Zero otherwise

Fre. 46
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I - LS KRR

ot /
EWE
(mgttowes crear)

‘ ~ /
mmﬁs ' ' o 1 | o / .

AD(7:0) annursXanommts'x Bit Inputs )1‘::( " Data © Mamory from CPY m Bt inpum

208 Ruset f Fert X Aesw )= 7( 0ata © Memory from Py JEH reaee
AD[30:9) {";

: ( RAS Address Bits' XCAsmranX Data @ Memory from CPU )

AD31;

0ata © Memory from cpy -
T Presance of IX¥ inactive perieg depense on system ceneRisns.
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1
= . [~
= L /
5 T\ /
EWE
IwE
AD17:0] BitinpusX BitOuus' Y Bn;npuh JZZ(' oata rom Mamory ® cru ):E( enivoun

ADS nuux Faultf X Reset )( Data from Memory © CPU )?;E’E.\( Reset

AD(30:9) 2—‘ :"“( RAS Adaress Bits' XCAS Address Blsx Data from Memory © CPY )“'-r-.':" —~-

AD31 k.- ( Address Bit

X Data from Memory © CPU )W
t Presence of KX3 insctive period depensn en system sonelions.

Fre 4§
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<7 /5T

i X N O vy o

ADE Aese fruu Aese ) (e oSS ("")M(""mr
AD[30:9) ¢, (RAS'X CAS ) (CAS ) ¥ (CAS )m(ms )ﬁ
= |

[T

AD3 (Addrnasn) T (m- 2% ( }"::'
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AD(7:0] |n=:u c..:Xmu-) (».3.':,':'&»!,)(.2'.'..)}5'(»‘.3:,'-'?:1: m q(u-g:y':?m m)ﬁ(mg:v'-'?m

o R e

t Presanes of AXJ inactive peried dopente en system caneltions,

Fre. 50
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[

=)
- A M [~
o R R e |

= Yy U Uy U
2017:9) minkivf e ) (235) €3:(25) =) (oem ol (o) (= NN e VA0
e Y e o o o e e e e FOE
xo130:91 £ - (Rast) cas )25 (oas) BB (0as) ans (ors v .»(w'XcAsX:'-"-_-:)ﬁ
BB S G e M

t Presance of RX3 inactive period depends en sysiem cendiions.

Frs. 5/
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3¢/52

r

= |
SN 5 ] 5106 8 ey o EVEER

or ) o) (T o o
AD(30:9] !‘::f(nAsXCASX'W)Q?-.”?.’.(RAS'XC“)_'._»Z:\_."_’_-';_.;g(m — —

AD31 E:a._—_'

rﬁnsqc-olmhmmmnnmm

fr6. 52—
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g/é@
| 1 2 | 3 | ‘
=_/\
=" "\ "N~

T\
AD(7:0] .nE:uX'X ) (°"" """'x ‘) (D“mo::"xm) (o” oma"x-" )w(“ & Nens X'
S I () R e o

AD(30:9) §_

AD31:

( Address Bit ) (

) s (Aeames

t Presenceof A3 in aclive perod depends an system

fr6.

conditions.
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2247

—
0N
w
»

N ) R . )a(""""" G o N
208 nems) . ( -«)“.,<-)§:%:§(~)mmmr

rors0:an [ (Ras'f oas )-rimt(cas Jmermi{cas ) Exvegl cas ) mmemead

WL |

a031 £ (Addrens Bt )% y(eeman) T (heamar) oo

t Presence of X3 inactive pernd depends an system candlisns.

fre. 5%
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S

H
|

= \_ / =
a_/ -

EwE
(mgtiowes clew)

— . /
= a
20(7:0) Bitinous X it Ouans’ {_ it mpurm )RER( 0ats © Menary from Devi )RR ©itiroun

ADS Reset Reset ) EESMiEperany
: bl SN RSt T Reset

CASMdmth ‘

t Presence of EX3 inactive perisd depense an system esndlinns.

Fe 55
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=__ /L | |

= L [
= s /

oE S\ /

o/
57 /
Ao07:01 Baigus X 8ituns’ ' St inputs ) siiwn] Data Fom ’ .
Memary © Devics Fﬂ Bit
a2 R g nputs

ADS antx Faulr X " Reset )":fﬁ( Dautothmory(umscd)m( Reset

AD(30:9] TR

D

t Presence of IX3 nactive period depends en sysiem cendiions.

Fre 56
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DoB

oL /
EWE \
{myuewss clew)

EWE
(motiewes sat)

L

/

ve

.

/

AD(7:0] Bit InputsXBitOutwls'x Bitinpus ) ié?j-'é,;;;(omnumory from Device )ﬂ( Bit Inputs

ae Reset X Faurr X Peset )

AD(30:9) V’._ .

AD31 ;‘-“ - '*'( Address Bit

t Presence of T3 inactive peried depents en system conelisns.

frc. 57
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3647

AD(7:0) Bi!lnnu!sXBiwutmts'X Bit inputs )"‘gu“.‘!"

{ Oata ¥om Memory © derce YA stinpun

AD8 Rnnx Fauit x Rese ):E%é'ﬁ -

Loy S o
R0130:9] 1322 ¥ (' RAS Address Bity X cas acaress 8 12

AD31 ?:i* :VT.'(-'?
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S5

g
NS

(mnm? /
mum:-:z) —\_ /
o T /

AD[7:0]) Bitlnputsx BitOutmls'X Bit Inputs ) B ( Data © Mamory trom Devics )m-w( Bit iInputs

ADS HontX Fault X Reset ) ( Data & Memory from Device )'1'“_;";‘;( Reset

AD(30:9] |7 (' RAS Address its' XcasmarmauXoauuM-norymmo.vic.):-%rgf-“

AD31 fr-oe ( Address Bit XDam: Memory from Devics )-s-'

1 Presence of AX3 inactive peried seponds en sSystem ssndiisns.

fre. 57
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= _/
m_f

AD(7:01 Bitinus | BuOuius' X Bitinputs )" { Data rom Memory b Device YEm( etiue

ADS R"“X Fault! X  Reset )“‘*( Oata fom Memory © Device )M( Reset

AD(30:9] t T ( RAS Address Bits' XCAS Address BI:X Data rom Memory © Dowa)mm
oanie Adcress BR Y cata rom Memory 0 Oevice ) Sl

¢ Presence of RX3 inactive period depenin GR SYSOM SINGEiBNG.

Fs 60
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o L G G (e (-m%é-me-m
rocsosn (oo Jons Ko s F (e o il oo R
2031 For (Adwrens 80 2 ) [wi N 8 e

t Presence of KXF inactive period depontin en systom consiisne.

fre.
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A0(7:01 v XWX (“"’2(-)(“"H-)("")’(-)ﬁ(""’ﬁ S ENRESRE

ADS n««)—, :..\_( Reset

A0(30:91 ki (mast) cas Jane: -

AD31 fuih l F R
?'mmn!mmdnnmm. systom eonclivas.

Fre. 62—
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AD[7:0)* Bitinpus } j

|

DS |Reset JiM
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AD(7:0]* |Bitinputs Data ammxo"“',Xan m.lo.. Bit Inputs

P
R ki T
ADS' |Reset }E ch WXhIX Reset [1-

. Dats’
271 e | <
s 17 Sl 71 Lo T1T7 S e »lisee
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CE Note 3 ‘ Memory Read’ [
WE \ Note 4 l \ Memory Wrie' ’
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EWE
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WE Note 4
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