A high-efficiency Class D amplifier is described. In one embodiment, the amplifier contains two transistors (Q_1, Q_2) which are turned on and off in sequence, the output being taken from the common node between the transistors. The efficiency of the amplifier is substantially increased by insuring that voltage across each of the transistors (Q_1, Q_2) is substantially zero when it turns on. This advantage is achieved by connecting an inductance (L_b) to the common node, so that the electrical energy stored in any stray capacitance is transferred to the inductance (L_b) before any transistor is turned on.
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>FW</td>
<td>Malawi</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>ND</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SK</td>
<td>Slovak Republic</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
ZERO-VOLTAGE COMPLEMENTARY SWITCHING
HIGH EFFICIENCY CLASS D AMPLIFIER

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to, and incorporates by reference, the following U.S. patent applications filed on the same date as the present application: the application entitled "Stable Power Supply in an Electrically Isolated System Providing a High Power Factor and Low Harmonic Distortion" filed by Roger Siao, Serial No. 07/886718 filed May 20, 1992; and the application entitled "Impedance Matching and Filter Network for Use With Electrodeless Discharge Lamp" filed by Roger Siao, Serial No. 07/887166 filed May 20, 1992.

FIELD OF THE INVENTION

This invention relates to Class D amplifiers and in particular to high-efficiency Class D amplifiers which are suitable for providing a high-frequency signal to an induction coil in an electrodeless discharge lamp.

BACKGROUND OF THE INVENTION

A basic form of Class D amplifier is illustrated in Figure 1A. Two transistors \(Q_A \) and \(Q_B \) are driven by a transformer to switch on and off 180 degrees out of phase with each other. The two transistors in combination are equivalent to the double-pole switch illustrated in Figure 1B, and at their common node produce a square-wave output similar to the waveform illustrated in Figure 1C.

Ideally, a Class D amplifier should be 100% efficient, i.e., no power should be consumed in transistors \(Q_A \) or \(Q_B \) as they are repeatedly switched on and off. In reality, however, transistors \(Q_A \) and \(Q_B \) have their own on-stage resistances, commonly known as the on-resistance of the transistor. They also have inherent capacitances, illustrated as capacitors \(C_A \) and \(C_B \) in Figure
1A, which permit charge to build up when either transistor is turned off. Therefore, a voltage difference exists across the transistor when it is turned on, and the resulting current flow through the transistor dissipates energy as heat. This energy loss can be expressed as \(cV^2f \), where \(c \) is the inherent capacitance of the transistor (the value of \(C_A \) or \(C_B \)), \(V \) is the DC input voltage (\(V_{DB} \)) and \(f \) is the frequency at which the amplifier is driven. In reality, high frequency Class D amplifiers typically operate at an efficiency of about 50% to 60%. A large portion of this efficiency loss is attributable to the inherent capacitances of the transistors. This inefficiency has seriously limited the suitability of Class D amplifiers for electrodeless discharge lamps and other devices in which significant power losses cannot be tolerated.

In actual operation, transistors \(Q_A \) and \(Q_B \) having the same electrical characteristic, do not switch off and on instantaneously and simultaneously as implied in Figure 1C. Rather, the input from the transformer is typically sinusoidal and turns each transistor on when it reaches its threshold voltage \(V_{th} \), as indicated in Figure 1D. Accordingly, there is a lag between the time when one of the transistors turns off and the other transistor turns on. The output signal is therefore not a perfect square wave but instead has sloped transitions as illustrated in Figure 1E, the time lag being denoted as \(\Delta t \). Moreover, a finite time is required to turn each transistor on or off.

SUMMARY OF THE INVENTION

In a Class D amplifier in accordance with this invention, an inductance, internal to the amplifier, is capacitively coupled to the common node between the two transistors. The inductance in effect forms a resonant circuit with the inherent capacitances of the transistors as well as other stray capacitances present in the circuit, all of which are referred to together as the
output capacitance \(C_o \). The value of the inductance is selected such that, in the interval \((\Delta t)\) during which both transistors are turned off, the power stored in the output capacitance \(C_o \) is transferred to the inductance. Thus, when one transistor is turned off, an energy transfer takes place between the output capacitance \(C_o \) and the inductance such that when the other transistor turns on there is no voltage drop across it. As noted above, this is the condition required to minimize power losses due to the switching of the transistors.

The resonant circuit formed with the inductance and the output capacitance thus causes the energy stored in the output capacitance to be transferred to the inductance rather than being dissipated by a current flow and heat loss when the transistor is turned on.

The principles of this invention are particularly applicable to devices such as electrodeless discharge lamps, where it is important to the overall efficiency of the lamp to minimize the power lost in amplifying the oscillating signal that is delivered to the induction coil.

Description of the Drawings

Figure 1A illustrates a circuit diagram of a conventional Class D amplifier.

Figure 1B illustrates an equivalent circuit for the Class D amplifier.

Figure 1C illustrates an idealized output of the Class D output amplifier.

Figure 1D illustrates the input from the signal source to the Class D amplifier.

Figure 1E illustrates the output of the Class D amplifier taking into account switching delays.

Figure 2 illustrates a circuit diagram of a Class D amplifier in accordance with the invention.

Figure 3 illustrates the transformer in the Class D amplifier of Figure 2.
Figure 4A is a superimposed view of the input and output signals of a Class D amplifier.

Figure 4B illustrates the resonant circuit in the Class D amplifier of Figure 2.

Figure 5 illustrates a block diagram of a Class D amplifier in accordance with this invention connected to an electrodeless discharge lamp.

Description of the Invention

Figure 2 illustrates a circuit diagram of a high-efficiency Class D amplifier in accordance with this invention. A signal source S delivers a sinusoidal input signal, R_s representing the impedance of signal source S. This input signal is delivered to a transformer assembly T_{1a} and T_{1b} sharing the same core CR, as shown in Figure 3. The windings of transformers T_{1a} and T_{1b} are identified as L_s, L_a, L_c and L_d in Figures 2 and 3. ($L_s - L_d$ sometimes refer to the self-inductance of each individual winding.) As illustrated in Figure 3, windings L_s and L_a are bifilarly wound around one side of a core CR, and windings L_c and L_d are bifilarly wound around the other side of core CR. The pair of windings L_s and L_a are wound around core CR in the same direction as the windings L_c and L_d. The coupling between windings L_s and L_a (transformer T_{1a}) and between windings L_c and L_d (transformer T_{1b}) is nearly unity, while because transformers T_{1a} and T_{1b} are positioned on opposite sides (approximately 180 degrees apart) of core CR, and because the permeability of core CR is very low, the coupling between them is very low (typically about 0.15). For reasons described below, Transformer T_{1a} has more turns than transformer T_{1b}.

The switching function is provided by transistors Q_1 and Q_2, each of which is an N-channel power MOSFET. Transistors Q_1 and Q_2 are connected in series between a DC supply voltage V_{dd} and ground, with the source terminal of
transistor Q₁ and the drain terminal of transistor Q₂ forming a common node which represents the output of the amplifier. The output is fed to an impedance matching network N and a load L. Impedance matching network N may be of several varieties known to those skilled in the art and is not a part of this invention.

Winding L₄ has an end E which is AC coupled to the gate of transistor Q₁ through a coupling capacitor C₁. An end F of winding L₄ is AC coupled to the output through a coupling capacitor C₂, and an end D of winding L₄ is connected to the gate terminal of transistor Q₂ through an inductance L₁. Capacitors C₁, C₂ and C₃ shown in Figure 2 serve as AC coupling capacitors. Capacitor C₄ serves as an AC bypass capacitor which ensures that the AC impedance between the drain terminal of transistor Q₁ and current ground is maintained at a minimum. Resistors R₁ and R₂ are connected between the gate and source terminals of transistors Q₁ and Q₂, respectively, and ensure that the gates of those transistors are maintained at a DC zero bias.

Transformer T₄ forms a Balun transmission-line transformer, which inverts the signal from source S and applies the inverted signal across the gate of transistor Q₁. (Balun transformers are described in Solid State Radio Engineering, by Herbert L. Krauss, et al., John Wiley & Sons, 1980, p. 374, which is incorporated herein by reference.) On the other hand, transformer T₅ is a conventional transformer, which delivers a signal to the gate of transistor Q₂ that is in phase with the signal from source S. Thus, when the signal from source S goes high the output of transformer T₅ at end D also goes high and turns transistor Q₂ on. At the same time, the output from transformer T₄ at end E referenced to end F goes low turning transistor Q₁ off. The arrangement of the Balun transformer T₄ and the regular transformer T₅ on core CR in the manner shown helps to ensure that there is adequate separation between the time when one of transistors Q₁ and
Q₂ turns off and the other transistor turns on. In addition, inductance Lₐ imposes a phase delay in the signal applied to the gate of transistor Q₁ and further insures that transistors Q₁ and Q₂ will both be turned off for some period of time at each transition of the output signal (or to minimize overlapping between transistors Q₁ and Q₂).

Capacitor C₀, shown in hatched lines, represents the total output capacitance of the amplifier. Thus it includes both the inherent capacitances of transistors Q₁ and Q₂ (comparable to capacitors Cₐ and Cₖ in Figure 1A) as well as any other stray capacitances in the circuit.

Figure 4A illustrates a graph of the input signal from source S superimposed upon the output signal, and Figure 4B illustrates in idealized form a resonant circuit found within the Class D amplifier. Figure 4A shows in particular the time interval Δt during which the input signal is less than the threshold voltage V₉ of either of transistors Q₁ and Q₂. As noted above, this represents the time period in which both transistors are turned off.

While this is the case, the common node between transistors Q₁ and Q₂ floats, and a resonant circuit is in effect established. As illustrated in Figure 4B, this resonant circuit includes capacitor C₀, inductor Lₐ (which is a part of transformer Tₐ), and the equivalent series resistance Rᵣ of the charge-circulating path formed by Lₐ and C₀. For small values of Rᵣ, the natural frequency fₚ of this circuit is governed by the following relationship:

$$fₚ = \frac{1}{2 \pi \sqrt{LₐC₀}}$$ \hspace{1cm} (1)

Thus, at the instant both transistors Q₁ and Q₂ turn off the charge built up on capacitor C₀ begins to discharge through the resonant circuit illustrated in Figure 4B, at a rate determined by the natural frequency of the circuit. The desired condition is that the voltage across each of transistors Q₁ and Q₂ will be equal to zero when the transistors turn on. The time it takes for the
voltage across C_0 to fall from $+V_{DD}$ to zero is approximately equal to one-fourth of the length of a single cycle at the natural frequency f_n. Thus, if the voltage across C_0 is to be zero when transistor Q_2 turns on, the following relationship should obtain

$$\Delta t = \frac{1}{4f_n}$$

Combining equations (1) and (2) gives the required value of L_b.

$$f_n = \frac{1}{2\pi \sqrt{L_b C_0}} = \frac{1}{4\Delta t}$$

or

$$L_b = \frac{4\Delta t^2}{\pi^2 C_0}$$

If this relationship is maintained, in the steady state the energy stored in C_0 will be transferred to the inductance L_b during the period Δt when both transistors are turned off, rather than being dissipated as heat generated by a current flow through one of transistors Q_1 or Q_2 when it is turned on. The stored energy is transferred back and forth between C_0 and L_b (the "flywheel" effect) instead of being dissipated.

In the preferred embodiment, the following relationship should obtain

$$L_a = L_b \gg L_e = L_d$$

Ideally, the values of L_a or L_b are approximately ten times the values of L_e or L_d. This ensures that the energy reflected back from the output of the amplifier to the common input node (A and C) is substantially attenuated.
Windings L_b and L_a are equivalent to a voltage divider between the output terminal and circuit ground. As a result, the input driving power supplied by source S is minimized while the amplifier exhibits better stability. Also, giving winding L_a a relatively low value as compared with winding L_b allows the value of L_{c}, as well as the low impedance of source S, to be ignored in calculating the resonant frequency of the circuit, as illustrated in Figure 4B. Further, the low value of L_{c} ensures that the impedance at the common node is relatively fixed by the low impedance of winding L_a. Windings L_b and L_a should, however, provide sufficient impedance for source 10.

The Class D amplifier of this invention is useful with any type of device which requires high-efficiency amplification. It is particularly useful with an electrodeless discharge lamp, as illustrated in Figure 5. As described in U.S. Patent No. 4,010,400 to Hollister, incorporated herein by reference, electrodeless discharge lamps typically include an induction coil which is energized at a high frequency so as to transfer energy to a gaseous mixture by means of an electromagnetic field. The gaseous mixture, which typically includes mercury vapor and an inert gas, is contained within a sealed vessel, the inside surfaces of which are coated with phosphors. When so energized, the atoms of mercury vapor are excited and emit radiation (primarily in the UV spectrum), which in turn causes the phosphors to emit visible light.

As shown in Figure 5, a power supply 50 supplies power to an oscillator 51 and an amplifier 52 in accordance with this invention. The oscillator normally operates at 13.56 MHz, which is a frequency set aside by the FCC for industrial, scientific and medical (ISM) applications. The output of amplifier 52 is passed through a filter and matching network 53 to an induction coil network 54, which is positioned within a central cavity of a glass vessel 55. Network 53 is preferably the
impedance matching and filter network described in Application Serial No. M-2104.

To illustrate the benefits of this invention as applied to electrodeless discharge lamps, assuming a DC supply voltage of 130 V and a frequency of 13.56 MHz, the power losses according to the formula \(cv^2f \) would typically equal about 9 watts for a total capacitance \(C_0 = 40 \) pf. This is about half the rated power consumption of a 19 watt bulb. Using the techniques of this invention, the efficiency of the amplifier can be increased from 50% or 60% to about 95%, and the power loss falls to about 1 watt.

The embodiment described above is intended to be illustrative and not limiting. Numerous alternative embodiments will be apparent to those skilled in the art, and all such alternative embodiments are intended to be within the broad scope of this invention, as defined in the following claims. For example, although the electrodeless discharge lamp described in U.S. Patent No. 4,010,400 has been referred to, the amplifier of this invention may be used with other types of electrodeless discharge lamps. Moreover, the principles of this invention are applicable to electrodeless discharge lamps in which the visible light is generated directly from the enclosed gas rather than by a coating of phosphors applied to the surface of the enclosing vessel.
I claim:
1. An amplifier comprising:
 first and second switching means connected in series;
 first gating means for controlling said first switching means;
 second gating means for controlling said second switching means;
 a signal source connected to said first gating means and said second gating means, said signal source operative to cause each of said first switching means and said second switching means to open and close in sequence, one of said first and second switching means being open whenever the other of said first and second switching means is closed, and there being a time interval during which both of said first and second switching means are open;
 wherein said amplifier has an inherent capacitance which stores energy when one of said first and second switching means is open; and
 means for storing energy, said means for storing energy being operative during said time interval to receive energy stored in said inherent capacitance so as to reduce the voltage across each of said first and second switching means to approximately zero when it changes from an open to a closed condition.

2. The amplifier of Claim 1 wherein said signal source comprises said means for storing energy.

3. The amplifier of Claim 1 wherein said signal source comprises a transformer having a primary winding and a secondary winding, said means for storing energy comprising said primary winding.

4. The amplifier of Claim 3 wherein said first
switching means comprises a first transistor and said second switching means comprises a second transistor.

5. The amplifier of Claim 3 wherein said transformer comprises a Balun transformer.

6. The amplifier of Claim 1 wherein said means for storing energy comprises an inductance having a value substantially equal to \(L_b \) such that

\[
L_b = \frac{4\Delta t^2}{\pi^2 C_o}
\]

wherein \(\Delta t \) is the length of said time interval in seconds and \(C_o \) is the value of said inherent capacitance of said amplifier.

7. An electrodeless discharge lamp comprising:
 an amplifier according to Claims 1, 2, 3, 4, 5, 6, 10, 11, 12, 13 or 14; and
 an induction coil positioned adjacent to a sealed vessel, said sealed vessel containing gas comprising a metal vapor, said amplifier being connected to said induction coil.

9. The amplifier of Claim 5 wherein said signal source further comprises a conventional transformer, said Balun transformer being connected to said first gating means and said conventional transformer being connected to said second gating means.

10. The amplifier of Claim 9 wherein said conventional transformer and said Balun transformer each comprise a primary winding and a secondary winding, said primary and secondary windings of both said conventional transformer and said Balun transformer being wound on a toroidal core.
11. The amplifier of Claim 10 wherein the primary winding of said Balun transformer has a self inductance L_b which is substantially equal to a self inductance L_a of the secondary winding of said Balun transformer, the primary winding of said conventional transformer has a self inductance L_c which is substantially equal to a self inductance L_d of said conventional transformer, and each of L_a and L_b is substantially greater than each of L_c and L_d.

12. The amplifier of Claim 11 wherein the ratio L_a/L_b constitutes an attenuation factor that represents a reduction in a positive feedback signal that is delivered from a common node between said first and second switching means to a common node between the respective primary windings of said Balun and conventional transformers.

13. The amplifier of Claim 11 comprising an inductor connected between said conventional transformer and said second gating means.

14. The electrodeless discharge lamp of Claim 7 wherein said sealed vessel is coated with phosphors.

15. The electrodeless discharge lamp of Claim 7 wherein visible light is generated by the gas contained in said sealed vessel.

16. An electrodeless discharge lamp comprising:
 a source of an oscillating signal;
 an induction coil positioned adjacent to a sealed vessel, said sealed vessel containing a metal vapor; and
 an amplifier connected to said induction coil, said amplifier comprising:
 first and second switching means connected in series;
 first gating means for sequentially opening
and closing said first switching means;
second gating means for sequentially
opening and closing said second switching means;
wherein (i) said amplifier is fabricated
such that there is a time interval during which
both of said first and second switching means
are open and (ii) said amplifier has an inherent
capacitance which stores energy when one of said
first and second switching means is open; and
a means for storing energy, said means for
storing energy being operative to receive energy
stored in said inherent capacitance so as to
reduce the voltage across each of said first and
second switching means to substantially zero
when each of said first and second switching
means changes from an open condition to a closed
condition.

17. The electrodeless discharge lamp of Claim 16
wherein said induction coil is positioned within a central
cavity formed by an exterior surface of said vessel.

18. The electrodeless discharge lamp of Claim 17
wherein said means for storing energy comprises an
inductance.

19. The electrodeless discharge lamp of Claim 18
wherein said first switching means comprises a first
transistor and said second switching means comprises a
second transistor.

20. The electrodeless discharge lamp of Claim 19
further comprising a Balun transformer connected to said
first gating means wherein said means for storing energy
is at least partially included within said Balun
transformer.
21. The electrodeless discharge lamp of Claim 20 further comprising a conventional transformer wherein said Balun transformer and said conventional transformer are arranged so as to ensure that said first and second switching means are open during said time interval.

22. The amplifier of Claim 13 wherein said inductor has a value selected so as to impose a phase delay in the signal applied to said second gating means.

23. The amplifier according to Claim 1 wherein the means for storing energy comprises an inductance having a value selected such that substantially all the energy stored in said inherent capacitance is transferred to said inductance during said time interval.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A 4,383,203 (STANLEY), 10 May 1983, See Col. 4, lines 30-60</td>
<td>1-23</td>
</tr>
<tr>
<td>Y</td>
<td>US, A 5,023,566 (EL-Hamamsy et al), 11 June 1983 See Col. 3, lines 25-45</td>
<td>1-6, 9-11, 13 & 22</td>
</tr>
<tr>
<td>Y, E</td>
<td>US, A 5,218,315 (Turner), 8 June 1993 See Col. 4, lines 15-55</td>
<td>1-6, 9-11, 13, 22, & 26</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 10 AUGUST 1993

Authorized officer: [Signature]
Authorized officer: R. RATLIFF
Telephone No.: (703) 308-4904

Form PCT/ISA/210 (second sheet)(July 1992)