woO 2009/078729 A1 |00 0 OO0 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO 0O

International Bureau

(43) International Publication Date
25 June 2009 (25.06.2009)

(10) International Publication Number

WO 2009/078729 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/NO2008/000425

(22) International Filing Date:
1 December 2008 (01.12.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/013,705
20080836

14 December 2007 (14.12.2007)
15 February 2008 (15.02.2008)

Us
NO

(71) Applicant (for all designated States except US): FAST
SEARCH & TRANSFER AS [NO/NOJ; P.O. Box 1677
Vika, N-0120 Oslo (NO).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GEHRKE, Jo-
hannes [DE/DE]; Im Neuenheimer Feld 371, Wohnung
4537, 69120 Heidelberg (DE). VANRENESSE, Robbert
[US/US]; 100 Franklin St., Ithaca, NY 14850 (US).
SCHNEIDER, Fred [US/US]; 631 Highland Road,
Ithaca, NY 14850 (US).

(74) Agent: LEISTAD, Geirr, L.; Fast Search & Transfer AS,
P.O. Box 1677 Vika, N-0120 Oslo (NO).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: A METHOD FOR IMPROVING SEARCH ENGINE EFFICIENCY

(57) Abstract: In a method for improving the
efficiency of a search engine in accessing, searching
and retrieving information in the form of documents
stored in document or content repositories, the
search engine comprises an array of search nodes

Partitioning Replication
] I @_\
! D=
i N lar

hosted on one or more servers. An index of the
stored document is created. The search engine

processes a user search query and returns a result
set of query-matching documents. The index of the

j

search engine is configured on the basis of one or
more document properties and partitioned, replicated
and distributed over the array of the search nodes.

The search queries are processed on the basis of the

distributed index. The method realizes a framework
for distributing the index of a search engine across
several hosts in a computer cluster, relying on

three orthogonal mechanisms for index distribution,
namely index partitioning, index replication, and

T
Enl =
: L =
i (.
S | B [
; :

: =

g ==

assignment of replicas to hosts. In this manner,
different ways of configuring the index of a search

Fig. 3

engine are obtained and provide a much improved
resource usage and performance, combined with any
desired level of fault tolerance.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

A method for improving search engine efficiency

The present invention concerns a method for improving search engine
efficiency with respect to accessing, searching and retrieving information in
the form of documents stored in document or content repositories, wherein
an indexing subsystem of the search engines crawls the stored documents and
generates an index thereof, wherein applying a user search query to the index
shall return a result set of at least some query-matching documents to the
user, and wherein the search engine comprises an array of search nodes
hosted on one or more servers.

Particularly the invention discloses how to build a new framework for index
distribution on a search engine, and even more particularly on an enterprise
search engine.

Building a search engine is challenging for several reasons:

e Performance. The latency of computing a query response needs to be
very low, and the search engine needs to support a high throughput of
queries.

e Scalability. The performance needs to scale with the number of
documents and the arrival rate of queries.

e Fault-tolerance. The search engine needs to maintain high availability
and high throughput even during hardware failures.

To satisfy the above three requirements, search engines use sophisticated
methods for distributing their indices across a possibly large cluster of hosts.

Prior art

An overview and discussion of the prior art relevant to the present invention
shall now be given. All literature references are identified by abbreviations in
parenthesis at the appropriate location in the following. A full bibliography is
given in an appendix at the end of the description. |

In order to improve the efficiency of search systems there has recently been
much research on distribution of search engine indices. Early work concerned
how to distribute posting lists and explored the trade-off between distributing
posting lists based on index terms (herein also called keywords) versus

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

documents [Bad01, MMRO00, RNB98, TGM93, CKE'90, MWZ06]. The
present invention takes as its point of departure the insight that making a
global choice between these two alternatives is suboptimal because the
statistical properties of keywords and documents vary in a typical search
environment, as exemplified below.

e For a keyword k£ whose posting list fits on a single disk page,
distributing k's posting lists across multiple hosts actually increases
response time for queries that involve &, because many hosts will be
involved in retrieving the posting list, although a single host would be
able to retrieve that posting list with a single disk access. For a
keyword k' whose posting list does not fit on a single disk page,
however, distributing k”'s posting list across a set of hosts reduces
response time since different parts of the posting list can be retrieved
in parallel.

e For an unpopular keyword £ that appears in only a few queries,
replicating its posting list wastes resources since there is little
opportunity for parallelism in executing the queries and thus not many
queries ever read k's posting list in parallel from different hosts. The
posting list for a popular keyword k', however, is accessed by many
queries and should thus be replicated to enable parallelism.

In order to better understand the prior art, a brief discussion of a search
engine architecture as known in the art and currently used shall be given with
reference to fig. 1, which shows a block diagram of a search engine as will
be known to persons skilled in the art, its most important subsystems, and its
interfaces respectively to a content domain, i.e. the repository of documents
that may be subjected to a search, and a client domain comprising all users
posing search queries to the search engine for retrieval of query-matching
documents from the content domain.

The search engine 100 of the present invention, as known in the art,
comprises various subsystems 101-107. The search engine can access
document or content repositories located in a content domain or space
wherefrom content can either actively be pushed into the search engine, or
using a data connector be pulled into the search engine. Typical repositories
include databases, sources made available via ETL (Extract-Transform-Load)

10

15

20

25

30

35

WO 2009/078729 PCT/NO2008/000425

tools such as Informatica, any XML-formatted repository, files from file
servers, files from web servers, document management systems, content
management systems, email systems, communication systems, collaboration
systems, and rich media such as audio, images and video. Retrieved
documents are submitted to the search engine 100 via a content API
(Application Programming Interface) 102. Subsequently, documents are
analyzed in a content analysis stage 103, also termed a content pre-
processing subsystem, in order to prepare the content for improved search
and discovery operations. Typically, the output of this content analysis stage
103 is an XML representation of the input document. The output of the
content analysis is used to feed the core search engine 101. The core search
engine 101 can typically be deployed across a farm of servers in a distributed
manner in order to allow for large sets of documents and high query loads to
be processed. The core search engine 101 accepts user requests and produces
lists of matching documents. The document ordering is usually determined
according to a relevance model that measures the likely importance of a
given document relative to the query. In addition, the core search engine 101
can produce additional metadata about the result set, such as summary
information for document attributes. The core search engine 101 in itself
comprises further subsystems, namely an indexing subsystem 101a for
crawling and indexing content documents and a search subsystem 101b for
carrying out search and retrieval proper. Alternatively, the output of the
content analysis stage 103 can be fed into an optional alert engine 104. The
alert engine 104 will have stored a set of queries and can determine which
queries that would have been satisfied by the given document input. A search
engine can be accessed from many different clients or applications which
typically can be mobile and computer-based client applications. Other clients
include PDAs and game devices. These clients, located in a client space or
domain, submit requests to a search engine query or client API 107. The
search engine 100 will typically possess a further subsystem in the form of a
query analysis stage 105 to analyze and refine the query in order to construct
a derived query that can extract more meaningful information. Finally, the
output from the core search engine 101 is typically further analyzed in
another subsystem, namely a result analysis stage 106 in order to produce
information or visualizations that are used by the clients. Both stages 105
and 106 are connected between the core search engine 101 and the client API

10

15

20

25

30

35

WO 2009/078729 PCT/NO2008/000425

107, and in case the alert engine 104 is present, it is connected in parallel to
the core search engine 101 and between the content analysis stage 103 and
the query and result analysis stages 105; 106.

In order to improve the search speed of a search engine International
published application WO00/68834 proposes a search engine with
two-dimensional linearly scalable parallel architecture for searching a
collection of text documents D, wherein the documents can be divided into a
number of partitions d,;, d,, ..., d,, wherein the collection of documents D is
pre-processed in a text filtration system such that a pre-processed document
collection D, and corresponding pre-processed partitions d,;, d,y, ..., d,, are
obtained, wherein an index / can be generated from the document collection
D such that for each previous pre-processed partition dy,;, d,;, ..., d,, a
corresponding index i, i, ..., i, is obtained, wherein searching a partition d
of the document collection D takes place with a partition-dependent data set
dp 1» Where 1 < k < n, and wherein the search engine comprises data
processing units that form sets of nodes connected in a network. A first set of
nodes comprises dispatch nodes N, a second set of nodes search nodes Nj
and a third set of nodes indexing nodes N,. The search nodes N are grouped
in columns which via the network are connected in parallel between the
dispatch nodes N, and an indexing node N,. The dispatch nodes N, are
adapted for processing search queries and search answers, the search nodes
Nj are adapted to contain search software, and the indexing nodes N, are
adapted for generally generating indexes [for the search software.
Optionally, acquisition nodes Ny are provided in a fourth set of nodes and
adapted for processing the search answers, thus relieving the dispatch nodes
of this task. The two-dimensional scaling takes place respectively with a
scaling of the data volume and a scaling of the search engine performance
through a respective adaptation of the architecture.

The schematic layout of this scalable search engine architecture is shown in
fig. 2, illustrating the principle of two-dimensional scaling. An important
benefit of this architecture is that the query response time is essentially
independent of catalogue size, as each query is executed in parallel on all
search nodes Ng. Moreover, the architecture is inherently fault-tolerant such
that faults in individual nodes will not result in a system breakdown, only in
a temporary reduction of the performance.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

Although the architecture shown in fig. 2 provides a multilevel data and
functional parallelism such that large volumes of data can be searched

- efficiently and very fast by a large number of users simultaneously, it is

encumbered with certain drawbacks and hence far from optimal. This is due
to the fact that the row and column architecture is based on a mechanical and
rigid partition scheme, which does not take account of modalities in the
keyword distribution and the user behaviour, as expressed by frequency
distributions of search terms or keywords, and access patterns.

Further, US Patent No. 7,293,016 B1 (Shakib & al., assigned to Microsoft
Corporation) discloses how to arrange indexed documents in an index
according to a static ranking and partitioned according to that ranking. The
index partition is scanned progressively, starting with a partition containing
those documents with the highest static rank, in order to locate documents
containing a search word, and a score is computed based on a present set of
documents located thus far in the search and on basis of the range of static
ranks to a next partition to be scanned. The next partition is scanned to locate
the documents containing a search word when the calculated score is above a
target score. A search can be stopped when no more relevant results will be
found in the next partition.

US published patent application No. 2008/033943 A1 (Richards & al.,
assigned to BEA Systems, Inc.) concerns a distributed search system with a
central queue of document-based records wherein a group of nodes is
assigned to different partitions, indexes for a group of documents are stored
in each partition, and the nodes in the same partition independently process
document-based records from the central queue in order to construct the
indexes.

Existing prior art does not provide a design framework built on the general
notions of keyword and query distribution properties and thus does not
achieve the flexibility of this design, with resulting performance
improvements and reduction in resource requirements.

A specific concern has been growth of the index, and several specific
techniques that gracefully handle on-line index construction have been
developed [BCLO06]. These techniques are orthogonal to the framework

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

resulting from applying the method according to the present invention, as
shall be apparent from a detailed description thereof.

The present invention does not take specific ranking algorithms into account
since it is assumed that the user always wants all query results. However,
these ideas can be extended in a straightforward manner to some of the
recently developed ranking algorithms [RPB06, AM06, LLQ"07] and
algorithms for novel query models [CPD06, LTIT07, ZS07, DEFS06,
TKT06, JRMGO06, YJ06, KCMKO06]. Algorithms for finding the best
matching query results when combining matching functions have also been
the focus of much research [PZSD96, Fag99, MYL02]. These techniques are,
however, orthogonal to an index distribution framework as realized by the
method of the present invention, and they can also be incorporated easily.

The techniques employed by the present invention for query processing with
partitioned posting lists are based on fundamental ideas drawn from parallel
database systems [DGG*86]; however, parallel database systems were
developed for database management systems that store structured data,
whereas the focus of the present invention is on enterprise and Internet
search where search queries are executed over collections of often
unstructured or semi-structured documents.

There is also prior art concerning text query processing in peer-to-peer
systems where the goal is to coordinate loosely coupled hosts with an
emphasis to find query results without broadcasting a query to all hosts in the
network [RV03, LLH 03, ODODg02, SMwW'03,CAN02, KRo02, SL02,
TXMO03, TXDO03, BJR03, TD04]. The main assumption of these prior art
publications concerns the degree of coupling between the hosts, and this is
different from the initial conception of the present invention which assumes
that all hosts are tightly coupled and are under control of a single entity, for
example, in a cluster in an enterprise data center, which is the dominant
architecture today. The conceptual framework on which the present invention
builds, maps directly onto this architecture by assuming a tightly coupled set
of hosts.

In view of the shortcomings and disadvantages of the above-mentioned prior
art, it is a major object of the present invention to provide a method that
significantly enhances the performance of a search engine.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

Another object of the present invention is to configure the index of a search
engine and specifically an enterprise search engine on basis of recognizing
that keywords and documents will differ both with regard to intrinsic as well
as to extrinsic properties, for instance such as given by modalities in search
and access patterns.

Finally, it is an object of the present invention to optimize an index
configuration with regard to inherent features of the search system itself as
well as to its operating environment.

The above-mentioned objects as well as further features and advantages are
realized according to the present invention with a method that is
characterized by configuring the index of the search engine on basis of one or
more document properties, and at least one of a fault-tolerance level, a
required search performance, document meta-properties, and an optimal
resource utilization;

partitioning the index; replicating the index; distributing the thus partitioned
and replicated index over the array of search nodes, such that index partitions
and replicas thereof are assigned to said one or more servers hosting the array
of search nodes, and processing search queries on the basis of the distributed
index.

Further features and advantages of the present invention shall be apparent
from the appended dependent claims.

The present invention shall be better understood when the following detailed
discussion of its general background and actual embodiments is read in
conjunction with the appended drawing figures of which

fig. 1 shows a simplified block diagram of a search engine, as known in the
art and discussed hereinabove;

fig. 2 a diagram of a scalable search engine architecture, as used for the prior
art AllTheWeb search service and discussed hereinabove;

fig. 3 the concept of a mapping function;
fig. 4 the concept of host assignment;

fig. 5 the concept of mapping functions for rows and columns; and

10

WO 2009/078729

PCT/NO2008/000425

fig. 6 the concept of a classification of keywords.

In order to describe the present invention in full, some assumptions and

preliminaries shall be discussed. Then the new framework for index

distribution enabled by the method according to the present invention is

discussed.

For the present invention, a simplified model of a search engine is

introduced. The notation used is summarized in Table 1.

Table 1: Notations Used in this Patent Application

Symbeol Explanation

K keyword

K ={xi, ..., Ky} set of keywords

D ={d,, ..., dn} set of documents

u a URL

n number of different keywords
m number of documents

(x, u an occurrence

PL(k) posting list of keyword &

| PL(k)] size of the positing list of keyword &
q a query

QueryResult(q)

result of processing query g

w

query workload (@ : 2 - R)

Aolq) interarrival rate of query g under workload @
h host

H={h, .., h} set of hosts

0 number of hosts

¥,.c number of rows and columns, respectively
buc performance of host

numPartitions(x)

number of components of keyword «

occLoc((x %))

number of the component where occurrence (x;u) is located

numReplicas(x)

number of replicas of keyword x

hostAssign(x,i.j)

host that stores component-replica i of component j of keyword «

One has a set of keywords K = {«;, ..., kx,} and a set of documents D = {d,,
..., dn}. Each document d is a list of keywords, and is identified by a unique

identifier called a URL. An occurrence is a tuple (x, ©) which indicates that

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

the document associated with the URL u contains the keyword «. A
document record is a tuple (u, date) that indicates that the document
associated with the URL u was created at a given date.

In practice, an occurrence contains other data, for example the position of the
keyword in the document or data that are useful for determining the ranking
of the document in the output of a query. Also, a document has other
associated metadata besides the document record, for example an access
control list. Neither of these issues are important for the aspects of the index
which are the focus of the following discussion.

The index of a search engine consists of sets of occurrences and a set of
document records. There is one set of occurrences for each keyword «,
hereinafter called the posting set of keyword x. The posting set of keyword x
contains all occurrences of keyword «;, and it contains only occurrences of
keyword «. To be consistent with the prior art, posting sets are presumed to
be ordered in a fixed order (for example, lexicographically by URL), and the
ordered posting set of a keyword & will be referred to as the posting list
PL(x) of keyword « in the following disclosure. The set of document records
contains one document record for each document, and it only contains
document records.

Now search queries and query processing shall be discussed in some detail.
Users issue queries; and a query g consists of a set of keywords g = {x;, ...,
k:} < K. The present invention adopts a model for a query in which a user
would like to find every document that contains all the keywords in the
query. One can assume that the arrival time of each query ¢ follows an
exponential distribution and thus can be characterized by a single parameter
Ay, the interarrival rate of query g. Note that this probabilistic model of
queries implies that queries are independent. A query workload wis a
function that associates with each query g € 2% an arrival rate Ao(q). From a
query workload one can compute the arrival rate A,(x) of each keyword x by
summing over all the queries that contain «, formally

Alk)=" X4,(q)

quK , KE€q

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

10

The following simplified way of logically processing a query g = {x, ..., kKi}

shall be assumed. For each keyword x; its posting list PL(x;) is retrieved for
i € {1, ..., [}, and their intersection in the URL fields are computed.

Formally, the following relational algebra expression computes the query
result QueryResult(q) for query g = {x;, ..., x1}:

QueryResult(q) = NURLPL(K]) Nn...N nURLPL(Kz)

There are more sophisticated ways of defining QueryResult(g); for example,
the user may only want to see a subset of QueryResult(g), and also may want
to see this subset in ranked order.

Physical Setup

The present invention assumes a cluster of workstations modelled as a set of
hosts H = {hy, ..., h,} [ACPtNt95]. Further, each host /4 is assumed to have a
single disk with a fixed amount of storage space of DiskSize units. Note that
for ease of explanation, the translation of the abstract unit of storage into a
concrete unit such as bytes has been omitted in the model. Each occurrence is
assumed to have a fixed size of 1 unit. For a keyword « and its posting list
PL(x) the size of the posting list |PL(k)|, is defined as the number of
occurrences in PL(x).

Each host 4 is is assumed to be capable of an associated overall performance
that allows it to retrieve buc(/) units of storage within latencyBound
milliseconds; this number is an aggregated unit that incorporates CPU speed,
the amount of main memory available, and the latency and transfer rate of the
disk of the host. Further, in the following, all hosts are assumed to have
identical performance, and thus the dependency of buc(#) on % can be
dropped and reference just be made to buc as the number of units that any
host can retrieve within latencyBound milliseconds.

A framework for index distribution shall now be discussed. Specifically, the
framework or architecture as realized according to the method of the present
invention encompasses three aspects, viz. partitioning, replication and host
assignment, as set out below. ’

Partitioning
For each keyword, its posting list is partitioned into one or more components.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

11

This partitioning of the posting lists into components is done in order to be
able to distribute the posting lists across multiple hosts such that all
components can be retrieved in parallel.

Replication
For each keyword, each of its components is replicated a certain number of

times resulting in several component-replicas for each component.
Component-replicas are created for several reasons. The first reason for
replication is fault-tolerance; in case a host that stores a component fails, the
component can be read from another host. The second reason for replication
is improved performance because queries can retrieve a component from
anyone of the hosts on which the component is replicated and thus load can
be balanced.

Host Assignment

After partitioning and replication, each component-replica of a posting list is
assigned to a host, but with the assignment subject to the restirction that no
two component-replicas of the same component and the same partition are
assigned to the same host. The host assignment enables the location of
components to be optimized globally across keywords. One could for
example co-locate components of keywords that appear commonly together
in queries to reduce the cost of query processing.

Now the corresponding three parts of the index distribution framework
according to the method of the present invention shall be introduced.

1. Partitioning the posting lists into components.
2. Replicating the components.
3. Mapping the components to hosts.

For the first part, select a function numPartitions(-) that takes as input a
keyword x and returns the number of components into which posting list
PL(x) is partitioned; the resulting components are C0,(x), C0x(x), ...,
COnumpartitions(x)(K). Also select a function occLoc(-) that takes as input an
occurrence and outputs the number of the component in which this
occurrence is located. Thus, if occLoce((x; u)) = i, then (x;, u) € C0;(x). Note
that if (5 #) € PL(x), 1 < occLoc((x; #)) < numPartitions(x) holds.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

12

For the second part, select a function numReplicas(-) that takes as input a
keyword x and returns the number of component-replicas of the partitions of
the posting list of k. The original component is included in the number of
component-replicas. Thus for a keyword k; there exist

numReplicas(x) - numPartitions(x) component-replicas. If the right
numPartitions(x) components are combined, then they together comprise
PL(x); for any component C0;(x) one can find numReplicas(x) identical
component-replica. In particular, if in workload w keyword « has arrival rate
A.(x), and one uniformly balances the load between numReplicas()
component-replica, then the arrival rate for this keyword for each of the
component-replicas will be

Ay (1)
numReplicas(x)

For the third part select a function hostAssign(k, i, j) that takes as input a
keyword k, a replica number i/ and a component number j and returns the host
that stores component-replica i of component j of the posting list in PL(x).
Note that two identical component-replicas (that are replicas of each other)
must be mapped to different hosts. Formally, hostAssign(x, iy, j) #
hostAssign(x, i, /) must hold for je {1, ..., numPartitions(x)} and i, i, € {1,

..., numPartitions(x)} with i1# i,.

Figures 3 and 4 show an exemplary instantiation on the framework according
to the present invention for a keyword x with a posting list with eight
occurrences: A, B, C, D, E, F, G, and H. In the example

numPartitions(x) = 4, (i.e. the posting list x is partitioned into four
components) and a numReplicas(x) = 3 (i.e. there are three
component-replicas). Five hosts Ay, h;, A3, h4, and ks are given. The function
hostAssign(x, 1, 2) = Ay, hostAssign(k, 2, 2) = h,, hostAssign(x, 3, 1) = hs.

An instantiation of the three functions numPartitions(-) numReplicas(-) and
hostAssign (x, 7, j) shall be called a search engine index configuration.

Given the framework as disclosed above, the physical model for processing a
query g can now be introduced. Processing a query g involves three steps:

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

13

1. For each keyword x € g identify a set of hosts such that if the union of
the component-replicas stored at the hosts comprises PL(x) .
numReplicas(x) > 1, then there is more than one such set, and one can
choose between different sets based on other characteristics, for
example the load of a host.

2. For each keyword x € g one needs to retrieve the selected
component-replica for all selected hosts.

3. One needs to compute QueryResult(g), which requires intersecting the
different posting lists.

Now these three steps shall in turn be addressed.

For the first step, note that function hestAssign(x, 7, j) encodes for each
keyword x the set of hosts where all the component-replicas of the posting
list of x are stored.

For the second step, each host involved in processing query ¢ (as selected in
the first step) retrieves all its local component-replicas for all keywords
involved in the query.

For the third step, each host will first intersect the local component-replica of
all the keyword. Then the results of the local intersections are processed
further to complete computation of QueryResult(qg).

Now the problem of index design can be defined as follows. A set of hosts
that has associated storage space DiskSize and performance buc is given.
Also given is a set of keywords with posting lists PL(x;), ..., PL(x,,) that
have sizes |PL(K1)| 5 eees IPL(Km)| , as well as a query workload .

For the index design problem one needs to find functions numPartitions(-),
numReplicas(-), and hostAssign such that the expected latency of answering a
query g is below latencyBound, where the expectation is over the set of all
possible query sequences.

In the following a discussion of some embodiments shall be given by specific
and exemplary instantiations thereof.

10

15

20

25

WO 2009/078729 PCT/NO2008/000425

14

1. AllTheWeb Rows and Columns

The AllTheWeb Rows and Columns architecture (in homage to the
AllTheWeb search system as described in the introduction hereinabove) is a
trivial instantiation of the framework, cf. fig. 5 which renders the mapping
functions for host assignment. In this architecture, there is a matrix of hosts
consisting of » rows and ¢ columns. One can visualize this matrix as follows:

4 N

h1,1 h1,2 hl,c
h2,1 h2’2 h2,c
hr,l hr,2 hr,c

o _/

Using a hash function on URLs which is independent of the keyword, the
postings of any keyword are approximately evenly partitioned into ¢
components. Each component is then replicated within the column, one
component-replica for each row, resulting in » component-replicas. To
reconstruct the posting list of a keyword, one host from each column needs to
be accessed, but it is not necessary to select these hosts all from the same
row, and this flexibility simplifies query load balancing between hosts and
improves fault tolerance.

To make the connection to the notation of the framework as realized by the
method of the present invention, the three above-mentioned functions must
be instantiated. First, due to the row and column schema, one has that for all
keywords x € K, numPartitions(x) = ¢, and numReplicas(x) = r hold, and for
all URLs v and «j, x; € K the following must hold:

occLoc((xq, u)) = occLoc((Kk, 1)),

i.e. for a URL u, the function oeccLoc((k, u)) is independent of the keyword «.
The function hostAssign is also quite simple. Let hostAssign(x, i, j) = (i, j),
where i is the row of the host and j indicates the column of the host in the

r x ¢ matrix. Note that if the number of columns c is suitably chosen, then all

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

15

the component-replicas of any single keyword x can be read in parallel
within the latencyBound. The smallest number c is the following:

B PPL(K)I]
c=max|—— |-

x buc

When performing query processing in the AllTheWeb Rows and Columns
architecture as shown in fig. 2, only one host in each column needs to be
involved even for multi-keyword queries since the function oceLoc((x, %)) is
independent of «.

However, AllTheWeb Rows and Columns has several disadvantages. Firstly,
the number of hosts accessed for a keyword « is independent of the length of
K's posting list; ¢ hosts must always be accessed even for keywords with very
short posting lists. Secondly, AllTheWeb Rows and Columns does not take
keyword popularity in the query workload into account; every component is
replicated » times even if the associated keyword is accessed only quite
infrequently. Thirdly, changes in the physical setup for AllTheWeb Rows and
columns are constrained to additions of hosts in multiples of ¢ or r at once,
resulting in an additional row or an additional column in the architecture.

Addition of a new (c host) row is relatively straightforward; addition of a
new (7 host) column, however, is non-trivial. To illustrate this point, consider
an instance of AllITheWeb Rows and Columns with » rows and ¢ columns and
which uses associated function occLoce(-) with range {1, ..., ¢}. When adding
another row, a new function occLoc'(-) with range {1, ..., c+1} must be
selected, and in general ‘

occLoc((x, u)) #occLoc' ((x, uw)),

will hold, so all posting lists need to be repartitioned according to occLoc'(-),
which basically results in re-building of the whole index.

2. Fully adaptive Rows and Columns

Now, a solution according to the present invention that takes into account
both the difference in the sizes of posting lists and the difference in
popularity of keywords in the query shall be described. The essence of this
novel solution is that one instantiates AllITheWeb Rows and Columns
differently for each keyword: Each keyword may have a different number of

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

16

rows and columns. In other words, apply'ing the method of the present
invention shall provide a solution with fully adaptive rows and columns.

Consider a keyword x. Start with an instantiation of numPartitions(x). Since
each host can only retrieve buc units while satisfying the global query latency
requirement of latencyBound, PL(x) is partitioned into

numPartitions(x) = M}
buc

components. Thus each component is sized such that it can be read within the
query latency requirement from a single host. Note that for a keyword having
very short posting lists, one (or very few) components are created, whereas
for keywords having very long posting lists, many components are created.

The question now is how many component-replicas should be created for a
keyword x. Recall that component-replicas are created for fault tolerance and
in order to distribute the query workload across hosts. To tolerate f
unavailable hosts, numReplicas(x) > f'is enforced. To balance the query
workload, posting lists of popular keywords (in the query workload) are
replicated more often than posting lists of rare keywords. So the number of
replicas is made inversely proportional to the arrival rate of the keyword in
the workload.

By making numPartitions(x) and numReplicas(x) different for each keyword
k, one obtains a number of rows and columns that is specific for each
keyword. The number of columns still indicates the number of partitions, and
the number of rows indicates the number of replicas for each partition.
However, keywords with long posting lists have many columns, and
keywords with short posting lists have few columns. Popular keywords have
many rows, unpopular keywords have few rows. As compared to AllTheWeb
Rows and Columns, Fully Adaptive Rows and Columns results in less
imbalance in the sizes of the components for different keywords. Thus one
has achieved that each component-replica is now normalized in the sense that
each component-replica has approximately the same size (up to a difference
of buc) and has approximately the same arrival rate.

There are many different ways of assigning component-replicas to hosts.
Given o hosts, one possibility would be to hash each keyword « onto one of

10

15

20

25

WO 2009/078729 PCT/NO2008/000425

17

the numbers from 1 to o, and then to assign the components sequentially
(mod o) to hosts. Conceptually, for a keyword « this embeds «'s specific
matrix with numPartitions(x) columns and numReplicas(x) rows sequentially
into the o hosts. Formally, the assignment function has the following form.
Let keywHash(:) be a function from K to {1, ..., o} with the property that

P[keywHash(x) = i] = l,
o

fori e Kto {1, ..., 0} and x € K. Then one can lay out the submatrix for
keyword x in H row by row as follows:

hdstAssign(K, i, j) = (keywHash(x) + (i — 1) - numPartitions(x) + (f — 1)) mod

o,
where i € {1, ..., numReplicas(x)} and j € {1, ..., numPartitions(x)}.

With this instantiation of hostAssign, the question now is how many
component-replicas will be assigned to a host. With Fully Adaptive Rows
and Columns the following simple theorem shows that there will not be much
imbalance between two hosts with respect to the number of
component-replicas.

Theorem 1
Let s be the total number of component-replicas created over all keywords x,
formally

s = Z numPartitions(x) - numReplicas(x)

xeK

Let o be the number of hosts, and assume hostAssign is defined as in the
previous paragraph, and assume that s = Q(0). Then the maximum number of
component-replicas at each host 4 € H is © (§), i.e. the maximum number of

component-replicas assigned to any host is on the order of the mean number
of component-replicas assigned to any host.

Proof
Follows from bounds on balls into bins [MR95].

To retrieve the posting list of a keyword « in processing a search query,
select any one host from each of the numPartitions(x) "virtual columns" of

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

18

k's matrix; thus the number of different possibilities for choosing this set is

numPartitions(K-)““'“Replicas(,().

Processing queries with multiple keywords in Fully Adaptive Rows and
Columns is much more expensive than in AllTheWeb Rows and Columns.
For example, consider a keyword query g = {«y,x>} where
numPartitions(x;) # numPartitions(x»). Since keywords x; and «; are
partitioned differently, the posting list of say, xj, must be repartitioned to
match the partitioning of x», an expensive operation. In addition, there is no
guarantee that any components of x; and x; are co-located at the same host.

3. Two-Class Rows and Columns

A third instantiation of the framework as realized by the method of the
present invention is a special case of Fully Adaptive Rows and Columns that
results in much simpler (and cheaper) query processing. As in AllITheWeb
Rows and Columns, it is assumed that - ¢ hosts are arranged in the usual
matrix of hosts.

For Two-Class Rows and Columns, the keyword is classified along two axes.
The first axis is the size of the posting list, where keywords are partitioned
into short and long keywords based on the size of their posting lists. The
second axis is the arrival rate of the keywords in the query workload where
keywords are partitioned into popular and unpopular keywords based on their
arrival rate. This results in four different classes of keywords:

e Short unpopular (SU) keywords. The posting lists of an SU keyword «
are not partitioned, and one creates the minimum number of
component-replicas to achieve the desired level of fault-tolerance.
Thus for an SU keyword «, one sets numPartitions(x) = 1, and

numReplicas(x) = f.

e Long unpopular (LU) keywords. The posting lists of an LU keyword x
are partitioned into ¢ components, and f component-replicas are
created for each component to achieve fault-tolerance. Thus for an LU

keyword x one sets numPartitions(x) = ¢, and numReplicas(x) = f.

e Short popular (SP) keywords. The posting lists of an SP keyword « are
not partitioned, and » component-replicas of x’s posting list are created

10

15

20

25

WO 2009/078729 PCT/NO2008/000425

19

to distribute «'s arrival rate across hosts. Thus for an SP keyword x

respectively set numPartitions(x) = 1, and numReplicas(x) = r.

e Long popular (LP) keywords. The posting lists of an LP keyword x are
partitioned into ¢ components and each component is replicated r
times. Thus, for an LP keyword « respectively set

numPartitions(x) = ¢, and numReplicas(x) = r.

This instantiation of the two functions numPartitions(-) and numReplicas(-)
from the present framework for the different classes of keywords is shown in
Table 2. Note that compared to Fully Adaptive Rows and Columns, in
Two-Class Rows and Columns there are only four different types of matrices
as depicted in figure 6, where the level of fault-tolerance /= 2.

Table 2

Classification of Keywords: Functions (numPartitions(x), numReplicas(x))

Posting List Length

Short Long

Arrival Unpopular (,hH (c, H
Rate

Popular (1,r) (c, 1)

Let keywHash(-) be as defined and disclosed in connection with the
discussion of fully adaptive Rows and Columns hereinabove. Let
rowHash(-,-) be a function from K x {1, ..., f} to {1, ..., } such that
rowHash(x, i) # rowHash(x, i,) for i}, i € {1, ..., r}. How the
component-replicas of a keyword are assigned to hosts depends on the class
of the keyword.

e For an SU keyword «g, one defines
hostAssign(xg,,1) = (rowHash(k; i),(keywHash(xsy) mod ¢) + 1)),
forie {1, ..., f}.

e For an LU keyword «;, one defines
hostAssign(x; ,i,j) = (rowHash(k; i), j),
forie {l,...,f}andje {1, .., c}.

10

15

20

25

WO 2009/078729 PCT/NO2008/000425
20

e For an SP keyword xsp, one defines
hostAssign(xsp,i,1) = (i, (keywHash(xg;) mod ¢) + 1),
forie {1, .., r}.

e For an LP keyword x;p, one defines
hostAssign(x;p,ij) = (I, /),
forie {1,..,r}andj e {1, ..., c}.

Similar to the previous section, the following theorem can be proved.

Theorem 2
Let s be the total number of component-replicas created over all keywords «,
(independent of the class of «),formally

s = Z numPartitions(x) - numReplicas(x)
xeK
Let o be the number of hosts, and assume hostAssign is defined as in the
previous paragraph. Then the maximum number of component-replicas at
each host # € H is ®(2), i.e. the maximum number of component-replicas

assigned to any host is on the order of the mean number of
component-replicas assigned to any host.

Proof
Follows from bounds on balls into bins [MR95].

Given the functions hostAssign(«x,-,-) for the different classes of keywords,
query processing in Two-Class Rows and Columns is not very complicated,
and there are usually many choices of how to process a query. Table 3
describes how to process a query g = {k, xK»} with two keywords; query
processing for queries with more than two keywords is analogues.

The set of possible sets of hosts to choose for query processing is
straightforward given this discussion.

WO 2009/078729 PCT/NO2008/000425
21

Table 3: Query Processing for Pairs of Keywords in Two-Class Rows and Columns

K, K Description

The posting list for any SU keyword just resides on a single host. Assuming
without loss of generality that | PL(xy) |< | PL(x3) | , read the posting list for

SU, SU keyword x; and sent it to the host where the posting list for keyword «;,
resides.
SU. LU Partition the posting list of x; on-the-fly and send it to all the hosts in the
> row where x; is stored.
SU. LP The posting list of x; is partitioned, but not the posting list of x;. Thus one

must partition the posting list of x; on-the-fly and send it to all the hosts in
the row where «; is stored.

There are two possibilities. If both the posting list of xy and a replica of the
posting list k, reside on the same column, then perform the intersection

SU, SP | locally at the host where the posting list of x; resides. Otherwise, either send
any of the component-replicas of keyword x; to the host where x; resides or
vice versa.

The posting lists of both keywords are already partitioned (recall that they
are partitioned using the same hashing function, a hash on the URL of the
LU, LU | document). Thus one can intersect the corresponding component-replica; e.g.
the first component-replica of the posting list of keyword x, with the first
component-replica of the posting list of keyword «, and so on.

There exists a row where a replica of both posting lists resides and the
LU, LP | intersection of the partitions of the two posting lists can happen locally at
each host of this row.

Take any of the hosts where the posting list of x; resides, partition the
LU, SP | posting list and send it to the row where the posting list of x; has been
partitioned.

Note that for all LP keywords components and component-replicas have been
LP, LP | created according to AllTheWeb Rows and Columns and thus query
processing can proceed as in AlITheWeb Rows and Columns.

LP, SP | Partition the posting list of &, and then send it to the hosts in one of the rows.

If both posting lists already reside on the same column, then one can choose
one of these hosts and perform the intersection locally. Otherwise, either
send the posting list of x; to one of the hosts where the posting list of «;
resides, or vice versa.

SP, SP

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

22

Based on the instantiation framework as provided by the method of the
present invention and discussed hereinabove, a few practical considerations
will be outlined in the following.

Firstly, applying the method of the present invention allows an extension of
the search system framework that permits each keyword to have more than a
single row-and-column instance. This shall be described immediately below.

In the above-mentioned embodiments there has so far assumed that for each
keyword « there are two functions numPartitions(x) and numReplicas(x).
However, for berformance reasons, one may partition with a keyword x in
more than one way and possibly have a different number of replicas for the
different partitionings. For example, in Two-Class Rows and Columns, the
posting list for an SP keyword xgp is replicated across one column. In
addition to the current replication, the posting list of x5 might have been
partitioned across one row, because kgp often co-occurs with a second LP
keyword x; p that is partitioned across all rows.

This extension can be characterized by associating sets of functions from the
resulting framework with each keyword applying the method of the
invention; for example, a keyword x could have two sets of functions
{numPartitions;(x), numReplicas;(x)} and {numPartitions,(x),
numReplicas,;(x)}. The number of sets could be keyword-dependent. This
greatly increases the possible choices for query processing. However, this
extension formally shall not be introduced formally herein since it is
conceptually straightforward.

Secondly, a person skilled in the art shall realize that applying the method of
the invention to creating frameworks for real search systems, including
enterprise search systems, may allow for various optimizations thereof. Such
optimizations shall take the method of the present invention as their point of
departure, but their reduction of practice is considered to lie outside the
scope of the present invention, and they shall hence not be elaborated further
herein.

The method of the present invention realizes a framework for distributing the
index of a search engine across several hosts in a computing cluster. The
framework as disclosed distinguishes three orthogonal mechanisms for

10

15

WO 2009/078729 PCT/NO2008/000425

23

distributing a search index: Index partitioning, index replication, and
assignment of replicas to hosts. Instantiations of these mechanisms yield
different ways of distributing the index of a search engine, including popular
methods from the literature and novel methods that by far outperform the
prior art in terms of resource usage and performance while achieving the
same level of fault tolerance.

Further the method of the present invention for the first time recognizes that
different keywords and different documents in a search engine might have
different properties (such as length or frequency of access). The framework
realized by applying the method of the present invention creates a
configuration of the index of a search engine according to these properties.
The framework also serves to outline how to process queries for the space of
configurations made possible by its realizations.

Instantiations of this framework moreover lead to existing index
configurations disclosed in prior art as well as novel index configurations
that are not possible in the prior art.

10

15

20

25

30

35

40

45

WO 2009/078729

APPENDIX
References

[ACPtN195]

[AMO6]

[Bad01]

[BCLO6]

[BIRS03]

[CANO2]

[CKE+90]

[CPDO6]

[DEFS06]

PCT/NO2008/000425
24

Thomas E. Anderson, David E. Culler, David A. Patterson, and the
NOW team. A case for NOW (networks of workstations). /[EEE
Micro, 15(1):54-64, February 1995.

Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using
pre-computed impacts. In Efthimis N. Efthimiadis, Susan T. Dumais,
David Hawking, and Kalervo Jarvelin, editors, SIGIR, pages 372—
379. ACM, 2006.

C. S. Badue. Distributed query processing using partitioned inverted
files. Master’s thesis, Federal University of Minas Gerais, 2001.

Stefan Biittcher, Charles L. A. Clarke, and Brad Lushman. Hybrid
index maintenance for growing text collections. In Efthimis N.

Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo Jarvelin,
editors, SIGIR, pages 356-363. ACM, 2006.

Mayank Bawa, Roberto J. Bayardo Jr., Sridhar Rajagopalan, and
Eugene J. Shekita. Make it fresh, make it quick: searching a network
of personal webservers. In WWW, pages 577-586, 2003.

Francisco Matias Cuenca-Acuna and Thu D. Nguyen. Text-based
content search and retrieval in ad-hoc P2P communities. In Enrico
Gregori, Ludmila Cherkasova, Gianpaolo Cugola, Fabio Panzieri, and
Gian Pietro Picco, editors, NETWORKING Workshops, volume 2376
of Lecture Notes in Computer Science, pages 220-234. Springer,
2002.

Cringean, Janey K., Roger England, Manson, Gordon A., and Peter
Willett. Parallel text searching in serial files using a processor farm.
In Proceedings of the Thirteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
Access Methods, pages 429453, 1990.

Soumen Chakrabarti, Kriti Puniyani, and Sujatha Das. Optimizing
scoring functions and indexes for proximity search in type-annotated
corpora. In Les Carr, David De Roure, Arun Iyengar, Carole A.
Goble, and Michael Dahlin, editors, WWW, pages 717-726. ACM,
2006.

Pavel A. Dmitriev, Nadav Eiron, Marcus Fontoura, and Eugene J.
Shekita. Using annotations in enterprise search. In Les Carr, David
De Roure, Arun lyengar, Carole A. Goble, and Michael Dahlin,
editors, WWW, pages 811-817. ACM, 2006.

10

15

20

25

30

35

40

45

WO 2009/078729

[DGG+86]

[Fag99]

[JRMGO06]

[KCMKO06]

[Kro02]

[LLH+03]

[LLQ+07]

[LTIT07]

[MMRO00]

[MR95]

[MWZ06]

PCT/NO2008/000425
25

David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L.
Heytens, Krishna B. Kumar, and M. Muralikrishna. GAMMA — A
high performance dataflow database machine. In Proceedings of the

12th International Conference on Very Large Data Bases, pages 228—
237, 1986.

Ronald Fagin. Combining fuzzy information from multiple systems.
J. Comput. Syst. Sci, 58(1):83-99, 1999.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating query substitutions. In Les Carr, David De Roure, Arun
Iyengar, Carole A. Goble, and Michael Dahlin, editors, WWW, pages
387-396. ACM, 2006.

Reiner Kraft, Chi-Chao Chang, Farzin Maghoul, and Ravi Kumar.
Searching with context. In Les Carr, David De Roure, Arun Iyengar,
Carole A. Goble, and Michael Dahlin, editors, WWW, pages 477—486.
ACM, 2006.

Amr Z. Kronfol. FASD: A fault-tolerant, adaptive, scalable,
distributed search engine, December 20 2002.

Li, Loo, Hellerstein, Kaashoek, Karger, and Morris. On the
feasibility of peer-to-peer web indexing and search. In International
Workshop on Peer-to-Peer Systems (IPTPS), LNCS, volume 2, 2003.

Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhi-Ming Ma, and Hang Li.
Supervised rank aggregation. In WWW, pages 481-489. ACM, 2007.

Gang Luo, Chungiang Tang, and Ying li Tian. Answering
relationship queries on the web. In WWW, pages 561-570. ACM,
2007.

Andy MacFarlane, Julie A. McCann, and Stephen E. Robertson.
Parallel search using partitioned inverted files. In SPIRE, pages 209—
220, 2000.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

Alistair Moffat, William Webber, and Justin Zobel. Load balancing
for term-distributed parallel retrieval. In Efthimis N. Efthimiadis,

Susan T. Dumais, David Hawking, and Kalervo Jarvelin, editors,
SIGIR, pages 348-355. ACM, 2006.

10

15

20

25

30

35

40

WO 2009/078729

[MYL02]

[ODODG02]

[PZSD96]

[RNB9S]

[RPB06]

[RV03]

[SL02]

PCT/NO2008/000425
26

Meng, Yu, and Liu. Building efficient and effective metasearch
engines. CSURV: Computing Surveys, 34, 2002.

1977 Omprakash D. (Omprakash Dev) Gnawali. A keyword-set
search system for peer-to-peer networks. Master’s thesis,
Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 2002.

Michael Persin, Justin Zobel, and Ron Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes. JASIS,

47(10):749-764, 1996.

B. Ribeiro-Neto and R. Barbosa. Query performance for tightly
coupled distributed digital libraries. In Proceedings of the Third ACM
International Conference on Digital Libraries, pages 182-190, June
1998.

Matthew Richardson, Amit Prakash, and Eric Brill. Beyond
pagerank: machine learning for static ranking. In Les Carr, David De
Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin, editors,
WWW, pages 707-715. ACM, 2006.

Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword
searching. In Markus Endler and Douglas C. Schmidt, editors,
Middleware, volume 2672 of Lecture Notes in Computer Science,
pages 21-40. Springer, 2003.

Yipeng Shen and Dik Lun Lee. An MDP-based peer-to-peer search
server network. In Tok Wang Ling, Umeshwar Dayal, Elisa Bertino,
Wee Keong Ng, and Angela Goh, editors, WISE, pages 269-278.
IEEE Computer Society, 2002.

[SMwW+03] Torsten Suel, Chandan Mathur, Jo wenWu, Jiangong Zhang, Alex

[TD04]

Delis, Mehdi Kharrazi, Xiaohui Long, and Kulesh
Shanmugasundaram. ODISSEA: A peer-to-peer architecture for
scalable web search and information retrieval. In Vassilis
Christophides and Juliana Freire, editors, WebDB, pages 6772,
2003.

Chungiang Tang and Sandhya Dwarkadas. Hybrid global-local
indexing for efficient peer-to-peer information retrieval. In NSDI,
pages 211-224. USENIX, 2004.

10

15

20

25

WO 2009/078729

[TGM93]

[TKT06]

[TXDO03]

[TXMO3]

[YJO06]

[ZS07]

PCT/NO2008/000425
27

A. Tomasic and H. Garcia-Molina. Performance of inverted indices
in shared-nothing distributed text document information retrieval
systems [selected best paper]. In Parallel and Distributed
Information Systems (PDIS °93), pages 8—17, Los Alamitos, Ca.,
USA, January 1993. IEEE Computer Society Press.

Taro Tezuka, Takeshi Kurashima, and Katsumi Tanaka. Toward
tighter integration of web search with a geographic information
system. In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors, WWW, pages 277-286. ACM, 2006.

Chungiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer
information retrieval using self-organizing semantic overlay
networks. In Anja Feldmann, Martina Zitterbart, Jon Crowcroft, and
David Wetherall, editors, SIGCOMM, pages 175-186. ACM, 2003.

Chungiang Tang, Zhichen Xu, and Mallik Mahalingam. psearch:
information retrieval in structured overlays. Computer
Communication Review, 33(1):89-94, 2003.

Beverly Yang and Glen Jeh. Retroactive answering of search queries.
In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and
Michael Dahlin, editors, WWW, pages 457-466. ACM, 2006.

Jiangong Zhang and Torsten Suel. Efficient search in large textual
collections with redundancy. In WWW, pages 411-420. ACM, 2007.

10

15

20

25

30

WO 2009/078729 PCT/NO2008/000425

28

PATENT CLAIMS

1. A method for improving the efficiency of a search engine in accessing,
searching and retrieving information in the form of documents stored in
document or content repositories, wherein an indexing subsystem of the
search engines crawls the stored documents and generates an index thereof,
wherein applying a user search query to the index shall return a result set of
at least some query-matching documents to the user, wherein the search
engine comprises an array of search nodes hosted on one or more servers, and
wherein the method is

characterized by configuring the index of the search engine on basis of one or
more document properties, and at least one of a fault-tolerance level, a
required search performance, document meta-properties, and an optimal
resource utilization;

partitioning the index;

replicating the index;

distributing the thus partitioned and replicated index over the array of search
nodes, such that index partitions and replicas thereof are assigned to said one
or more servers hosting the array of search nodes, and

processing search queries on the basis of the distributed index.

2. A method according to claim 1,
characterized by distributing the index such that a search query latency is
below a user-specified latency bound.

3. A method according to claim 1,
characterized by processing a search query with posting lists that have
different classifications.

4. A method according to claim 3,
characterized by classifying search query posting lists on the basis of length
and popularity, the latter being determined by user access patterns.

5. A method according to claim 4, wherein the array of search nodes
comprises » rows and ¢ columns,

characterized by using a number of partitions that is different from the
number of replicas for each query keyword, such that the number of rows and

10

15

20

25

WO 2009/078729 _ PCT/NO2008/000425

29

columns are different for each query keyword, and
distributing the index taking into account at least one of posting lists size
differences and posting lists popularity differences.

6. A method according to claim 4, wherein the array of search nodes
comprises ¥ rows and ¢ columns

characterized by classifying a query keyword in two dimensions, a first
dimension being a posting list size and a second dimension an arrival rate of
each query keyword, such that a query keyword is partitioned in the first
dimension as respectively short and long and in the second dimension as
respectively popular and unpopular, and

distributing the index taking into account at least one of posting lists size
differences, posting lists popularity differences, and the cost of processing a
search query.

7. A method according to claim 3,
characterized by dividing search query posting lists into components for
balancing a query-processing load between the search nodes.

8. A method according to claim 7,
characterized by replicating posting list components, thus creating identical
replicas thereof, for increasing the fault-tolerance level.

9. A method according to claim 8,
characterized by assigning the component replicas to the search nodes for
balancing a query-processing load therebetween.

10. A method according to claim 1,

characterized by distributing the index of the search engine on a
two-dimensional linearly scalable array of search nodes, wherein scaling as
per se is used for handling variations in a data volume or in a search query
frequency or both.

PCT/NO2008/000425

WO 2009/078729

(018 s@2Inap
Buiweb
'syad
‘sadInep
sjiqow
‘s1e)ndwiod
'sOd)
urewop
usio s

1/4

101

A

90l

0L

A

\ 4

S0l

TL

A 4

/
/
/

A
A 4

A

/
1
|
|
\

-

eLol P/

€0l

o
-—

(Moysodal
juawnoop)
ulewop
Jusjuon

PCT/NO2008/000425

WO 2009/078729

l:l'/‘ Nod

2/4

e
INITYIS JINYINHOAHId

DATA VOLUME SCALING

Fig. 2

PCT/NO2008/000425

Replication

3/4

Partitioning

WO 2009/078729

e FFHR
I 7
= N

Host Assignment
1
1
I
i
i
/

e [0

Fig. 3

WO 2009/078729 PCT/NO2008/000425

4/4

Host Assignment for Rows and Columns

=
I
;[G]h[uh[slhh
1 (om i (e S w (a
CH
=5 =g, /3. =3, =
— et e & &
[:(G]h(HJh[B]hh
SRR oo | (v il (o
?
=
Fig. 5
Short Long
B BN N
u |
ksl I £y [IR sy e
L] EA I EAEN)
] A
Popular ILPL[E_PZ:HL_P:HE‘—]
| A A
3 N Y [

Fig. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/N02008/000425

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or 1o both national classification and JPC

B. FIELDS SEARCHED

Minimum documentation searched {classification system followed by classification symbols)

IPC: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

‘

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20050102270 Al (RISVIK ET AL), 12 May 2005 1-10
(12.05.2005), figures 2,5, claims 8,13,
abstract, paragraphs (0004),(0007),(0013),(0032

A WO 0068834 Al (FAST SEARCH & TRANSFER ASA), 1-10
16 November 2000 (16.11.2000), abstract

A US 6182063 Bl (WOODS), 30 January 2001 1-10
(30.01.2001), abstract

A US 6507837 B1 (DE LA HUERGA), 14 January 2003 1-10
(14.01.2003), abstract

Further documents are listed in the continuation of Box C. I] See patent family annex.

the priority date claimed

* Special categories of cited documents: “T* later document published afier the international filing date or priority
“A" document defining the general state of the art which is not considered date and not in conilict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E" earlier application or patent but published on or after the international “X" document of particular relevance: the claimed invention camnot be
oo Tipgdate . L considered novel or cannot be considered to involve an inventive
L document which may throw doubts on priorily claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified) Y” document of particuler relevance: the claimed invention cannot be
neyn . R e considered 1o involve an inventive step when the document is
© dmocument referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
vy RcENS . .) i . being obvious to a person skilled in the art
P” document published prior to the international filing date but later than

“&" document member of the same patent family

Date of the actval completion of the international search

16 March 2009

Date of mailing of the international search report

19 -03- 2008

Name and mailing address of the ISA/

Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM

Facsimile No. +46 8 666 02 86

Authorized officer

Christian Wall / JA A
Telephone No, +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT International application No.
PCT/N0O2008/000425

International patent classification (IPC)

GO06F 17/30 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downloaded:

s From "Cited documents" found under our online services at
www.prv.se (English version)

e From "Anfdrda dokument" found under "e-tjanster" at
www.prv.se (Swedish version)

Use the application number as username. The password is

ETMUXFOOLY.

1

Paper copies can be ordered at a cost of 50 SEK per copy from
PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.

Form PCT/ISA/210 (extra sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/NO2008/000425
US 20050102270 Al 12/05/2005 NONE
WO 0068834 Al 16/11/2000 AU 761169 B 29/05/2003
AU 4321400 A 21/11/2000
BR 0010427 A 19/02/2002
CA 2373453 A,C 16/08/2005
CN 1153162 C 09/06/2004
CN 1360701 A 24/07/2002
CN 1652108 A 10/08/2005
CN 100394424 C 11/06/2008
CZ 20014002 A 17/04/2002
EP 1208465 A 29/05/2002
JP 3586429 B 10/11/2004
JP 2002544598 T 24/12/2002
RU 2226713 C 10/04/2004
us 7330857 B 12/02/2008
us 6182063 Bl 30/01/2001 DE 69624985 D, T 18/09/2003
EP 0752676 A,B 27/11/2002
SE 0752676 T3
JP 9223161 A 26/08/1997
us. 5724571 A 03/03/1998
us 6101491 A 08/08/2000
us 6282538 B 28/08/2001
us 6507837 Bl 14/01/2003 us 0928452 B 09/08/2005
Us 20030101172 A 29/05/2003

T S ot B b B R 30 . GRS O e et R A S S i S o S A (o e e P o A G s D S (U P S g A S B S Gt e e Ut G B PR S o N M e v

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

