wo 2011/044710 A1 |0 0K 00 OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

21 April 2011 (21.04.2011) WO 2011/044710 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 21/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
21) International Apolication Number: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
PCT/CN2005/001133 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
12 October 2009 (12.10.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, 8Y, TJ, TM, TN, TR, TT,

TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US):
SAFENET, INC. [US/US] 4690 Millennium Drive, Bel- (84) Designated States (unless otherwise indicated, fO}" every

camp, Maryland 21017 (US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventor; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(75) Inventor/Applicant (for US only): CHENG, Peter [CN/ TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
CN]; Room 401, Unit 6, Building, No. 46 East First Area, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

Tian Tong Yuan, Changping District, Beijing 102218 MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
(CN). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(74) Agent: CHINA PATENT AGENT (H.K.) LTD.; 22/F, ML, MR, NE, SN, TD, TG).
Great Fagle Centre, 23 Harbour Road, Wanchai, Hong Published:

K N).
ong (CN) — with international search report (Art. 21(3))

(54) Title: SOFTWARE LICENSE EMBEDDED IN SHELL CODE

(57) Abstract: Software application protection methods
and systems for protecting and verifying licensing of an
original application. The system reads the original applica-
tion executable, and generates a shelled application com-
prising the original application and a shell containing the
license information. The shelled application implements li-

5 =50 S04 cense APIs, and establishes secure communications within
ORIGINAL APPLICATION GENERATED the shelled application between the original application and

APPLICATION LICENSE

EXECUTABLE INFORMATION STARTUP CODE the shell. Licensing for the original application can be veri-

fied by the shelled application alone.
505

,-/
SHELLED 506 | STARTUP
APPLICATION CODE
GENERATOR |~ | GENERATOR
ENCRYPTION | >
ENGINE

|

SHELLED APPLICATION

510
SHELL CODE |~ 508
APPLIGATION CODE 512

FIG. 5

WO 2011/044710 PCT/CN2009/001133

SOFTWARE LICENSE EMBEDDED IN SHELL CODE

BACKGROUND
Field of the Invention
[0001] The present invention relates to systems and methods for protecting software
from unauthorized copying and/or execution, and in particular to a system and method
that protects software via shell code that contains embedded license information and/or
that communicates with a protected application via a secure tunnel.
Description of the Related Art
[0002] Software piracy is an ongoing problem for software vendors. Many
techniques for discouraging software piracy have been developed, and products
incorporating those techniques are available for use by software vendors to secure their
software applications from unauthorized copying and/or use.
[0003] One software application protection technique uses link-in modules that
require the developer to modify the original application code to call specific functions, for
example, functions that check for license conditions. Another protection technique is
called shelling. Shelling ordinarily does not require changes to the application code.
With the shelling technique, a shell generating process reads the original application
executable and produces a modified, new executable as a so-called shelled application
which contains an “outer layer” of protection code that encapsulates the original
application. Further, when shelling is used, one or more application sections, such as
executable code, data, import tables, resources, and the like, can be protected via
encryption and/or compression when the shell code is generated, and the shell makes
the protected code sections available as needed when the protected application runs.
[0004] One function typically performed by the shell is to confirm that a valid license
for the application exists. For example, a traditional shell-based application protection
solution will typically pack the protected application with shell code that stores license or
key information in a storage location separate from the protected application. The
licensing information can be stored in a registry, database, file, hidden disk sector, or

the like. One or more application programming interfaces (APIs) are provided to access

WO 2011/044710 PCT/CN2009/001133

the license information, and the shell code can call the APIs to verify that the protected
application is properly licensed.

[0005] One vulnerability inherent in shelling is that the software application program
protection is provided only by the outer layer of protection. Consequently, a cracker
may be able to gain access to the protected application by cracking only the outer layer
of protection. When the shelled application launches, the shell code executes before
the original application code, and code execution usually proceeds in a fixed,
identifiable pattern. A cracker can follow the code execution (for example, by running
the shelled program under a debugger), and once the code execution sequence is
understood, the cracker can modify the code (for example, by patching the shelled
application executable) to bypass and/or disable license checking.

[0006] Link-in modules and shelling can also be used together. For example, in one
scenario the shell code can be appended to the encrypted and/or compressed
application sections. When the shelled application first executes, the shell initially gains
control and can perform security-related functions such as checking application integrity,
checking for the presence of a debugger, decrypting and/or decompressing application
sections, and initializing application processes such as import functions and relocation
tables, before passing control to the application. The original application code can also
be modified to redirect some system APls to the shell code. The application can then
continue to interact with the shell code after control is transferred to the application.
Furthermore, self-modifying code functions can be provided by the shell whereby, for
example, certain application code snippets are encrypted at runtime, and the shell code
can decrypt those code snippets before they are executed, and encrypt them again after
executing.

[0007] However, in solutions that utilize shelling, the application code and the shell
code of the shelled application reside in different sections of memory having identifiably
different addresses. Prior art shelling solutions do not mask the difference between
application code addresses and shell code addresses. A cracker may therefore be able
to unpack the protected application code and determine which code is part of the shell,
and which is part of the application the shell protects. If so, the cracker may then be

able to remove or modify the link between shell code and application code. For

WO 2011/044710 PCT/CN2009/001133

example, encryption and decryption of code during program execution can be disabled
by using no-operation (NOP) instructions to replace decrypt and encrypt instructions.
[0008] FIG. 1 shows an example of a traditional self-modifying code feature being
implemented. As shown, two macros are used by the packing tool to locate the code to
be protected, SHELL CRYPT_BEGIN, and SHELL_CRYPT_END. After compiling and
packing, the disassembled code will be shown in FIGs. 2A and 2B.

[0009] After the application is compiled, the protective shell code is generated and a
shelled application executable is generated. The shelled application executable can
then be examined by a cracker using a debug tool, such as OllyDbg, for example, to
disassemble the shelled application executable, or binary code. OllyDbg is a debugger
that emphasizes binary code analysis. It traces registers, recognizes procedures, API
calls, switches, tables, constants, and strings, and locates routines from object files and
libraries. Such tools can be used to reverse engineer and crack programs.

[0010] FIG. 2A shows an illustrative snippet of such disassembled code. Program
addresses are shown at the beginning of each line, and all have the format 0040XXXX.
The code at address 004013A2 calls the code at address 004A6B81 (top line of code)
to decrypt the subsequent lines of code. After executing the code at address 004013A2,
the code is changed as shown in FIG. 2B. It is apparent that the called addresses
004A6B81 and 004AADBB (underlined in the call statements at lines 004013A2 and
004013BD in FIGs. 2A and 2B) are located in different address sections than the
program code addresses that are indicated at the beginning of each line of code, i.e., at
addresses 0040XXXX. A cracker could surmise that address locations of the form
0040XXXX belong to the application code address space, while address locations of the
form 004AXXXX belong to the shell code address space.

[0011] Different code sections are illustrated in FIG. 3, wherein different blocks
indicate code sections located in different address spaces. As shown, the address
spaces of the different code sections have identifiable boundaries. lllustratively, during
program execution the shell code can decrypt and encrypt sections of application code
as needed, thereby enhancing the security of the application code. Even so, a cracker
might be able to analyze the program, recognize the existence of the decryption and
encryption shell processes, and remove the link between the shell code and the

WO 2011/044710 PCT/CN2009/001133

application code, for example, by using no-operation (NOP) instructions to replace the
encryption instructions. Similarly, a cracker might be able to recognize the existence of
license checking processes, and remove the link between the shelled application code
and the license information stored outside of the shelled application.

[0012] Accordingly, there is a need for an application protection technique that
resists cracking by making it more difficult for a cracker to disable license checking

and/or modify communications between application code and shell code.

SUMMARY
[0013] Embedding application software license information in a shell, and securing
communications between the shell and the application code of a shelled application, are
disclosed. The license can be embedded in the shell code during the shell generating
process. A set of application programming interfaces (APIs) can be provided in the
shell and the application can be modified to interact with the APIs to access the license
information. The application code and the shell code can communicate using a secure
tunnel to strengthen the security of the communication link between them.
[0014] Itis to be understood that both the foregoing general description and the
following detailed description are exemplary and explanatory and are intended to

provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The accompanying figures are included to provide a further understanding of
the invention, and to present exemplary embodiments and illustrative features of the
invention. Together with the description, the figures serve to help explain the principles
of the invention, the scope of which is defined by the appended claims.
[0016] In the drawings:
[0017] FIG. 1 shows code for initiating the generation of a protective shell. -
[0018] FIGs. 2A and 2B show the modification of shelled application code as a
shelled application executes.
[0019] FIG. 3 illustrates boundaries between code sections of a shelled application,

and encryption and decryption operations being performed in the shelled application.

WO 2011/044710 PCT/CN2009/001133

[0020] FIG. 4 is a block diagram showing an exemplary hardware environment for
practicing the herein disclosed systems and methods.

[0021] FIG. 5is a diagram illustrating an exemplary shelling process used to protect
a software application.

[0022] FIG. 6 is a diagram illustrating how a software application protected by the
shelling process illustrated in FIG. 5 can be executed.

[0023] FIG. 7 shows a secure tunnel established between the shell code and the
application code of a shelled application.

[0024] FIG. 8 illustrates an exemplary license constraint element.

[0025] FIG. 9 illustrates exemplary constraint types and descriptions.

[0026] FIG. 10 illustrates exemplary shell license application programming interface
(AP1) functions.

DETAILED DESCRIPTION
[0027] FIG. 4 illustrates an exemplary computer system 400 that could be used to
implement the herein disclosed systems and methods. Computer 402 comprises a
processor 404 and a memory, such as random access memory (RAM) 406. the
computer 402 is operatively coupled to a display 422, which presents images such as
windows to the user on a graphical user interface (GUI) 418B. The computer 402 may
be coupled to other devices, such as a keyboard 414, a mouse 416, a printer 428, etc.
Those skilled in the art will recognize that any combination of the above components,
periphérals, and other devices, may be used with the computer 402.
[0028] Generally, the computer 402 operates under the control of an operating
system 408 stored in the memory 406, and interfaces with the user to accept inputs and
commands and to present results through a graphical user interface (GUl) module 418A.
Although the GUI module 418A is depicted as a separate module, the instructions
performing the GUI functions can be resident or distributed in the operating system 408,
the computer program 410, or implemented with special purpose memory and
processors. The computer 402 also implements a compiler 412 which allows an
application program 410 originally written in a programming language such as C, C++,
Visual Basic, Delphi, or other programming language, to be compiled (translated) into

WO 2011/044710 PCT/CN2009/001133

processor 404 readable code. After completion, the compiled application 410 accesses
and manipulates data stored in the memory 406 of the computer 402 using relationships
and logic that were generated using the compiler 412. The computer 402 also
optionally comprises a communication device 440 such as a modem, network card, or
other device for communicating with external devices 430 such as other computers,
storage devices, etc.

[0029] In an embodiment, instructions implementing the operating system 408, the
computer program 410, and the compiler 412 are tangibly embodied in a computer-
readable storage medium, e.g., data storage device 420, which could include one or
more fixed or removable data storage devices, such as a hard drive, an optical disk
drive, flash drive, tape drive, or the like. Further, the operating system 408 and the
computer program 410 comprise instructions which, when read and executed by the
computer 402, cause the computer 402 to perform the steps necessary to implement
and/or use the herein disclosed systems and methods. Computer program 410 and/or
operating system 408 instructions may also be tangibly embodied in memory 406, data
storage device 420, and/or external device 430, thereby making a computer program
product or article of manufacture according to the herein disclosed systems and

” o

methods. As such, the terms “article of manufacture,” “program storage device,” and
“computer program product” as used herein are intended to encompass a computer
program accessible from any computer readable device or storage medium.

[0030] FIG. 5 is a diagram illustrating an exemplary computer-implemented software
application protection system and shelling process. Startup code 504 is generated by
startup code generator 505. Unprotected original application executable code 500,
application license information 502, and the startup code 504, are provided to shelled
application generator 506. The shelled application generator 506 generates therefrom a
new, protected executable file as a shelled application 508. The startup code can be
incorporated into a shell, and the license information embedded in the shell. The shell
with embedded license information and the application executable are combined to form
the shelled application 508, which comprises both the shell code 510 and the
application code 512. In an implementation, the application executable can be

encrypted by encryption engine 507 during the shelling process, so that the shelled

WO 2011/044710 PCT/CN2009/001133

application comprises an encrypted version of the application executable as application
code 512. The license information can also be encrypted by the encryption engine 507,
so that the shelled application comprises an encrypted version of the license information
embedded in the shell code 510.

[0031] FIG. 6 is a flow diagram illustrating the execution of the shelled application
508. In block 602, execution of the shelled application 508 is initiated, and the shell
code 510 is executed 604. The startup code in the shell 510 initiates one or more
operations to determine whether execution of the application executable is authorized.
In an implementation, the authorization process includes allowing the application to
check for one or more valid license conditions 606. If execution of the protected
executable is not authorized (e.g., the license information is not accessible and/or the
shell provides an incorrect response to a request for licensing information), the
execution of the shelled application 508 stops, as shown in blocks 608 and 616. If the
licensing information is verified, the application code 512 is then executed, as shown in
block 614. Other operations can also be performed if needed, such as relocating data
link libraries (DLLs), setting up required import tables, and the like 610, and/or
decrypting the application code 512 if encrypted to produce the executable application
code, as shown in block 612.

[0032] FIG. 7 shows a shelled application 700 in which the application code 702
accesses license information 704 embedded in shell code 706. As described previously,
the license information 704 is embedded in the shell code 706 during the packing
process, that is, during the generation of the shelled application 700. A shell license
library 708 can be provided to the shell 706, comprising a set of APIs for use by the
application 702 to access the license information 704. Before the shelling process is
performed, software security modules, referred to as callable security checks, can be
inserted into the application 702 to communicate with the shell 706, such as to make
license information-related requests. The set of software security modules in the
application constitute a secure client library 710. When the shelled application 700 is
launched, it initiates a communication service thread 712, which handles license-related
requests from the application. The application 702 uses the secure client library 710 to

make calls to the APIs requesting licensing information 704. The communication

WO 2011/044710 PCT/CN2009/001133

service thread 712 accesses the shell license APlIs in the shell license library 708, which
accesses and returns the license information 704 as needed to satisfy the requests.
[0033] The license-related requests, responses, and other messages are sent
between the application 702 and the shell 706. A secure tunnel 714 can be set up by
the communication service thread between the application 702 and the shell 706. For
example, the secure client library 710 may include one or more software security
modules for secure communications. The shelled application 700 can include a
pseudo-random number generator, and the secure client library 710 and/or the
communication service thread 712 can generate therefrom randomized one-time
session keys to secure messages communicated between the application and the shell
via secure tunnel 714. The messages can use any appropriate inter-process
communication (IPC) method, such as named pipes, TCP/IP, mailboxes, or the like.
[0034] In an exemplary embodiment, licensing information can comprise one or more
features of various types, each feature comprising one or more elements. lllustratively,
the feature types can include data, Elliptic Curve Cryptography (ECC), Advanced
Encryption Standard (AES), and constraint features. Additional or other feature types
may also be used.

[0035] Regarding the data feature type, an application developer can, for example,
store data for use by the application into a data feature element, and the application can
call an API to read the stored data, such as the exemplary SCL_FeatureRead AP
described below with other exemplary APls. The ECC feature can contain an ECC
private key, and can be used to sign message content using an elliptical curve signature
scheme, such as ECCSH, for example. The application can call an API, such as
SCL_FeatureSign, to sign message data, and then call another AP! such as
SCL_FeatureVerify to verify the signature result in the application. Similarly, the AES
feature can contain an AES algorithm key, and the application can call an AP| such as
SCL_FeatureQuery to get a response, and compare the response with a previous
response stored in the application. The application can also call APIs such as
SCL_FeatureEncrypt and SCL_FeatureDecrypt to respectively encrypt and/or decrypt
application data. Finally, the constraint feature provides licensing constraints, such as
constraints that must be satisfied for the application to run or before certain application

WO 2011/044710 PCT/CN2009/001133

functionality can be used. Shell License APIs can be called by the application code to
access the license information embedded in the shell code.

[0036] In an exemplary embodiment, such license information may be encoded in
messages communicated between the shell code and the application code as type-
length-value (TLV) elements of up to 256 bytes in length, within the data communication
protocol used. Each such element contains only one piece of licensing information, or
“constraint feature.” The TLV elements comprise at least three kinds of fields: type,
length, and value. The type field is a numeric code indicating the kind of licensing
information represented by the element. The length field indicates the size of the
element or the value field in bytes. The value field is a variable sized field which
contains the licensing constraint feature information.

[0037] Additional fields can also exist in each licensing constraint element. FIG. 8
shows fields of an exemplary licensing constraint element. In addition to the type,
length, and value fields described above, each element contains a feature ID field, and
a check mark field. The feature ID field identifies the source of the information that the
element represents. The check mark field is used to check data integrity. The license
information embedded in the shell code may be encrypted when stored, and decrypted
when accessed.

[0038] FIG. 9 lists exemplary feature types and IDs and associated feature
descriptions that can be used as licensing constraints. As shown, three types of
constraints are represented: locking constraints, environment constraints, and trial
constraints. Each constraint can be used to prevent an application from launching or
performing certain functions if the constraint is not satisfied. Locking constraints pertain
to the computer on which the application is being run or its user, such as a user name,
or the network card Media Access Control (MAC) address of a network card in the
computer running the shelled application, or a processor ID, or disk serial number, etc.
Environment constraints pertain to the operating environment in which the shelled
application is being run, such as whether the presence of a debugger is detected. Trial
constraints pertain to confining use of the shelled application to a trial usage period.
The constraints listed in FIG. 9 are for illustration purposes, and other constraint types,

IDs, and descriptions can also be used.

WO 2011/044710 PCT/CN2009/001133

[0039] As previously described in connection with FIG. 7, the shell license library 708
comprises a set of APIs for use by the application 702 to access the license information
704. FIGs. 10A and 10B provide illustrative names and formats of exemplary APIs that
can be called by the application to access the licensing information embedded in the
shell code, as follows. In the illustrative APt names, “SCL” is simply an abbreviation for
Secure Client Library.

[0040] SCL_OpenLicense—this APl can be used to create a secure tunnel between
the shell code and the application code within the shelled applicatibn, and get a license
handle. If it returns successfully, subsequent communication packets can be
communicated via the secure tunnel. if the license has a constraint feature that cannot
be satisfied, an error will be returned.

[0041] SCL_FeatureQuery—this AP| can be used to generate an encrypted
response based on the Advanced Encryption Standard (AES) feature 1D and the
queried data.

[0042] SCL_FeatureRead—this API can be used to read data stored via the data
feature.

[0043] SCL_FeatureEncrypt—this API can be used to encrypt provided cleartext
data based on the AES feature ID.

[0044] SCL_FeatureDecrypt—this API can be used to decrypt provided cipher data
based on the AES feature ID.

[0045] SCL_FeatureVerify—this API can be used to verify digitally signed content
using the public key of the ECC feature based on the ECC feature ID.

[0046] SCL_FeatureSign—this API can be used to sign content using an algorithm
based on the ECC feature ID.

[0047] SCL_CloseLicense—this API can be used to close the secure tunnel and
release the license handle.

[0048] One benefit of the herein described systems and methods is that a virtual
shell license can be supplied for testing purposes before the packing process. A virtual
shell license is a kind of service that can emulate all shell license functions. During the
debugging and developing process, the library can access this server, and after adding

the shell, the library in the application can access the license in the shell code. In an

10

WO 2011/044710 PCT/CN2009/001133

exemplary operation, the herein described systems and methods can be used to make
each shelled application instance unique, for example, via various compressidn or
encryption methods and/or combinations. License information can also be encrypted
using one or more vendor-related factors, such as a vendor ID or application name.
License information can also be signed by one or more asymmetric algorithms.

[0049] In addition to the exemplary embodiments described above, various other
modifications and variations can be made without departing from the spirit or scope of
the invention. Thus, it is intended that the present invention cover all such modifications
and variations provided they come within the scope of the appended claims and their

equivalents.

11

WO 2011/044710 PCT/CN2009/001133

CLAIMS

What is claimed is:
1. A method of generating, from an original software application executable,
a protected executable that includes the original application executable and license
information for the application, the method comprising:
“generating startup code for an original application to be protected;
obtaining computer executable code of the original application, and license
information for the original application; and
generating a protected application executable as a shelled application comprising
the original application executable as application code, and a shell in which the license
information is embedded and containing the startup code as shell code;
whereby use of the original application can be authorized by the shelled
application alone using the embedded license information after the shelied application is
launched.

2. The method of claim 1, wherein the shelled application comprises
instructions for implementing a secure tunnel within the shelled application between the
application code and the shell code, and instructions implementing at least one
application programming interface (API) for the application code to access the license
information in the shell code, whereby during execution the shelled application can
perform a method comprising:

calling the API from the application code within the shelled application;

generating secure communication session keys;

using the keys to establish a secure tunnel within the shelled application between
the application code and the shell code; and

communicating between the application code and the shell code using the secure

tunnel.

3. The method of claim 2, wherein the method performed by the shelled

application further comprises launching a communication service thread to handle

12

WO 2011/044710 PCT/CN2009/001133

requests from the application code for license information, whereby the steps of
generating session keys, using the keys to establish a secure tunnel, and
communicating using the tunnel are handled by the service thread responsive to the API
call.

4, The method of claim 2, wherein the communication protocol used by the
secure tunnel comprises one of interprocess communication (IPC), Transmission

Control Protocol/Internet Protocol (TCP/IP), named pipes, and mail slots.

5. The method of claim 1, wherein the step of creating the shelled application

further comprises encrypting the license information.

6. The method of claim 5, wherein the encrypting step is accomplished using

vendor-specific information.

7. The method of claim 6, wherein the vendor-specific information includes at

least one of an application name and a unique vendor identifier (D).

8. The method of claim 2, wherein the API is used to request a license
handle; wherein, if the handle is successfully returned, at least one packet subsequently

sent between the application and the shell is sent via the secure tunnel.

9. The method of claim 8, wherein the APl is called to satisfy at least one
license constraint and if the constraint is not satisfied, the handle is not returned and the

API returns an error.

10. The method of claim 9, wherein the constraint is one of a user name, a
system partition volume serial number, a network care media access control (MAC)
address, a host name, an internet protocol (IP) address, a processor |ID, an operating
system (OS) install date/time, a universal serial bus (USB) storage type or serial

number, a physical disk type or serial number, a video card type, a random access

13

WO 2011/044710 PCT/CN2009/001133

memory (RAM) size, a client time zone, detection of a virtual machine, detection of a
terminal service, detection of a debugger, a trial use begin date, and a trial use end date.

11. A computer-implemented software application protection system for
creating a shelled application comprising protected original application code and shell
code containing embedded license information for the original application, the system
comprising:

a startup code generator for generating startup code; and

a shelled application generator to generate a protected application executable as
a shelled application from the startup code, an original software application executable,
and application license information;

wherein the shelled application comprises the original software application
executable as application code, and a shell containing the startup code and the license

information as shell code.

12. The software protection system of claim 11, wherein the application code
of the shelled application comprises code for calling at least one application
programming interface (API), and the shell code comprises the called APl and uses the

API to access the license information.

13. The software protection system of claim 12, wherein the shelled
application further comprises a pseudo-random number generator for generating
randomized one-time session keys for establishing a secure tunnel within the shelled
application between the application code and the shell code.

14. The software protection system of claim 13, wherein the shelled
application further comprises a communication service thread generator for generating
a communication service thread for processing at least one API call from the application
code and to provide a return, wherein the processing includes generating session keys,

using the keys to establish a secure tunnel within the shelled application between the

14

WO 2011/044710 PCT/CN2009/001133

application code and the shell code, and communicating packets using the tunnel
responsive to the API calls.

15. A computer readable storage medium storing computer instructions which,
when read by a computer, cause the computer to generate from an original software
application executable a protected executable that includes the original application
executable and license information for the application by a method comprising:

generating shell code comprising startup information and license information for
an original application to be protected;

obtaining computer executable code of the original application; and

creating a protected application executable as a shelled application comprising
the original application executable as application code, and a shell in which the license
information is embedded as shell code;

whereby use of the original application can be authorized by the shelled
application using the embedded license information after the shelled application is

launched.

16. The computer readable storage medium of claim 15, wherein the shelled
application comprises instructions for implementing a secure tunnel within the shelled
application between the application code and the shell code, and instructions
implementing at least one application programming interface (AP1) for the application
code to access the license information in the shell code, whereby during execution the
shelled application can perform a method comprising:

calling the API from the application code within the shelled application;

generating secure communication session keys;

using the keys to establish a secure tunnel within the shelled application between
the application code and the shell code; and

communicating between the application code and the shell code using the secure

tunnel.

16

WO 2011/044710 PCT/CN2009/001133

17. The computer readable storage medium of claim 16, wherein the method
performed by the shelled application further comprises launching a communication
service thread to handle requests from the application code for license information,
whereby the steps of generating session keys, using the keys to establish a secure
tunnel, and communicating using the tunnel are handled by the service thread

responsive to the call to the API.

18. The computer readable storage medium of claim 16, wherein the
communication protocol used by the secure tunnel is one of interprocess
communication (IPC), Transmission Control Protocol/Internet Protocol (TCP/IP), nhamed

pipes, and mail slots.

19. The computer readable storage medium of claim 15, wherein the method

further comprises encrypting the license information.

16

WO 2011/044710

PCT/CN2009/001133

1/8

SHELL CRYPT BEGIN

MessageBox (NULL, "shell sdk test", MB OK | MB ICONINFORMATION) ;
SHELL CRYPT END

FIG. 1
004013A2 E8 DA570A00 call 004A6B81 ; The following codes are invalid
004013Aa7 1BGO sbb eax, dword ptr [eax]
004013A9 0000 add byte ptr [eax], al
004013AB 08FD or ch, bh
004013AD c7 ?2?? ; Unknown command
004013AE DD5A BS fstp gword ptr [edx-48])
004013B1 0ABD 3B2EQA6D or bh, byte ptr [ebp+6D0A2E3B]
004013B7 8934C2 mov dword ptr [edx+eax*8], esi
004013BA E6 F1 out 0Fl, al
004013BC 238CA1 F3440A8B and ecx, dword ptr [ecx+BBOA44F3]

FIG. 2A

004013A2 E8 DA570A00 call 004A6B81 ; Decrypt
004013a7 1B00O sbb eax, dword ptr [(eax]
00401379 0000 add byte ptr [eax], al
004013AB 086A 40 or byte ptr [(edx+40], ch
004013AE 68 20304000 push 00403020 ; ASCII "shell sdk test"
004013B3 6A 00 push 0
004013BS 8B4D FC mov ecx, dword ptr [ebp-4]
004013B8 E8 11040000 call 004017CE ; Jjmp to MessageBoxA
004013BD E8 F9990A00 call 004AADBB ; Encrypt it again

FIG. 2B

WO 2011/044710

2/8

PCT/CN2009/001133

SHELL CODE .
.RSRC DECRYPT /
DATA ENCRYPT
RDATA
TEXT
PE HEADER
FIG. 3
500 502 504
ORIGINAL APPLICATION GENERATED
APPLICATION LICENSE STARTUP CODE
EXECUTABLE INFORMATION
3
505
) i
SHELLED 506 STARTUP
APPLICATION [~ CODE
GENERATOR 507 GENERATOR
ENCRYPTION »
ENGINE
A 4
SHELLED APPLICATION
510
SHELLCODE 508
12
APPLICATION CODE f-/s

FIG. 5

WO 2011/044710

3/8

PCT/CN2009/001133

418B
\

FIG. 4

p 40
,_/
PROCESSOR
440
406 /
MEMORY / 430
408 410 EXT. DEV.
~ Yaud
oS APPLICATION
PROGRAM
420
r./
EA a1 STORAGE
r./ ,_/
GUI
MODULE COMPILER
428
,_/
PRINTER
422 416 414
\ — Vandk ~
GUl MOUSE KEYBOARD

WO 2011/044710

4/8

PCT/CN2009/001133

602
/.J
START SHELLED APPLICATION
604
L 4 /'/
EXECUTE SHELL CODE
L 606
CHECK LICENSE INFORMATION
616
VALID? NO » STOP
____________________ ~ | 610
I v
. RELOCATION, IMPORT TABLE |
__________ [__________‘r_/612
DECRYPT APPLICATION CODE |
614
v /'/
EXECUTE APPLICATION CODE

FIG. 6

WO 2011/044710 PCT/CN2009/001133

5/8

7
SHELLED APPLICATION —~ 00

706
L~

SHELL CODE

LICENSE 704
INFORMATION Y
r 3
v
SHELL 708
- LICENSE 7
LIBRARY

A 4

COMMUNICATION
SERVICE THREAD |~

712

4

714
SECURE TUNNEL

710

SECURE CLIENT |
LIBRARY

) 4

702

y

APPLICATION CODE |~

FIG. 7

WO 2011/044710 PCT/CN2009/001133

6/8

Feature Data

0 1 | 2]3]4]|5]| 6 7~255
Type | Feature | Length Check Value
ID Mark
FIG. 8
Type , Description
Locking 0 User name
Constraint 7 System partition volume serial number
2 Network card MAC address
3 Host name
4 IP address
5 Processor ID
6 OS install date/time
7 USB mass storage (disk) type or serial number
8 Physical disk type or serial number (both SCSI and EIDE)
9 Video card type
10 Physical memory (RAM) size
11 Client time zone
Environment | 12 Virtual machine detection
Constraint 13 Terminal Service detection
14 Debuggers detection
Trial 15 Begin date
Constraint 16 End date

FIG. 9

WO 2011/044710 PCT/CN2009/001133
7/8
SCL_OpenLicense
Format: SCL_STATUS SCL_OpenLicense (
SCL_DWORD licID,
SCL_DWORD securetunelfeaturelD,
SCL_BYTE publicKey,
SCL_DWORD flags,
SCL_HANDLE licHandle)
SCL_FeatureQuery
Format: SCL_STATUS SCL_FeatureQuery (
SCL_HANDLE licHandle,
SCL_DWORD featurelD,
SCL_DWORD flags,
SCL_BYTE query,
SCL_DWORD queryLength,
SCL_BYTE response,
SCL_DWORD responselength)

SCL_FeatureRead
Format:

SCL_STATUS SCL_FeatureRead (

SCL_HANDLE
SCL_DWORD
SCL_VOID
SCL_DWORD
SCL_DWORD

licHandle,
featurelD,
buffer,
offset,
length)

SCL_FeatureEncrypt
Format:

SCL_STATUS SCL_FeatureEncrypt (

SCL_HANDLE
SCL_DWORD
SCL_BYTE
SCL_BYTE

licHandle,
featurelD,
plainBuffer,
cipherBuffer)

FIG. 10A

WO 2011/044710

PCT/CN2009/001133

SCL_FeatureDecrypt
Format:

SCL_STATUS SCL_FeatureDecrypt(

SCL_HANDLE
SCL_DWORD
SCL_BYTE
SCL_BYTE

licHandle,
featurelD,
cipherBuffer,
plainBuffer)

SCL_FeatureVerify
Format:

SCL_STATUS SP_API SCL_FeatureVerify(

SCL_HANDLE
SCL_BYTE
SCL_BYTE
SCL_DWORD
SCL_BYTE

licHandle,
publicKey,
signBuffer,
length,
signResult)

SCL_FeatureSign
Format:

SCL_STATUS SCL_FeatureSign(

SCL_HANDLE
SCL_DWORD
SCL_BYTE
SCL_DWORD
SCL_BYTE

licHandle,
featurelD,
signBuffer,
length,
signResult)

SCL_Closelicense
Format:

SCL_STATUS SCL_Closelicense(

SCL_HANDLE

licHandle)

FIG. 10B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2009,/001133

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 21/00 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F21/-; GO6F9/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPLEPODOC,CNKLIEE;:CRRS

software, executt, application, wrapper, shell+, startup, piracy, license, authentica+, encryp+, protect+, interface, API

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

(09.04.2008) see the whole document

X US6463538B1 (Safenet, Inc.) 08 October 2002 (08.10.2002) 11

Y see column 6 line 45- column 7 line 17 of the description, figures 3, 3a 1-10,12-19

Y US20070174571A1 (Rainbow Technologies, Inc..) 26 July 2007 (26.07.2007) 1-10, 12-19
see paragraph 27-paragraph 38 of the description, figures 3-6

A US6141698A (Network Commerce Inc.) 31 October 2000 (31.10.2000) 1-19
see the whole document

A CN101158911A (BEIJING FEITIAN TECHNOLOGIES CO LTD) 09 April 2008 1-19

[Further documents are listed in the continuation of Box C.

Xl See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not
considered to be of particular relevance

“E” earlier application or patent but published on or after the
international filing date

“L” document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or
other means

“P” document published prior to the international filing date

but later than the priority date claimed

“T> later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X” document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person

skilled in the art

“& ”document member of the same patent family

Date of the actual completion of the international search

05 July 2010(05.07.2010)

Date of mailing of the international search report

15 Jul. 2010 (15.07.2010)

IName and mailing address of the ISA/CN

The State Intellectual Property Office, the PR.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

[Facsimile No. 86-10-62019451

Authorized officer
LI Le
Telephone No. (86-10)62411827

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2009/001133
Paent Documents referred Publication Date Patent Family Publication Date
in the Report

US6463538B1 08.10.2002 AU2395800A 31.07.2000
WO0039956A1 06.07.2000
US20070174571Al1 26.07.2007 WO2007087316 A2 02.08.2007
WO2007087316 A3 24.04.2008
EP1977551 A2 08.10.2008
JP2009524879T 02.07.2009
US6141698A 31.10.2000 WO9833106A1 30.07.1998
AUG6051798A 18.08.1998
US6405316B1 11.06.2002
US6073124A 06.06.2000
US2005021477A 27.01.2005
CNI101158911A 09.04.2008 US2009138863A1 28.05.2009
CN100474253C 01.04.2009

Form PCT/ISA /210 (patent family annex) (July 2009)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

