wo 2020/156797 A1 |0 00000 KO Y000 0000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2020/156797 Al

06 August 2020 (06.08.2020) WIPOIPCT

(51) International Patent Classification:
GO6F 9/30 (2018.01) GO6F 13/20 (2006.01)

(21) International Application Number:
PCT/EP2020/050757

(22) International Filing Date:
14 January 2020 (14.01.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

19154735.5 31 January 2019 (31.01.2019) EP (74)
(71) Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION [US/US]; New Orchard

Road, Armonk, New York 10504 (US). 81

(71) Applicant (for MG only): IBM DEUTSCHLAND GMBH
[DE/DE]; c/o IBM Deutschland Management & Business
Support GmbH, Patentwesen und Urheberrecht, IBM Allee
1, 71139 Ehningen, 71139 Ehningen (DE).

(72) Inventors: RAISCH, Christoph; c¢/o IBM Deutschland
Research & Development GmbH, Schoenaicher Strasse
220, 71032 Boeblingen (DE). KRAEMER, Marco; c/
o IBM Deutschland Research & Development GmbH,
Schoenaicher Strasse 220, 71032 Boeblingen (DE). LEHN-

ERT, Frank; c/o IBM Deutschland Research & Devel-
opment GmbH, Schoenaicher Strasse 220, 71032 Boe-
blingen (DE). KLEIN, Matthias; c/o IBM Corp., 2455
South Road, Poughkeepsie, New York 12601 (US). BRAD-
BURY, Jonathan; c/o IBM Corp., 2455 South Road,
Poughkeepsie, New York 12601 (US). JACOBI, Christ-
ian; c/o IBM Corp., 2455 South Road, Poughkeepsie, New
York 12601 (US). DRIEVER, Peter; c/o IBM Corp., 2455
South Road, Poughkeepsie, New York 12601 (US). BEL-
MAR, Brenton; c/o [BM Corp., 2455 South Road, Pough-
keepsie, New York 12601 (US).

Agent: DOEHLER, Denis; c/o IBM Deutschland Manage-
ment & Business Support GmbH, Patentwesen und Urhe-
berrecht, [BM Allee 1, 71139 Ehningen (DE).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: HANDLING AN INPUT/OUTPUT STORE INSTRUCTION

(57) Abstract:
210

30 an input/output store instruction (30), comprising a system nest (18) coupled
40 G Store instruction / to at least one input/output bus (22) by an input/output bus controller (20).
e sempeen aenieare T data processing system (210) further comprises at least a data process-
0 [= 2 | ing unit (216) comprising a core (12), a system firmware (10) and an asyn-
ore
4;51,:% o o |34 6 chronous core-nest interface (14). The data processing unit (216) is coupled
\Msz A) o b to the system nest (18) via an aggregation buffer (16). The system nest (18)
50 x is configured to asynchronously load from and/or store data to at least one
\ 1 » external device (214) which is coupled to the input/output bus (22). The da-
Asyne Gore-Nest KE‘ 46 s ta processing unit (216) is configured to complete the input/output store in-
"°5:‘:5 = D ot — struction (30) before an execution of the input/output store instruction (30)
”s saus [‘°“‘: orenest I in the system nest (18) is completed. The asynchronous core-nest interface
_ ® (14) comprises an input/output status array (44) with multiple input/output
57 J status buffers (24).
16 Aggregatior Ea,‘y' System Nest 28
Butter L™ [~ 5 J
26 win awey onry ™[5t 110 Bus
Controller IF
20 1/0 Bus Controller
]
2
Fig. 1

A data processing system (210) and a method for handling

[Continued on next page]

WO 2020/156797 A1 | [IN 10|00 00 000D 0 O

SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

HANDLING AN INPUT/OUTPUT STORE INSTRUCTION

[0001] The present invention relates in general to data processing systems, in particular
to a method for handling an input/output store instruction to multiple external devices as

well as a computer program product and a data processing system.

BACKGROUND

[0002] A computing environment may include one or more types of input/output
devices, including various types of adapters. One type of adapter is a Peripheral Component
Interconnect (PCI) or Peripheral Component Interconnect Express (PCle) adapter. This
adapter includes one or more address spaces used in communicating data between the

adapter and the system to which the adapter is attached.

[0003] In some systems, a portion of an address space of the central processing unit
(CPU) coupled to the adapter is mapped to an address space of the adapter enabling CPU

instructions that access storage to directly manipulate the data in the adapter's address space.

[0004] Communication with adapters, such as PCI or PCle adapters can be facilitated
by control instructions specifically designed for communicating data to and from adapters

and used for communication.

[0005] In the state of the art, a store instruction for storing data in an adapter includes,
for instance, obtaining a machine instruction for execution, the machine instruction being
defined for computer execution according to a computer architecture, the machine
instruction including, for instance, an opcode field identifying a store to adapter instruction.
A first field identifies a first location that includes data to be stored in an adapter. A second
field identifies a second location, the contents of which include a function handle
identifying the adapter, a designation of an address space within the adapter in which data is
to be stored, and an offset within the address space. The machine instruction is executed, the
executing including using the function handle to obtain a function table entry associated

with the adapter. A data address of the adapter is obtained using at least one of information

1

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

in the function table entry and the offset. Data are stored from the first location in a specific
location in the address space identified by the designation of the address space, the specific

location identified by the data address of the adapter.

[0006] An existing feature in a large multi-processor system is the ability to quiesce all
processors within a target zone. Quiesce functions operate to temporarily pause or alter the
state of a processor or group of processors to perfom1, e.g., system updates or backups. In
some instances, a quiesce interruption is applicable to only a subset of the system resources.
In such instances, the system can be divided into different zones. For a quiesce operation
applicable to one zone (a target zone), processors outside of the target zone are permitted to
continue running, although new translations may be blocked. Typically, at least one system
controller or other mechanism broadcasts the quiesce to all physical processors in the sys-
tem, handles collecting quiesce state information and indicates to a requesting processor

when all processors have started, or are ignoring (filtering) the quiesce request.

[0007] A quiesce controller can be communicatively coupled to a processor in a multi-
processor system, and a quiesce state machine configured to receive a quiesce request. The
computer system is configured to perform a method that includes receiving a quiesce
request at the quiesce controller from a requesting processor, the requesting processor being
one of a plurality of processors in a multi-processor system, and determining that the
quiesce request is not accepted based on a state of the quiesce state machine. The method
also includes, based on the request being not accepted, generating a reject message
configured to indicate that the quiesce request has been rejected, holding the reject message
Imtil a quiesce command is broadcast to the multi-processor system, the quiesce command
based on a different quiesce request, and sending the reject message to the requesting
processor based on the broadcast of the quiesce command being detected by the quiesce

controller.

SUMMARY

[0008] A data processing system is proposed for handling an input/output store
instruction, comprising a system nest communicatively coupled to at least one input/output

bus by an input/output bus controller. The data processing system further comprises at least

2

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

a data processing unit comprising a core,

a system firmware and an asynchronous core-nest interface. The data processing unit is
communicatively coupled to the system nest via an aggregation buffer. The system nest is
configured to asynchronously load from and/or store data to at least one external device
which is communicatively coupled to the input/output bus. The asynchronous core-nest
interface comprises an input/output status array with multiple input/output status buffers, as

well as an array management and access logic.

[0009] The data processing system is configured to perform: (i) an operating system
running on the data processing system issues the input/output store instruction specifying at
least an input/output function with an offset through an address, data to be transferred and/or
a pointer to data to be transferred, and a length of the data; (i1) the data processing unit is
configured to identify the input/output function by the address specified in the input/output
store instruction; (ii1) the data processing unit is configured to verify if access to the
input/output function is allowed on an address space and on a guest instance level, the guest
running on the data processing system; (iv) the data processing unit is configured to
complete the input/output store instruction before an execution of the input/output store
instruction in the system nest is completed; (v) the system firmware is configured to notify
the operating system through an interrupt, if during the asynchronous execution of the
input/output store instruction an error is detected by the data processing unit, transmitting
the data of the failed asynchronous execution; (vi) the array management and access logic
collects a completion of the store instruction and updates the input/output status buffers
based on received completion messages; and (vii) the data processing unit delays an
execution of the store instruction, until an input/output status buffer is available to store

information about a completion of pending store instructions.

[0010] Favorably multiple outstanding asynchronous store instructions may thus be
allowed at the same time to reduce cycles per instruction of repeated asynchronous store
instructions. An ordering is defined between asynchronous store instructions and
synchronous load/store instructions. Supporting multiple outstanding asynchronous store
instructions is based on book keeping of multiple status messages and correlation of

responses with status entries.

[0011] The data processing system according to a first embodiment of the invention

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

comprises instructions loading from and storing to at least one external device of the data
processing system via an input/output bus. Asynchronous instructions complete before data
has been stored to the external device while synchronous instructions complete after data
has been stored to the external device. Within the embodiments described here, PCI will be
used interchangeably for any other input/output technology, thus not restricting the

embodiment of the invention to PCI.

[0012] Embodiments of the invention describe an input/output store instruction
execution in a strictly ordered way as observable from above the architecture boundary
while the actual execution may be out of order within the hardware of the data processing

unit (CPU).

[0013] According to embodiments of the invention a PCI store instruction may be
executed with an asynchronous execution of the PCle store effect and an asynchronous
status handling. Asynchronous reliable execution is based on reliable forwarding

mechanisms in microarchitecture of the inventive data processing system.

[0014] An existing PCI store and store block instruction is usually synchronous up to
the point where the PCI store data has been delivered to the PCle interface and completion

returned to a processing unit.

[0015] PCI standard only requires an asynchronous send command of PCI information,
which is typically implemented through a store queue in the processor aggregating data with

asynchronous send-out.

[0016] Advantageously, according to embodiments of the invention, an improvement
concerning cycles per instruction may be achieved by replacing a synchronous PCI

instruction by a reliable asynchronous send process of an input/output store instruction.

[0017] Alternatively or additionally of data to be transferred, the store instruction
according to an embodiment of the invention may also specify a pointer to a main memory

which should be used to fetch data from, instead of containing the data directly.

[0018] Guest instance level may also mean that a single guest or host may be running

on the data processing system.

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

[0019] The address of the offset of the input/output function itself can be a virtual,
physical, logical address. Virtual and logical addresses typically get translated through a
memory management unit (MMU) into a physical address, and the physical address then

allows to identify which function and offset is meant.

[0020] Physical address in this context means "lowest address in the address translation

hierarchy accessible from within a guest/operating system".

[0021] Advantageously, the input/output status buffers may collect returned states from
the system nest and/or from the input/output bus controller, in particular a completion
message from the system nest. These input/output status buffers may collect the returned
states acting as an asynchronous system message buffer supporting the asynchronous
transmit process. Advantageously the input/output status buffers may be integrated directly

in the asynchronous core-nest interface for quick response.

[0022] According to a favourable embodiment of the inventive data processing system,
the data processing unit may delay an execution of asynchronous and/or synchronous store
instructions, until an input/output status buffer is available to store information about a
completion of pending store instructions. Thus an ordering process of a multiple of store
instructions to a multiple of input/output devices may be handled in an efficient way which

offers the capability of saving processing time.

[0023] According to a favourable embodiment of the inventive data processing system,
the input/output status buffers may collect message states from the system nest and/or from
the input/output bus controller, in particular a completion status from the system nest. By
this way information about the completion status of different store instructions may be

handled in an ordered and efficient manner.

[0024] According to a favourable embodiment of the inventive data processing system,
the message states and/or the completion status may be numbered by an input/output status
buffer index. The numbering enables the possibility of handling messages, and particularly
completion states in an ordered and efficient way for further processing other store

instructions.

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[0025] According to a favourable embodiment of the inventive data processing system,
the aggregation buffer may be communicatively coupled to the asynchronous core-nest
interface via an asynchronous bus. Thus the aggregation buffer can handle data directly sent
by the asynchronous core-nest interface consecutively until all data to be transferred to the
external device are stored in the aggregation buffer. By this way the asynchronous transmit
mechanism for data transfer from the asynchronous core-nest interface may be favourably

supported.

[0026] According to a favourable embodiment of the inventive data processing system,
the data may be transferred by the input/output store instruction through an asynchronous
transmit mechanism with an early completion message in multiple data packets to the
aggregation buffer, if the length of the source data exceeds eight bytes, else the data may be
transferred in one data packet. The asynchronous transmit mechanism is favourable because

the sending device is free for reuse at an earlier state.

[0027] According to a favourable embodiment of the inventive data processing system,
the system firmware may comprise an asynchronous input/output driver code for handling
the input/output store instruction. Thus an asynchronous transmit mechanism may be used

for transferring data from the data processing unit to the external device.

[0028] According to a favourable embodiment of the inventive data processing system,
the core may comprise an asynchronous setup code for handling memory requirements for
status information of the asynchronous input/output driver code. This asynchronous setup
code may further facilitate the asynchronous transmit mechanism through the aggregation

buffer to the system nest and the input/output bus controller.

[0029] According to a favourable embodiment of the inventive data processing system,
the asynchronous core-nest interface may comprise an asynchronous core-nest interface
forwarding component for forwarding the data with local completion. This component may
be implemented in hardware in the asynchronous core-nest interface. Thus a favourable
asynchronous transmit mode for sending the data in data packets to the aggregation buffer

may be supported.

[0030] According to a favourable embodiment of the inventive data processing system,

6

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

the aggregation buffer may comprise an early completion logic for delivering a free for
reuse message after sending a request. This enables an early continuation of the transmit
process of the data via the aggregation buffer to the system nest and the input/output bus

controller.

[0031] According to a favourable embodiment of the inventive data processing system,
the system firmware may comprise an array management logic, which allocates/deallocates
input/output status buffers in the input/output status array and/or initiates a start of a new
store instruction. Thus idle status buffers may be attributed to further store instructions. An

ordered processing of store instructions may be handled in an efficient and time saving way.

[0032] According to a favourable embodiment of the inventive data processing system,
a system message may comprise one of - a hierarchical physical target address, - sourcing an
SMT (simultaneous multithreading) thread or an aggregate buffer identifier, - a length of
data, an input/output bus address, or - an input/output status buffer index. Thus an
advantageous passing of relevant information through the data processing system can be

guaranteed.

[0033] Further a method is proposed for handling an input/output store instruction to at
least one external device of a data processing system, the data processing system comprising
a system nest communicatively coupled to at least one input/output bus by an input/output
bus controller. The data processing system further comprises at least a data processing unit
comprising a core, a system firmware and an asynchronous core-nest interface. The data
processing unit is communicatively coupled to the system nest via an aggregation buffer.
The external device is communicatively coupled to the input/output bus. The asynchronous
core-nest interface comprises an input/output status array with multiple input/output status

buffers, as well as an array management and access logic.

[0034] The method comprises: (i) an operating system running on the data processing
system issuing the input/output store instruction specifying at least an input/output function
with an offset through an address, data to be transferred and/or a pointer to data to be
transferred, and a length of the data; (ii) the data processing unit being configured to
identify the input/output function by the address specified in the input/output store

instruction; (ii1) the data processing unit being configured to verify if access to the

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

input/output function is allowed on an address space and on a guest instance level, the guest
running on the data processing system; (iv) the data processing unit being configured to
complete the input/output store instruction before an execution of the input/output store
instruction in the system nest is completed; (v) the system firmware being configured to
notify the operating system through an interrupt, if during the asynchronous execution of the
input/output store instruction an error is detected by the data processing unit, transmitting
the data of the failed asynchronous execution; (vi) the array management and access logic
collecting a completion of the store instruction and updating the input/output status buffers
based on received completion messages; and (vii) the data processing unit delaying an
execution of the store instruction, until an input/output status buffer is available to store

information about a completion of pending store instructions.

[0035] Favorably multiple outstanding asynchronous store instructions may thus be
allowed at the same time to reduce cycles per instruction of repeated asynchronous store
instructions. An ordering is defined between asynchronous store instructions and
synchronous load/store instructions. Supporting multiple outstanding asynchronous store
instructions is based on book keeping of multiple status messages and correlation of

responses with status entries.

[0036] The method according to a further embodiment of the invention comprises
instructions loading from and storing to an external device of the data processing system via
an input/output bus. Asynchronous instructions complete before data has been stored to the
external device while synchronous instructions complete after data has been stored to the
external device. Within the embodiments described here, PCI will be used interchangeably
for any other input/output technology, thus not restricting the embodiment of the invention

to PCL

[0037] Embodiments of the inventive method describe an input/output store instruction
execution in a strictly ordered way as observable from above the architecture boundary
while the actual execution may be out of order within the hardware of the data processing

unit (CPU).

[0038] According to embodiments of the inventive method a PCI store instruction may

be executed with an asynchronous execution of the PCle store effect and an asynchronous

8

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

status handling. Asynchronous reliable execution is based on reliable forwarding

mechanisms in microarchitecture of the inventive data processing system.

[0039] An existing PCI store and store block instruction is usually synchronous up to
the point where the PCI store data has been delivered to the PCle interface and completion

returned to a processing unit.

[0040] PCI standard only requires an asynchronous send command of PCI information,
which is typically implemented through a store queue in the processor aggregating data with

asynchronous send-out.

[0041] Advantageously, according to embodiments of the inventive method, an
improvement concerning cycles per instruction may be achieved by replacing a synchronous

PCI instruction by a reliable asynchronous send process of an input/output store instruction.

[0042] Alternatively or additionally of data to be transferred, the store instruction
according to an embodiment of the invention may also specify a pointer to a main memory

which should be used to fetch data from, instead of containing the data directly.

[0043] Guest instance level may also mean that a single guest or host may be running

on the data processing system.

[0044] The address of the offset of the input/output function itself can be virtual,
physical, logical address. Virtual and logical addresses typically get translated through a
memory management unit (MMU) into a physical address, and the physical address then

allows to identify which function and offset is meant.

[0045] Physical address in this context means "lowest address in the address translation

hierarchy accessible from within a guest/operating system".

[0046] According to a favourable embodiment of the inventive method, the data
processing unit may delay an execution of asynchronous and/or synchronous store
instructions, until an input/output status buffer is available to store information about a

completion of pending store instructions. Thus an ordering process of a multiple of store

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

instructions to a multiple of input/output devices may be handled in an efficient way which

offers the capability of saving processing time.

[0047] According to a favourable embodiment of the inventive method, the input/output
status buffers may collect message states from the system nest and/or from the input/output
bus controller, in particular a completion status from the system nest, wherein the message
states and/or the completion status are numbered by an input/output status buffer index. By
this way information about the completion status of different store instructions may be
handled in an ordered and efficient manner. The numbering enables the possibility of
handling messages, and particularly completion states in an ordered and efficient way for

further processing other store instructions.

[0048] According to a favourable embodiment of the inventive method, the system
firmware may comprise an array management logic, allocating/deallocating input/output
status buffers in the input/output status array and/or initiating a start of a new store
instruction. Thus idle status buffers may be attributed to further store instructions. An

ordered processing of store instructions may be handled in an efficient and time saving way.

[0049] According to a favourable embodiment, the method may further comprise: (i)
the operating system issuing the input/output store instruction; (ii) the system firmware (10)
allocating a free input/output status buffer index; if there is no free input/output status buffer
index available, then waiting for a free input/output status buffer index ; (iii) the system
firmware injecting the store instruction into the asynchronous send engine; if blocked by
another store instruction waiting until the store instruction has been completed; (iv)
depending on the length of the data: if a length of the data exceeds eight bytes, the system
firmware issuing repeatedly a system message to send a data packet to the aggregation
buffer until all data of a store block have been forwarded to the aggregation buffer, while the
system firmware waiting until the data have been sent by the system message; else the
system firmware issuing a system message to send the data to the aggregation buffer; further
independent of the length of the data, (v) the system firmware issuing a system message to
the aggregation buffer to forward the data asynchronously as single nest message to the
input/output bus controller, while waiting for the aggregation buffer to send a completion
message; (vi) the aggregation buffer injecting the nest message into the system nest, wherein
the aggregation buffer is free for reuse right after the send operation, signaling back to the

system firmware; then the aggregation buffer sending a free for reuse message; (vii) the

10

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

system nest forwarding the message to the target location; (viii) the input/output bus
controller receiving the message and forwarding data in a data frame to the input/output bus;
(ix) the input/output bus controller sending a completion message to the system nest; (x) the
system nest forwarding the completion message to the originating aggregation buffer; (xi)
the aggregation buffer forwarding completion to the asynchronous core-nest interface; (xii)
the asynchronous core-nest interface storing the completion status in the input/output status
buffer for the input/output status buffer index and signalling completion of operation to the
system firmware; (xiii) the system firmware updating an input/output status buffer tracking
by the input/output status buffer index; and (xiv) the system firmware signalling

asynchronously defects to the operating system in case of an error.

[0050] Only step (i1) is dependent on the length of the data and is different for the
length of the data exceeding eight bytes from for the length of the data not exceeding eight
bytes.

[0051] According to the embodiment of the inventive method, the data are transmitted
in slices to the aggregation buftfer until all data of a store block are forwarded to the
aggregation buffer, wherein the system firmware is waiting until the data has been sent by

the asynchronous core-nest interface.

[0052] Thus if data is less than eight bytes the filling process of the aggregation buffer
in slices with data packets may be skipped and the transmit process of the data to the

external device can be completed in a single step.

[0053] According to a favourable embodiment of the inventive method, the data may be
transferred by the input/output store instruction through an asynchronous transmit
mechanism with an early completion message in multiple data packets to the aggregation
buffer, if the length of the data exceeds eight bytes. The asynchronous transmit mechanism

is favourable because the sending device is free for reuse at an earlier state.

[0054] According to a favourable embodiment of the inventive method, the system
firmware may use an asynchronous input/output driver code for handling the input/output
store instruction. Thus an asynchronous transmit mechanism may be used for transferring

data from the data processing unit to the external device.

11

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[0055] According to a favourable embodiment of the inventive method, the core may
use an asynchronous setup code for handling memory requirements for status information of
the asynchronous input/output driver code. This asynchronous setup code may further
facilitate the asynchronous transmit mechanism through the aggregation buffer to the system

nest and the input/output bus controller.

[0056] Advantageously, the asynchronous core-nest interface may use an asynchronous
core-nest interface forwarding component for forwarding the data with local completion.
Thus a favourable asynchronous transmit mode for sending the data in data packets to the

aggregation buffer may be supported.

[0057] Advantageously, the aggregation buffer may use an early completion logic for
delivering a free for reuse message after sending a request. This enables an early
continuation of the transmit process of the data via the aggregation buffer to the system nest

and the input/output bus controller.

[0058] Advantageously, the input/output status buffers may collect returned states from
the system nest and/or from the input/output bus controller, in particular a completion
message from the system nest. These input/output status buffers may collect the returned
states acting as an asynchronous system message buffer supporting the asynchronous

transmit process.

[0059] According to a favourable embodiment of the inventive method, a system
message may comprise one of - a hierarchical physical target address, - sourcing an SMT
thread or an aggregate buffer identifier, - a length of data, - an input/output bus address, or -
an input/output status buffer index. Thus an advantageous passing of relevant information

through the data processing system can be guaranteed.

[0060] Further, a favorable computer program product is proposed for handling an
input/output store instruction to at least one external device of a data processing system, the
data processing system comprising a system nest communicatively coupled to at least one
input/output bus by an input/output bus controller. The data processing system further

comprises at least a data processing unit comprising a core, a system firmware and an

12

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

asynchronous core-nest interface. The data processing unit is communicatively coupled to
the system nest via an aggregation buffer. The external device is communicatively coupled
to the input/output bus. The asynchronous core-nest interface comprises an input/output
status array with multiple input/output status buffers, as well as an array management and

access logic.

[0061] The computer program product comprises a computer readable storage medium
having program instructions embodied therewith, the program instructions executable by the
computer system to cause the computer system to perform a method comprising: (i) an
operating system running on the data processing system issuing the input/output store
instruction specifying at least an input/output function with an offset through an address,
data to be transferred and/or a pointer to data to be transferred, and a length of the data; (i)
the data processing unit being configured to identify the input/output function by the address
specified in the input/output store instruction; (iii) the data processing unit being configured
to verify if access to the input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system; (iv) the data processing unit
being configured to complete the input/output store instruction before an execution of the
input/output store instruction in the system nest is completed; (v) the system firmware being
configured to notify the operating system through an interrupt, if during the asynchronous
execution of the input/output store instruction an error is detected by the data processing
unit, transmitting the data of the failed asynchronous execution; (vi) the array management
and access logic collecting a completion of the store instruction and updating the
input/output status buffers based on received completion messages; and (vii) the data
processing unit delaying an execution of the store instruction, until an input/output status

buffer is available to store information about a completion of pending store instructions.

[0062] Further, a data processing system for execution of a data processing program is
proposed, comprising computer readable program instructions for performing the method

described above.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0063] The present invention together with the above-mentioned and other objects and

13

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

advantages may best be understood from the following detailed description of the

embodiments, but not restricted to the embodiments.

[0064] Figure 1 depicts a block diagram of a data processing system for handling an
input/output store instruction to an external device according to an embodiment of the

invention.

[0065] Figure 2 depicts a message sequence chart of a method for handling an
input/output store instruction to an external device according to an embodiment of the

invention.

[0066] Figure 3 depicts a first part of a flow chart for handling an input/output store

instruction to an external device according to an embodiment of the invention.

[0067] Figure 4 depicts a second part of a flow chart for handling an input/output store

instruction to an external device according to an embodiment of the invention.

[0068] Figure 5 depicts an example embodiment of a data processing system for

executing a method according to the invention.

DETAILED DESCRIPTION

[0069] In the drawings, like elements are referred to with equal reference numerals. The
drawings are merely schematic representations, not intended to portray specific parameters
of the invention. Moreover, the drawings are intended to depict only typical embodiments of

the invention and therefore should not be considered as limiting the scope of the invention.

[0070] The illustrative embodiments described herein provide a data processing system
and a method for handling an input/output store instruction, comprising a system nest
communicatively coupled to at least one input/output bus by an input/output bus controller.
The data processing system further comprises at least a data processing unit comprising a
core, a system firmware and an asynchronous core-nest interface. The data processing unit

is communicatively coupled to the system nest via an aggregation buffer. The system nest is

14

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

configured to asynchronously load from and/or store data to an external device which is
communicatively coupled to the input/output bus. The asynchronous core-nest interface
comprises an input/output status array with multiple input/output status buffers, as well as

an array management and access logic.

[0071] The illustrative embodiments may be used for the method comprising: (i) an
operating system running on the data processing system issues the input/output store
instruction specifying at least an input/output function with an offset through an address,
data to be transferred and/or a pointer to data to be transferred, and a length of the data; (i)
the data processing unit is configured to identify the input/output function by the address
specified in the input/output store instruction; (iii) the data processing unit is configured to
verify if access to the input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system; (iv) the data processing unit
is configured to complete the input/output store instruction before an execution of the
input/output store instruction in the system nest is completed; (v) the system firmware is
configured to notify the operating system through an interrupt, if during the asynchronous
execution of the input/output store instruction an error is detected by the data processing
unit, transmitting the data of the failed asynchronous execution; (vi) the array management
and access logic collects a completion of the store instruction and updates the input/output
status buffers based on received completion messages; and (vii) the data processing unit
delays an execution of the store instruction, until an input/output status buffer is available to

store information about a completion of pending store instructions.

[0072] Alternatively or additionally of data to be transferred, the store instruction
according to an embodiment of the invention may also specify a pointer to main memory

which should be used to fetch data from, instead of containing the data directly.

[0073] Guest instance level may also mean that a single guest or host may be running

on the data processing system.

[0074] The address of the offset of the input/output function itself can be virtual,
physical, logical address. Virtual and logical addresses typically get translated through a
memory management unit (MMU) into a physical address, and the physical address then

allows to identify which function and offset is meant.

15

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[0075] Physical address in this context means "lowest address in the address translation

hierarchy accessible from within a guest/operating system".

[0076] Figure 1 depicts a block diagram of a data processing system 210 for handling
an input/output store instruction 30 to at least one external device 214 according to an
embodiment of the invention. The data processing system 210 comprises a system nest 18
communicatively coupled to an input/output bus 22 by an input/output bus controller 20, a
data processing unit 216 comprising a core 12, a system firmware 10 and an asynchronous
core-nest interface 14. The input/output bus controller 20 may also be coupled via multiple

input/output busses 22 to multiple external devices 214.

[0077] The data processing unit 216 is communicatively coupled to the system nest 18
via an aggregation buffer 16. The system nest 18 is configured to asynchronously load from
and/or store data to the external device 214 which is communicatively coupled to the

input/output bus 22 via buffer-input/output bus controller interface 28 as part of the system

nest 18 and the input/output bus controller 20.

[0078] The aggregation buffer 16 is communicatively coupled to the asynchronous
core-nest interface 14. The system firmware 10 comprises an asynchronous input/output
driver code 32 for handling the input/output store instruction 30. The core 12 comprises an
asynchronous setup code 34 for handling memory requirements for status information of the
asynchronous input/output driver code 32. The asynchronous core-nest interface 14
comprises an asynchronous core-nest interface forwarding component 36 for forwarding the
data with local completion. The aggregation buffer 16 comprises an early completion logic
26 for delivering a free for reuse message after sending a request. The aggregation buffer 16
is coupled to the asynchronous core-nest interface 14 via an asynchronous bus 38. The
asynchronous core-nest interface 14 comprises an input/output status array 44 with multiple
input/output status buffers 24, as well as an array management and access logic 46. The
input/output status buffers 24 collect returned states from the system nest 18 and/or from the
input/output bus controller 20, in particular a completion message from the system nest 18.
The input/output status buffers 24 are integrated directly in the asynchronous core-nest
interface 14. A message 48 with an identification of an array entry, e.g. a completion

message to one of the input/output status buffers 24 may be received by the system nest 18.

le

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[0079] According to an embodiment of the inventive method, an operating system
running on the data processing system 210 issues the input/output store instruction 30
specifying at least an input/output function with an offset through an address, data to be
transferred and/or a pointer to data to be transferred, and a length of the data. The data
processing unit 216 is hereby configured to identify the input/output function by the address
specified in the input/output store instruction 30. The data processing unit 216 is configured
to verify if access to the input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system 210. The data processing
unit 216 is configured to complete the input/output store instruction 30 before an execution
of the input/output store instruction 30 in the system nest 18 is completed. The system
firmware 10 is configured to notify the operating system through an interrupt, if during the
asynchronous execution of the input/output store instruction 30 an error is detected by the

data processing unit 216, transmitting the data of the failed asynchronous execution.

[0080] The array management and access logic 46 collects a completion of the store
instruction 30 and updates the input/output status buffers 24 based on received completion
messages. The data processing unit 216 delays an execution of the store instruction 30, until
an input/output status buffer 24 is available to store information about a completion of
pending store instructions 30. In particular, the data processing unit 216 delays an execution
of asynchronous and/or synchronous store instructions 30, until an input/output status buffer

24 is available to store information about a completion of pending store instructions 30.

[0081] The input/output status buffers 24 collect message states from the system nest
18 and/or from the input/output bus controller 20, in particular a completion status from the
system nest 18. The message states and/or the completion status may be favorably numbered

by an input/output status buffer index.

[0082] The system firmware 10 comprises an array management logic 42, which
allocates/deallocates input/output status buffers 24 in the input/output status array 44 and/or

initiates a start of a new store instruction 30.

[0083] The input/output store instruction 30 is located in the data processing system

210 on the side of the user interface 40 across the architecture boundary which separates the

17

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

system hardware/firmware 50 from the user side 40.

[0084] Thus the data are transferred by the input/output store instruction 30 through an
asynchronous transmit mechanism with an early completion message in multiple data
packets to the aggregation buffer 16, if the length of the source data exceeds eight bytes,

else the data are transferred in one data packet.

[0085] A system message according to an embodiment of the inventive data processing
system comprises one of a hierarchical physical target address, sourcing an SMT thread or
an aggregate buffer identifier, a length of data, an input/output bus address, or an

input/output status buffer index.

[0086] The queueing and ordering semantics for handling store instructions 30 to
multiple external devices 214 may advantageously performed as described in the following.
For an individual SMT thread versus input/output function relation, all legacy input/output
load/store operations may be ordered in respect to a single thread of the processor unit 216.
The new input/output store instructions are completely unordered amongst each other. New
input/output store instructions are ordered against legacy input/output instructions. All
input/output instructions for different input/output functions are not ordered against each

other.

[0087] Figure 2 depicts a message sequence chart of the method for handling an
input/output store instruction 30 to an external device 214 according to an embodiment of

the invention.

[0088] As shown in Figure 2 the method starts with the operating system issuing the
input/output store instruction 30. In step S101, the system firmware 10 allocates a free
input/output status buffer index. If there is no free input/output status buffer index available,
the system firmware 10 waits. In step S103, the system firmware 10 checks, if the store
instruction can be injected into an asynchronous send engine. If this is possible, the process
continues. If this is not possible, the store instruction is delayed until the store instructions

causing the delay have been completed.

[0089] Next, as is indicated by the steps S100 and S104, the system firmware 10 issues
18

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

repeatedly, if a length of the data exceeds eight bytes, a system message to send a data
packet to the aggregation buffer 16 until all data of a store block have been forwarded to the
aggregation buffer 16, while the system firmware 10 is waiting until the data have been sent
by the system message. In steps S102 and S106 a local completion message is sent back to

the system firmware 10.

[0090] Then in step S108, the system firmware 10 issues a system message to the
aggregation buffer 16 to forward the data asynchronously as single nest message to the
input/output bus controller 20, while waiting for the aggregation buffer 16 to send a

completion message.

[0091] Next in step S110, the aggregation buffer 16 injects the nest message into the
system nest 18, wherein the aggregation buffer 16 is free for reuse right after the send
operation, signaling back to the system firmware 10. Then the aggregation buffer 16 sends a

free for reuse message.

[0092] In step S112, the system nest 18 forwards the message to the target location,
followed by step S114, the input/output bus controller 20 receiving the message and
forwarding data in a data frame to the input/output bus, followed by the input/output bus

controller 20 sending a completion message to the system nest 18 in step S116.

[0093] Next in step S118, the system nest 18 forwards the completion message to the
originating aggregation buffer 16, followed by the aggregation buffer 16 forwarding
completion to the asynchronous core-nest interface 14 in step S120. Then in step S122 the
asynchronous core-nest interface 14 stores the status in the input/output buffer 24 for the
respective input/output status buffer index and signals completion of operation to the system
firmware 10. Finally in step S123, the system firmware 10 updates the input/output status
buffer 24 tracking by the input/output status buffer index. The input/output status buffer 24

is now free again.

[0094] In case of an error occurring during transfer of data, the system firmware 10

signals asynchronously defects to the operating system.

[0095] In case, the data to be transferred are less than eight bytes, the repeatedly filling

19

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

of the aggregation buffer 16 is skipped.

[0096] Figure 3 depicts a first part of a flow chart for handling an input/output store
instruction 30 to an external device 214 according to an embodiment of the invention,

whereas Figure 4 depict a second part of the flow chart.

[0097] The system firmware of the data processing unit starts in step S200. In step S202
the system firmware receives via a message a legacy input/output store block instruction. In
step S208 it is checked, if there is a new store instruction 30 outstanding with or without an
asynchronous response. If this is the case, it is waited until the core-nest interface 14 has no
more outstanding asynchronous responses. It this is not the case, the process continues
immediately with step S212 by the core-nest interface 14 sending the legacy input/output
store instruction 30 as a message. Then the system is waiting, step S214, until it receives a
legacy response message in step S216. Then the legacy store instruction 30 is finished in

step S218 with a message and the system firmware 10 is ending the process in step S220.

[0098] In parallel the system firmware 10 receives the new input/output store
instruction 30 by a message in step S204. In step S222 it is checked if a free status slot,
namely an input/output status buffer 24 is available. If this is the case the slot is marked in
step S224 as used and the store process continues with connection point A, depicted in the
second part of the flow chart depicted in Figure 4. If this is not the case then it is waited

until the core-nest interface 14 has a free slot available in step S226.

[0099] An asynchronous execution complete message may be received in step S206,
followed by a update the slot tracking in step S228 with the respective input/output status

buffer index. Then the system firmware 10 is ending the process in step S230.

[00100] The second part of the flow chart, beginning with connection point A, is
depicted in Figure 4. First in step S304 it is checked if the more than 8 bytes are to be
transferred. If this is the case the core-nest interface fills the aggregation buffer with an up
to 16 bytes message in step S306. The system firmware is waiting, step S308, until a
message of local completion is sent in step S310, returning to step S304. If there are less
than 8 bytes left in the check of step S304, the flow continues in step S312 with the core-
nest interface sending an asynchronous input/output message, followed by waiting in step

S314 for a buffer response in step S316. Then in step S318 a finish store block instruction is
20

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

executed and the flow ends in step S320 with an ending in the system firmware.

[00101] In step S328 the asynchronous core-nest interface logic starts an outbound
process loop, followed by receiving an aggregation buffer completion message in step S322
and a forward data message to the aggregation buffer in step S324, followed by a send
completion message back to the system firmware in step S326. In step S330 an
asynchronous input/output send message is received followed by a forward of the

input/output send message to the aggregation buffer.

[00102] In step S338 the aggregation buffer logic starts an outbound process loop
followed by a receive data in step S334 and aggregating data in the aggregation buffer in
step S336. The aggregation buffer is also receiving an input/output send message in step
S340, followed by forwarding data from the aggregation buffer with an input/output send
message in step S242. Next in step S344 a response message from the aggregation buffer is

sent via the core-nest interface to the system firmware.

[00103] Referring now to Figure 5, a schematic of an example of a data processing
system 210 is shown. Data processing system 210 is only one example of a suitable data
processing system and is not intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described herein. Regardless, data processing
system 210 is capable of being implemented and/or performing any of the functionality set

forth herein above.

[00104] In data processing system 210 there is a computer system/server 212, which is
operational with numerous other general-purpose or special-purpose computing system
environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use with computer
system/server 212 include, but are not limited to, personal computer systems, server
computer systems, thin clients, thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer systems, and distributed cloud

computing environments that include any of the above systems or devices, and the like.

[00105] Computer system/server 212 may be described in the general context of

21

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

computer system executable instructions, such as program modules, being executed by a
computer system. Generally, program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 212 may be practiced in distributed
cloud computing environments where tasks are performed by remote processing devices that
are linked through a communications network. In a distributed cloud computing
environment, program modules may be located in both local and remote computer system

storage media including memory storage devices.

[00106] As shown in Fig. 5, computer system/server 212 in data processing system 210
is shown in the form of a general-purpose computing device. The components of computer
system/server 212 may include, but are not limited to, one or more processors or processing
units 216, a system memory 228, and a bus 218 that couples various system components

including system memory 228 to processor 216.

[00107] Bus 218 represents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus.

[00108] Computer system/server 212 typically includes a variety of computer system
readable media. Such media may be any available media that is accessible by computer
system/server 212, and it includes both volatile and non-volatile media, removable and non-

removable media.

[00109] System memory 228 can include computer system readable media in the form of
volatile memory, such as random access memory (RAM) 230 and/or cache memory 232.
Computer system/server 212 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way of example only, storage
system 234 can be provided for reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a "hard drive"). Although not shown, a

magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk

22

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

(e.g., a "floppy disk"), and an optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be
provided. In such instances, each can be connected to bus 218 by one or more data media
interfaces. As will be further depicted and described below, memory 228 may include at
least one program product having a set (e.g., at least one) of program modules that are

configured to carry out the functions of embodiments of the invention.

[00110] Program/utility 240, having a set (at least one) of program modules 242, may be
stored in memory 228 by way of example, and not limitation, as well as an operating
system, one or more application programs, other program modules, and program data. Each
of the operating system, one or more application programs, other program modules, and
program data or some combination thereof, may include an implementation of a networking
environment. Program modules 242 generally carry out the functions and/or methodologies

of embodiments of the invention as described herein.

[00111] Computer system/server 212 may also communicate with one or more external
devices 214 such as a keyboard, a pointing device, a display 224, etc.; one or more devices
that enable a user to interact with computer system/server 212; and/or any devices (e.g.,
network card, modem, etc.) that enable computer system/server 212 to communicate with
one or more other computing devices. Such communication can occur via Input/Output
(I/0) interfaces 222. Still yet, computer system/server 212 can communicate with one or
more networks such as a local area network (LAN), a general wide area network (WAN),
and/or a public network (e.g., the Internet) via network adapter 220. As depicted, network
adapter 220 communicates with the other components of computer system/server 212 via
bus 218. It should be understood that although not shown, other hardware and/or software
components could be used in conjunction with computer system/server 212. Examples,
include, but are not limited to: microcode, device drivers, redundant processing units,
external disk drive arrays, RAID systems, tape drives, and data archival storage systems,

etc.

[00112] The present invention may be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium
(or media) having computer readable program instructions thereon for causing a processor

to carry out aspects of the present invention.

23

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[00113] The computer readable storage medium can be a tangible device that can retain
and store instructions for use by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to, an electronic storage device, a
magnetic storage device, an optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination of the foregoing. A non-
exhaustive list of more specific examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having
instructions recorded thereon, and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be construed as being transitory signals
per se, such as radio waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or other transmission media (e.g.,
light pulses passing through a fiber-optic cable), or electrical signals transmitted through a

wire.

[00114] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions from the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing

device.

[00115] Computer readable program instructions for carrying out operations of the
present invention may be assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent instructions, microcode, firmware

instructions, state-setting data, or either source code or object code written in any

24

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

combination of one or more programming languages, including an object oriented
programming language such as Smalltalk, C++ or the like, and conventional procedural
programming languages, such as the "C" programming language or similar programming
languages. The computer readable program instructions may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some embodiments, electronic circuitry
including, for example, programmable logic circuitry, field-programmable gate arrays
(FPGA), or programmable logic arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer readable program instructions to

personalize the electronic circuitry, in order to perform aspects of the present invention.

[00116] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer readable

program instructions.

[00117] These computer readable program instructions may be provided to a processor
of a general-purpose computer, special-purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified in

the flowchart and/or block diagram block or blocks.

25

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

[00118] The computer readable program instructions may also be loaded onto a
computer, other programmable data processing apparatus, or other device to cause a series
of operational steps to be performed on the computer, other programmable apparatus or
other device to produce a computer implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[00119] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion
of instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special-purpose hardware-based systems that perform the specified
functions or acts or carry out combinations of special-purpose hardware and computer

instructions.

[00120] The descriptions of the various embodiments of the present invention have been
presented for purposes of illustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and spirit of the described
embodiments. The terminology used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement over technologies found in
the marketplace, or to enable others of ordinary skill in the art to understand the

embodiments disclosed herein.

26

10

15

20

25

30

35

REFERENCE NUMERALS

WO 2020/156797

10 system FW

12 core

14 async core-nest IF

16 aggregation buffer

18 system nest

20 I/0O bus controller

22 I/O bus

24 I/O status buffer

26 early completion logic

28 buffer-10 bus controller IF
30 I/O store instruction

32 async 10 driver code

34 I/O setup code

36 async forwarding

38 async bus

40 user IF

42 array management logic
44 I/O status array

46 array management & access logic
48 message with array entry identification
50 system HW/FW

210 data processing system
212 computer system/server
214 external devices

216 CPU/ data processing unit
218 10 Bus

220 network adapter

222 10O interfaces

224 display

228 memory

230 RAM

232 cache

234 storage system

240 program/utility

242 program modules

277

PCT/EP2020/050757

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

CLAIMS

A data processing system (210) for handling an input/output store instruction (30),
comprising a system nest (18) communicatively coupled to at least one input/output
bus (22) by an input/output bus controller (20),

further comprising at least

a data processing unit (216) comprising a core (12),

a system firmware (10) and an asynchronous core-nest interface (14),

wherein the data processing unit (216) is communicatively coupled to the system

nest (18) via an aggregation buffer (16),

wherein the system nest (18) is configured to asynchronously load from and/or store

data to at least one external device (214) which is communicatively coupled to the

input/output bus (22),

wherein the asynchronous core-nest interface (14) comprises an input/output status

array (44) with multiple input/output status buffers (24), an array management and

access logic (46),

and wherein

(1) an operating system running on the data processing system (210) issuing
the input/output store instruction (30) specifying at least an input/output
function with an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data;

(ii) the data processing unit (216) being configured to identify the input/output
function by the address specified in the input/output store instruction (30);

(iii) the data processing unit (216) being configured to verify if access to the
input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system (210);

(iv) the data processing unit (216) being configured to complete the
input/output store instruction (30) before an execution of the input/output
store instruction (30) in the system nest (18) is completed;

(v) the system firmware (10) being configured to notify the operating system
through an interrupt, if during the asynchronous execution of the
input/output store instruction (30) an error is detected by the data
processing unit (216), transmitting the data of the failed asynchronous

execution;

28

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

(vi) the array management and access logic (46) collecting a completion of the
store instruction (30) and updating the input/output status buffers (24)
based on received completion messages;

(vii) the data processing unit (216) delaying an execution of the store
instruction (30), until an input/output status buffer (24) is available to store

information about a completion of pending store instructions (30).

The data processing system according to claim 1, the data processing unit (216)
delaying an execution of asynchronous and/or synchronous store instructions (30),
until an input/output status buffer (24) is available to store information about a

completion of pending store instructions (30).

The data processing system according to claim 1 or 2, further the input/output status
buffers (24) collecting message states from the system nest (18) and/or from the
input/output bus controller (20), in particular a completion status from the system

nest (18).

The data processing system according to claim 3, wherein the message states and/or

the completion status are numbered by an input/output status buffer index.

The data processing system according to any one of the preceding claims, the
aggregation buffer (16) being communicatively coupled to the asynchronous core-

nest interface (14) via an asynchronous bus (38).

The data processing system according to any one of the preceding claims, wherein
the data are transferred by the input/output store instruction (30) through an
asynchronous transmit mechanism with an early completion message in multiple
data packets to the aggregation buffer (16), if the length of the data exceeds eight

bytes, else the data are transferred in one data packet.
The data processing system according to any one of the preceding claims, the system

firmware (10) comprising an asynchronous input/output driver code (32) for

handling the input/output store instruction (30).

29

10

15

20

25

30

35

WO 2020/156797 PCT/EP2020/050757

10.

11.

12.

13.

The data processing system according to claim 7, the core (12) comprising an
asynchronous setup code (34) for handling memory requirements for status

information of the asynchronous input/output driver code (32).

The data processing system according to any one of the preceding claims, the
asynchronous core-nest interface (14) comprising an asynchronous core-nest

interface forwarding component (36) for forwarding the data with local completion.

The data processing system according to any one of the preceding claims, the
aggregation buffer (16) comprising an early completion logic (26) for delivering a

free for reuse message after sending a request.

The data processing system according to any one of the preceding claims, wherein
the system firmware (10) comprises an array management logic (42), which
allocates/deallocates input/output status buffers (24) in the input/output status array

(44) and/or initiates a start of a new store instruction (30).

The data processing system according to any one of the preceding claims, a system
message comprising one of

- a hierarchical physical target address,

- sourcing an SMT thread or an aggregate buffer identifier,

- alength of data,

- an input/output bus address,

- an input/output status buffer index.

A method for handling an input/output store instruction (30) to at least one external
device (214) of a data processing system (210), the data processing system (210)
comprising

a system nest (10) communicatively coupled to at least one input/output bus (22) by
an input/output bus controller (14),

and further comprising at least a data processing unit (216) comprising a core (12), a
system firmware (10) and an asynchronous core-nest interface (14),

wherein the data processing unit (216) is communicatively coupled to the system
nest (18) via an aggregation buffer (16),

wherein the external device (214) is communicatively coupled to the input/output

bus (22),
30

10

15

20

25

30

WO 2020/156797

14.

PCT/EP2020/050757

wherein the asynchronous core-nest interface (14) comprises an input/output status

array (44) with multiple input/output status buftfers (24), an array management and

access logic (46),

the method comprising

(1)

(11)

(iii)

(1v)

(vi)

(vii)

an operating system running on the data processing system (210) issuing
the input/output store instruction (30) specifying at least an input/output
function with an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data;

the data processing unit (216) being configured to identify the input/output
function by the address specified in the input/output store instruction (30);
the data processing unit (216) being configured to verify if access to the
input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system (210);

the data processing unit (216) being configured to complete the
input/output store instruction (30) before an execution of the input/output
store instruction (30) in the system nest (18) is completed;

the system firmware (10) being configured to notify the operating system
through an interrupt, if during the asynchronous execution of the
input/output store instruction (30) an error is detected by the data
processing unit (216), transmitting the data of the failed asynchronous
execution;

the array management and access logic (46) collecting a completion
message of the store instruction (30) and updating the input/output status
buffers (24) based on received completion messages;

the data processing unit (216) delaying an execution of the store
instruction (30), until an input/output status buffer (24) is available to store

information about a completion of pending store instructions (30).

The method according to claim 13, the data processing unit (216) delaying an

execution of asynchronous and/or synchronous store instructions (30), until an

input/output status buffer (24) is available to store information about a completion of

pending store instructions (30).

31

10

15

20

25

30

WO 2020/156797

15.

16.

17.

PCT/EP2020/050757

The method according to claim 13 or 14, further the input/output status buffers (24)

collecting message states from the system nest (18) and/or from the input/output bus

controller (20), in particular a completion status from the system nest (18), wherein

the message states and/or the completion status are numbered by an input/output

status buffer index.

The method according to claim 15, wherein the system firmware (10) comprises an

array management logic (42), allocating/deallocating input/output status buffers (24)

in the input/output status array (44) and/or initiating a start of a new store instruction

(30).

The method according to any one of claims 13 to 16, further comprising

(1)

(11)

(iii)

(1v)

(vi)

the operating system issuing the input/output store instruction (30);

the system firmware (10) allocating a free input/output status buffer index;
if there is no free input/output status buffer index available, then waiting
for a free input/output status buffer index;

the system firmware (10) injecting the store instruction (30) into the
asynchronous send engine; if blocked by another store instruction waiting
until the store instruction has been completed,;

depending on the length of the data: if a length of the data exceeds eight
bytes, the system firmware (10) issuing repeatedly a system message to
send a data packet to the aggregation buffer (16) until all data of a store
block have been forwarded to the aggregation buffer (16), while the
system firmware (10) waiting until the data have been sent by the system
message; else

the system firmware (10) issuing a system message to send the data to the
aggregation buffer (16);

the system firmware (10) issuing a system message to the aggregation
buffer (16) to forward the data asynchronously as single nest message to
the input/output bus controller (20), while waiting for the aggregation
buffer (16) to send a completion message;

the aggregation buffer (16) injecting the nest message into the system nest

(18), wherein the aggregation buffer (16) is free for reuse right after the

32

10

15

20

25

30

35

WO 2020/156797

18.

19.

20.

21.

(vii)

(viii)

(1x)

(x1)

(xii)

(xiii)

(xiwv)

PCT/EP2020/050757

send operation, signaling back to the system firmware (10); then the
aggregation buffer (16) sending a free for reuse message;

the system nest (18) forwarding the message to the target location;

the input/output bus controller (20) receiving the message and forwarding
data in a data frame to the input/output bus;

the input/output bus controller (20) sending a completion message to the
system nest (18);,

the system nest (18) forwarding the completion message to the originating
aggregation buffer (16);

the aggregation buffer (16) forwarding completion to the asynchronous
core-nest interface (14),

the asynchronous core-nest interface (14) storing the completion status in
the input/output status buffer (24) for the input/output status buffer index
and signaling completion of operation to the system firmware (10);

the system firmware (10) updating an input/output status buffer tracking
by the input/output status buffer index;

the system firmware (10) signaling asynchronously defects to the

operating system in case of an error.

The method according to any one of claims 13 to 17, further transferring the data by

the input/output store instruction (30) through an asynchronous transmit mechanism

with an early completion message in multiple data packets to the aggregation buffer

(16), if the length of the data exceeds eight bytes.

The method according to any one of claims 13 to 18, further the system firmware

(10) using an asynchronous input/output driver code (32) for handling the

input/output store instruction (30).

The method according to claim 19, further the core (12) using an asynchronous setup

code (34) for handling memory requirements for status information of the

asynchronous input/output driver code (32).

The method according to any one of claim 13 to 20, further the asynchronous core-

nest interface (14) using an asynchronous core-nest interface forwarding component

(36) for forwarding the data with local completion.

33

10

15

20

25

30

WO 2020/156797 PCT/EP2020/050757

22.

23.

24.

The method according to any one of claim 13 to 21, further the aggregation buffer
(16) using an early completion logic (26) for delivering a free for reuse message

after sending a request.

The method according to any one of claim 13 to 22, wherein a system message
comprises one of

- a hierarchical physical target address,

- sourcing an SMT thread or an aggregate buffer identifier,

- alength of data,

- an input/output bus address,

- an input/output status buffer index.

A computer program product for handling an input/output store instruction (30) to at
least one external device (214) of a data processing system (210), the data
processing system (210) comprising

a system nest (10) communicatively coupled to at least one input/output bus (22) by
an input/output bus controller (14),

and further comprising at least a data processing unit (216) comprising a core (12), a
system firmware (10) and an asynchronous core-nest interface (14),

wherein the data processing unit (216) is communicatively coupled to the system
nest (18) via an aggregation buffer (16),

wherein the external device (214) is communicatively coupled to the input/output
bus (22),

wherein the asynchronous core-nest interface (14) comprises an input/output status
array (44) with multiple input/output status buftfers (24), an array management and
access logic (46),

the computer program product comprising a computer readable storage medium
having program instructions embodied therewith, the program instructions
executable by the computer system (212) to cause the computer system (212) to

perform a method comprising

(1) an operating system running on the data processing system (210) issuing

the input/output store instruction (30) specifying at least an input/output

34

10

15

20

25

WO 2020/156797

25.

(11)

(iii)

(1v)

(vi)

(vii)

PCT/EP2020/050757

function with an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data;

the data processing unit (216) being configured to identify the input/output
function by the address specified in the input/output store instruction (30);
the data processing unit (216) being configured to verify if access to the
input/output function is allowed on an address space and on a guest
instance level, the guest running on the data processing system (210);

the data processing unit (216) being configured to complete the
input/output store instruction (30) before an execution of the input/output
store instruction (30) in the system nest (18) is completed;

the system firmware (10) being configured to notify the operating system
through an interrupt, if during the asynchronous execution of the
input/output store instruction (30) an error is detected by the data
processing unit (216), transmitting the data of the failed asynchronous
execution;

the array management and access logic (46) collecting a completion
message of the store instruction (30) and updating the input/output status
buffers (24) based on received completion messages;

the data processing unit (216) delaying an execution of the store
instruction (30), until an input/output status buffer (24) is available to store

information about a completion of pending store instructions (30).

A data processing system (210) for execution of a data processing program (240)

comprising computer readable program instructions for performing a method

according to any one of claims 13 to 23.

35

WO 2020/156797 PCT/EP2020/050757

1/5
210
30
& 1/0O Store instruction) ‘)
with async completion
Architecture
Boundary
12
10 System FW o Core e 134
110 110
ivi tu 216
g ',r* e | ¥
50
PR 14
Async Core-Nest I/F >« 46
44
iOstatusarray | gr;?%'t e) 36
P acgess A
N* Is/t(;tus logic csryerf]est I/F)
24_ buffer ; forwarding
18
| 38)
16 .
Aggregation Eeany System Nest 28
\\ Buffer Completion 48
26 logic \ Message))
= v | [Bufer-/0 Bus
Controller IF

20 I/0O Bus Controller

1 22

214 -4 External Device

Fig. 1

PCT/EP2020/050757

WO 2020/156797

2/5

16

)

S101, S103
~

Aggregation
Buffer

10 u 4
System FW Async core-
nest I/F
S100
j/w/
| Sto2 S0t
j\ D
S106 S108
— 5
PP
m\A 26 124
e S
L
S120
mémm m“MM \
- L

Nest

S110

S118

S116

20

)

I/O Bus
Controller

S112

@

Fig. 2

PCT/EP2020/050757

WO 2020/156797

3/5

S200

CPU system FW
Start

y

v

Receive

legacy I/O store
S202—~ instruction

S204—~

Receive
new I/O
instruction

S206—~

New instruction
outstanding w/o
async response?,

S22

yes
_ S210
}

Wait until core-nest I/F
has no more outstanding

async responses

Free status slot
available?

S228

no

_ S226
/

yes

Wait until core-nest I/F
has a free slot

A

S212—

Core-nest I/F: legacy I/O

send

S224—~

mark slot as used

S214—~

wait

S216—

Legacy response

S218

S220—~

A 4

finish
legacy
instruction

y

CPU system FW
End

v

Async execute
completion

!

Update slot state tracking

y

CPU system FW
End

n/
S230

Fig. 3

PCT/EP2020/050757

WO 2020/156797

4/5

S304

still > 8 bytes

—> to send?
S306 core-nest I/F: fill
aggregation buffer
with up to 16 bytes
S308 v
/ wait
S310

S328

$322
(

async core-nest I/F logic
Start outbound

receive aggregation
== uffer completion

y

forward data to
aggregation buffer

4

—| local completion -—=--} send)
local completion

S312—~

core-nest I/F: Async_ _ _ _ _ _ _
I/O send

S314—~

wait

v

S316—~

buffer response AI -

S318—~—
Finish store_block
instruction

y

A

S320—~

CPU system FW
End

_ Vv&:o I/O send
received

S332

S330

y \

forward 1/O send to
aggregation buffer

- T .Vv receive data

5338

)

ggregation buffer logig
start outbound

mww%/ !

!

aggregate data in
aggregation buffer

)

S336

S340
)

y

receive
1/0 send

v

forward =

through core-nest I/F 14 T~ A@@a@
reponse

forward data from
aggregation buffer
with I/O send

v

ation buffer

)

S344

Fig. 4

WO 2020/156797 PCT/EP2020/050757

5/5

210
212
\ Computer System/Server 228
\
23: Memory 234

216

\ RAM

Processing Unit

Storage
System

A

CPU Cache |¢ 240\ ’_ﬁ
y
218 7 242 1
N\ 232
>

224 222
\ \ v 250

o) /
Display l«—» Interfaces Network Adapter

214 N_| Extemnal

Devices

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2020/050757

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F13/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20117320764 Al (CRADDOCK DAVID [US] ET 1-25
AL) 29 December 2011 (2011-12-29)
paragraphs [0051], [0062], [0076],
[0104], [0107], [o0le8], [0109],
[0114], [0122]
figure 1B
A US 20157378737 Al (DEBBAGE MARK [US] ET 1-25
AL) 31 December 2015 (2015-12-31)
paragraph [0097]
A US 6 286 095 B1 (MORRIS DALE C [US] ET AL) 1-25
4 September 2001 (2001-09-04)
column 5, line 31 - line 35
A US 7 827 443 B2 (IBM [US]) 1-25
2 November 2010 (2010-11-02)
column 6, line 59 - line 63
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 March 2020

Date of mailing of the international search report

02/04/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Gratia, Romain

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2020/050757
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 4 040 028 A (PAUKER MIRA ET AL) 1-25

2 August 1977 (1977-08-02)
the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2020/050757
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011320764 Al 29-12-2011 BR 112012032857 A2 27-02-2018
CN 102906694 A 30-01-2013
EP 2430523 Al 21-03-2012
HK 1180802 Al 18-12-2015
JP 5680194 B2 04-03-2015
JP 2013536487 A 19-09-2013
PL 2430523 T3 29-05-2015
US 2011320764 Al 29-12-2011
WO 2011160716 Al 29-12-2011

US 2015378737 Al 31-12-2015 CN 106415515 A 15-02-2017
EP 3161649 Al 03-05-2017
JP 6377844 B2 22-08-2018
JP 2017525065 A 31-08-2017
US 2015378737 Al 31-12-2015
US 2016371056 Al 22-12-2016
US 2017017465 Al 19-01-2017
US 2017177516 Al 22-06-2017
WO 2015199946 Al 30-12-2015

US 6286095 Bl 04-09-2001 EP 0679993 A2 02-11-1995
JP HO7302200 A 14-11-1995
us 6286095 Bl 04-09-2001

US 7827443 B2 02-11-2010 US 2006179207 Al 10-08-2006
US 2009063898 Al 05-03-2009

US 4040028 A 02-08-1977 BE 829610 A 28-11-1975
CA 1033845 A 27-06-1978
DE 2523399 Al 11-12-1975
FR 2273317 Al 26-12-1975
GB 1499585 A 01-02-1978
IT 1038572 B 30-11-1979
NL 7506136 A 02-12-1975
SE 415408 B 29-09-1980
us 4040028 A 02-08-1977

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report
	Page 45 - wo-search-report

