发明名称
用于内燃发动机的提升阀操作系统

摘要
本发明涉及一种内燃发动机的提升阀操作系统，该系统包括由可旋转安装到摇臂轴的摇臂驱动的提升阀。每个摇臂通过管套装在摇臂体内分离的弹性偏置伸缩销在摇臂轴上保持为轴向排列。伸缩销延伸进入形成于摇臂轴的外圆柱表面内的转换间隙部分。
1. 一种用于内燃发动机的提升阀操作系统，其特征在于，包括：
 多个提升阀；
 多个压缩弹簧，所述压缩弹簧推动所述提升阀进入关闭位置；
 至少一个适于安装到发动机汽缸盖的摇臂轴，所述摇臂轴具有外圆柱表面；
 形成于所述至少一个摇臂轴的外圆柱表面内的多个转换间隙部分；以及
 多个驱动所述提升阀的摇臂，所述摇臂可旋转地安装到所述至少一个摇臂轴，且每个
 所述摇臂包括：
 摇臂体，所述摇臂体具有与所述至少一个摇臂轴的外圆柱表面相对应的圆形槽；以及
 装在所述摇臂体内的弹性偏置伸缩销，所述弹性偏置伸缩销具有内端，所述内端伸入
 所述圆形槽并延伸入一个所述转换间隙部分，其中当所述摇臂驱动所述提升阀时，每个所
 述转换间隙部分绕所述摇臂轴的外圆柱表面的圆周延伸一段距离，以足够提供每个所述摇
 臂经过的旋转弧。

2. 如权利要求1所述的提升阀操作系统，其特征在于，每个所述转换间隙部分具有在
 所述弹性偏置伸缩销的内端延伸的中部以及至少一个斜面部，所述斜面部响应于操作所
 述提升阀时超过所述摇臂经过的旋转弧的量的所述摇臂体的旋转来压缩所述弹性偏置伸
 缩销。

3. 如权利要求1所述的提升阀操作系统，其特征在于，所述弹性偏置伸缩销包括装入
 形成于所述摇臂体的径向步进式腔内的活塞，通过由固定销保持在所述步进式腔内的压
 缩弹簧来偏置所述活塞。

4. 如权利要求1所述的提升阀操作系统，其特征在于，在具有所述提升阀操作系统的
 发动机正常运行过程中，所述弹性偏置伸缩销和所述转换间隙部分协同防止所述摇臂在所
 述摇臂轴上轴向移动。

5. 一种驱动内燃发动机汽缸盖内的提升阀的摇臂，其特征在于，包括：
 摇臂体，所述摇臂体具有适于和摇臂轴的外圆柱表面旋转接合的圆形槽；以及
 装在所述摇臂体内的弹性偏置伸缩销，所述弹性偏置伸缩销具有内端，该内端伸入所
 述圆形槽并延伸入形成于摇臂轴的外圆柱表面内的转换间隙部分，其中所述弹性偏置
 伸缩销和所述转换间隙部分协同将所述摇臂体保持在摇臂轴上预定的轴向位置，同时也允
 许经过预定旋转弧的旋转顺从性。

6. 一种使用摇臂轴上的内燃发动机提升阀摇臂的方法，其特征在于，包括：
 轴向接合形成于摇臂体内的圆形腔和摇臂轴的端部，来驱动弹性偏置伸缩销从突出于
 所述圆形腔的壁的正常位置进入起始位置，在起始位置，所述弹性偏置伸缩销邻接所述摇
 臂轴的外圆柱表面；
 沿所述摇臂轴移动所述摇臂体，直到到达预定的提升阀驱动位置；以及
 旋转所述摇臂体，以允许所述弹性偏置伸缩销从所述圆形腔延伸进入形成于所述摇臂
 轴的外圆柱表面内的转换间隙部分，其中所述转换间隙部分被用作轴向限制所述摇臂体从
 所述预定提升阀驱动位置移开，同时允许经过预定旋转弧的旋转顺从性。

7. 如权利要求6所述的方法，其特征在于，还包括从摇臂轴移动所述摇臂体，通过以下
 方法实现：
 相对于摇臂轴充分旋转摇臂体，以滑动接合所述弹性偏置伸缩销与所述转换间隙部
分的较低部分通向所述摇臂轴的外圆柱表面的转换间隙部分的斜面，从而压缩所述弹性偏
置伸缩销进入其收起位置；以及

沿所述摇臂轴移动包括缩回的弹性偏置伸缩销的摇臂体，直到所述摇臂体滑离所述摇
臂轴。
用于内燃发动机的提升阀操作系统

技术领域
[0001] 本发明涉及一种提升阀操作系统，该系统包括带有可滑动安装的摇臂的摇臂轴，摇臂通过形成于摇臂轴外圆柱表面内的间隙部分在摇臂轴上被转换（indexed）。

背景技术
[0002] 许多项置气门发动机使用摇臂来驱动气缸提升阀。这样的摇臂通常为基座安装或轴装。轴装摇臂通常可滑动安装在圆柱形摇臂轴上。一旦安装好，摇臂必须保持在沿轴的精确轴向位置，以确保提升阀和其它诸如凸轮轴或推杆的传动结构能适当接触。开发人员设计了许多用于将摇臂保持在摇臂轴上期望的位置的方案。这些方案通常包括使用放入摇臂和安装基座之间的常规垫片（spacer）。所述垫片有时带有压缩弹簧或者其他装置。显然，所有的装置增加了重量，复杂度和成本。此外，不同垫片的需求可能导致发动机气缸盖的错误安装。

发明内容
[0003] 期望能提供一种摇臂保持系统（retention system），该系统与摇臂轴安装臂一起使用来固定保持摇臂，但允许它们在维修时可以拆卸。
[0004] 用于内燃发动机的提升阀操作系统包括多个被压缩弹簧推动进入关闭位置的提升阀。至少一个摇臂轴适于安装到发动机气缸盖。摇臂轴具有外圆柱表面。多个转换间隙部分（indexing relief）形成于摇臂轴的外圆柱表面内。驱动提升阀的摇臂安装在摇臂轴上。每个摇臂包括摇臂体，摇臂体内具有与摇臂轴的外圆柱表面相对应的圆形腔，以及在该摇臂体内的弹性偏置伸缩销（resiliently biased telescopingpin）。伸缩销具有内端，该内端伸入摇臂体的圆形腔。伸缩销延伸入一个形成于摇臂轴中的转换间隙部分。
[0005] 根据本发明的另一方面，每个形成于摇臂轴的圆柱表面中的转换间隙部分绕外圆柱表面的至少部分圆周延伸。当摇臂驱动提升阀时，转换间隙部分延伸一段距离，足够提供每个摇臂经过的旋转弧。伸缩销协同转换间隙部分防止摇臂在摇臂轴上轴向移动。
[0006] 根据本发明的另一方面，使用摇臂轴上的内燃发动机提升阀摇臂的方法，包括轴向接合形成于摇臂体内的圆形腔和摇臂轴的端部，来驱动弹性偏置伸缩销从突出于圆形腔的壁的正常位置进入收起位置，在收起位置，所述伸缩销邻接摇臂轴的外圆柱表面。沿摇臂轴移动摇臂体，直到到达预定的提升阀驱动位置；然后旋转摇臂体，以允许弹性偏置伸缩销从圆形腔延伸进入形成于摇臂轴的外圆柱表面内的转换间隙部分。随后，摇臂从摇臂轴移开，这是通过相对于摇臂轴外圆柱表面的转换间隙部分的较低部分通向摇臂轴的外圆柱表面的转换间隙部分的斜面，随后压缩伸缩销进入其收起位置。随后，沿摇臂轴移动包括缩回的伸缩销的摇臂体，直到摇臂体滑离摇臂轴。
[0007] 根据本发明的提升阀操作系统的优点在于，不需要任何附加的紧固件、垫片或者弹簧就可以将摇臂固定在摇臂轴上。这有助于防止摇臂不恰当地或者不正确地安装在发动机内。
根据本发明的提升阀操作系统的进一步优点在于，由于去除额外的紧固件、垫片和弹簧，额外的重量被最小化。

根据本发明的提升阀操作系统的另一个优点在于，摇臂能方便地从摇臂轴移除或安装，从而便于提升阀操作系统中的各种部件的维修。

本说明书的读者将明白本发明的其他优点、特征和目的。

附图说明

图 1 是本发明的发动机的摇臂轴、气缸盖和提升阀的透视图；
图 2 是安装在本发明的摇臂轴上的本发明的摇臂的透视图；
图 3 是本发明的摇臂和摇臂轴的剖视图；
图 4 是本发明的垂直于摇臂轴的第二剖视图；
图 5 是根据本发明安装在摇臂轴上的部分分离的摇臂的侧视图；
图 6 显示了根据本发明的位于摇臂轴上处于轴向可移动模式的摇臂。

具体实施方式

如图 1 所示，提升阀操作系统 10 包括多个提升阀 14，该提升阀通过压缩弹簧 18 关闭。提升阀和弹簧以及提升阀操作系统安装在气缸盖 20 上。摇臂轴 22 通多个螺纹钉 26 保持在气缸盖 20 上。图 2 所示的摇臂轴 22 具有斜角端 24，该斜角端有助于多个摇臂 38 的安装。图 1 所示，摇臂 38 沿摇臂轴 22 间隔布置。每个摇臂 38 必须被精确约束以防止摇臂不必要的轴向移动，不必要的轴向移动可能会使得摇臂停止对提升阀 14 以及传动机构的适当作用，在顶置凸轮发动机的情况下传动机构可以是推杆或者滚子。

图 2 显示了图 2 的一个转变界面部分 34 并在图 1 中显示。图 2 还显示了形成于所述摇臂体 42 内的径向弯曲的内腔 52 内的弹性偏置伸缩 58。该伸缩的具体结构在图 3、图 4 和图 5 中详细示出。

如图 3 所示，伸缩后 58 包括包有端面 48a 的活塞 48，该端面 48a 伸入圆形腔 44 并延伸入转换间隙部分 34。并接，伸缩 58 包括固定销 60。图 4 显示转换间隙部分 34 有较低部分 34a 和两个侧面 34c。在具有本发明的提升阀操作系统的发动机的正常运行过程中，活塞 48 协同侧部 34c 防止摇臂 38 在摇臂轴 22 上轴向移动。同时，活塞 48 的伸缩 58 协同转换间隙部分 34 允许经过预定旋转弧的旋转运动。所述旋转弧针对摇臂 38 所需的旋转而设定，来实现设计在特定发动机内的气门升程。通常，气门升程等于凸轮轴提供的升程与摇臂比的乘积。

图 5 和图 6 显示了本发明的摇臂和摇臂轴系统的安装特性。如图 5 所示，仅通过旋转摇臂 38 可以使摇臂沿摇臂轴 22 滑动直到活塞 48 到达摇臂轴 22 的外圆柱表面 30。然后，当到达期望的一个转换间隙部分 34 时，旋转摇臂 38 直到活塞 48 延伸进入转换间隙部分 34。当摇臂在它的设计位置旋转时，活塞 48 将在表面 34a 之上并与表面 34a 之间留有适当的距离来防止两者之间的接触。然而，如果需要从摇臂轴 22 移动摇臂 38，可以旋转摇臂 38 直到转换间隙部分 34 的一个斜面 34b 被接触，进一步的旋转来压缩活塞弹簧 56 从而使使得活塞 48 移动进入其收起位置。
根据本发明的方法在摇臂轴上移除和重新安装摇臂使得提升阀操作系统无需特别工具就可以方便地维修，这是由于仅需要在摇臂轴 22 上旋转摇臂 38 来允许摇臂 38 从摇臂轴脱离，以及随后从摇臂轴轴向运动移除摇臂。在提升阀操作时，仅需旋转摇臂体略微超过摇臂所经过的旋转弧，因此这一操作非常便捷。

虽然这里揭示和描述了本发明的具体实施例，本领域的技术人员可以想出各种变形和替换实施例。因此，本发明的保护范围仅由权利要求限定。
图2

图3