PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 92/08201
GOGF 15/72 Al (43) International Publication Date: 14 May 1992 (14.05.92)

(21) International Application Number: PCT/US90/06274 | Published
With international search report.

(22) International Filing Date: 29 October 1990 (29.10.90) With c_zmer{ded claims.

(71)(72) Applicants and Inventors: HOROWITZ, Steven, L. [US/
US]; 114 Ricardo Avenue, Piedmont, CA 94611 (US).
LING, Marvin, T. [US/JP]; Takanawa Homes, Apt. 4A,
2-1-51, Takanawa, Minato-ku, Tokyo 108 (JP).

(74) Agents: HOFFMAN, Charles, R. et al.; Cahill, Sutton &
Thomas, 2141 East Highland Avenue, Suite 155, Phoe-
nix, AZ 85016 (US).

(81) Designated States: AT (European patent), BE (European
patent), CH (European patent), DE (European patent),
DK (European patent), ES (European patent), FR (Euro-
pean patent), GB (European patent), GR (European pa-
tent), IT (European patent), JP, KR, LU (European pa-
tent), NL (European patent), SE (European patent).

(54) Title: AUTOMATIC DRAWING SYSTEM

(57) Abstract

A technique for automatically producing drawings includes hand-drawing a group of similar images of a first type within
an active area of a first sheet, scanning it with a scanner to produce corresponding runlength data, operating on the runlength da-
ta to form software objects representing the images of the first group, and storing the first software objects in a first software lay-
er. A second group of images of a second type hand-drawn on a second sheet, which is scanned to produce corresponding run-
length data which is then operated upon to form software objects representing the images of the second group and storing the
second software objects in a second software layer. Data from the first and second software layers are operated upon to plot a
first composite drawing including the images of both the first and second groups. Additional groups of similar images are drawn
on additional sheets to obtain additional software layers and additional composite drawings. Global commands handwritten on
sheets set system and sheet parameters. Editing directives are handwritten and hand-drawn within the active areas of additional
sheets to modify and augment the previous software layers until a final, edited, complex composite drawing is obtained.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing international
applications under the PCT.

AT Austria ES Spain MG Madagascar
AU Australia Fl Finland ML Mali

BB Barbados FR France MN Mongolia
8E Belgium GA Gabon MR Mauritania
BF Burkina Faso GB United Kingdom MW Malawi

BG Bulgaria GN Guinca NL Netherlands
BJ Benin GR Greeee NO Norway

BR Brazil HY Hungary) PL Poland

CA Canada 1T ltaly RO Romania

CF Central African Republic JP Japan sD Sudan

CG Congo Kp Democratic People’s Republic SE Sweden

CH Switzerland of Korca SN Senegal

Ci Cate d'lvoire KR Republic of Korea © SU* Sovict Union
(o] Cameroon Ll Liechtenstein TD Chad

cs Czechoslovakia LK Sri Lanka ' TG Togo

DE* Germany L Luxcmbourg us United States of America
DK Denmark MC Monaco

+ Any designation of “SU” has effect in the Russian Federation. It is not yet known whether
any such designation has effect in other States of the former Soviet Union.

P

WO 92/08201 PCT/US90/06274

10

15

20

"25

1

AUTOMATIC DRAWING SYSTEM

BACKGROUND OF THE INVENTION

The invention relates to computerized systems which can
scan hand-drawn drawings using an optical scanner, recognize
text and lines, points on arcs, circles, curves and shapes,
and recognize certain hand-drawn global commandsjlocal
commands, and spatial indicators on a "layer-by-layer"
basis, and can generate progressively complete
"mathematically accurate" composite drawings by means of a
printer or plotter and a corresponding database.

A variety of computerized drafting aids are presently
available. For example, the well-known program AUTOCAD can
run on IBM-XT and IBM-AT computers and also can run on
various IBM and Sun minicomputers and larger computers such
as the Digital Corporation VAX systems. The AUTOCAD system
is very complex and expensive, costing from roughly $2,000
for the least expensive version to over $10,000 for the most

expensive versions.

The AUTOCAD system and other automatic computerized
drafting aids generally are difficult to learn to use
efficiently. Using a computer monitor as required by
AUTOCAD requires panning and zooming operations due to the
inherent handicaps of poor resolution and small size of the
monitor screen. This requirement impedes operation, since
the operator must first pan to locate the position of a
drawing on which he is working, and then enlarge the display
by "zooming in" to see the detail necessary to continue.
Consequently, many draftsmen make little or no use of
computerized drafting aids. Roughly three-fourths of all

WO 92/08201 PCT/US90/06274

5

10

15

20

25

30

2

engineering and mechanical drawings and blueprints are
completely hand-drawn using traditional drafting tables,
rulers, templates, and articulated drafting machines.

A prior art system sold under the trademark TOSGRAPH by
Toshiba Corporation of Japan converts hand-sketched drawings
of logic diagrams into perfectly shaped logic_giggrams
suitable for input into a CAD database which»éan be utilized
by analysis programs to perform a logic analysis on the
sketched logic diagram. However, the TOSGRAPH system is
very limited in its capabilities because it is intended only
for logic diagrams. It therefore always forces all lines to
be horizontal or vertical, and constrains the system such
that all lines must be connected to logic symbols such as
AND/OR gates at specific positions, even if the sketched

_lines do not touch the symbol. The TOSGRAPH system does not

recognize any symbols other than standard logic diagram
symbols, and cannot draw circles or arcs.

A system called the GTX 5000 marketed by GTX
Corporation of Phoenix, Arizona is capable of scanning a
drawing, rapidly vectorizing and recognizing drawing
entities and text, respectively, and providing a
representative database theréof. Since the system must scan
and convert existing drawings, there is no means to enhance
accuracy by encoding and processing drawing entities on a
layer-by-layer basis. Thus the resulting database contains
many mistakes, especially where objects are filled or
overlap, that require time-consuming corrections. A typical
computer workstation is needed to edit the drawing, and a
substantial amount of usef training and effort are necessary
to operate the editor.

‘V

WO 92/08201 PCT/US90/06274

10

15

20

3

U.S. patent 4,058,849 discloses automatic dimensioning
of drawings entered by means of a digitizing tablet. The
tablet contains a drawing area and a menu area with command
buttons and alphanumeric keys. Lines and circles are
specified by picking the appropriate commands and locating
points in the drawing area. Dimensions and text are entered
via the keys after indicating their position and
orientation. The system does not permit arc, curve, or
shape entry. Dimension rectification is accomplished after
all entities have been defined and before output of the
finished drawing. The patent concerns itself mainly with
the algorithm for adjusting the proportions of the drawing
entities by traversing a data structure containing the input

dimensioning information.

Thus, there remains an unmet but long existing need for
a reasonably priced, easily learned, and easily used
computerized drafting aid which substantially reduces the
effort required for the draftsman to make "mathematically
accurate" engineering drawings and the like in which hand
sketched "straight" lines are corrected to be perfectly
straight and hand drawn circles and arcs are corrected to be

perfectly circular, etc.

WO 92/08201 PCT/US90/06274

10

15

20

25

SUMMARY OF THE INVENTION

Accordingly, it is an object of the invention to
provide a reasonably low-cost computerized drafting aid, the

operation of which is easily learned by an average drafsman.

It is another object of the invention to provide a
computerized drafting aid which rapidly converts hand-drawn

sketches into "mathematically accurate" engineering drawings
or the like.

It is another object of the invention to provide a
computerized drafting aid which allows a draftsman to

continue using practiced, natural drawing skills to create a
digital drawing database.

It is another object of- the invention to provide a
computerized drafting aid which requires a draftsman to
depress a minimum number of buttons, switches, and/or keys
in order to utilize the system.

It is another object of the invention to provide a
computerized drafting aid which requires a minimum number of
hand-drawn strokes without the use of specialized mechanical
drafting tools to generate a detailed drawing.

It is another object of the invention to provide a
computerized drafting aid which allows efficient editing of
previously digitized drafted drawings or parts thereof.

Briefly described, and in accordance with one
embodiment thereof, the invention provides an automatic

v,

»

WO 92/08201 PCT/US90/06274

10

15

20

25

30

5

drawing system including a scanner or digitizing tablet and
d"printer or plotter. The most "basic" embodiment of the
invention can be operated without a keyboard, using only a
few control buttons and a few indicators. Semi-transparent
grid paper with grid lines and designated global command
areas which are not incorporated in the drawing allow a
draftsman to make hand-sketched, fairly accurately
positioned lines, circles, arcs, etc. The scanner detects
pixels and serially transmits them to a recognition
processor that recognizes imperfectly drawn straight lines,
eliminates meaningless deviations, and stores mathematically
accurate straight line, arc, circle, etc. data. Such data
then is used to drive the printer to print a mathematically
accurate replica of a hand-drawn sketch and also produce a
database thereof on a floppy diskette or the like. Certain
areas of the scanned document are reserved for recognizing
certain symbols which are not interpreted as part of the
drawing but as global commands. The global commands
include, but are not limited to, layer numbers, line
thicknesses, scale ratios, "clean up", and other commands.
The system also recognizes local commands which are hand-
drawn or handwritten near or inside of hand-drawn shapes to
which such local commands specifically pertain. Local
commands also are automatically recognized as command
symbols, not as part of the drawing. The local commands
include, but are not limited to, mirroring, rotating,
copying, "generate or call up symbol", hatching, "repetitive
pattern" and other commands. A complex drawing can be input
to the automatic drawing system in "layers", in order to
enable a draftsman to, for example, draw a large number of
similar type entities, i:e., lines, circles, text, etc. on
separate sheets, respectively. The recognition module or

processor which interprets the scanned pixel data generates

WO 92/08201) PCT/US90/06274

10

15

6

a "composite" drawing of all previous layers and prints it
out in response to a print command generated by pressing one
of the few control buttons of the system. The burden upon
the recognition module in recognizing the entities on a
particular layer is greatly reduced by having information
that all entities on that layer are similar or of a

particular type or types. After a new composite drawing is

‘printed out, the draftsman then can obtain a clean sheet of

the semi-transparent grid paper, register it with the most
up-to-date composite sheet that has been printed out, and
add more detail on yet another layer. Certain shapes that
are repeated many times can be stored as library symbols and
identified and marked on the~pfesent layer along with an
accurate "position marker". When that layer is scanned by
the scanner, the recognition module recognizes the symbol
and calls up the symbol -library, locates it properly on the

drawing, and merges that information into the composite
database.

g)

WO 92/08201 PCT/US90/06274

10

15

20

7

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram'of the automatic drafting

system of the present invention.

Fig. 1A is a plan view illustrating the control buttons
and indicators of the central processor contained in the

“housing of the scanner of Fig. 1.

Fig. 1B is a diagram illustrating various combinations

implementing the present invention.

Fig. 2 1is a plan view of a piece of semi-transparent
grid paper which can faciliate use of the automatic drafting

system of the present invention.

Figs. 3A-3B constitute a flowchart useful in describing
the basic method of using the automatic drafting system of

Fig. 1.

Figs. 4A-4B constitute a flow chart of an
initialization routine executed by the processor of Fig. 1.

Figs. 5A-5D constitute a flow chart of a routine called

by the routine of Figs. 4A-B.

Figs. 6A-6D constitute a routine called by the routine
of Figs. 5A-D.

Figs. 7A-7H constitute a flow chart of a program called

by the routine of Figs. 5A-5D.

Figs. 8A-8D constitute a flow chart of a program called

WO 92/08201 PCT/US%0/06274

8

by the routine of Figs. 4A-B to print a drawing.

Fig. 9 is a diagram useful in explaining active areas
and layers.

Figs. 10A-10D are diagrams useful in describing various
5 entity types.

Fig. 11 is a diagram useful in describing edit layers.

-

»

WO 92/08201 - : PCT/US90/06274

10

15

20

25

30

9

DETATLED DESCRIPTION OF THE PREFERRED
EMBODIMENT OF THE TINVENTION

The invention provides a device to enable draftsmen to
accomplish their work more efficiently by minimizing the
number of "strokes" required to make and/or edit a drawing
and to-minimize the difficulty of such strokes, and provide
the output in the form of a mathematically accurate drawing

“and also in the form of a database containing all of the

information necessary to input the drawing to a CAD/CAM

system or the like.

Fig. 1 shows the basic components of the automatic
drawing system 1, including a scanner 2, with a cover 16A, a
processor 8 and a printer 7. Fig. 1A shows processor 8
alone with its buttons 3A-G and display lights 5A-C. Fig.
1B shows various other ways of implementing a drafting aid
by using different components. A stand alone scanner 2A or
a stand alone digitizer tablet 2B can provide graphic input
data to either a stand alone processor 8 or a PC workstation
computer 17 havingwa suitable "add-on board" containing a

suitable'recognitioq module. The output of the PC

‘workstation 17 containing a suitable recognition module or

of stand alone processor 8 containing a suitable recognition
module can be provided to a suitable commercially available
printer 7 or plotter 7A. Processor 8 can drive either a
printer 7 or a plotter 7A to produce mathematically accurate
composite layers created by scanning hand-drawn documents by
means of scanner 2 or digitizer tablet 2A. The scanner 2
can, for example, be size A or size B flatbed type scanner
with a resolution of 200 to 400 dots per inch or more.
Smaller drawings can be scanned by scanner 2 and recognized
as sections of a larger drawing, so sections of a larger
drawing can be merged to produce a data base of the larger

WO 92/08201 - PCT/US90/06274

10

15

20

25

10

drawing.

The processor 8 has been adapted to include a plurality
of control buttons 3, a floppy disk drive 4, and a plurality
of indicators 5. Scanner 2 outputs serial pixel "runlength"

data resulting from line-by-line scanning of a hand-drawn
document.

The controls for the central processor are designed to
be very simple, operating in response to several buttons and
providing only a few indicators.

Referring to Fig. 1A, the power on-off button 3A simply
turns system power on or off. "Reset" button 3B is
depressed to initialize processor 8 for normal system
operation and to load the software program from a diskette
inserted into the floppy disk drive 4. "Load" button 3C
causes the processor 8 to load the "drawing data" from
another diskette inserted into disk drive 4. "Scan" button
3D causes the scanner 2 to scan a hand-drawn document that
has been loaded therein. The database containing the data

representation of the mathematically accurate drawing is

updated onto the drawing data diskette. "Draw" button 3E
causes the scanner unit 2 to drive printer 7 to generate a
drawing which 4§ a "mathematically accurate® regeneration of
the original hand-drawn sketch. "Report" button 3F when
depressed causes a report of a variety of system information

to be printed. "Stop" button 3G when depressed causes the
current operation to be halted.

"Ready" indicator 5A indicates when the user can begin
scanning, drawing, reporting or executing disk I/0
(Input/Output). "Busy" indicator 5B indicates that the

»

WO 92/08201 PCT/US90/06274

11

processor is effectuating one of the foregoing operations.
"Fault" indicator 5C indicates a system error by a two-digit
code indicating the type of error, such as defective floppy
disks, printer not ready, out of memory, etc.

5 The floppy disk drive 4 allows loading of system
software, loading and storing tables of line styles, fill

styles, and symbols, and inputting-and outputting of a CAD
database representing the regenerated hand-drawn sketch or a

part of it.

10 Fig. 2 designates a sheet of semi-transparent grid
paper in which horizontal grid lines 11, vertical grid lines
12, and a global command area 14 are printed in (for
example) light pink or colors which are not detected by
scanner 2, so that only the handwritten commands and hand-

15 sketched drawing will be scanned and produce pixel data.

In accordance with the present invention, use of the
grid paper 10 allows the draftsman to position endpoints of
lines,.arcs, etc. and draw fairly accurate straight lines,
arcs, etc. much more rapidly than could be accomplished

20 using scale rulers, compasses, french curves, templates, and
the like. Global commands, subsequently described, are
bottom of the grid paper sheet 10. The "X's" 13 or punched
holes 13A are used to align subsequent "sheets" to previous

25 composite printouts.

Various "global commands" can be hand-written into
global command area 14 of each drawing data sheet or edit
sheet. These global commands apply to the entire sheet in
those two cases, unless overriden by a local command written

WO 92/08201 ' PCT/US90/06274

10

15

20

25

30

12

into the active area of an edit sheet. The global commands
include, for example, a "sheet type" command, a "layer type"
command, a "layer number” command, an "entity type" command,
a "position" command, a "scale" command, an "orientation"
command, and various "entity attribute" commands.

The subsequently described "layering" technique allows

e

the draftsman to draw the same types of entities of an

overall drawing all at the same time on a particular
"layer". (See Fig. 9.) The layer numbers included in the
composite dféwing, and the position, scale, and orientation
of the composite drawing are under user control by means of
a draw sheet. For example, all straight lines can be drawn
on one layer, (as in Fig. 10A) all circles, arcs, and curves
on another, (as in Fig. 10B) all dimension lines on another
(as in Fig. 10C) and all text on another (as in Fig. 10D).
As layers accumulate by being sketched and then scanned, the
composite printout represents completion of an increasing
percentage of a complicated final drawing. The concept of
layering for composition of a complex drawing is expected to
substéntially increase a draftsman's productivity and
increases and enhances the recbgnition accuracy of the
processor 8.

Perfect registration of each layer with the most recent
composite printout is, of coﬁ};e, important. If the grid
sheet 10 of Fig. 2 is used, the printed grid lines can be
used for registration. The grid paper 10 also can utilize
four corner points 13 to facilitate accurate registration of
successive layers with the printed composites. Other
methods of layer registration also could be used, including
punching holes 132 along one edge of the paper and placing
them over a suitable stationary peg bar.

o

WO 92/08201 PCT/US90/06274

10

15

20

25

13

Before describing the routines executed by processor 8,
it will be helpful to provide the following definitions:

SHEET - A sheet of paper scanned into the processor to
control system parameters, disk i/o or drawing. Only layer
and edit sheets have a central active area. The top and
bottom strips outside this active area contain only global

~commands and registration marks or holes.

ACTIVE AREA - An area in a sheet scanned for drawing

data and editing directives. The top left corner (origin),
scale and orientation of a layer or edit active area can be

set relative to the entire drawing.

LAYER - A set of active areas that contain only drawing
data. Many active areas can span a drawing layer, and many
layers can be combined to form one large output drawing.

DRAWING DATA - Active area strokes converted directly
to mathematically accurate drawing entities.

DRAWING ENTITY - A line, arc, or curve (open) entities,
polygon, circle or shape (closed) entities, arrowhead,
extent bar or text character appearing in the drawing.

GLOBAL COMMAND - A letter possibly followed by

arguments decoded to system parameters, disk i/o operations,

and sheet, layer, edit and active area variables.

LOCAL COMMAND - A letter possibly followed by arguments
found only within an active area.)

SPATIAL INDICATOR - Active area strokes interpreted to

WO 92/08201

10

15

20

25

PCT/US90/06274

14

describe drawing entities, to group drawing entities
together, to guide layer editing, to fill closed entities,
and to specify table entries.

EDITING DIRECTIVE - A local command associated with
spatial indicators interpreted to modify previously scanned
and edited drawing data.

TYPE - A letter command argument that encodes sheet,
units, file, layer or edit active area information.

ID - A positive integer assigned uniquely to 1) layers
of the same type, 2) entries in the same table, and 3)
editing entity groups in the same active area.

Next, the definition of commands used in the flow chart
of Figs. 5A-D is as follows:

Sheet Global Commands -~ Specify sheet type (the first
command character found on the sheet when reading from top
to bottom and left to right). A sheet type is one of:

S = Scan

Process

Draw

Report

= File

= Layer (type, ID, type, [*]) - Global commands and
drawing data affect only the layer given by the
layer type and ID number. The layer (first) type
specifies that layer drawing entities belong to
the drawing or éne'of three tables. If the ID

=" ® oUW
1l

number has been used, the system augments the

existing layer. The active area (second) type

w

WO 92/08201

10

15

20

25

30

PCT/US90/06274

15

restricts the drawing entities in the active area
of the sheet to one class. An optional "*"
indicates that all previously scanned and edited
entities in the layer will be erased before

processing. A layer type is one of:

D = Drawing

L = Line style table
F = Fill style table
S = Symbol table

An active area type is one of:

Scan

L = Lines - Contains only lines and polygons.
C = Curves - Contains only arcs, circles, curves,
and shapes modeled by defining points and
- chaining lines.
D = Dimensions - Contains only dimensioning
lines, arrowheads, extent bars and numbers.
T = Text - Contains only text character strings.

Edit (type, [ID, ID,...]) - The sheet active area
contains only editing directives that modify or
augment the underlyihg entities in all layers
belonging to the layer type (see ébove) and
indexed by the optional ID numbers (none = all
combined previously scanned and edited layers).

global commands - Set SCAN button parameters.

R = Resolution (dpu) - The resolution of the
scanner.

U = Units (type) - Units for positions, 'lengths,

" heights, widths and dimension values. A unit

type is one of:
I = Inches
M = Millimeters

WO 92/08201

10

15

20

25

30

PCT/US90/06274

16

C = Centimeters

Drawing size (A - E) - The size of the entire
drawing assembled from all layers.

Sheet size (A - E) - The size of the scanned
sheets. /

Active area (%, y, h, w) - Origin (x, y) of
the active area relative to the origin of the
sheet, and the height and width of the active
area. The height must allow space for a
command line at the top or bottom of the
sheet (excluding holes).

Process global commands - Set sheet processing

parameters:
R

Run/gap filtering (length) - Largest run/gap
length to-be erased/filled (default = no
filtering).

Small object removal (length) - Length of the
box bounding the largest connected pixel

group to be removed (default = no removal).

Join/trim distance (length) - Maximum

distance from-endpoints on entities to other

adjacent entities for endpoint extension,
overshoot removal and intersection
convergence (default = no join/trim).
Orthogonal line snap (degrees) - Maximum
deviation of lines from horizontal or
vertical which will snap orthogonally”
(default = no line snap).

Grid endpdint snap (length) - Length of a
square grid cell which all line, arc, and

curve endpoints will snap (default = no

WO 92/08201 PCT/US90/06274

17

endpoint snap)..
D = Dimension rectification -~ Enables information
from dimension layers to be interpreted and

applied to entities in the drawing.

oY

5 Draw global commands - set DRAW button parameters:

L = Layers (type, [ID, ID, ...] - Draw the
combined converted, translated, sized,
rotated and clipped drawing entities in the

, layers belonging to the draw type and indexed

10 by the optional ID numbers (none = all), or
the text font table (the "T" type ignores ID
numbers). A draw type is one of:

Drawing
Line style table
Fill style table
Symbol table
Text font table
W = Window (i, Y, h; w) = Origin (%, y) of the
output drawing relative to the origin of the
20 entire drawing, and the height and width of
the output drawing (default = entire
drawing).
S = Scale (factor) - Reduction (< 1) or
enlargement (> 1) of the output drawing
25 relative to the entire drawing (default = 1).
R = Orientation (degrees) - Orientation of the
, output drawing relative to the entire drawing
) _ (default = 0)._

D
L
15 F
S
T

v Report global commaﬂas - set REPORT button parameters:

30 P = Parameters - Print system parameters.

WO 92/08201

10

15

20

25

30

PCT/US90/06274

18

Layer - Print layer éétalog.

Directory - Print disk file directory.

Fault - Print fault code and explanation, and
any relevant sheet, layer and active area

data, and any unrecognized entities, commands
and command arguments.

File global commands - perform drawing data disk I/O:

F =

E
L =
S

Layer and
parameters:
P =

Format - Format the drawing data disk.

Erase - ([type], [ID, ID,...]) -

Load - ([type], [ID, ID,...]) -

Save - ([type], [ID, ID,...]) - Perform the
drawing data disk I/O operation on the layers
belonging to the optional file type (none =
all) and indexed by the optional ID numbers
(none = all), or the system parameters (the
"P" type ignores ID numbers). A file type is
one of:

= Drawing

= Line style table
Fill style table
= Symbol table

= System parameters

Lo IR L B v B v
I

edit global commands - set active area

Position (x, y) - Position of the origin of
the active area relative to the origin of the
entire drawinq (default = (0, 0)).

Scale (factor) - Reduction (< 1) or
enlargement (> 1) of the output drawing
relative to the entire drawing (default = 1).

&)

()]

PCT/US90/06274

19

Orientation (degrees) - Orientation of the
output drawing relative to the entire drawing
(default = 0).

Layer global commands - set layer active area

Line style (ID, width) - Line style indexed
by the ID at the given width of all non-text
entities in the active area (default line

style = solid and width = finest line drawn

on output device).

Text font (ID, width) - Text font indexed by
the ID at the given width of all text
characters in the active area (default font
and height depend upon the output device -
text font tables are loaded with the system
program during initialization).

Edit global commands - set edit active area parameters:

WO 92/08201

R
5 parameters:
L

10
T

15
F

20

25

Fill style (ID, width) - Fill style indexed
by the ID at the given line width of all

—~filled entities in the active area (default

fill style = solid and width = finest line

drawn on output device).

Next, the following spatial indicators and editing

directives are defined:

Spatial indicators:

WO 92/08201

10

15

20

25

30

- PCT/US90/06274

© 20

Layer drawing data:

‘¥

Defining points and chaining lines - "+'s" or
"X's" connected together by chaining lines

-

precisely define any nonlinear entity. Arcs
require three arc points and two lines. Circles
need one more closing line or two opposite circle
points connected by a diameter line. Curves
require at least four curve points connected by at
least three lines, and shapes need one more
closing line. a

Dimension lines, arrowheads, extent bars and

numbers - "---" golid lines, "<" and ">"
arrowheads, "|" extent bars and numbers grouped
together to form the‘pattern

| <--- number --->| define dimension entities.

Editing Directives:

Entity group polygon ([0] [ID] [#]) - A
surrounding polygon indicates a group of one or

. more entities to which other spatial indicators

and local commands apply. An optional nearby ID
number must index a group for copy and repeat
commands and table entries. An optional lone or
leading "0" indicates that only completely
enclosed entities are members. An optional
trailing "#" indicates that the entity group
defines a table entry (table layer types only) -
if the ID number has been used the system replaces
the existing entry.

(]

Registration points - One to three "+'!'s" or "X's"
within an entity group indicate the exact position

[V}

WO 92/08201

10

15

20

25

PCT/US90/06274

21

of the group for copying, repeating and symbol
insertion in the drawing.

Position markers - One to three "+'s" or nxis"
indicate the exact positions of the registration
points of an entity group indexed by copy and
repeat commands, or symbol indexed by a symbol
command. Adjustments to the scale and orientation

of the group or symbol achieve an exact match.

Fill marker - A small solid circle within an
entity group-indicates that all of the minimum
area closed entities formed by group members of
the same layer and entity type will be filled with
the edit active area or override fill style.

Axis line - A line about which the nearest entity
group will mirror or along which an indexed entity

group will repeat.

Next, the following edit local commands are defined:

Edit local commands:

Drawing functions - Affect only underlying
entities or entity points in an associated entity

group:

E = Erase - Erase the nearest entity group
in the layer (can be used with an index
to exclude a copied entity group from
the layer or to remove a table entry).

WO 92/08201

10

15

20

25

PCT/US90/06274

22

Mirror - Draw the nearest entity group
mirrored about the nearest mirror axis.
Copy (ID, [factor], [degrees]) - Draw
the entity group indexed by the ID ,
number at the nearest position markers
with optional scaling and orientation
relative to the entity group.
Repeat (ID, n, [factor], [degrees],
[factor], [degrees]) -
Draw the entity group indexed by the ID
number n times along the nearest repeat
axis registered on the nearest position
markers with optional scaling and
orientation relative to the entity
group. The second optional factor and
degree arguments increment the scale and
orientation of successive copies.
Symbol (ID, [factor], [degrees]) - Draw
the entities in the symbol indexed by
the ID number at the nearest position
markers with optional scaling and
orientation relative to the symbol.
Break - Break a curve at all entity
group points (allows lines, arcs, and

curves to share defining points).

Parameter and variable overrides - Override the system

default or process, layer, and edit settings of the nearest
entity group entities or points:

30

= Join/trim nearest point of unjoined/trimmed
entity

[

)

WO 92/08201 PCT/US90/06274

10

15

20

25

30

23
JN = No join/trim points
A = Orthogonal snap line-endpoints
AN = No orthogonal snap line endpoints
GN = No grid snap endpoints

L (ID, width) Reset line style and width
F (ID, width) Reset fill style and width
T (ID, height) = Reset text font style and
height

1l

Figs. 9-11 show examples of the previously described
layers and entities. Referring to Fig. 9, the layer 25 is
made up of individual areas 26A-D. The drawing is made up
of layers 25, 25A, 25B and all layers between 25A and 25B.
Fig. 10A-D show the different kinds of areas that are
specified by the L, (Line) C, (Curve) D, (Dimension) and T
(Text) layer types. In Fig. 10A, a line area 27 shows
various lines 28. 1In Fig.rloB, a curve area 29 is shown
with the different kinds of curve entities 31 through 35.
For example, the numerals 31 designate defining points
chained together by a diameter chaining line 30 which
defines the dotted circle 32. Numeral 33 shows arc defining
points chained together by chaining lines forming the dotted
arc. Numeral 34 shows curve defining points chained
together with chaining lines defining the dotted curve.
Numeral 35 shows shape defining points chained together with

chaining lines defining the dotted shape.

Referring to Fig. 10C, dimension area 36 contains
dimension entities referred to by numeral 37 containing
extent bars, arrowheads,ﬁlines and numeric strings. Fig.
10D shows text area 38 which contain text strings referred

to by numeral 39.

WO 92/08201 PCT/US90/06274

10

15

20

25

24

Fig. 11 shows an edit layer which contains an entity
group 41 and editing local commands -46; 48 and 49. The
entity group 41 contains fill marker 42, registration points
44, and groups together entities on other layers indicated
by dotted lines 43. The entity group 41 has an entity group
ID 47 consisting of the numerals 012, where "0" signifies to
only group together completely enclosed entities in the

~entity group "12", and has an associated command 48 which

gives an override fill style and fill line width. The
mirror axis 45 and the mirror command 46 will mirror this
entity group about the mirror axis. Copy command 49 copies

entity group "12" enlarged by a scale factor of 2 at the
position markers 50.

Next, the following command list syntax is indicated,
followed by several examples:

Command list syntax:
<command list> = <command list> new line <command> |

<command list> "/" <command> |

<command>
<command> = letter <arg list> | letter
<arg list> = <arg list> "," <arg> | <arg>
<arg> = letter | number | null

Scan global command example:
S/R200/UI
DE/SA
A.5,.5,7,10

The scanner resolution is 200 dots per inch. The
compined drawing will be size E and scanned sheets will
be size A. The top left corner of the active area on a

[

WO 92/08201 , PCT/US90/06274

25

sheet will be at (.5, .5) inches relative to the top
left corner of the sheet. The active area height can

be 7 inches and width will be 10 inches.

Layer global command example:
5 LD,2,C/P8.5,11/S2/L2,.1

The arc/circle/curve/shape entities in the active area
of this sheet belong to layer 2 of the drawing. The
top left corner of the active area corresponds to (8.5,
11) units in the drawing. The active area is enlarged
10 2 times. Entities will be drawn in line style 2 with

widths of .1 units.

Editing local command example:
Rz,l,él '51 ’ .1

Repeat entity group 2 along the nearest repeat axis 6

15 times registered by the nearest position markers. The
first copy will be drawn half size at the original
orientation, and subsequent copies will be dra&n at
60%, 70%, 80%, and 90% reductions and full scale.

Referring to Figs. 3A-3B, the first step in operation
20 by a user is to determine if the power is on, as indicated
in block 100. If so, the next step, as indicated in block
104, is to determine if there is a drawing in progress. If
the power is not on, then the user has to determine if there
is a program disk in the disk drive, as indicated in block
25 101. If so, the user turns on the Power button 3A, as
indicated in block 103. btherwise, the user inserts a
program disk in the disk drive, as indicated in block 102

and then turns on the power and waits for a Ready indicator

WO 92/08201 PCT/US90/06274

10

15

20

25

30

26

S5A in block 103.

While the user is waiting for the Ready indicator 52
the processor 8 will be initializing the system, as
indicated in the flow chart of Figs. 4A-4B. The program
loads instructions for operating the processor in accordance
with the invention while the user waits for the Ready

~indicator 5A. When the Ready indicator 5A occurs the user

determines if a drawing is already in progress in the
machine, as indicated in block 104. If no drawing is in
progress, the user hits the Reset button 3B that clears the
computer's memory of any previous drawing, and waits for the
Ready indicator 5A to occur, as indicated in block 105.

Next, the user determines whether he is going to start
a new drawing or modify an old drawing, and in the latter
case, goes to block 107 and inserts a diskette containing
data for the old drawing into the disk drive 4, depresses
the Load button 3C, waits for the Ready indicator 5a, and

then goes to block 110. If in block 106 the user determines

that he is going to start a new drawing, he inserts a new
drawing disk into the disk drive as indicated in block 109
and then goes to block 110. 1In any event, the user has

taken the necessary steps to begin a drawing or modify an
old drawing.

The next group of steps is determined by what the user
wishes to accomplish. First the user determines if he wants
to change any of the scan parameters, as indicated in block
110. If not, the next step is indicated in block 113. If
the user wants to change‘écan parametérs, he then places a
"scan sheet" in scanner 2 and depresses the Scan button 3D,

and waits for the Ready indicator 53, as indicated in block

&%

WO 92/08201 PCT/US90/06274

10

15

20

25

30

27

111. In any case, the user then determines if he wants to

change the process parameters, and if so he places a
"process sheet" in the scanner, depresses the Scan button

3D, and waits for the Ready indicator 5A to occur, as
indicated in block 114. '

The user then determines if he wants to generate a

‘drawing, as indicated in block 116. If so, he determines

whether to change the default drawing parameters, as
indicated in block 117. If so, he places a "draw sheet" in
scanner 2, depresses the Scan button 3D, and waits for the
Ready indicator 5A, while DODRAW is being executed, as
indicated in block 119. In any event, the user depresses
the Draw button 3E and waits again for Ready indicator 5A to
occur as indicated in block 120. After the Ready indicator
5A occurs, or if the user does not wish to generate a
drawing, the user determines in accordance with block 121
whether he wishes to generaté é report. If so, he
determines whether to change the report parameters, as
indicated in block 122, and if so, places a "report sheet"
in scanner 2, depresses the Scan button 3D, waits for the
Ready indicator 5A, as indicated in block 123, then
depresses the Report button 3F and waits for the Ready
indicator 5A as indicated in block 125.

The user then determines if any disk input/output
operations need to be performed. For example, the user may
want to make a "backup" copy of his drawing on another
drawing disk. If there is to be a disk input/output
operation, the user replaces the drawing disk if necessary,
as indicated in block 127. The user then places a "file
sheet" in scanner 2, depresses the Scan button 3D, and waits
for the Ready indicator 5A, while disk I/0 is being

WO 92/08201 PCT/US90/06274

10

15

20

25

30

28

performed as indicated in block 128. 1If necessary, the user
then replaces the drawing disk, as indicated in block 130.
The user then determines whether to add to the drawing, and
if so, places a "layer sheet" in scanner 2, depresses the
Scan button 3D, and waits for the Ready indicator 5A, while
DOLAYER is being executed as indicated in block 132. The
user then determines whether to edit the drawing, and if so,

‘places an "edit sheet" in scanher 2, depresses the Scan

button 3D, and waits for the Ready indicator 5A, while
DOEDIT is being executed as indicated in block 135.

Upon commencing any operation, the system extinguishes
the Ready indicator 5A and lights the Busy indicator 5B.
Any time the user is waiting for the Ready indicator 5A, he
can depress the Stop button 3G, which aborts the ongoing
process and lights the Ready indicator 5A. If any scanning
operation produces an error, the system displays a "fault
code" 5C, stops the operation, and lights the Ready
indicator. The user thén may initiate the appropriate
corrective action. '

Referring now to Figs. 4A-4B, processor 8 executes an
initialization subroutine and idle loop called MAIN, which
calls up the various other subroutines that need to be
exXecuted to perform the drafting aid function of the present
invention. Once the power is turned on as indicated in
block 150, the Busy indicator 5B is turned on and the Ready
indicator 5A is turned off. In block 152, the program
performs a processor/memory bootstrap operation and tests
for failure in block 153. If there is a failure, the Fault
indicator 5C is turned on in block 154 and the program waits
for the Reset button 3B to be depressed, turns off the Fault
indicator 5C, and returns to block 152. If the test is

L4

WO 92/08201 PCT/US90/06274

5

10

15

20

25

30

29

passed, the program goes to block 157 and loads the floppy
disk program data.

The program then goes to block 158 and determines if
there is any disk I/0 error, and if there is, turns on the
Fault indicator 5C in block 159, waits until the user
depresses Reset button 5B, and turns off the Fault indicator

o

5C and returns to block 157. If there is no disk error, the
program goes to block 162 and performs the functions of
resetting system parameters, clearing the drawing data
memory, and réading various mode switches to set various
input and output device parameters, as indicated in block
162. The program then goes to block 163 turns off the Busy
indicator 5B, turns on the Ready indicator 5A, and then goes
to block 164 and waits for any of the buttons 3A-G to be

__depressed.

The program then turns on the Busy indicator 5B and
turns off the Ready indicator 5A as indicated in block 165,
and in block 166 determines if the Reset button 3B has been
depreséed. If it has, the program returns to block 162.
Otherwise the program tests to determine if the Load button
3C has been depressed, as indicated in block 167. If it
has, the program loads floppy disk drawing data as indicated
in block 168 and determines if there is a disk error in
block 169, and if there is, calls the fault routine, and
otherwise returns to block 163. If the Load button 3C has
not been depressed, the program determines if the Scan
button 3D has been depressed, as indicated in block 171, and
if it has, goes to block 172 and calls DOSCAN routine of
Figs. 5A-5D, and waits for the results of the DOSCAN routine
or aborts the DOSCAN routine if the Stop button 3G has been
depressed, as indicated in blocks 173, 174, and 175.

WO 92/08201 PCT/US90/06274

10

15

20

25

30

30

If the Scan button 3D has not been depressed, the
program determines if the Draw- button 3E has been depressed,
as indicated in block 176. If it has, the program calls the
DODRAW routine of Figs. 8A-8D as indicated in block 177, and
waits for the results of execution of that routine or aborts
the execution of the DODRAW routine if the Stop button 3G is
depressed, as indicated in blocks 178, 179, and 180. If the

Stop button 3G has not been depressed and the results of

executing the DOSCAN or the DODRAW routines are available,

the program returns to block 163. If neither the Scan nor

Draw buttons~have been depressed, the program goes to block
181 and determines if the Report button 3F has been

depressed, and if it has not, returns to block 163.

If the Report button 3F has been depressed, the pfogram
goes to block 182 and determines if RSYSTEM (See "Report
Parameters" hereinafter) is greater than zero. If so, the
program prints the appropriate system parameters as
indicated in block 183 and then goes to block 184. If not,
the program goes to block 184. In block 184 the program
determines if RLAYER is greater than zero, and if so, prints
a layer catalog as indicated in block 185, and then goes to
block 186. If not, the program goes to block 186. In block
186 the program determines if RDIRECT is greater than zero,
and if so, prints the disk directory, as indicated in block
187. If not, the program goes to block 188. 1In block 188
the program determines if RFAULT is greater than zero, and
if so, prints appropriate fault information, and then goes
to block 190. If not, the program goes to block 190.

In block 190 the pro§ram waits to detect a depression
of the Stop button 3G or termihation of the report. If the
Stop button 3G has not been depressed the program returns to

WO 92/08201 PCT/US90/06274

31

block 163 when printing of the report is complete.

[7:3

N The system data structures for the invention are shown
in Table 1. Note that any name ending in "S" (as in LAYERS)

implies the following linked list structure, which is.given
5 as an example:

10

15

WO 92/08201

PCT/US90/06274
32
1st LAYER 2nd LAYER last LAYER
frm————— + fmmm———— + o —— +
LAYERS--->] vars | +-->| vars | +->,.=->1 vars |
Fm——————— + | Fmmm + | fmm—————— +
| ptrs | | | ptrs | | | ptrs |
fmmm + | Ammmme——- + | e +
| NEXT |--+ | NEXT |-+ | NEXT |-->null
f—m—————— + e + fommm——— +

LAYERS =

LAYER =

vars

ptrs

REXT

]

null

Structure pointer (pointer to the first LAYER record)
Pointer to the vars, ptrs and NEXT in the record
variables in the record, if any

Other structure pointers in the record, if any
Pointer to the next record

Pointer value signifying no more records

33

TABLE 1

pefinition

PCT/US90/06274

WO 92/08201
2
Structure Derivation
RUNLENS input
OBJECTS RUNLENS
5 OUTOBJS OBJECTS
INOBJS OBJECTS
COMCEARS OUTOBJS
10
GCOMS COMCE ARS
COM
ARGS
LAYERS
15 ces GCOMS
ENTITYS AREA
AREAS
cee GCOMS
LAYER GOOMS
20 LINES INOBJS
POINTS LINES
CHARS INOBJS
STRINGS CBARS
BLOBS INOBJS
25 EDIT ’
e GCOMS
LINES INOBJS
POINTS LINES
30 CHARS INOBJS
STRINGS CBARS
. BLOBS INOBJS
N
EQOMS EDIT
COM STRINGS
35 ARGS STRINGS
’ BOX STRINGS
LINE LINES
POINTS POINTS
EGROUP EDIT

raw run lengths

groups of connected run lengths
objects completely outside active

area

objects completely inside active

area

objects recognized as global

command characters

parsed global commands:

command

command arguments

“layers in drawing:

(see LAYER structure variables)
layer drawing entities

layer active areas:

(see AREA structure variables)
layer containing active area

lines

defining points

characters

character strings

arrowheads

edit active area:
(see EDIT structure variables)
polygon sides or axis lines
registration points or position

markers
characters

character strings
small filled circles

parsed editing commands:

command

command arguments
command line box

axis line

position markers
entity group

WO 92/08201

10

15

20

25

30

35

40

PCT/US90/06274

34

TABLE 1 - CONTINUED

Structure Derivation Pefinition
EGROUPS EDIT entity groups:
T eee STRINGS (see EGROUP structure variables)
POLY LINES grouping polygon
POINTS POINTS registration points
ENTITYS LAYER entities
ENTITYS drawing entities:
AREA AREAS active area of original data
POINTS AREAS ordered points
STRINGS AREAS character string
POVER ECOMS parameter override pointer
(null = none)
VOVER EQOMS _variable override pointer
o {null = none)
FILL EQOMS £1i11 pointer (null = none)
CLUSTERS entity point clusters:
EPOINTS entity points:
ENTITY entity
POINT point
CHAINS chained defining points:
LINES chaining lines :
POINTS defining points
DIMENS dimension groups:
LINES extent bars
STRING number string
STRINGS character strings:
CHARS ordered characters
BOX string box
CBARS characters:
CEAR ascii character
BOX character box
BOX bounding boxes:
POINTS ‘corners .
POLYS polygons:
LINES ordered sides
LINES lines:
POINTS endpoints
POINTS points:
CX, CY coordinates
BLOBS small filled blobs:
CX, Cy center points

*

“?

WO 92/08201

10

15

20

25

30

35

PCT/US90/06274

35

Next, the definitions of the system parameters and

variables are given below in Table 2,

TABLE 2
Command Name Defaplt Definition
Scan parameters:
R RES 200 resolution (dots per unit)
3] UNITS I (inches) units (I, M, C)
D DSIZE drawving size (A - E)
[SSIZE A sheet size (AR - E)
A AX, AY 5, .5 active area origin (units)
A AR, AW 7,10 active area extents (units)
Process parameters:
R RGLEN 0 max run/gap length (units)
[SOLEN 0 max small object length (units)
J JTDIST 0 max join/trim distance (units)
A OLDEV 0 max line deviation (degrees)
G GCLEN 0 grid cell length (units)
2} RECT 0 (off) dimension rectification
{off/on)
Draw parameters:))
D DTYPE D (drawing) draw type (D, L, F, S, T)
D DL IDS null (all) output drawing layer ID lists
W DX, DY 0 output drawing origin (units)
W DH, DW (DSIZE) output drawing extents (units)
s DSCALE output draw scale (factor)
R DORIENT O output draw orientation (degrees)
Report parameters:
RSYSTEM 1 (on) report system parameters
(off/on)
L RLAYER 0 (off) report layer catalog (off/on)
D RDIRECT 0 (off) report disk directory (off/on)
F RFAULT 1 (on) report fault information
{off/on)
LAYER structure variables:
L ID - layer ID
L TYPE - layer type (D, L, F, 8S)

WO 92/08201

10

15

20

25

30

35

40

Command

Name

36

PCT/US90/06274

TABLE 2 - CONTINUED

Default

Pefinition

AREA structure

tm
=)
-

> m t'llll|8 Wiy K3 not

structure

EGR

g

vov

HEtrm @

FILL structure
P
F

variables:
TYPE

X, Y
SCALE
ORIENT
LSTYLE
LWIDTB
FONT
HEIGHT

variables:
X, Y
SCALE
ORIENT

-‘FSTYLE

FWIDTE

ID

ENC
FIL
TAB
DEL

JOIN
LSNAP
PSNAP

LSTYLE
LWIDTH
PONT

HEIGHT

variables:
PSTYLE
FWIDTEH

oo |

0 (solid)
0 (finest)

active area type (L, C,

origin (units)

scale (factor)

orientation (degrees)
line style ID
line width (units)

0 (default) text font ID
0 (default) text height (units)

0

1

0

0 (solig)
0 (finest)

P structure variables:

0 (none)
0 (no)
0 (no)
0 (no)
0 (no)

R structure variables:

0 (none)
0 (none)
0 (none)

R structure variables:

AREA
AREA
AREA
AREA

EDIT
EDIT

Drawing and table pointers:

mt 11

DLAYERS
LLAYERS
FLAYERS
SLAYERS
LEGROUPS
FEGROUPS
SEGROUPS

¢ D TEGROUPS null

(

none)

origin (units)

scale (factor) '

orientation (degrees)
f£ill style ID

D, T)

£ill line width (units)

entity group ID
enclosure (*0" = yes)
fill (1 = yes)

table entry ("#" = yes)
erase (1 = yes)

join/trim (-1 = no, 1
line snap (=1 = no, 1
point snap (-1 = no)

line style ID
line width (units)
text font ID
text height (units)

£ill style ID
fill line width (units)

drawing layers

line style table layers
fill style table layers
symbol table layers
line style entry entity
£1i11 style entry entity

yes)
yes)

groups
groups

symbol entry entity groups
table entry entity groups

“

WO 92/08201

wy

10

15

20

25

30

Command Name
Current sheet, layer
(first) STYPE

L, E, D LAYERS

L, E, D LAYER

L, E LTYPE

L, E, D LID

E, D LIDS

D DENTITYS

PCT/US90/06274

37

TABLE 2 - CONTINUED

Defaylt pefinition

LI S R B L)

null (all)

Current area variables:

- AREA -

L ATYPE -

L AERASE null (no)
Current edit variables:
CRS, LFT EID 0 (none)
L, F, T ENUM 0 (none)
R ROOUNT -
C, R, S ESCALE 1
C, R, § EORIENT 0~
R RSCALE 0
R- RORIENT 0
R RPOINTS -

area, edit and draw variables:

sheet type (S, P, D, R, F, L, E)
drawing or table pointer
layer pointer
layer type (D, L, F, S)
layer ID
layer ID list
output drawing entities

active area pointer
active area type (L, ¢, D, T)
erase ("*" = yes)

entity group, table entry ID
line width, font height

repeat count

scale (factor)

orientation (degrees)

scale increment (factor)
orientation increment (degrees)
repeat line point list

WO 92/08201 - PCT/US90/06274

10

15

20

25

30

38

Referring now to Figs. 5A-5D, the DOSCAN routine
performs the function of scanning a sheet and interpreting
the action to be taken. First, it scans the page of the
document in the scanner 2 into runlengths in the above
mentioned RUNLENS data structure as indicated in block 200.
Suitable scanning hardware and circuitry are available in
the commercially available GTX 5000 system, and are

described in detail in the allowed pending patent

application "HIGH SPEED SERIAL PIXEL NEIGHBORHOOD PROCESSOR
AND METHOD" application, by Krich, serial No. 016,230, filed
2/19/87, incorporated herein by reference. If there is a
scan error, the fault routine is called. If not, the
program determines if RGLEN is greater than zero. RGLEN is
a process parameter that determines run length filtering by
filling small gaps and erasing small runlengths, both of
length RGLEN units. If so, fill and erase operations are
performed as indicated in block 204.

In any event, the program goes to block 205 and
determines if RUNLENS is empty, and if it is, calls the
fault routine, but otherwise goes to block 207 and groups
the connected runlengths into "objects" in the OBJECTS data
structure. This can be done using known hardware and
software available in the above-mentioned GTX 5000 system
and is described in detail in allowed pending patent
application "METHOD AND APPARATUS FOR SIMPLIFYING RUNLENGTH
DATA FROM SCANNING OF IMAGES", by Roye, filed on 2/19/87,
Serial No. 016,662 which is incorporated herein by
reference.A Next the program goes to block 208 and
determines if SOLEN is greater than zero. SOLEN is a
process parameter that determines if objects smaller than !
length SOLEN units are to be removed. If so, object removal
is performed as indicated in block 209. In any case, the

%3]

WO 92/08201 PCT/US90/06274

5

10

15

20

25

39

program goes to block 210 and determines if there is more
than one object, and if not, calls the fault routine.

Otherwise the program converts the first object into a
sheet type in the variable STYPE as indicated in block 212,
and then in block 213 determines if STYPE is equal to one of
S (scan), P (process), D (draw), R (report), or F (file) and
'if it is not, the program goes to block 241,M£EE otherwise
goes to block 214 and converts and removes the OBJECTS
characters ipto COMCHARS, which is a list of global command
characters. This can be done using known hardware and
software available in the above-mentioned GTX 5000 system
and is described in detail in allowed pending patent
application "METHOD AND APPARATUS FOR GENERATING SIZE AND
ORIENTATION INVARIANT SHAPE FEATURES", Serial No. 026,672,

~_filed 3/13/87, by Horowitz, and also allowed pending patent

application "HIERARCHICAL PARAMETRIC APPARATUS AND METHOD
FOR RECOGNIZING DRAWN CHARACTERS", Serial No. 199,361, filed
5/26/88, by Filipski, both incorporated herein by reference.
(It should be noted that "[operation] and remove" as used
herein.followed by a structure name, means that each member
of the data structure is removed therefrom after a
successful operation; in the flowcharts, the term "and
remove" is omitted for simplicity.) The program then goes
to block 215 and determines if there are any more objects,
which indicates unrecognized characters, and if so, calls
the fault routine. If there are no more unrecognized
characters, the program goes to block 217 and parses and
removes the successfully converted COMCHARS characters into
the GCOMS global command structure, previously defined.

That is, the program parsés the COMCHARS and removes all
those that fit into the command syntax previously
established for GCOMS.

WO 92/08201 PCT/US90/06274

10

15

20

25

30

40

The program then goes to block 218 and determines if
there are any more COMCHARS which indicates unparsed
characters, and if so, calls the fault routine. If there
are no unparsed characters, the program goes to a string of
decision blocks including 220, 222, 224, 226, and 228, and
determines which of the types S, P, D, or R, that STYPE is,
and appropriately decodes GCOMS to get system parameters, as
indicated in blocks 221, 223, 225, and 227, fé;;ectively.

If STYPE is not any of the foregoing types, or if it is an
S, P, b, or R, the decoded result is obtained and the
program goes to block 234. TIf STYPE is equal to F, the
program decodes GCOMS to perform disk input/output, as
indicated in block 229, and the program goes to block 230
and determines if there are any more GCOMS, which indicates
invalid commands, and if so, calls the fault routine, put
otherwise goes to block 232 and determines if there is a
disk error, and if there is, calls the fault routine, and if
not, returns to the calling program.

In block 234 the program determines if there are any
more GCOMS, and if so, calls the fault routine as indicated
in block 235, but otherwise goes to block 236 and updates
the system parameter file, and then determines if there is a
disk error, if there is, calls the fault routine, and
otherwise returns to the calling program, as indicated in
blocks 236 and 237. o

Next, the program goes to block 241 and moves OBJECTS
completely outside of the active area 14A into OUTOBJS, and
also moves OBJECTS completely inside the active area 14A of
Fig. 2 into INOBJS. Next; the program goes to block 242 and
determines if OBJECTS is empty, which indicates there are no
objects crossing the active area border, and if it is not,

£

)

WO 92/08201 PCT/US90/06274

10

15

20

25

30

41

calls the fault routine, but if OBJECTS is empty, the
program determines if INOBJS is empty and OUTOBJS is empty
in blocks 244 and 246, and if so in either case, the program
calls the fault routine. If they are both not empty, the
program goes to block 248 and converts and removes OUTOBJS

characters to COMCHARS.

The program then determines in block 249 if OUTOBJS is
empty, if it is not, calls the fault routine, and if it is,
goes to block 251 and parses and removes COMCHARS characters
into GCOMS commands. The program then goes to block 252 and
determines if COMCHARS is empty, if it is not, calls the
fault routine, and if it is, goes to block 253 and sets
STYPE equal to the first GCOM->COM command letter. Next,
the program goes to block 254 and determines whether STYPE
is one of L (layer) or E (edits, and if it is not, the fault
routine is called. If it is, the program goes to block 256
and sets LTYPE equal to the first
GCOM->ARG, i.e., set LTYPE to the first argument of the

first global command.

Next the program goes to a string of decision blocks
257, 259, 261, and 263 where it determines if the LTYPE is
equal to D (drawing), L (line style), F (fill style), or S
(symbol table), and if it is, sets LAYERS equal to DLAYERS,
LLAYERS, FLAYERS, or SLAYERS, respectively, and goes to
block 266. If LTYPE is not equal to D, L, F, or S, the

program calls the fault routine.

In block 266 the program determines if STYPE is equal
to L, and if it is not, block 268 it determines if STYPE is
equal to E. If STYPE is equal to L, the program calls the
DOLAYER routine of Figs. 6A-6D, as indicated in block 267,

WO 92/08201 PCT/US90/06274

10

15

20

25

30

42
and returns to the calling program. If STYPE is equal to E,

the program calls the DOEDIT routine of Figs. 7A-7I, as
indicated in block 269 and returns to the calling program.

Referring now to Figs. 6A=-6D, the DOILAYER routine is
called after the sheet has been scanned and has been
determined to be a layer sheet. The DOLAYER routine then

- scans the active area AREA of the sheet and puts all of the

raw entities into different entity records. In block 300
the program decodes the second, third, and optional fourth
arguments of the first command, the L command, into LID,
ATYPE and AERASE, and the remaining GCOMS into AREA
variables (vars). The program then goes to block 301 and

determines if GCOMS is empty, and if it is not, calls the
fault routine.

Then, in klock 302 the program translates, scales, and
rotates INOBJS according to the AREA variables. The program
then, in block 302A, determines if all transformed objects
in INOBJS are entirely inside the drawing, and if not, calls
the fault routine. The program then goes to block 303 and
finds which layer has a layer identification number equal to
LID. 1In block 304, if no such layer is found, the program
Creates a new LAYER and appends it to LAYERS, and assigns to
it the identification number equal to LID and a type equal
to LTYPE, as indicated in blocks 305 and 306, from which the
program proceeds to block 310.

If the determination of block 304 is affirmative, the
program goes to block 307 and determines if AERASE is equal
to an asterisk, and if it is, removes all entities from the
LAYER in block 308 and in block 309 removes all AREAS
pointing to the LAYER. The program otherwise proceeds to

“

w0

WO 92/08201 PCT/US90/06274

10

15

20

25

30

43

b;gck 310.

In block 310 the program creates a new AREA and appends
it to the AREAS, and in block 311 sets the LAYER pointer of
AREA equal to LAYER and sets the TYPE variable of AREA equal
to ATYPE. The program then goes to block 312 and determines
if ATYPE is equal to L, i.e., whether the type of the
present area is a line area. If it is, the program goes to
block 313 and processes the present area in accordance with

blocks 313-319 before returning to the calling routine.

- At block 313 the program converts and removes all
objects inside the active area into AREA->LINES. This can
be done using known hardware and software available in the
above~-mentioned GTX 5000 system and is described in detail
in allowed pending patent-application "APPARATUS AND METHOD
FOR VECTORIZATION OF INCOMING SCANNED DATA", by Lien, filed
on 2/19/87, Serial No. 016,660, incorporated herein by
reference. The program then goes to block 314 and
determines if there are any more INOBJS, which indicates the
presence of other entities, and if so, calls the fault
routine.

Otherwisé the program goes to block 316 and enters a
loop to process all lines in the present active area. For
each line in the active area, the program creates a new
entity in block 317 and appends it to the present layer. 1In
block 318 the program sets the new entity to point to the
present active area and sets the entity's points equal to
the two line endpoints and then in block 319 removes the
line from the area, to cdhserve memory space. When this has
been completed for each entity in the active area, the

program returns to the calling routine.

WO 92/08201 PCT/US90/06274

10

15

20

25

30

_ If the determination of block 312 was negative, the
pfogram determines in block 320 if ATYPE is equal to C,
i.e., is a curve area. If so, the program goes to block 321
and converts and removes INOBJS lines into AREA->LINES in
block 321, determines if INOBJS is empty in block 322, and
if it is, calls the fault routine. Otherwise the program
goes to block 324 and extracts and removes all sets of lines

'in AREA forming crosses to AREA->POINTS. The program then

goes to block 325 and extracts and removes points properly
connected by lines from AREA->POINTS and AREA->LINES into
CHAINS.

Next the program goes to block 326 and determines if
there are any more AREA->LINES or AREA->POINTS, which
indicates isolated points or lines without two endpoints,
and if not, calls the fault routine. Otherwise the program
goes to block 328 and begins to loop through all of the
chains. For each chain, the program creates a new entity
and appends it to the present layer, as indicated in block
329. The program then goes to block 330 and sets the AREA
pointer of the new entity to the present AREA and
ENTITY->POINTS to CHAIN->POINTS. The program then goes to
block 331 and determines if there are two chained points,
which indicates a circle, and if so, goes to block 332 and
generates an additional third point, and appends the first
point to the last, as indicated in block 333. If there are
more than two chained points, the program goes to block 334
and determines if the number of chained points is equal to
the number of chaining lines, which indicates that the
entity is clbsed, and if it is; the program goes to block
333 and appends the firstvpoint to the last. In either b
case, the program then goes to block 335 and removes the
present chain and returns to block 328. When this process

¥

WO 92/08201 N PCT/US90/06274

10

15

20

25

30

45

has been completed for each chain in the active area, the

program returns to the calling routine.

If the determination of block 320 is negative, the
program goes to block 336 (Fig; 6C) and determines if ATYPE
is equal to D, i.e., is a dimensions area, and if it is not,
goes to block 350 (Fig. 6D), but if it is, goes to block
337. The program then converts and removes INOBJS
characters into AREA->CHARS, INOBJS lines into AREA->LINES,
and INOBJS filled triangles into AREA->BLOBS, in that order,
as indicated in blocks 337, 338, and 339. 1In block 340 the
program determines if INOBJS is empty. If it is not empty,
it calls the fault routine. If INOBJS is empty, the program
goes to block 342 and extracts and removes colinear adjacent
AREA->CHARS into AREA->STRINGS. These strings also may
contain converted extent bars and arrowheads. The program
then goes to block 343 and extracts and removes
AREA->STRINGS, AREA->LINES, AREA->BLOBS dimension lines,
arrowheads and extent bérs and:AREA—>STRINGS numbers forming
colinear and adjacent |<=---number--->| patterns into DIMENS
in accordance with well known "blackboard" programs such as
the one used in the commercially available GTX 5000 system
yet, and described in "The HEARSAY-II speech understanding
system: integrating knowledge to resolve uncertainty",
"Computing Surveys" 12, pp. 213-253, 1980, by L.D. Erman, F.
Hayes-Roth, V. Lesser, and D. Reddy, and also in pending
patent application "METHOD AND APPARATUS FOR RECOGNITION OF
GRAPHIC SYMBOLS", Serial No. 016,253, filed 2/19/87, by
Bhaskaran, and incorporated herein by reference.

Next, the program gées to block 344 and determines if
the AREA->LINES, AREA->STRINGS and AREA->BLOBS are empty,
and if any is not empty, the fault routine is called.

WO 92/08201 PCT/US90/06274

10

15

20

25

30

46

.

If they are empty, the program goes to block 346 and
enters a loop for each of the dimension records in DIMENS.
First, the program creates a new entity to append to LAYER
in block 347, sets the AREA pointer of the new entity to the
present AREA, sets ENTITY->POINTS to the endpoints of the
extent bars, sets ENTITY->STRING to DIMEN->STRING, and then

‘removes the present dimension from DIMENS, as indicated in

blocks 347, 348, and 349. When this has been completed for
each of the dimension records in the dimension list, the

program retufns to the calling routine.

If the determination of block 336 is negative, the
program goes to block 350 (Fig. 6D) and determines if ATYPE
is equal to a T, i.e, a text area. If so, the program goes
to block 351, converts and removes INOBJS characters into
AREA->CHARS. In block 352 the program determines if INOBJS
is empty, and if it is not, calls the fault routine. If
INOBJS is empty, the prdgram gées to block 354 and extracts

and removes colinear adjacent AREA->CHARS into
AREA->STRINGS.

Then, as indicated in block 355, for every string in
the present area, the program creates a new entity and
appends it to the present layer, sets the ENTITY->AREA
pointer equal to AREA and the ENTITY->STRING equal to
AREA->STRING, and then removes the string from
AREA->STRINGS, as indicated in blocks 356, 357, and 358.
When this has been completéd for each string of characters
in AREA, fhe routine returns to the calling program.

("]

If the determination of block 350 is negative, which
indicates that the area type was not one of L, C, D, or T,

'3}

WO 92/08201 - PCT/US90/06274

10

15

20

25

30

47
the program calls the fault routine.

Referring to Figs. 7A-7H the DOEDIT program allows
editing of previously scanned drawing layers. In block 400
the DOEDIT routine decodes and removes the first GCOM
arguments into LIDS and decodes and removes the remaining
GCOMS into EDIT variables. In block 401 the routine
determines if GCOMS is empty, and if it is not, calls the
fault routine. If GCOMS is empty, the program goes to block
402 and the program translates, sizes and rotates INOBJS
according to edit variables. The program in block 402a
determines if all transformed objects in INOBJS are entirely
inside the drawing, and if not, calls the fault routine.

The program then converts and removes INOBJS characters into
EDIT->CHARS, and then, block 404 extracts and removes
colinear adjacent EDIT->CHARS into EDIT->STRINGS. In block
405 the program parses and removes EDIT->STRINGS into ECOMS.
In block 406, the program converts and removes INOBJS lines
into EDIT->LINES, and in block 407, the program converts and
removes EDIT->LINES forming crosses into EDIT->POINTS.

In block 408 the program converts and removes INOBJS

filled circles into EDIT->BLOBS. In block 409 the program

determines if INOBJS is empty, and if it is not empty, calls
the fault routite. If INOBJS is empty, the program goes to

"~ block 411 and extracts minimum area polygons from

EDIT->LINES into POLYS, and in block 412 determines if POLYS
is empty, and if it is, goes to block 413 and determines if
EDIT->STRINGS, EDIT->LINES, or EDIT->BLOBS is empty, and if
any is not empty, calls the fault routine. If POLYS is not
empty, the program goes fo block 415 and enters a loop for
each polygon in POLY. For each polygon the program creates
a new entity group EGROUP and appends it to EGROUPS. 1In

WO 92/08201 - PCT/US90/06274

10

15

20

25

30

48

block 417 the program sets the entity group polygon to POLY,
and in block 419 removes POLY from POLYS. When the loop has
been completed for all of the polygons, the program goes to
block 419. If the determination of block 413 is
affirmative, the program goes to block 471 (Fig. 7D).

In block 419 the program begins a loop for each string

- in the edit active area finding the nearest entity group

polygon in block 420, and then first decoding the string
characters in block 421 into EGROUP->ENC, EID, and ,
EGROUP->TAB. In block 422 the program determines if the
string characters list is empty, and if it is not empty,
calls the fault routine. Otherwise, the program determines
in block 424 if the entity group identification number is
zero, and if it is, goes to block 430 to determine if the
entity group is a table entry, and if it is not, the program
goes to block 433 and removes the present string of
characters from EDIT->STRINGS and returns to the beginning
of the loop at block 419.

If the entity- identification number is not zero in

.block 424, the program goes to block 425 and determines if

the entity identification number has been assigned already
to a different entity group, and if it has, calls the fault
routine. If the entity identity number has not been
assigned to another group, the program goes to block 427 to
see if the entity group identification number is zero, and
if it is not, which indicates that the entity group already
has been assigned an identification number, calls the fault
routine, but otherwise assigns the entity group
identification number tobEID, and then goes to block 430.
If the entity group is a table entry, the program goes to
block 431 and determines if LTYPE is D or if EID is zero.

w

WO 92/08201 PCT/US90/06274

10

15

20

25

30

49

If this is true, it means that the layer is not a table or
that the table entry index is zero, and the fault routine is
called. Otherwise, the program goes to block 433.

When the loop has been completed for all strings.in the
edit active area string list, the program goes to block 434
and loops through all points in the edit active area. In

‘doing this, the program first goes to block 435 and enters a

loop for each EGROUP to determine if each point is in it and
if so, then if the number of entity group points is already
the maximum of three, and if so, calls the fault routine.
Otherwise, the program appends the present point to the
entity group points, which are registration points, and
removes the point from EDIT->POINTS as indicated in block
439, so that at the end of the loop beginning at block 434

only position markers will remain.

The program then goes to block 440 and loops through
blobs in the edit active area. In block 441 the program
enters another loop through the entity groups, and in block
442 determines if the present blob is inside the present
entity group, and if it is, sets EGROUP->FIL to one in block
443, indicating that closed entities are to be filled, and
in block 444 removes the blob from EDIT->BLOBS and returns
to the beginning of the loop. When this has been completed,
the program goes to block 445 to determine if the blob list
is empty, and if it is not, calls the fault routine,
indicating that not all the blobs were filled circles, but

otherwise goes to block 450.

In block 450, the DOEDIT routine enters into a loop for
each layer in IAYERS in which it first determines if LIDS is
empty, and if it is not, goes to block 452 and finds and

WO 92/08201 PCT/US90/06274

10

15

20

25

30

50

removes the LID in LIDS equal to the layer identification
number. The program then goes to block 453 and determines
if LID has been found, and if so, goes to block 454 but
otherwise returns to the beginning of the loop.

o

If LIDS is not empty, the program goes to block 454,
and enters another loop for each entity in the present layer

entity list. This loop contains a subloop 454 wherein for

each EGROUP in the entity group list, it determines in block
456 1f the generated entity is completely inside the present
EGROUP polygon or if it intersects the present EGROUP
polygon and EGROUP->ENC.is zero, which indicates that
membership does not require complete enclosure. If this
determination is affirmative, the program goes to block 457,
but otherwise returns to the beginning of the subloop. In
block 457 the program appends the present entity to the
entity group list, and in block 458 tags all entity points
inside the EGROUP polygon. In block 459 the program
determines if EGROUP->ENC is zero, and if it is, returns to
block 455, but if it is not, returns to block 454 to

determine if the present entity possibly intersects another
entity group.

When the loop beginning at block 455 is done, it
returns to block 454, and when the subloop beginning at 454
is done, it returns to block 450. When the loop beginning
at 450 is done, it goes to block 460 and it determines if
LIDS is empty, and if it is not, calls the fault routine,
which indicates identification numbers without a)
corresponding layer. If LIDS is empty, the program goes to
block 462 and begins a loép for each entity group in the
entity group list in which the program determines if the
present entity group is empty in block 463, and if it is,

L]

%)

WO 92/08201 PCT/US90/06274

51

calls the fault routine, but otherwise goes to block 465 to
determine if the closed entities in-the entity group are to
be filled, if it is not, the program goes back to the
beginning of the loop beginning at block 462, but otherwise

5 goes to block 466 and starts a new subloop for each entity
in the entity group list wherein in block 467 it determines
if the entity is a closed curve, i.e., circle or shape, and
if it is, the program goes to block 468 and determines if a
FILL record exists, and if it is not, creates the fill

10 record in block 469, but otherwise goes to block 470 and
sets the entity FSTYLE and FWIDTH equal to the edit active
area FSTYLE or to FWIDTH to indicate the style for filling
and the width of any fill pattern lines. The program then
goes back to block 466 for the next entity in the present

15 entity group. If the determination of block 467 is
negative, the program goes back to block 466.

" When the loop beginniﬁg'at block 462 is done, the
program goes to block 471. 1In block 471 the program begins
a new loop for each entity command, in which the first step
20 in block 472 is to determine if the present command is one
of the commands E (erase), M (mirror), or B (break), or J
(join), A (angle line snap), G (grid point snap), L (line
style), F (fill style), or T (text font) overrides. If the
determination is affirmative, the program goes to block 473
25 and determines if the entity group is empty, and if it is,
calls the fault routine, but otherwise finds the nearest
polygon in the entity group as indicated in block 475. The
program then goes to bock 476 and sets the entity group
associated with that command to the entity group found. The
30 program then goes to block 477. If the determination of
block 472 is negative, the program goes to block 477. 1In
block 477 the program determines if the editing command is a

WO 92/08201 PCT/US90/06274

10

15

20

25

30

52

mirror or repeat command. If it is, the program goes to
block 478 and determines if the edit axis lines are empty,
and if they are, calls the fault routine, but otherwise goes
to block 480 and finds the nearest axis line, and then goes
to block 481 and sets the edit command axis line equal to

the line found in block 480. The program then goes to block
482.

If the edit command is not a mirror or repeat command,
the program goes to block 482, and determines if the edit
command is a copy, repeat, or symbol command, and if it is
not, returns to block 471, but if it is, goes to block 483,
decodes the argument of the first edit command into EID,
then goes to block 484 and determines if EID is equal to
zero, and if it is, calls the fault routine, but otherwise
goes to block 486 and determines if the edit command is a
copy or repeat command. If it is, the program goes to block
487 and finds the entity group with the same identification
number as EID, and then goes to block 490 and determines if
such an entity group has been found, and if not, calls the
fault routine. If the edit command is not a copy or repeat
command, the program goes to block 489 because the command
then is a symbol command, and finds the entity group in the
symbol table pointed to by SEGROUPS with a table entry
identification number equal to EID, and then determines in
block 490 if such a group was found, and if not, calls the
fault routine. If the determination of block 490 is
affirmative, the program goes to block 492 and sets the
entity group associated with the edit command equal to
EGROUP. The program goes to block 493 and determines if
the list of edit points is empty, and if it is, calls the
fault routine, but otherwise gdes to block 495 and finds the
nearest position markers with a count equal to the

@)

WO 92/08201 PCT/US90/06274

10

15

20

25

30

53

corresponding entity group registration points. In block
496 the program determines if the position markers are
found, and if not, calls the fault routine, but otherwise
goes to block 498 and sets the edit command position markers
equal to the points found. The program then goes back to
block 471.

If the loop beginning at block 471 is done, the program

goes to block 499 and removes all assigned EDIT->LINES, goes

to block 500, determines if the list of lines is empty, and
if it is not, calls the fault routine. Otherwise the
program goes to block 502 and removes all assigned
EDIT->POINTS, goes to block 503, determines if the list of
points is empty, and if it is not, calls the fault routine,
and then goes to block 510 (Fig. 7E). In block 510 the
program begins a loop for each edit command, in which it
determines if the present edit- command is equal to E
(erase), and if it is, goes to block 512 and sets
EGROUP->DEL equal to 1, which indicates that the entity
group will be deleted after editing is completed, apd then
goes to block 558.

If the present edit command is not equal to E, the
program goes to block 513 and determines if ECOM is equal to
B (break), and if it is, enters a subloop at block 514
wherein for each entity, it determines if the area type is
equal to C, and if it is, goes. to block 516 and duplicates
each single entity point tagged (inside the entity group)
and returns to the beginning of the loop. When the subloop
is done, the program goes to block 558. If the entity
command is not equal to B: the program'goes to block 517
determines if the edit command is equal to J (join).

WO 92/08201 PCT/US90/06274

10

15

20

25

30

54

If the determination of block 517 is positive, the
program goes to block 518 and begins a new subloop for each
entity in which the program goes to block 519 and determines
if the ENTITY->POVER record exists, and if it does not in
block 520, creates a point override record POVER and then
goes to block 521. TIf POVER exists, the program goes to
block 521 and determines if the first argument of the edit
command is equal to N, and if it is, goes to block 522 and
sets the variable JOIN of the point override list to -1,
which informs the DODRAW routine not to join any points in
the entity group, as indicated in block 522 and then returns
to block 518. If the argument of the edit command is not N,
the program goes to block 523 and sets JOIN equal te 1 which
informs the DODRAW routine to join the present entity points
to the nearest unjoined entity points.

2]

When the loop of block 518 has been completed for each
entity, the program goes to block 558.

If the edit command is not J, the program goes from
block 517 to block 524 and determines if ECOM is A.kangle
line snap). If this determination is affirmative, the
program goes to block 525 and begins a subloop for each
entity in which it is determined in block 526 if the
ENTITY->POVER record exists, and if it does not, the program
creates a point override record POVER in block 527 and goes
to block 526. If POVER exists, the program goes to block
528 and determines if the argument of the edit command is N,
and if it is, sets LSNAP equal to -1, and otherwise sets
LSNAP equal to 1, and then returns to the beginning of the
loop. When the subloop 525 has been completed for each
entity, the program goes to block 558.

»

(1

WO 92/08201 PCT/US90/06274

10

15

20

25

30

55

If the edit command is not A, the program goes to block
531 (Fig. 7F) and determines if the edit command is G (grid
point snap). If this is the case, the program begins a
subloop at block 532 which is essentially similar to the
subloops of blocks 518 and 525, except that if the argument
of the edit command is N in block 535, then PSNAP is set
equal to -1 in block 536, but otherwise the fault routine is

~called, and when this has been completed for each entity,

the program goes to block 558.

If the edit command is not G, the program goes to block
538 and determines if the edit command is equal to L, F, or
T, which indicate line style, fill style, or text. If the
edit command is one of these commands, the program goes to
block 539 and decodes the arguments of the edit command into
EID and ENUM, tests for an error, and if there is, calls the
fault routine, but otherwise goes to block 542. If the edit
command is not equal to L, F, or T, the program returns to

block 510.

In block 542 the program determines if the edit command
is equal to L. If it is, the program goes to block 543 and
begins a subloop for each entity in which it determines if
the entity type is indicated by L, ¢, or D, that is, a line,
curve, or dimension entity. If it is not, the program
returns to block 543, but if it is one of these three, then
the program goes to block 545 and determines if the
ENTITY->VOVER variable override record exists, and if it
does not, the program creates a variable override record
VOVER and goes to block 547. If VOVER exists, the program
goes to block 547 and sets the line style and line width
variables of VOVER to EID and ENUM. That is repeated for
each entity, and then the program goes to block 558.

WO 92/08201 PCT/US90/06274

10

15

20

25

30

56

If the ECOM is not equal to L, the program goes to
block 548 and determines if ECOM is equal to F. If it is,
the program goes to block 549 and for each entity determines
if the fill style record FILL exists in block 550, and if it
does not, the program goes back to block 549, but otherwise
goes to block 551 and sets the fill style and £ill line
width variables of FILL to EID and ENUM, and returns to

‘block 549. When this is done for each entity, the program

returns to block 558.

If ECOM is not equal to F, the program then goes to-
block 553 because the command then is a text command, and
for each entity, determines in block 554 whether the entity
type is D or T, that is, a dimension or a text entity, and
if not, the program goes to block 555 and determines if the
ENTITY->VOVER record exists, if it does not, creates VOVER
in block 556 and then goes to block 557. If VOVER exists,
the program goes to block 557 and sets the font and height
variables of VOVER to EID and ENUM and returns to block 553.

When this has been completed for each entity, the program
goes to block 558.

In block 558 the program removes the edit command ECOM
from the list ECOMS. The program then goes from block 558
back to the beginning of the loop starting at block 510, and
when that loop has been completed for each edit command, the
program goes to block 560 (Fig: 7G) .

It should be noted that the foregoing portion of DOEDIT
sets up all of the edit commands associated with entity
groups that do not requiré creating entities. These edit
commands look at the various entity groups and set certain
entity attributes which are in place when the M, C, R, and S

%

»

WO 92/08201 ' PCT/US90/06274

10

15

20

25

30

57

commands create new entities.

Blocks 560-565 (Fig. 7G) set pointers to the correct
table from the layer type set in the DOSCAN routine. If
LTYPE is L, F, or S, TEGROUPS is set to LEGROUPS, FEGROUPS,
or SEGROUPS, respectively. The program goes to block 566,
which begins a loop for each entity group in the edit

e

~command list, in which in block 567 the proéram determines

if EGROUP->TAB is equal to #, and if it is, the program goes
to block 568 and finds and removes any table entry with a
prior index EGROUP->ID. The program then goes to block 569
and determines if EGROUP->DEL is set to 1, and if it is not,
goes to block 570 and appends EGROUP to TEGROUPS and returns
to block 566. If the determination of block 567 is negative
or the determination of block 569 is affirmative, the

program returns to block 566.

When the loop beginning with block 566 is done, the
program goes to block 571 and begins a new loop for each
edit command, in which it determines in block 572 if the
edit éommand is M (mirror). If it is, in blocks 573 the
program begins another subloop for each entity in the
associated entity group in which it creates a new entity
record in block 574 and appends it to the layer pointed to
by the original active area of the entity, and in block 575
mirrors the entity about the mirror axis into the new entity
and then returns to block 573. When this loop is done for
each entity, the program goes to block 595 and removes the
present edit command and returns to block 571.

If the present edit bommand is not M, the program goes
to block 576 (Fig. 7H) and determines if the edit command is
C (copy) or S (symbol). If so, the program goes to block

WO 92/08201 PCT/US90/06274

10

15

20

25

30

58

577 and decodes the arguments of the edit command into
ESCALE and EORIENT to obtain scaling and orientation
information. A decoding error results in calling of the
fault routine. Otherwise the program goes to block 580 and
begins executing a loop for each entity, including creating
and appending a new entity record in block 581, and
tranforming the entity to generate the new entity so that

T

_the entity registration points match the edit command

position markers. When this process is done, the program
goes to block 595 and removes the edit command and returns
to block 571. If the edit command is not C or S, the
program goes to block 583 and determines if the edit command
is R (repeat), and if it is not, calls the fault routine,
but if it is, the program goes to block 584 and decodes the
arguments of the edit command into RCOUNT, ESCALE, EORiENT,
RSCALE, and RORIENT. The fault routine is called if there
is a decode error. Otherwise, the program goes to block 587
and generates RCOUNT equispaced RPOINTS along a line
parallel to the edit command axis line through the top left
points of the edit command position markers.

In block 588, for each entity, and for each generated
repeat line point, as indicated in block 589, the program
creates and appends a new entity, translates the position
markers to the repeat line point and transforms the entity
so that the entity registration points match the translated
position markers, as indicated in block 592. The program
then goes to block 593 and increments ESCALE and EORIENT by
setting ESCALE equal to ESCALE plus RSCALE and setting -

EORIENT equal to EORIENT plus RORIENT, and then returns to
block 589. '

]

When the subloop of block 589 is complete, the program

-

WO 92/08201 PCT/US90/06274

10

15

20

25

30

59

returns to block 588. When the program process has been
completed for each repeat line point and each entity, the
program goes to block 595. When the loop beginning with
block 571 has been completed for each edit command, the

program goes to block 596.

In block 596 the program determines if the edit command
list is empty, and if it is not empty, calls the fault '
routine. If it is empty, the program goes to block 598, and
for each entity group, determines if DEL is equal to 1
indicating that the entity group should be deleted, and if
not, goes to block 607, but if so, goes to block 600, and
for each entity in the entity group, finds and removes that
entity from its layer, as indicated in block 601.

In block 602, the program determines if the entity
belongs to any table entry or LTYPE is equal to D, and if
not, goes back to block 600, but if so, goes to block 603,
and for each entity group, finds the entity as indicated in
block 604 and removes it from any table entries, goes to
block 605, determines if that table entry is empty, and if
it is, removes EGROUP from TEGROUPS, and returns to block
603. If EGROUP is not empty, the program returns to block
603. When the loop beginning with block 603 has been
completed for each EGROUP, the program returns to block 600.
When the loop beginning with block 600 is completed for each
entity, the program goes to block 607 and removes EGROUP
from EGROUPS, and then returns to block 598. When the loop
beginning with block 598 has been completed, DOEDIT is
complete, and returns to the calling program.

The DODRAW flowchart of Figs. 8A-8D takes the drawing
entities created in the DOLAYER routine and all of the

WO 92/08201 PCT/US90/06274

10

15

20

25

30

60

modifications and augmentatibné that were done to those
drawing entities by the DOEDIT routine and "loops" through
the various layers and the drawing entities therein to

effectuate printing of designated layers or composite
drawings.

Referring to blocks 610-617, if DTYPE is D, L, F, or S,

_then the program sets LAYERS to DLAYERS, LTAYERS, FLAYERS,

or SLAYERS, respectively. Also, in blocks 612-617, if DTYPE
is one of L, F, or S, then TEGROUPS is set equal to
LEGROUPS, FEGROUPS, or SEGROUPS, respectively. This in
effeét sets the pointer. LAYERS to the correct drawing or
table layers and sets the pointer TEGROUPS to the correct
set of table entries, if any. If DTYPE is not equal to any
of D, L, F, or S, the fault routine is called.

Next, the program goes to block 618, and begins a loop
through each layer identification number list LIDS in DLIDS
that comprise each output—drawing. Then, the program goes
to block 619, and begins a loop through each layer in which
the program, in block 620, determines if LIDS, which is the
Iist of layer identification numbers to draw, is empty. If
not, the program in block 621 attempts to find the layer
identification number in the list of layer identification
numbers that matches the identification number of the
present layer. Then in block 622, the program determines if
that layer identification number was found, and if not,
returns to block 619. If the layer identification list is
empty, or if the layer identification number was found, the
program goes to block 623 and begins a new loop through each
entity in the layer wheréby the program appends that entity
to a new entity list DENTITYS that contains all entities
that will be in the drawing. When the loop is done, the

WO 92/08201 PCT/US90/06274

10

15

20

25

30

61

program returns to block 619.

When the loop of block 619 is done, the program goes to
block 625 and determines if JTDIST, the maximum join/trim
distance, is greater than zerS; If it is, the program goes
to block 626 and begins a loop through each entity in which
it goes to block 627 and which clusters all ENTITYS->POINTS,

‘except points tagged in block 458 of the above described

DOEDIT routine with an existing join/trim override JOIN not
equal to zero, within the distance JTDIST of each other into
CLUSTERS. Clustering is described in detail in the above
incorporated by reference Bhaskaran pending patent
application. When the loop of block 626 is completed, or if
JTDIST is not greater than zero, the program goes to block
628. 7

In block 628, the program starts a loop for each entity
in which, in block 629, it starts a subloop for each tagged
point in the present entity with an existing join/trim
override JOIN equal to one, wherein it finds the nearest
point in any entity and the nearest point in any cluster in
block 630. Then in block 631, the program determines if the
nearest entity point that it found is equal to the nearest
cluster pointrthat it found. If so, the program appends
that point to the cluster, as indicated in block 632, and
then returns to block 629. If the points were not equal in
block 631, the program goes to block 633 and creates a new
cluster that contains the tagged point and the nearest

entity point, and then returns to block 629.

When the loop of block 629 is done, it returns to the
loop of block 628. When the loop of block 628 is done, the
program goes to block 634 and begins a new loop through each

WO 92/08201 PCT/US90/06274

10

15

20

25

30

62

cluster, wherein in block 635 the program computes the
centroid of the present cluster, and in block 636 it enters
a subloop for each point in the cluster, wherein in block
637 the program sets each point equal to the cluster
centroid. When this has been done for each point in each
cluster, the loop of block 634 is done and the program goes
to block 638. From block 625 through block 637, the DODRAW
routine has extended entity points to meet nearby entities,
removed small endpoint overshoots, and converged points
close to intersections.

In block 638, the program enters a loop through each
entity wherein in block 639, it determines if OLDEV, the
maximum orthogonal line deviation, is greater than zero, and
if it is, goes to block 640 and "snaps" all linear
ENTITY->POINTS endpoints, except tagged points with an
existing line snap override LSNAP not equal to zero, within
an angle OLDEV degrees of horizontal or vertical to exactly
horizontal or vertical, respectively. Then, or if OLDEV is
not greater than zero, the program goes to block 631 and
determines if an existing line snap override LSNAP of that
entity is equal to one, and if so, goes to block 642 and
"snaps" all tagged linear ENTITY->POINTS endpoints to the
closest horizontal or vertical line. Then, or if LS is not
equal to one, the program goes to block 643 and determines
if GCLEN, the grid cell length, is greater than zero, and if
it is, the program goes to block 644 and "snaps" all
ENTITY->POINTS endpoints, except tagged points with the
point snap override PSNAP equal to -1, to the nearest grid
point. Then, or if GCLEN is not greater than zero, the
program goes to block 645" and determines if RECT, which is a
dimension rectification flag, is greater than zero. If it

is, and the entity area type is equal to L or C, the program

»

WO 92/08201 PCT/US90/06274

10

15

20

25

30

- 63

goes to block 646 and extracts the dimensions from the
nearest dimension entities in DENTITYS and rectifies
ENTITYS->POINTS, as described in detail in the above
referenced U.S. patent 4,058,849. Then the program goes to
block 647 and determines if there is a rectification error,
i.e., whether any dimensioning was underdetermined,
overdetermined, or otherwise inconsistent, and if so, calls

‘the fault routine, but otherwise returns to block 638. If

RECT is equal to zero, the program goes back to block 638.

When the loop of block 638 has been performed for each
entity, the program goes to block 650 (Fig. 8C) and starts a
loop for each entity wherein in block 651 the program
nclips" and "transforms" all ENTITY->POINTS and
ENTITY=->STRING~->BOX->POINTS by'DX, DY, DH, DW, DSCALE, and
DORIENT, which represent the output drawing window, scale,
and orientation. The program then goes to block 652 and
determines if the entity type is equal to L, and if it is,
it determines if the entity variable override record exists,
and if it does not, it outputs the line represented by
ENTITY->POINTS in the line style and line width givén by the
entity area record. If so, it outputs the line represented
by ENTITY->POINTS in the line style and line width of the
entity variable override record, indicated in blocks 654 and
655. The program then goes to block 673.

If the entity type is not L in block 652, the program
goes to block 656 and determines if the entity type is C.
If it is, the program goes to block 657 and enters a loop
through each set of ENTITY->POINTS separated by endpoints
and duplicate point pairs: In the loop, the program goes to
block 658 and determines if the entity variable override
record exists. If it does not, it outputs the spline

WO 92/08201 PCT/US90/06274

10

15

20

25

30

64

represented by the ENTITY->POINTS set in the line style and
line width given by the entity area record. If it does
exist, it outputs the spline represented by the
ENTITY->POINTS set in the lipe style and line width given by
the entity variable override record, as indicated in blocks
659 and 660. Then the program goes to block 651 and
determines if the entity fill record exists, and if it does,

_the program goes to block 662 and outputs a filled shape

bordered by the ENTITY~>POINTS spline in the fill style and
fill line width given by the entity fill record. In either
case, the program returns to block 657, and when that loop
is done, the program goes to block 673.

If the entity type was determined not to be C in block
656, the program goes to block 663 (Fig. 8D) and determines
if the entity type is equal to D, and if so, the program
goes to block 664 and determines if the entity wvariable
override record exists. If it does not, then in block 665
and 666, the program outputs the line, arrowhead, and extent
bar pairs within the box defined by ENTITY->POINTS in the
line style and line width given by the entity area and also
outputs the number characters in the ENTITY->STRING in the
font and height given by the entity area record. If it does
exist, then in blocks 667 and 668, the program outputs the
line, arrowhead, and extent bar pairs within the box defined
by ENTITY->POINTS in the line style and line width given by
the entity variable override record and also outputs the
number characters in ENTITY->STRING in the font and height
given by the entity variable override record. The program
then goes to block 673.

If it is determined in block 663 that the entity type
is not D, the program goes to block 669 and determines that

WO 92/08201 - PCT/US90/06274

10

15

20

25

30

65

the entity type is T, and goes to block 670 and determines
whether the entity variable override record exists. If it
does not, then the program outputs the text in
ENTITY->STRING in the font and height given by the entity
area record. If it does exist, then the program outputs the
text in ENTITY->STRING in the font and height given by the
entity variable override record as indicated in blocks 671

‘and 672. The program then goes to block 673.

In block 673, the program removes thé-ENTITY, which is
the drawing entity just drawn, from DENTITYS. The program
then returns to block 650. When the loop of block 650 has
been completed for each entity, the program goes to block
674 and determines if DTYPE is equal to L, F, or S which
means that the program has drawn one of the tables. If not,
the program returns to block 618 but otherwise goes to block
675 and begins a loop through each table entry entity group
EGROUP in TEGROUPS, and then goes to block 676 and outputs
EGROUP->ID, which is the table entry identification number,
at the top left corner of the entity group polygon. The
program then goes to block 677 and "clips" and "transforms"

'EGROUP->POINTS by DX, DY, DH, DW, DSCALE, and DORIENT. The

program then goes to block 678 and outputs an "X" at each
registration point in EGROUP->POINTS, and then returns to
block 675. When the loop of block 675 is done, the program
returns to block 618. When the loop of block 618 is done,
i.e., there are no more drawings to output, the program

returns to the calling routine.

The above described automatic drawing system is
suitable for general draffing of all types of drawings. The
drawings may include lines of any inclination. The lines
may be of a wide variety of styles and thicknesses.

WO 92/08201 - PCT/US90/06274

10

15

20

25

30

66
Polygons, arcs, circles, curves, filled entities,
arrowheads, character strings at any angle, hatchings of
filled shapes in any of a wide variety of patterns, and any
pre-created, stored symbols or new symbols created in the
course of making the drawings may be included. Drafting
parameters such as line types, line thicknesses, fill types,
mirroring, copying and repetition, scaling, rotation,

Jjoining, trimming, line snap, point snap, and dimension

rectification, all can be hand-sketched and abbreviated on
the present layer of the drawing, rather than by use of
keyboards, mouses, light pens, etc.

The character recognition techniques used in the above-
mentioned GTX 5000 can be utilized to recognize character
streams and convert them to ASCII code. The system also
utilizes well-known vectorization, clustering, spatial
relationships, pattern extraction, and dimensioning
techniques, as implemented in the above mentioned GTX 5000
and U.S. patent 4,058,849.. The described technique for
hand-writing global command in pre-determined positions of
the current layer-allows the draftsman to easily,'naturally,

intuitively enter commands, without having to enter them via

a keyboard, or mouse, or other menu selection technique.
The above indicated command syntax is arbitrary and various
other suitable ¢ommand syntaxes can be devised.

Every draftsman uses a straight ruler, compass, french
curve, a variety of templates and the drafting machine
attached tb his drafting table to position the coordinates
and establish proper directions and lengths in horizontal,
vertical and any other anéular direction. The motion to
move the ruler and identify the desired coordinate through
the ruler scale takes a significant amount of time. The

‘ny

WO 92/08201 PCT/US90/06274

10

15

20

25

30

67

concept of using pre-printed grid paper such as sheet 10 of
Fig. 2 effectively facilitates positioning of coordinates.
For complex drawings, the draftsman can draw outlines and
different entities or portions’ of the composite total
drawihg in a number of steps. With the use of the scaling
commands available in the system, it is possible to draw a
dense area of an image in an enlarged scale, wh%gh is much
easier than would be the case if it were drawn to the same
scale as the images in the composite drawing. The
capability of the system to allow drawings to be folded and
both sides ééénned, and then to combine or merge the two
sides or sections of the drawing in order to use a smaller
scanner and a smaller printer reduces the size and cost of

the system for many users.

The above described system also can be enhanced by
providing a keypad or keyboard for fast entry of system
parameter values and fast correction of text errors. The
above described system can bé enhanced for use by a more
sophisticated user by providing both a graphics display and
a mousé to expedite (1) the entry of system parameters
without having to use menus to get scan, process, draw, and
report parameters, or execute file commands, and (2)
interactive display and correction of user and system
errors. N

It is expected that in the future, multiple entity
types will be allowed within an individual active area, and
the concepts of layers and editing can be applied to an
already existing drawing for modification by converting it
to the entities in layer structures of the type described.
Also, the suite of global and local commands can be expanded

to meet the needs of diverse users.

WO 92/08201 PCT/US90/06274

10

15

68

Attached Appendix "A" is a printout of pseudocode z
corresponding to the flowcharts of Figs. 3A-3B, 4A-4B,
5A-5D, 6A-6D, 7A~7H, and 8A-38D.

0%

While the invention has been described with reference
to a particular embodiment thereof, those skilled in the art
will be able to make various modifications to the described
embodiment without departing from the true spirit and scope
thereof of the invention. For'example, instead of defining
an active area outside of which the global commands are
written, globai commands can be written anywhere on a first
sheet as active area parameters and layer or editing data on
the next sheet scanned. These second data sheets comprise
larger layers in the drawing in the same fashion as active
areas in Fig. 9. Another example is grouping curve points

- within an entity group rather than with chaining lines as in
Fig. 10B.

WO 92/08201 PCT/US90/06274

69

APPENDIX "A"

MAIN Routine

POWER on
BUSY on / READY off
processor/memory bootstrap and test
test failure? yes:

FAULT 00 on

wait for RESET hit

FAULT off

goto A
load floppy disk program data
disk i/o error? yes:

FAULT 01 on

wait for RESET hit

FAULT off

goto B
reset system parameters and clear drawing data memory

read switches to set input and output device parameters
BUSY off / READY on
wait for button hit
BUSY on / READY off
RESET hit? yes:
goto C
LOAD hit? yes:
load floppy disk drawing data
disk i/o error? yes: call FAULT

goto D
SCAN hit? vyes:
call DOSCAN

wait for STOP hit or DOSCAN return
STOP hit? yes: terminate scanning and call ABORT
goto D
DRAW hit? yes:
call DODRAW
wait for STOP hit or DODRAW return
STOP hit? yes: terminate drawing and call ABORT
goto D
REPORT hit? yes:
RSYSTEM > 0? yes: print system parameters
RILAYER > 0? yes: print layer catalog
RDIRECT > 0? yes: print disk directory
RFAULT > 0? yes: print fault information
wait for STOP hit or report terrination
STOP hit? yes: terminate report
goto D
end

WO 92/08201 PCT/US90/06274

70

DOSCAN Routine page 1

scan page run lengths into RUNLENS
input device error? vyes: call FAULT
RGLEN > 07 yes:
£ill RUNLENS gaps <= RGLEN
erase RUNLENS runs <= RGLEN
RUNLENS empty? yes: call FAULT
group connected RUNLENS into OBJECTS
SOLEN > 0?7 yes: remove OBJECTS with length <= SOLEN
more than one OBJECT? no: call FAULT
convert first OBJECT character into STYPE
STYPE one of "SPDRF"? vyes:
convert and remove OBJECTS characters into COMCHARS
OBJECTS empty? no: call FaULT
parse and remove COMCHARS into GCOMS
COMCHARS empty? no: call FAULT
STYPE = "§"? yes:
decode and remove GCOMS to set scan parameters
goto 2
STYPE = "P"? yes:
decode and remove GCOMS to set process parameters
goto 2
STYPE = "D"? vyes:
decode and remove GCOMS to set draw parameters
goto A
STYPE = "R"? yes:
decode and remove GCOMS to set report parameters
goto A
STYPE = WF"? yes:
decode and remove GCOMS to perform disk i/o
GCOMS empty? no: call FAULT
disk i/o error? yes: call FAULT
return
A: GCOMS empty? no: call FAULT
update system parameter file
disk i/o error? yes: call FAULT
return

]

Ay

WO 92/08201

71

DOSCAN Routine) -

move OBJECTS completely outside active area into OUTOBJS
move OBJECTS completely inside active area into INOBJS
OBJECTS empty? no: call FAULT
convert and remove OUTOBJS characters into COMCHARS
OUTOBJS empty? no: call FAULT
parse and remove COMCHARS into GCOMS
COMCHARS empty? no: call FAULT
STYPE = first GCOM->COM
STYPE = "L" or "E"? no: call FAULT
LTYPE = first GCOM->ARG
LTYPE = “D"? yes:
LAYERS = DLAYERS
gote B
LTYPE = "L"? yes:
LAYERS = LLAYERS
goto B
LTYPE = "F"? yes:
LAYERS = FLAYERS
goto B o
LTYPE = "S"? vyes:
LAYERS = SLAYERS
goto B
call FAULT
STYPE = "L"? yes:
call DOLAYER
return
STYPE = “"E"? yes:
call DOEDIT
return
end

PCT/US90/06274

page 2

WO 92/08201 PCT/US90/06274

72

DOLAYER Routine o - . page 1

decode and remove remaining first GCOM->ARGS into LID,
ATYPE and AERASE and remaining GCOMS into AREA variables
GCOMS empty? yes: call FAULT
translate, size and rotate INOBJS by AREA->X, AREA->Y,
AREA->SCALE and AREA->ORIENT
INOBJS completely inside drawing? no: call FAULT
find LAYER in LAYERS with LAYER->ID = LID
LAYER found? no:
Ccreate new LAYER and append to LAYERS
LAYER->ID = LID
LAYER->TYPE = LTYPE
yes: AERASE = "*"? vyes:
remove all ENTITYS from LAYER
remove all AREAS with AREA->LAYER = LAYER
create nev AREA and append to AREAS
AREA->LAYER = LAYER
AREA->TYPE = ATYPE
ATYPE = “L"? yes:
convert and remove INOBJS lines into AREA->LINES
INOBJS empty? no: call FAULT
for each LINE in AREA->LINES:
create new ENTITY and append to LAYER
ENTITY->AREA = AREXA
ENTITY->POINTS = LINE->POINTS
remove LINE from AREA->LINES
return
ATYPE = “"C"? vyes:
convert and remove INOBJS lines into AREA->LINES
INOBJS empty? no: call FAULT
extract and remove AREA->LINES crosses into AREA->POINTS
extract and remove AREA->POINTS and AREA->LINES chains
(at least two points connected by one line) into CHAINS
AREA->LINES empty? no: call FAULT
AREA->POINTS empty? no: call FAULT
for each CHAIN in CHAINS:
create new ENTITY and append to LAYER
ENTITY->AREA = AREA
ENTITY->POINTS = CHAIN->POINTS
(CHAIN->POINTS) = 27 yes:
generate third circle POINT and add after
first ENTITY->POINT
goto A
no: #(CHAIN->POINTS) = # (CHAIN->LINES)? yes:
%: append first ENTITY->POINT to ENTITY->POINTS
remove CHAIN from CHAINS ’
return

vy

Ll

WO 92/08201 ~ PCT/US90/06274

73

DOLAYER Routine page 2

ATYPE = "D"? yes:
convert and remove INOBJIS characters into AREA->CHARS

convert and remove INOBJS lines into AREA->LINES
convert and remove INOBJS filled triangles into AREA->BLOBS
INOBJS empty? no: call FAULT
extract and remove colinear adjacent AREA->CHARS
into AREA->STRINGS
extract and remove AREA->STRINGS, AREA->LINES and
AREA->BLOBS dimension lines, arrowheads and extent bars,
and AREA->STRINGS numbers forming colinear adjacent
¥|<-=- number --->|" patterns into DIMENS
AREA->LINES empty? no: call FAULT
AREA->STRINGS empty? no: call FAULT
AREA->BLOBS empty? no: call FAULT
for each DIMEN in DIMENS:
. create new ENTITY and append to LAYER
ENTITY->AREA = AREA
ENTITY->POINTS = DIMEN->LINES->POINTS
ENTITY=->STRINGS = DIMEN->STRING
- remove DIMEN from DIMENS
return
ATYPE = "T"? yes:
convert and remove INOBJS -characters into AREA->CHARS
INOBJS empty? no: call FAULT
extract and remove colinear adjacent AREA->CHARS
into AREA~>STRINGS
for each STRING in AREA->STRINGS:
create new ENTITY and append to LAYER
ENTITY->AREA = AREA
ENTITY~->STRING = STRING
remove STRING from AREA->STRINGS
return
call FAULT
end

WO 92/08201 _ PCT/US90/06274

74

DOEDIT Routine ' page 1

decode and remove first GCOM->ARGS into LIDS and
remaining GCOMS into EDIT variables
GCOMS empty? no: call FAULT
translate, size and rotate INROBJS by EDIT->X, EDIT->Y,
EDIT->SCALE, EDIT->ORIENT
INOBJS completely inside drawing? no: call FAULT
convert and remove INOBJS characters into EDIT->CHARS
extract and remove colinear adjacent EDIT->CHARS
into EDIT->STRINGS
parse and remove EDIT->STRINGS into ECOMS
convert and remove INOBJS lines into EDIT->LINES
extract and remove EDIT->LINES crosses into EDIT->POINTS
convert and remove INOBJS filled circles into EDIT->BLOBS
INOBJS empty? no: call FAULT
extract EDIT->LINES minimum area polygons into POLYS
------ POLYS empty? yes:
EDIT->STRINGS empty? no: call FAULT
EDIT->LINES empty? no: call FAULT
EDIT->BLOBS empty? no: call FAULT
goto A
for each POLY in POLYS:
Create new EGROUP and append to EGROUPS
EGROUP->POLY = POLY
remove POLY from POLYS
for each STRING in EDIT->STRINGS:
find nearest EGROUP->POLY in EGROUPS
decode and remove STRING->CHARS into EGROUP->ENC,
EID and EGROUP->TAB
STRING->CHARS empty? no: call FAULT
EID = 0? no:
EID assigned? yes: call FAULT
EGROUP->ID = 0?7 no: call FAULT
EGROUP->ID = EID
EGROUP->TAB = "§"? vyes:
LTYPE = "D" or EID = 0? yes: call FAULT
remove STRING from EDIT->STRINGS
for each POINT in EDIT->POINTS:
for each EGROUP in EGROUPS:
POINT inside EGROUP~>POLY? yes:
¥ (EGROUP->POINTS) = 3? yes: call FAULT
append POINT to EGROUP->POINTS
remove POINT from EDIT->POINTS
break
for each BLOB in EDIT->BLOBS
for each EGROUP in EGROUPS:
BLOB inside EGROUP->POLY? yes:
EGROUP->FIL = 1
remove BLOB from EDIT->BLOBS
break)
EDIT->BLOBS empty? no: call FAULT

(&]

WO 92/08201

DOEDIT Routine

PCT/US90/06274

75

page 2

for each LAYER in LAYERS:

LIDS empty? no:

find and remove LID = LAYER->ID in LIDS
LID found? yes:

yes: for each ENTITY in LAYER->ENTITYS:

for each EGROUP in EGROUPS:
generated ENTITY completely inside EGROUP->POLY or
intersects EGROUP->POLY and EGROUP->ENC = 0? vyes:
append ENTITY to EGROUP->ENTITYS
tag all ENTITY->POINTS inside EGROUP->POLY

EGROUP->ENC = "0"? yes: break

LIDS empty? no: call FAULT
for each EGROUP in EGROUPS:

EGROUP empty? yes: call FAULT
EGROUP->FIL = 1? yes:

for each ENTITY in EGROUP->ENTITYS:
ENTITY->AREA->TYPE = "C" and
first ENTITY->POINT = last ENTITY->POINT? yes:
ENTITY->FILL = null? yes: create ENTITY->FILL
ENTITY->FILL->FSTYLE = EDIT->FSTYLE
ENTITY->FILL->FWIDTH = EDIT->FWIDTH

A: for each ECOM in ECOMS:

ECOM~->COM one of "EMBJAGLFT"? yes:

EGROUPS empty? yes: call FAULT
find nearest EGROUP->POLY in EGROUPS

ECOM=->EGROUP = EGROUP

ECOM->COM = "M" or "R"? yes:

EDIT->LINES empty? yes: call FAULT
find nearest LINE in EDIT->LINES
ECOM->LINE = LINE

ECOM->COM = “C'", "R" or "S" yes:

decode first ECOM->ARG into EID
EID = 0? yes: call FAULT
ECOM->COM-="%C" or "R"? yes:
find EGROUP in EGROUPS with EGROUP->ID = EID
no:
find EGROUP in SEGROUPS with EGROUP->ID = EID
EGROUP found? no: call FAULT
ECOM->EGROUP = EGROUP
EDIT->POINTS empty? yes: call FAULT
find nearest # (ECOM->EGROUP->POIKTS) POINTS
in EDIT->POINTS
POINTS found? no: call FAULT
ECOM->POINTS = POINTS -

remove all assigned EDIT->LINES
EDIT->LINES empty? no: call FAULT
remove all assigned EDIT->POINTS
EDIT->POINTS empty? no: call FAULT

WO 92/08201 - PCT/US90/06274

76

DOEDIT Routine . page 3
for each ECOM in ECOMS:
ECOM=->COM = "E"? vyes:
EGROUP->DEL = 1
goto B
ECOM~->COM = YB"? yes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->AREA->TYPE = "C"? vyes:
duplicate each single tagged ENTITY->POINT
goto B
ECOM->COM = "J"? vyes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->POVER = null? yes: create ENTITY~->POVER
first ECOM->COM->ARG = "N"? vyes:
ENTITY~>POVER->JOIN = =1
no: ENTITY->POVER->JOIN = 1
goto B
ECOM->COM = "A"? vyes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->POVER = null? yes: create ENTITY->POVER
first ECOM->COM->ARG = "N"? yes:
ENTITY->POVER->LSNAP = -1
no: ENTITY->POVER->LSNAP = 1
goto B '
ECOM->COM = "G"? yes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->POVER = null? yes: create ENTITY->POVER
first ECOM->COM->ARG = "N"? vyes:
’ ENTITY->POVER->PSNAP = =1
no: call FAULT
goto B
ECOM = "L", “F" or "T"? vyes:
decode ECOM->ARGS into EID and ENUM
ECOM decode error? yes: call FAULT
ECON->CON_=-"L"2 yes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->AREA->TYPE = “L", WwC" por “p"? yes:
ENTITY->VOVER = null? yes: create ENTITY->VOVER
ENTITY->VOVER->LSTYLE = EID
ENTITY->VOVER~->LWIDTH = ENUM
goto B
ECON->COM = "F"? vyes:
for each ENTITY in ECOM->EGROUP->ENTITYS
ENTITY->FILL = null? no:
ENTITY->FILL->FSTYLE
ENTITY->FILL~>FWIDTH
goto B
ECOM->COM = "T"? vyes:
for each ENTITY in ECON->EGROUP->ENTITYS
ENTITY->AREA->TYPE = "D" or "T"? vyes:
ENTITY->VOVER = null? yes: create ENTITY->VOVER
ENTITY->VOVER->FONT = EID
ENTITY~>VOVER->HEIGHT = ENUM
B: remove ECOM from ECOMS

EID
ENUM

o

“y

WO 92/08201 PCT/US90/06274

77

DOEDIT Routine page 4

LTYPE = "L"? yes: TEGROUPS = LEGROUPS
LTYPE = “F"? yes: TEGROUPS = FEGROUPS
LTYPE = "S"? yes: TEGROUPS = SEGROUPS
for each EGROUP in EGROUPS:
EGROUP->TAB = "§"? yes:
find and remove EGROUP in TEGROUPS with same EGROUP->ID
EGROUP->DEL = 1? no: append EGROUP to TEGROUPS

for each ECOM in ECOMS:
ECOM->COM = "M"? yes:
for each ENTITY in ECOM->EGROUP->ENTITYS:
create new ENTITY and append to ENTITY->AREA->LAYER
mirror ENTITY about ECOM->LINE into new ENTITY
goto C
ECOM->COM = "C" or "S"? yes:
decode ECOM->ARGS into ESCALE and EORIENT
ECOM decode error? yes: call FAULT
for each ENTITY in ECOM->EGROUP->ENTITYS:
create new ENTITY and append to ENTITY->AREA->LAYER
transform ENTITY by ESCALE and EORIENT into
new ENTITY so ENTITY->POINTS match ECOM->POINTS

goto C ,
ECOM->COM = "R"? yes:
decode ECOM->ARGS into-RCOUNT, ESCALE, EORIENT
RSCALE and RORIENT
ECOM decode error? yes: call FAULT
generate RCOUNT equispaced RPOINTS along line parallel
to ECOM->LINE through top left ECOM->POINTS
for each ENTITY in ECOM->EGROUP->ENTITYS:
for each POINT in RPOINTS:
create new ENTITY and append
to ENTITY->AREA~>LAYER
translate ECOM->POINTS to POINT
transform ENTITY by ESCALE and EORIENT into
new ENTITY so ENTITY->POINTS match ECOM->POINIS
ESCALE = ESCALE + RSCALE
EORIENT = EORIENT + RORIENT
goto C
call FAULT :
C: remove ECOM from ECOMS
ECOMS empty? no: call FAULT
for each EGROUP in EGROUPS:
EGROUP->DEL = 1?7 yes:
for each ENTITY in EGROUP->ENTITYS:
find and remove ENTITY in ENTITY->AREA~->LAYER
EGROUP->TAB = "§" or LTYPE = "D"? no:
for each EGROUP in TEGROUPS:
find and remove ENTITY in EGROUP
EGROUP empty? yes: remove EGROUP from TEGROUPS

remove EGROUP from EGROUPS

return
end

WO 92/08201 PCT/US90/06274

78

DODRAW Routine : page 1

DTYPE = "D"? vyes:
LAYERS = DLAYERS
goto-A
DTYPE = "L"? vyes:
LAYERS = LLAYERS
TEGROUPS = LEGROUPS
goto A
DTYPE = "“F"? yes:
LAYERS = FLAYERS
TEGROUPS = FEGROUPS
goto A
DTYPE = "S"? vyes:
LAYERS = SLAYERS
TEGROUPS = SEGROUPS
goto A
call FAULT
A: for each LIDS in DLIDS:
for each LAYER in LRYERS:
LIDS empty? no:
find LID in LIDS with LID = LAYER->ID
LID found? vyes:
ves: for each ENTITY in LAYER->ENTITYS:
append ENTITY to DENTITYS
for each ENTITY in DENTITYS:
JTDIST > 0? yes:
cluster all ENTITY->POINTS except tagged POINTS
with ENTITY~>POVER->JOIN not = 0 within JTDIST
- of each other into CLUSTERS
for each ENTITY in DENTITYS:
for each tagged POINT in ENTITY with ENTITY->POVER->JOIN = 1:
find nearest ENTITY->POINT and CLUSTER->EPOINT->POINT
ENTITY->POINT = CLUSTER->EPOINT->POINT? yes:
append POINT to CLUSTER
no: create new CLUSTER of POINT and ENTITY->POINT
for each CLUSTER in CLUSTERS:
compute CLUSTER centroid
for each POINT in CLUSTER->EPOINTS:
POINT = CLUSTER centroid
. for each ENTITY in DENTITYS:
OLDEV > 0? yes:
snap all linear ENTITY->POINTS endpoints
except tagged POINTS with ENTITY->POVER->LSNAP not = 0
within OLDEV of orthogonal to horizontal or vertical
ENTITY->POVER->LSNAP = 1? yes: i
snap all tagged linear ENTITY->POINTS endpoints
to closest horizontal or vertical
GCLEN > 0? yes:
snap all ENTITY->POINTS endpoints except tagged POINTS
with ENTITY->POVER->PSNAP = -1 to nearest grid point
RECT > 0 and ENTITY->AREA->TYPE = "L" or “C"? yes:
extract dimensions from nearest ENTITYS in DENTITYS with
ENTITY->AREA->TYPE = "D" and rectify ENTITY->POINTS
rectification error? yes: call FAULT

WO 92/08201 PCT/US90/06274

79

DODRAW Routine . page 2

for each ENTITY in DENTITYS:
clip and transform ENTITY->POINTS and
ENTITY~->STRING->BOX->POINTS by DX, DY, DH, DW,

DSCALE and DORIENT
ENTITY->AREA->TYPE = "L"? yes:
ENTITY->VOVER null? yes:
output ENTITY->POINTS line
in ENTITY->AREA->LSTYLE/LWIDTH
no: output ENTITY->POINTS line
in ENTITY->VOVER->LSTYLE/LWIDTH

goto B
ENTITY->AREA->TYPE = "C"? yes:
for each set of ENTITY->POINTS separated by
endpoints and duplicated points:
ENTITY->VOVER null? vyes:
output ENTITY->POINTS set spline
in ENTITY->AREA->LSTYLE/LWIDTH
no: output ENTITY->POINTS set spline
in ENTITY->VOVER->LSTYLE/LWIDTH
ENTITY->FILL = null? no:
output ENTITY->POINTS fill
in ENTITY->FILL->FSTYLE/FWIDTH

goto B
ENTITY->AREA->TYPE = "D"? yes:

ENTITY~->VOVER null? -yes:
output line, arrowhead and extent bar pairs within

ENTITY->POINTS box in ENTITY->AREA->LSTYLE/LWIDTH
output ENTITY->STRING in ENTITY->AREA->FONT/HEIGHT
no: output line, arrowhead and extent bar pairs within
ENTITY->POINTS box in ENTITY->VOVER->LSTYLE/LWIDTH
output ENTITY->STRING in ENTITY->VOVER->FONT/HEIGHT

goto B
ENTITY->AREA->TYPE = "T"? vyes:
ENTITY->VOVER null? yes:
output ENTITY->STRING in ENTITY~>AREA->FONT/HEIGHT

no: output ENTITY->STRING in ENTITY->VOVER->FOXNT/HEIGHT
B: remove ENTITY from DENTITYS
DTYPE = “L", "F" or "“S"? yes:
for each EGROUP in TEGROUPS:
output EGROUP->ID at top left corner of EGROUP->POLY

clip and transform EGROUP->POINTS by DX, DY, DE, D¥,
DSCALE and DORIENT
output "X" at each POINT in EGROUP->POINTS
return - ;
end

WO 92/08201 _ PCT/US90/06274

10

15

20

25

80
WHAT IS CIATMED IS:

1. A method of producing. a drawing, comprising the
steps of:

[2

(a) drawing representations of a plurality of
similar images of a first type on a first sheet;

(b) scanning the first sheet by means of an input
device to produce first digital data representative of the
images of the first type:;

(c) operating on the first digital data to form
first software objects representing the images of the first
type, respectively, and storing the first software objects
in a first software layer;

(d) drawing repfesentations of a plurality of
similar images of a second type on a second sheet;

(e) scanning the second sheet by means of the
input device to produce second digital data representative
of the images of the second type;

(f) operating on the second digital data to form
second software objects representing the images of the
second type, respectively, and storing the second software
objects in a second software layer;

(g) operating on data from the first and second
software layers to outpué or store a first composite drawing
or table including the images of the first type and the
images of the second type.

WO 92/08201 PCT/US90/06274

10

15

20

81

2. The method of Claim 1 repeating steps (e) through
(g) for additional similar images of an additional type, to
obtain additional software objects in an additional software
layer, and an additional composite drawing including the
images of the first, second, and additional types.

3. The method of Claim 1 wherein the images of the
first type are straight lines and the representations
thereof include rough approximations thereof, and the images
of the second type are curves and the representations

thereof include a set of points on the curves.

4. The method of Claim 3-wherein the curves include a
circle and the representations of the images of the second

type include a diameter of the circle.

5. The method of Claim 3 wherein the curves include an
arc and the representations of the images of the second type
include two endpoints of the arc and a midpoint of the arc

grouped together.

6. The method of Claim 3 wherein the representations
of the images of the second type include sets of points
grouped together to define curves which include spline

approximations.

WO 92/08201 PCT/US9%0/06274

10

15

82

7. The method of Claim 6 wherein the sets of points

have the same first and last point to define closed shapes,
respectively.)

8. The method of Claim 6 wherein the sets of points

include duplicate pairs of points to indicate separate

curves or lines connected at the duplicate points.

9. The method of Claim 2'wherein the images of a third
type include dimension entities, including dimension lines,
extent bars, arrowheads and numbers.

10. The method of Clainm 2 wherein the images of a
fourth type includes text character strings.

-

1l. The method of Claim 1 wherein the first sheet
contains images in any selected position, scale, and/or
orientation with respect to a portion of the first composite
drawing represented by the'firgt”software layer.

WO 92/08201 PCT/US90/06274

10

15

20

83

12. The method of Claim 1 inciﬂding augmenting the

first software layer by

drawing representations of additional images of

the first type on an additional sheet;

scanning the additional sheet by means of the

‘'scanner to produce additional digital data representative of

the additional images of the first type;

operating on the additional digital data to
augment or replace the first software objects, and storing
the augmented or replaced first software objects in the

first software layer.

13. The method ofrclaim 1 wherein the first sheet
includes an active area and an inactive area, the active
area containing the images of the first type, the inactive

area containing global commands.

14. The method of Claim 13 wherein an additional sheet
includes an active area and an inactive area, the method
including drawing editing directives including local
commands and spatial indicators in the active area of the
additional sheet that modify the first and/or software

layers.

WO 92/08201 7 PCT/US90/06274

10

15

20

25

84

15. The method of Claim 1 inclﬁding modifying
scanning, processing, or drawing parameters by writing them
as global commands on an additional sheet, scanning the
additional sheet by means of the input device to modify the
parameters. '

16. The method of Claim 9 wherein the images of the
third type are dimension entities located inside the active
area of the third sheet, the method including determining
that the images of the third type are dimension entities
located in the active area of the third sheet, extracting
colinear adjacent characters into strings, extracting lines,
and extracting arrowheads, creating an entity, appending
that entity to a third software layer, calling and executing
a clustering program to cluster the strings, lines, and
arrowheads into dimension entifies, and for each cluster,
calling and executing a character recognition program to
recognize the characters, extracting a pattern consisting of
number strings within a pair of opposing dimension lines,
arrowheads, and extent bars, storing digital codes
representing the number string and the endpoints of the
extent bars in the entity, respectively, encoding the
digital codes representing the number string into numbers of
units for executing a dimension rectification program, and
decoding the digital codes to output dimension information
during step (g).

o

WO 92/08201 PCT/US90/06274

85

17. The method of Claim 10 wherein the images of the
fourth type are characters located inside the active area of
the fourth sheet, the method including determining that the
images of the fourth type are characters located in the

5 active area of the fourth sheet, extracting colinear
adjacent characters into strings, and for each string,
creating an entity, appending that entity to a fourth
software layer, and calling and executing a_éﬂg}acter
recognition program to recognize the characters, storing

10 digital codes representing the characters in the entity,
respectively,‘and decoding the digital codes to output the

characters during step (9).

18. The method of Claim 13 wherein the images include
characters, the method including calling and executing a
15 character recognition program to recognize the characters,
parsing the characters into commands and their arguments,
and inﬁerpreting the commands and their arguments to set

parameters and variables and execute operations.

19. The method of Claim 1 wherein the first and second
20 sheets have grid patterns thereon which cannot be detected
by the input device, the methoa including aligning the first
and second sheets to the input device in precisely the same
way, steps (a) and (d) including drawing the representations
of the images of the first and second types on selected grid
25 line and intersections thereof of the first and second grid
sheets, respectively, and steps (b) and (e) include
detecting the images of the first and second types without

WO 92/08201 7 PCT/US90/06274

10

15

20

86

detecting grid lines of the first and second sheets,
respectively. '

20. The method of Claim 14 wherein the editing
directive images include characters, lines, curves, and

‘blobs in an active area of an edit sheet, the method

including determining that the editing directive images are
inside the active area of the edit sheet, extracting
colinear adjédent characters into strings, lines, points,
blobs, and grouping boundaries in the editing directive
images, calling and executing a character recognition
program to recognize those characters in those strings,
storing digital codes representing those character strings,
parsing those strings into local commands and their
arguments or grouping boundary'information.

21. The method of Claim 20 including clustering the
strings, lines, points, blobs, and grouping boundaries to
associate interior registration points and fill blobs with
surrounding grouping boundaries, grouping boundary
information strings with nearby grouping boundaries, and
position markers, axis lines, and grouping boundaries with
editing command strings.

22. The method of Claim 21 including searching the
first and second software layers for entities that fall
completely within and/or intersect the grouping boundaries.

WO 92/08201 PCT/US90/06274

10

15

87

23. The method of Claim 22 including interpreting the
local commands and their arguments, or grouping boundary
information, or blob indicators to edit the entities in the

first and/or second software layers.

24. The method of Claim 23 wherein editing includes
erasing, mirroring, copying, or repeating entities in a
grouping boundary, or insertion of a symbol table entry,
overriding default or previously set entity attributes
including joining points, snapping lines orthogonally,
snapping points to a grid, setting line width, text height,
line and fill styles to line and fill style table entries,
or text font to a text font table entry, establishing
criteria for including entities in a grouping boundary, a
grouping boundary identification, setting flags including
table entry, shape filling and curve breaking.

25. The method of Claim 1 wherein the table includes
éntries representing line styles, fill styles, or symbols.

WO 92/08201 88 PCT/US90/06274

10

15

20

25

AMENDED CLAIMS
[received by the International Bureau on 23 August 1991 (23.08.91);
original claims 1,15,18 and 22 amended; other claims
unchanged (10 pages)]

1. A method of producing a drawing, comprising the
steps of:

(a2) manually drawing a plurality of images of a
first type on a first sheet, the images of the first type
being readily vectorized by a first vectorizing routine;

(b) scanning the first sheet by means of an input
device to produce first digital data representative of the
manually drawn images of the first type;

(c) vectorizing the first digital data by
operating on the first digital data with the first
vectorizing routine to form first software objects
representing the images of the first type of greater
accuracy than the manually drawn images of the first type,

respectively, and storing the first software objects in a
first software layer;

- (d) manually drawing representations of a
plurality of images of a second type on a second sheet, the

images of the second type being readily vectorized by a
second vectorizing routine;

(e) scanning the second sheet by means of the

input device to produce second digital data representative
of the images of the second type;

(f) vectorizing the second digital data by
operating on the second digital data with the second
vectorizing routine to form second software objects

(w

WO 92/08201 89 PCT/US90/06274

10

15

20

representing the images of the second type of greater
accuracy than the manually drawn images of the second type,
respectively, and storing the second software objects in a

second software layer;

(g) operating on data from the first and second
software layers by means of a processor to output or store
data representing a first composite drawing including the

‘images of the first type and the images of the second type.

2. The method of Claim 1 repeating steps (e) through
(g) for additional similar images of an additional type, to
obtain additional software objects in an additional software
layer, and an additional composite drawing including the
images of the first, second, and additional types.

3. The method of Claim 1 wherein the images of the
first type are straight lines and the representations
thereof include rough approximations thereof, and the images
of the second type are curves and the representations
thereof include a set of points on the curves.

4. The method of Claim 3 wherein the curves include a
circle and the representations of the images of the second

type include a diameter of the circle.

WO 92/08201

10

15

90 PCT/US90/06274

5. The method of Claim 3 wherein the curves include an
arc and the representations of the images of the second type
include two endpoints of the arc and a midpoint of the arc
grouped together.

6. The method of Claim 3 wherein the representations
of the images of the second type include sets of points

grouped together to define curves which include spline
approximations.

7. The method of Claim 6 wherein the sets of points

have the same first and last point to define closed shapes,
respectively. '

8. The method of Claim 6 wherein the sets of points
include duplicate pairs of points to indicate separate
curves or lines connected at-the duplicate points.

9. The method of Claim 2 wherein the images of a third
type include dimension entities, including dimension lines,
extent bars, arrowheads and numbers.

-

10. The method of Claim 2 wherein the images of a
fourth type includes text character strings.

¥

WO 92/08201 91 PCT/US90/06274

10

15

11. The method of Claim 1 wherein the first sheet
contains images in any selected position, scale, and/or
orientation with respect to a portion of the first composite

drawing represented by the first software layer.

12. The method of Claim 1 including augmenting the

first software layer by

drawing representations of additional images of

the first type on an additional sheet;

scanning the additional sheet by means of the
scanner to produce additional digital data representative of

the additional images of the first type;

operating on the additional digital data to
augment or replace the first software objects, and storing
the augmented or replaced first software objects in"the

first software layer.

13. The method of Claim 1 wherein the first sheet
includes an active area and an inactive area, the active
area containing the images of the first type, the inactive

area containing global commands.

WO 92/08201 92 PCT/US90/06274

10

15

20

25

14. The method of Claim 13 wherein an additional sheet
includes an active area and an inactive area, the method
including drawing editing directives including local
commands and spatial indicators in the active area of the
additional sheet that modify the first and/or software
layers.

15. The method of Claim 1 including modifying
scanning, processing, or drawing parameters by writing
global commands on an additional sheet, and scanning the

additional sheet by means of the input device to modify the
parameters.

16. The method of Claim 9 wherein the images of the
third type are dimension entities located inside the active
area of the third sheet, the method including determining
that the images of the third type are dimension entities
located in the active area of the third sheet, extracting
colinear adjacent characters into strings, extracting lines,
and extracting arrowheads, creating an entity, appending
that entity to a third software layer, calling and executing
a clustering program to cluster the strings, lines, and
arrowheads into dimension entities, and for each cluster,
calling and executing a character recognition program to
recognize the characters, extracting a pattern consisting of
number strings within a pair of opposing dimension lines,
arrowheads, and extent bars, storing digital codes
representing the number string and the endpoints of the
extent bars in the entity, respectively, encoding the

A

WO 92/08201 : 93 PCT/US90/06274

10

15

20

digital codes representing the number string into numbers of
units for executing a dimension rectification program, and
decoding the digital codes to output dimension information

during step (9).

17. The method of Claim 10 wherein the images of the
fourth type are characters located inside the active area of
the fourth sheet, the method including determining that the
images of the fourth type are characters located in the
active area of the fourth sheet, extracting colinear
adjacent characters into strings, and for each string,
creating an entity, appending that entity to a fourth
software layer, and calling and executing a character
recognition program to recognize the characters, storing
digital codes representing the characters in the entity,
respectively, and decoding the digital codes to output the
characters during step (9).

18. The method of Claim 13 wherein the images include
characters, the method including calling and executing a
character recognition program to recognize the characters,

parsing the characters into commands and arguments of the
commands, and interp2ting the commands and the arguments to

set parameters and variables and execute operations.

WO 92/08201 - 94 PCT/US90/06274

10

15

20

25

19. The method of Claim 1 wherein the first and second
sheets have grid patterns thereon which cannot be detected
by the input device, the method including aligning the first
and second sheets to the input device in precisely the same
way, steps (a) and (d) including drawing the representations
of the images of the first and second types on selected grid
line and intersections thereof of the first and second grid

rsheets, respectively, and steps (b) and (e) include

detecting the images of the first and second types without
detecting grid lines of the first and second sheets,
respectively.

20. The method of Claim 14 wherein the editing
directive images include characters, lines, curves, and
blobs in an active area of an edit sheet, the method
including determining that the editing directive images are
inside the active area of the edit sheet, extracting
colinear adjacent characters into strings, lines, points,
blobs, and grouping boundaries in the editing directive
images, calling and executing a character recognition
program to recognize those characters in those strings,
storing digital codes representing those character strings,
parsing those strings into local commands and their
arguments or grouping boundary information.

21. The method of Claim 20 including clustering the
strings, lines, points, biobs, and grouping boundaries to
associate interior registration points and fill blobs with
surrounding grouping boundaries, grouping boundary

WO 92/08201 9 PCT/US90/06274

10

15

20

information strings with nearby grouping boundaries, and
position markers, axis lines, and grouping boundaries with

editing command strings.

22. The method of Claim 21 including searching the
first and second software layers for entities that fall
completely within the grouping boundaries for entities that

intersect the grouping boundaries.

23. The method of Claim 22 including interpreting the
local commands and their arguments, or grouping boundary
information, or blob indicators to edit the entities in the
first or second software layers.

24. The method of Claim 23 wherein editing includes
erasing, mirroring, copying, or repeating entities in a
grouping boundary, or insertion of a symbol table entry,
overriding default or previously set entity attributes
including joining points, snapping lines orthogonally,
snapping points to a grid, setting line width, text height,
line and fill styles to line and fill style table entries,
or text font to a text font table entry, establishing
criteria for including entities in a grouping boundary, a
grouping boundary identification, setting flags including
table entry, shape filliné and curve breaking.

WO 92/08201 96 _ PCT/US90/06274

25. The method of Claim 1 wherein the table includes
entries representing line styles, f£ill styles, or symbols.

26. A system for producing a drawing, comprising in
combination:

R

5 (a) a first sheet having thereon drawing
representations of a plurality of images of a first type;

(b) means for scanning the first sheet to produce
first digital data representative of the images of the first
type:;

10 B (c) means for operating on the first digital data

to form first software objects representing the images of
the first type, respectively;

(d) means for storing the first software objects
in a first software layer;

15 (e) a second sheet having thereon drawing
representations of a plurality of images of a second type;
(f) means for scannlng the second sheet to

produce second digital data representative of the images of
the second type;

20 | (g) means for operating on the second digital
data to form second software objects representing the images
of the second type, respectively;

WO 92/08201 97 PCT/US90/06274

(h) means for storing the second software objects

in a second software layer;

(i) means for operating on data from the first
and second software layers to output or store a first
5 composite drawing or table including the images of the first

type and the images of the second type.

WO 92/08201 ‘ PCT/US90/06274

/2
SCANNER

PROCESSOR
s

7
'“l' - /
liii{ PRINTER

N

Frs-1

54 58 5¢

I T

Fr-1A N g

LIGHTS '“”
34 38 3C 3 3E 3F 3G
/ / /] / / /

CTT T LT V3

BUTTONS

4

i FLOPPY DISK
_ DRIVE

DIGITIZER
TABLET

COMPUTER WITH
ADD-ON BOARD

SCANNER

PROCESSOR “PRINTER

N ~ -Fris=185 o

PCT/US90/06274

WO 92/08201
2/24
[GLOBAL COMMANDS 2]
(14 ‘
=\
LOCAL COMMANDS
(DRAWING DATA
/Q N2
AT~ .
%
{
5 o134 GLOBAL ccg;nﬁ%r;ms R zg
Fre=c
- LAYER
264 268 |
AREA AREA
26¢ 260
AREA |AREA
22 5] LAYER . (CURVE AREA)
254 & LAYER - 1jorawNG _Frss701H
258’ _FrmaY
27
8
/ 4—/2
y / / 3B2XY4 N\ 34
/ = 320 R % SC3037
(LINE AREA) _ - \37 (TEXT AREA)
Fr==101

FreedOA |1,

38/ -l— (DIMENSION AREA) | 77200

WO 92/08201 PCT/US90/06274

(_OPERATION) 3/24
x/OZ

100

INSERT
PROGRAM
DISK -

TURN ON POWER
& WAIT FOR READY

(106

MODIFY

YES
OLD DRAWING |

PRESS RESET,
WAIT FOR READY

NO o9
INSERT NEW
| § | DRAWING DISK
PRESS SCAN, INSERT OLD
| FOR READY
PUT PROCESS
CHANGE SHEET IN
PROCESS SCANNER, PRESS
PARAMETERS SCAN WAIT FOR
READY Frz-734

v

TO FIG. 3B

i 450
44y o <N & ci2.2
/ \ -~ |
e .. A
\N_~/ i ~-7
} I | %
\ oy 50
(EDIT LAYER) ¥

Frse11{ Fed M-"46
l

L t48 |~ 45

WO 92/08201 ' PCT/US90/06274

@ 4/24

(/8

PUTDRAW SHEET IN
SCANNER, PRESS
SCAN,WAIT FOR
READY

CHANGE
DRAWING

PARAMETERS

- PRESS DRAW
WAIT FOR READY
y (/23

PUT REPORT SHEET

IN SCANNER, PRESS

SCAN,WAIT FOR
READY

GENERATE
DRAWING

CHANGE
REPORT PARA-
METERS

GENERATE
REPORT

v (25
PRESS REPORT,
WAIT FOR READY
26
DISK YES : -
170 i

12771 REPLACE DRAWING DISK IF NECESSARY

/281 PLACE FILE SHEET IN SCANNER,
PRESS SCAN,WAIT FOR READY

/30_~REPLACE DRAWING DISK IF NECESSARY

13/ Y
YES

MORE
DRAWING

v (132

PLACE LAYER SHEET IN SCANNER,
PRESS SCAN, WAIT FOR READY

EDIT YES
DRAWING

: { §I35

PLACE EDIT SHEET IN SCANNER,
PRESS SCAN, WAIT FOR READY

Frs-38

WO 92/08201 . PCT/US90/06274

? o/ed
(/50

POWER ON

/5

BUSY ON,
READY OFF
/52

PROCESSOR &
MEMORY TEST

R

153 /55
YES 4 ["WaIT FOR (56
FAULT :>o~h RESET TO BE FAULT =>0FF|
o PRESSED
NO «57
LOAD PROGRAM
DATA FROM f=
DISKETTE
(/60
. (129 WAIT FOR (fes
IFAULT QONl—— RESET TO BE FAULT = OFF
PRESSED
| RESET SYSTEM A ' .
PARAMETERS,
CLEAR DRAWING
DATA MEMORY, PR‘-&%‘%D
READ 170 DEVICE D
SWITCHES %G)'

(/68

/63

BUSY >OFF |- ‘[LOAD DRAWING
READY = ON FROM DISKETTE
/64

WAIT FOR BUTTON
‘TO BE PRESSED

(/65

BUSY = ON
READY =2 OFF

FAULT '

_FI 5o 4_4_

WO 92/08201

PCT/US90/06274

6/24

YES 7 SCAN “\,NO
Iy PRESSED
CALL DOSCAN
(F16S. 5A-D) YES

(73

WAIT FOR RESULTS
OF DOSCAN OR
- STOP HIT

PRESSED

(44

CALL DODRAW
(FIGS. 8A-D)

REPORT

(/78 PRESSED
WAIT FOR RESULTS
OF DODRAW OR YES

STOP HIT

STOP HIT

WAIT FOR END
OF REPORT OR

PRINT LAYER JYES
CATALOG

=!NO
184
RLAYER>@
» NO
186
RDIRECT>@
»INO
188
RFAULT>@
NO

[PRINT DISK
DIRECTORY

(189

PRINT
FAULT INFO

Frs-48B

WO 92/08201

FORM OBJECTS -

FROM RUNLENS

CONVERT 1ST

OBJECT CHARACTER
TO STYPE

YES 214

CONVERT OBJECTS
TO COMCHARS

PCT/US90/06274

7/24

OBJECTS
=0

YES(Z/?

PARSE COMCHARS
TO GCOMS

[FAULT l

[FauLT |

WO 92/08201 PCT/US90/06274

8/24 (l?
221 241
DECODE Geoms] [MOVE OBJECTS OUTSIDE ACTIVE AREA
ES |70 SET SCAN TO OUTOBJS, MOVE OBJECTS INSIDE
PARAMETERS ACTIVE AREA INOBJS
N

(223

220
Y
0
222
vEs [DECODE GCOMS
SET PROCESS
PARAMETERS
NO_, 225
< es |DECODE GComs
TO SET DRAW
PARAMETERS
NO
226 (2ar
YES DECODE GCOMS

S

TO SET REPOR
PARAMETERS

(229

DECODE GCOMS] .
TO PERFORM
DISK 110

} [[_sTYPE = 1T GoOM-+COM |
(254

.)

YES (2% YEs (256

UPDATE SYSTEM - 4
'EARAMETER F“-EI V237 | LTYPE =1ST GCOM->ARG |
| "°
FreoSe

| I YES
(Rewmy) [P) Frs-58

WO 92/08201

(260

LAYERS: |
CLAYERS

y @62
l LAYERS=|,
FLAYERS

YES

CALL DOEDIT
(FI6S. 7TA-H)

Frs=51

PCT/US90/06274

(©)

350
&

ES 35/

CONVERT INOBJS
CHARACTERS
INTO AREA-CHARS

[FalLT l

EXTRACT COLINEAR

ADJACENT AREA—
CHARS INTO AREA~
STRINGS

' FOR EACH JOON
STRING

G

CREATE ENTITY &
APPEND TO LAYER

SET ENTITY-+AREA
=AREA

ENTITY - STRING

=STRING

REMOVE STRING
FROM AREA-
STRING

FI EDB.D

9/24

WO 92/08201 - ‘ PCT/US90/06274

10/24

DOLAYER

DECODE GCOM->ARGS INTO
LID, ATYPE, AERASE, AREA

302

|TRANSLATE, SIZE & ROTATE INOBJS'

302A

YES
| FIND LAYER WITH ID=LID l
304 (305
YES NO CREATE & APPEND
LAYER TO LAYERS
Sy 3/0

(306

|
REMOVE ENTITIES | ¢ , SET LAYER ID=LID,
FROM LAYER “REATE AREA 8 SET LAYER TYPE=
309 | | APPEND TO AREAS I LTYPE
REMOVE AREAS I_.,) 3N
FROM LAYER AREA LAYER= LAYER,

AREA TYPE=ATYPE

.
314
S

4
YE (36

-———>|NEXT FOR EACH LINE_IN AREA+LINES]2ONE o ("RETURN
. 317
CREATE ENTITY & APPEND TO LAYER
v 318

SET ENTITY-AREA= AREA,
ENTITY+POINTS=LINE->POINTS

-~ sty FrssGA

(33

CONVERT INOBJS
LINES INTO
AREA-LINES

A
NO (FIG.

WO 92/08201 . PCT/US90/06274

i1/724

32/
CONVERT INOBJS LINES INTO AREA-LINES

(324
EXTRACT CROSSES INTO AREA-*POINTS J
v (325

EXTRACT AREA~+POINTS & AREA-LINES
CHAINS INTO CHINS

7 (326
YES AREA-*LINES & NO
‘ AREA-*POINTS =0 FAULT

Y (328

—NEXT__'FOR EACH CHAIN IN CHAIN _JPOE o ("RETURN
(329

|CREATE ENTITY & APPEND TO LAYER

SET ENTITY->AREA = AREA,
SET ENTITY-> POINTS = CHAINS+POINTS

332 Y 33/

GENERATE & ADD YES -
3RD CIRCLE POINT # OF CHAIN~POINTS =2

NO

Y (334

$# OF CHAIN->POINTS=
3 OF CHAIN-LINES

APPEND 1ST ENTITY=
POINT TO ENTITY>POINTS

>

r 335

| REMOVE CHAIN FROM CHAINS I

Frs-68

WO 92/08201 ' PCT/US90/06274

12724

336
ES I37
CONVERT INOBJS CHARACTERS INTO AREA’CHARSI
NO (338
CONVERT INOBJS LINES INTO AREA-LINES I

CONVERT INOBJS FILLED TRIANGLES INTO
AREA-»BLOBS

_ l (342
EXTRACT COLINEAR ADJACENT CHARS INTO STRINGS
(343

EXTRACT STRINGS, LINES, AND BLOBS DIMENSION LINES,
ARROWHEADS, EXTENT BARS & NUMBER PATTERNS INTO DIMENS

- (344
~YES_(TINES, STRINGS & BLOBS=0)\ —of FauLT
3 346

JNEXT_.["FoR EACH DIMEN __|——D0ME ~(RETURN
' (347

CREATE ENTITY & APPEND TO LAYER _|
‘ (346

SET ENTITY—AREA = AREA,
ENTITY—> POINTS=DIMEN-LINES- POINTS
ENTITY- STRING = DIMEN - STRING

(349

REMOVE DIMEN FROM DIMENS I

Fr=s-60 |

WO 92/08201

PCT/US90/06274

i Fr=7A

(200
DECODE GCOM-*ARGS INTO LIDS & EDITI
40/
@ NO FAULT
YeS @02

|TRANSLATE, SIZE, ROTATE INOBJS '
: (402a

l——-—<YES INOBJS INSIDE DRAWlNG}———NO FAULT

-—— FOR EACH POLY IN POLYS |¢NEXTV '
@l6_

Y 403

CONVERT INOBJS CHARACTERS TO EDIT - CHARS
; (404

["EXTRACT EDIT->CHARS TO EDIT— STRINGS

: (405
PARSE EDIT->STRINGS TO ECOMS
| (406
CONVERT INOBJS LINES TO EDIT+LINES
(407

lEXTRACT EDIT-LINES CROSSES TO EDIT-+POINTS I
(408

CONVERT INOBJS FILLED CIRCLES TO EDIT-»BLOBS J

A 409
INOBJS
=g
YES

@1

L_ EXTRACT EDIT-LINES POLYGONS INTO POLYS I

@13

EDIT-+STRINGS,
LINES & BLOBS=0

4/2
poLYS Y
=0
NO

«“/5

CREATE EGROUP & APPEND TO EGROUPS
; 47
EGROUP- POLY= POLY |
418

REMOVE POLY FROM POLYS

WO 92/08201 PCT/US90/06274

@ 14/24
(419
DONE

NEXT _r~—FOR EACH STRING IN EDIT-STRINGS
) @20
FIND NEAREST EGROUP-POLY IN_EGROUPS
i @2/

DECODE STRING-CHARS INTO ENC, EID & TAB

ED_2~1 : [FauLT
. YES 429
‘_LF:EAOVE STRINGS FROM I EGROUP~ID=EID

EDIT-»STRINGS

. @34
DONE __FOR EACH POINT IN.EDIT*POINTS | NEXT
L] (435
NEXT_"FOR EACH EGROUP IN EGROUPS
(436
NO /POINT INSIDE \ YES
EGROUP +POLY
v (440
DONE [FOR EACH BLOB IN | NEXT [APPEND POINT TO EGROUP+POINTS
=1 EDIT-+BLOBS (APPEND. 755
v 44/ REMOVE POINT FROM EDIT+POINTS |~
NEXT [FOR EACH EGROUP | DONE
IN EGROUPS
442

(443

[EsrouP~>FIL=1]
(444

[REMOVE BLOB FROM EDIT»BLOBS }-~
FAULT

Frs-/H

NO/~BLOB INSIDE \ YES
EGROUP—>POLY

WO 92/08201 PCT/US90/06274

@ 15/24
q

450
NEXT
FOR EACH LAYER IN LAYERS J<

45/ 452 _
YES NO _[FIND & REMOVELID
=L AYER-ID IN LID

453
YES
NEXT 22 @ .
»[FOR EACH ENTITY IN LAYER— ENTITYS
DONE —

DONE

T @55
DONE [FOR EACH EGROUP_IN EGROUPS REX }
' 936 _ NO @57
ENTITY INS|(I)D§ EGROUP +POLY APPEND ENTITY TO
ENTITY INTERSECTS EGROUP-POLY)= ~LESROUP ENTITTS

458
TAG ENTITY-POINTS

AND
EGROUP +ENC =0

DONE ' gee
- FOR EACH ENTITY IN EGROUP—ENTITYS }=
267

ENTITY-AREA-TYPE=C AND \ NO .
IST ENTITY~POINT=LAST ENTITY-POINT

NEXT

(469
CREATE ENTITY->FILL

v (470 _

ENTITY-FILL»FSTYLE=EDIT-FSTYLE
ENTITY-FILL+-FWIDTH=EDIT—FWIDTH

Frs-70

WO 92/08201 PCT/US90/06274

16/24
@7/ (499

NEXT [FOREACH ECOM JDONE REMOVE ASSIGNED
IN ECOMS

EDIT->LINES
| 472 473

"EMBJAGLFT" £
|F|ND NEAREST EGROUP+POLY IN EGROUPS l
476

ECOM-EGROUP = EGROUP

o2

REMOVE ASSIGNED
EDIT +POINTS

FIND NEAREST
LINE IN
EDIT-LINES

 ECOM—LINE
=LINE
»| FAULT

DECODE IST .
ECOM-ARG INTO EID

FIND EGROUP IN
SEGROUPS WITH
EGROUP~+ID = EID

FIND EGROUP_IN
EGROUPS WITH
EGROUP=ID=EID

YES ~EGROUP

FOUND

492> ;

[ECOM ~EGROUP
=EGROUP

FIND NEAREST # OF ECOM->EGROUP+POINTS
IN EDIT »POINTS .

(498

«— ECOM-POINTS
=POINTS

YES

Friso/1)

WO 92/08201 PCT/US90/06274

(558 ? @ oo [7/24
REMOVE ECOM { DONE
FROM ECOMS |nexs
N

(Sle
EGROUP-+DEL=|

(o4

DONE [FOR EACH ENTITY IN ECOM*EGROUP+ENTITYS NEXT

(516

YES DUPLICATE EACH
SINGLE TAGGED |
ENTITY-POINT

YES 518

NEXT

(520

CREATE
ENTITY-POVER
ENTlTY—POVER ENTITY-POVER

+JOIN =-| -JOIN=

>

-+POVER
=g

DONE NEXT

(527

CREATE
ENTITY->POVER

ENTITY>POVER ENTITY-’POVER '
> LSNAPS=-| | | ~LSNAPS =
>
@ - Freo/E

PCT/US90/06274

WO 92/08201
18/24
53/
EcoM \, NO -
->=Cé)M
ES &32 :
< DONE I ERCHENTITY IN ECOM-»EGROUPSENTITYS)= oo
(534

CREATE
ENTITY->POVER
ENTITY-POVER

—+PSNAP = |
' (539

DECODE ECOM-»ARGS;
INTO EID & ENUM

DECODE
ERROR

— Yes (543
DONE E5R EACH ENTITY IN ECOM-»EGROUP~ENTITYS]4=XT—
< 544
ENTITY-AREA-TYPE\ NO .
=L, C OR D

547

NO
(546 ¥
CREATE ENTITY»VOVER-+LSTYLE _
ENTITY-»VOVER = EID, LWIDTH=ENUM

NEXT
D ——

DONE

Y

[ENTlTY-FlLL—»FSTYLE=E|D,FW:DTH=ENU_M_|——— ‘
Freo/F

WO 92/08201 PCT/US90/06274

) @ 19/24
(553
E°lE. FOR EACH ENTITY IN ECOM->EGROUP-ENTITYS J=- NEXT
555 (554

YES ENTITY~AREA- \ NO .
TYPE=D OR T

557

CR EATE ENTITY *VOVER*FONT -
ENTITY-VOVER -EID HEIGHT= ENUM

@ NO ‘0_*
YES YES (963 YES (965

TEGROUPS LEGROUPS ITEGROUPS FEGROUPSI TEGROUPS=SEGROUPS

V (566
'<—-—-—|°°NE FOR EACH EGROUP IN EGROUPS - NEXT

568

FIND & REMOVE EGROUP IN
TEGROUPS WITH SAME ID

(570

APPEND EGROUPS|NO
TO TEGROUPS

—l
—
095
NEXT DONE —
‘

REMOVE ECOM
FROM ECOMS I
596
<>
N
DONE ISR EACH ENTITY IN ECOM>EGROUP>ENTITYS JNEXT_

Y (574

CREATE ENTITY & APPEND TO ENTITY-AREA-»LAYER
! (575
MIRROR ENTITY ABOUT ECOM-LINE INTO NEW ENTITY |

Frs=/G

WO 92/08201 ' PCT/US90/06274

20/24

S77

DECODE
ERROR

v 980

NEXT I'FOR EACH ENTITY IN ECOM—EGROUP-» ENTITYS]-2ONE
— Y (Q_a__'l/
[CCREATE ENTITY & APPEND TO ENTITY-» AREA~LAYER _]
282

TRANSFORM ENTITY BY ESCALE 8 EORIENT INTO NEW ENTITY

| NO DECODE ECOM*ARGS INTO
FAULT @ RCOUNT,ESCALE,EORIENT}~ DECODE

RSCALE,RORIENT
NO
Y (567

[C_GENERATE RCOUNT RPOINTS ALONG ECOM —~LINE__]
_ (588
NEXT [FOREACHENTITY IN ECOM=EGROUP>ENTITYS. l___,oom-: -—
‘ DONE (269 NEXT

FOR EACH POINT IN RPOINTS -
(590 :
]_CREATE ENTITY & APPEND TO ENTITY-»AREA->LAYER |
y (59/

TRANSLATE ECOM-> POINTS TO POINT ,
] ~ 592

TRANSFORM ENTITY BY ESCALE & EORIENT INTO NEW ENTITY

YES

[

y (593
@ ESCALE=ESCALE+RSCALE, ORIENT=EORIENT+ RORIENT

DONE, (602
RETURN)=—| REMOVE EGROUP
FROM EGROUPS | |

NEXT IFOR EACH ENTITY IN I T »
‘ EGROUP-ENTITYS
. , 60/

(606

REMOVE EGROUP
FROM TEGROUPS

DONE 2

™ [FOR EACH EGROUP IN TEGROUPS]=eX
(604 NO

[FIND 8 REMOVE ENTITY IN EGROUP' YES
Freo7H i

WO 92/08201 ' PCT/US90/06274

DODRAW 21/24
6/
LAYERS = DLAYERS |~
(613
LAYERS =LLAYERS &
TEGROUPS=LEGROUPS
NO
614 (615
YES LAYERS=FLAYERS 8
TEGROUPS=FEGROUPS
NO
(616 (617
NO YES LAYERS = SLAYERS &
TEGROUPS = SEGROUPS

NEXT Iz_j
FOR EACH LID IN DLIDS | DONE TR
—

DONE FOR EACH LAYER NEXT
7 62/
LFIND LID = LAYER- ID |

v

YES YES @L
623 672
NEXT [~ FOR EACH ENTITY] DONE -
(624

APPEND ENTITY TO ENTITYS I

Y

JTDIST
>0

YES (626

‘ﬂ)—N—E-—‘ FOR EACH ENTITY
L I 627
C

CLUSTER ——
(FiG.
Fr-8A4

625
NO

NEXT
i r——————

WO 92/08201 7 PCT/US90/06274

@ 22/24
DONE (628

" _NEXT_| FOR EACH ENTITY IN DENTITYS |
629 . NEXT
DONE FOR EACH TAGGED POINT —

630

FIND NEAREST ENTITY POINT 8 CLUSTER POINT]
(633 63/ (632

' NO = \YES
CREATE CLUSTER ENTITY-POINT APPEND POINT
OF POINT AND |~ \CLUSTER>EPOINT-POINT, TO CLUSTER
L

|

ENTITY-POINT

v (634

DONE [F5R EACH CLUSTER IN CLUSTERS J=NEXT
635

| COMPUTE CENTROID I

v (636 DONE
FOR EACH POINT IN CLUSTER—- EPOINTS fo—
63
| POINT=CENTROID 3
[(636

NEXT

DONE _I"EGR EACH ENTITY IN DENTITYS

D 639 (640

! SNAP ENDPOI NTSI

(642

I SNAP ENDPOINTS I

(644

SNAP ENDPOINTS I

(696

NO

RECTIFICATION
ERROR

Frs-88

WO 92/08201 A PCT/US90/06274

go) 23/24

(650 _ DONE_

FOR EACH ENTITY IN DENTITYS JLEXT l
e Ey ®

CL‘IP 8 TRANSFORM ENTITY—POINTS &
ENTITY —STRING—POINTS BY
DX, DY,DH,DW, DSCALE & DORIENT

(654

OUTPUT ENTITY-POINTS LINE
WITH ENTITY->AREA-LSTYLE,
LWIDTH

65¢ DONE
NO YES_[FOREACH SET OF POINTS
SEPARATED BY ENPOINTS] NEXT

(659

TPUT POINTS SET SPLINE
WITH ENTITY-AREA~»
LSTYLE, LWIDTH

WITH ENTITY-VOVER-
LSTYLE,LWIDTH

65/
FILL YES
=0

NO (662

[OUTPUT FILL WITH
ENTITY +FILL=FSTYLE, FWIDTH

Fr==80C

WO 92/08201

669
=G

PCT/US90/06274

24/24

[oUTPUT LINE, ARROWHEAD, EXTENT
BAR PAIRS WITHIN ENTITY-=POINTS

BOX WITH ENTITY->OVER—
LSTYLE, LWIDTH

(668

V667 W v (665
OUTPUT LINE, ARROWHEAD, EXTENT

BAR PAIRS WITHIN ENTITY= POINTS
BOX WITH ENTITY->AREA->
' FONT, WEIGHT

(666

OUTPUT ENTITY-+STRING WITH
ENTITY-»VOVER—FONT, HEIGHT

OUTPUT ENTITY =+STRING WITH

ENTITY-AREA = FONT, WEIGHT

YES
(671

OUTPUT ENTITY-’STRING WITH
ENTlTY-DAREA-'FONT HEIGHT

B ,
(FIG.)=
(%) i

NO~DTYPE=

L ®

v

OUTPUT ENTITY-'STRING WITH
ENTITY-VOVER-FONT, HEIGHT
(673

REMOVE ENTITY FROM DENTITYS

674
YES

(675

NEXT
FOR EACH EGROUP I'——
(676

OUTPUT EGROUP- ID AT CORNER OF EGROUP-POLY I
677

~

CLIP & TRANSFORM EGROUP POINTS BY DX, DY,
DH, DW DSCALE, AND DORIENT

(678

[OUTPUT X AT EACH POINT IN EGROUP->POINTS]

Fr==-810

e

INTERNATIONAL SEARCH REPOR\T
International Application No P CT/ Us 90/ 06274

I. CLASSIFICATION OF SUBJECT MATTER (it several ciassification symbois apply, indicate sif) ¢

According to international Patent Classification {IPC) or to both Natlonal Classification and I1PC

'pcs: G 06 F 15/72

Il. FIELDS SEARCHED

Minimum Documentation Searched ?

Claasification System | Classlfication Symbols

IpcS G 06 F

Documentation Searched other than Minimum Documentation
to the Extent that such D s are inciuded In the Fields Searched ¢

Il. DOCUMENTS CONSIDERED TO BE RELEVANT?®

Category * I Citation of Document, ' with indication, where apgrogpriate, of the relevant passages 12 | Relevant to Claim No. W3

A GB, A, 2044966 (DAVY INTERNATIONAL)

22 October 1980

A Zeitschrift filir wirtschaftliche Fertigung
& Automatisierung, vol. 82, no. 7,
July 1987, Carl Hanser Verlag,
(Munich, DE), .

H. Jansen et al.: "Handskizzierter
Entwurf von CAD-Modellen mit CASUS",
pages 398-404

A IEEE Computer Society Workshop on Computer
Architecture for Pattern Analysis and
Image Database Management, Miami Beach,
Florida, 18-20 November 1985, IEEE,

H. Harada et al.: "Recognition of
freehand drawings in chemical plant
engineering", pages 146-153

A FR, A, 2260135 (SNAM PROGETTI)

29 August 1975

* S | cate of ct documents: 10 “T™ later document published aftsr the intemnational filing date

- ..°:°" .gfn: .. itad do 1 the art which is not or priority date and not in conflict with the application but

A general state of the a cited to understand the pnncipie or theory undariying the
considerad to be of pameutar relevancs invention

“E" eariier document but published on or after the intarnational

*X" document of particular rsisvance; the ciaimed invention
filing date

cannot be considered novel or cannot be considersd to

“L" decument which may throw doubts on priority claim(s) or invoive an inventive step
which is cited to establish the publication date of ancther Yy~ d of particular reisvance;’ the claimed invention
citation or other speciai reason (as specified) cannct be ¢ dered to | e an i e 5100 when the
“0" d t referri isciosure, use, exhibition or Bined with one or more other such doCu«
o::;mn::m': RGP 1o an oral dis * ! :ntnll. lucn combination being odvious to & person skilled
B n the art.
*P" documaent published prior to the intarnational flling date but
later than tpho puontypdnl ciasimed *4" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Compistion of the internationsl Search Date of Malling of this ln_urnnﬁgnd Search Report
29th April 1991 L ABe

international Searching Authority Slgnature of '/Mp- = -
EUROPEAN PATENT OFFICE 'é¢ 4f/

Form PCT/ISA/210 (second sheet) (January 1985)

[

ANNEX TO THE INTERNATIONAL SEARCH REPORT .
ON INTERNATIONAL PATENT APPLICATION NO. US 9006274

SA 42821

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search rcport:'
The members are as contained in the European Patent Office EDP file on 10/06/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document Publication Patent family Publication
cited in search report date member(s) date
GB-A- 2044966 22-10~-80 None
FR-A- 2260135 29-08-75 BE~-A- 824733 15-05-75
CH-A- 582919 15-12-76

DE-A- 2502277 14-08-75
GB-A- 1495791 21-12-77
LU-A- 71703 24-06-75
NL-A- 7501001 05-08-75

FPO FORM PO479

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

-y

b !

	Abstract
	Bibliographic
	Description
	Claims
	Amendment
	Drawings
	Search_Report

