
(11) Application No. AU 200014553 B2
(10) Patent No. 761388

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(54) Title
An agile network protocol for secure communications with assured system
availability

(51)7 International Patent Classification(s)
H04L 029/00

(21) Application No: 200014553 (22) Application Date: 1999.10.29

(87) WIPO No: WO00/27086

(30) Priority Data

(31) Number
60/106261
60/137704

(32) Date (33) Country
1998.10.30 US
1999.06.07 US

(43) Publication Date: 2000.05.22
(43) Publication Journal Date : 2000.07.20
(44) Accepted Journal Date : 2003.06.05

(71) Applicant(s)
Science Applications International Corporation

(72) Inventor(s)
Edmund C. Munger; Vincent J. Sabio; Robert Dunham Short III; Virgil D.
Gligor; Douglas Charles Schmidt

(74) Agent/Attorney
DAVIES COLLISON CAVE,1 Little Collins street,MELBOURNE VIC 3000

(56) Related Art
FASBENDER A ET AL VARIABLE AND SCALABLE SECURITY: PROTECTION
OF LOCATION INFORMATION IN MOBILE IP

Pi’ I WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau 1

L INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 1 :

• H04L 29/00 A2
(11) International Publication Number: WO 00/27086

(43) International Publication Date: 11 May 2000 (11.05.00)

(21) International Application Number: PCT/US99/25325

(22) International Filing Date: 29 October 1999 (29.10.99)

(30) Priority Data:
60/106,261 30 October 1998 (30.10.98) US
60/137,704 7 June 1999 (07.06.99) US

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Applications
US 60/106,261 (CON)
Filed on 30 October 1998 (30.10.98)
US 60/137,704 (CON)
Filed on 7 June 1999 (07.06.99)

(71) Applicant (for all designated States except US): SCIENCE
APPLICATIONS INTERNATIONAL CORPORATION
[US/US]; 10260 Campus Point Drive, San Diego, CA
92121 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): MUNGER, Edmund, C.

[US/US]; 1101 Opaca Court, Crownsville, MD 21032 (US).
SAB1O, Vincent, J. [US/US]; 7489 Setting Sun Way,
Columbia, MD 21046 (US). SHORT, Robert, Dunham,

III [US/US]; 38710 Goose Creek Lane, Leesburg, VA
20175 (US). GLIGOR, Virgil, D. [US/US]; 6009 Brookside
Drive, Chevy Chase, MD 20815 (US). SCHMIDT, Douglas,
Charles [US/US]; 230 Oak Court, Sevema Park, MD 21146
(US).

(74) Agents: WRIGHT, Bradley, C. et al.; Banner & Witcoff,
Ltd., Eleventh floor, 1001 G Street, N.W., Washington, DC
20001-4597 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS WITH ASSURED SYSTEM AVAILABILITY

(57) Abstract

A plurality of computer nodes communicates using seemingly random IP source and destination addresses and (optionally) a seemingly
random discriminator field. Data packets matching criteria defined by a moving window of valid addresses are accepted for further processing,
while those that do not meet the criteria are rejected. In addition to "hopping" of IP addresses and discriminator fields, hardware addresses
such as Media Access Control addresses can be hopped. The hopped addresses are generated by random number generators having
non-repeating sequence lengths that are easily determined a-priori, which can quickly jump ahead in sequence by an arbitrary number of
random steps and which have the property that future random numbers are difficult to guess without knowing the random number generator’s
parameters. Synchronization techniques can be used to re-establish synchronization between sending and receiving nodes. These techniques
include a self-synchronization technique in which a sync field is transmitted as part of each packet, and a "checkpoint" scheme by which
transmitting and receiving nodes can advance to a known point in their hopping schemes. A fast-packet reject technique based on the use
of presence vectors is also described. A distributed transmission path embodiment incorporates randomly selected physical transmission
paths.

AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

10 Background of the Invention

A tremendous variety of methods have been proposed and implemented to

provide security and anonymity for communications over the Internet. The variety

stems, in part, from the different needs of different Internet users. A basic heuristic

framework to aid in discussing these different security techniques is illustrated in

15 FIG. 1. Two terminals, an originating terminal 100 and a destination terminal 1.10 are

in communication over the Internet. It is desired for the communications to be secure,

that is, immune to eavesdropping. For example, terminal 100 may transmit secret

information to terminal 110 over the Internet 107. Also, it may be desired to prevent

an eavesdropper from discovering that terminal 100 is in communication with

20 terminal 110. For example, if terminal 100 is a user and terminal 110 hosts a web site,

terminal 100’s user may not want anyone in the intervening networks to know what

web sites he is "visiting." Anonymity would thus be an issue, for example, for

companies that want to keep their market research interests private and thus would

prefer to prevent outsiders from knowing which web-sites or other Internet resources

25 they are. “visiting.” These two security issues may be called data security and

anonymity, respectively.

Data security is usually tackled using some form of data encryption. An

encryption key 48 is known at both the originating and terminating terminals 100 and

WO 00/27086 PCT/US99/25325

5

10

15

20

25

110. The keys may be private and public at the originating and destination terminals

100 and 110, respectively or they may be symmetrical keys (the same key is used by

both parties to encrypt and decrypt). Many encryption methods are known and usable

in this context.

To hide traffic from a local administrator or ISP, a user can employ a local

proxy server in communicating over an encrypted channel with an outside proxy such

that the local administrator or ISP only sees the encrypted traffic. Proxy servers

prevent destination servers from determining the identities of the originating clients.

This system employs an intermediate server interposed between client and destination

server. The destination server sees only the Internet Protocol (IP) address of the proxy

server and not the originating client. The target server only sees the address of the

outside proxy. This scheme relies on a trusted outside proxy server. Also, proxy

schemes are vulnerable to traffic analysis methods of determining identities of

transmitters and receivers. Another important limitation of proxy servers is that the

server knows the identities of both calling and called parties. In many instances, an

originating terminal, such as terminal A, would prefer to keep its identity concealed

from the proxy, for example, if the proxy server is provided by an Internet service

provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy

server that transmits and receives fixed length messages, including dummy messages.

Multiple originating terminals are connected through a mix (a server) to multiple

target servers. It is difficult to tell which of the originating terminals are

communicating to which of the connected target servers, and the dummy messages

confuse eavesdroppers’ efforts to detect communicating pairs by analyzing traffic. A

drawback is that there is a risk that the mix server could be compromised. One way to

deal with this risk is to spread the trust among multiple mixes. If one mix is

compromised, the identities of the originating and target terminals may remain

concealed. This strategy requires a number of alternative mixes so that the

2

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

intermediate servers interposed between the originating and target terminals are not

determinable except by compromising more than one mix. The strategy wraps the

message with multiple layers of encrypted addresses. The first mix in a sequence can

decrypt only the outer layer of the message to reveal the next destination mix in

5 sequence. The second mix can decrypt the message to reveal the next mix and so on.

The target server receives the message and, optionally, a multi-layer encrypted

payload containing return information to send data back in the same fashion. The

only way to defeat such a mix scheme is to collude among mixes. If the packets are

all fixed-length and intermixed with dummy packets, there is no way to do any kind

10 of traffic analysis.

Still another anonymity technique, called ‘crowds,’ protects the identity of the

originating terminal from the intermediate proxies by providing that originating

terminals belong to groups of proxies called crowds. The crowd proxies are

interposed between originating and target terminals. Each proxy through which the

15 message is sent is randomly chosen by an upstream proxy. Each intermediate proxy

can send the message either to another randomly chosen proxy in the “crowd” or to

the destination. Thus, even crowd members cannot determine if a preceding proxy is

the originator of the message or if it was simply passed from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to

20 select up to any of five different pseudonyms, while desktop software encrypts

outgoing traffic and wraps it in User Datagram Protocol (UDP) packets. The first

server in a 2+-hop system gets the UDP packets, strips off one layer of encryption to

add another, then sends the traffic to the next server, which strips off yet another layer

of encryption and adds a new one. The user is permitted to control the number of

25 hops. At the final server, traffic is decrypted with an untraceable IP address. The

technique is called onion-routing. This method can be defeated using traffic analysis.

For a simple example, bursts of packets from a user during low-duty periods can

reveal the identities of sender and receiver.

3

SUBSTITUTE SHEET (RULE26)

P:\opcr\ssb\l4533-00 rcsp.doc -06/12/02

-4-

Firewalls attempt to protect LANs from unauthorized access and hostile

exploitation or damage to computers connected to the LAN. Firewalls provide a server

through which all access to the LAN must pass. Firewalls are centralized systems that

require administrative overhead to maintain. They can be compromised by virtual-

5 machine applications ("applets"). They instill a false sense of security that leads to

security breaches for example by users sending sensitive information to servers outside the

firewall or encouraging use of modems to sidestep the firewall security. Firewalls are not

useful for distributed systems such as business travelers, extranets, small teams, etc.

The reference to any prior art in this specification is not, and should not be taken

10 as, an acknowledgment or any form of suggestion that that prior art forms part of the

common general knowledge in Australia.

Summary of the Invention

15 The present invention provides a method of transmitting information between a

first computer and a second computer, comprising the steps of:

(1) embedding in each of a plurality of data packets a discriminator value that

periodically changes between successive data packets, wherein each discriminator value is

not based solely on the value of other data in each data packet;

20 (2) transmitting the plurality of data packets between the first computer and the

second computer;

(3) receiving the transmitted data packets at the second computer; and

(4) for each received data packet, comparing the discriminator value to a set of

valid discriminator values and, in response to detecting a match, accepting the received

25 data packet for further processing, and otherwise rejecting the received data packet.

The present invention further provides a system comprising:

a first computer that embeds into each of a plurality of data packets a discriminator

value that periodically changes between successive data packets, wherein each

discriminator value is not based solely on the value of other data in each data packet; and

30 a second computer coupled to the first computer through a network,

P:\opcrtssb\i4553-00 resp.doc-06/12/02

-4A-

wherein the first computer transmits the plurality of data packets to the second

computer, and

wherein the second computer receives the transmitted data packets, compares the

discriminator value in each received data packet to a set of valid discriminator values and,

5 in response to detecting a match, accepts the received data packet for further processing,

and otherwise rejects the received data packet.

The present invention further provides a system comprising in combination:

a transmitting node that generates pseudo-random discriminator values and embeds

the pseudo-random discriminator values into data packets for transmission; and

10 a receiving node that receives data packets transmitted by the transmitting node,

wherein the receiving node, for each received packet, extracts the pseudo-randomly

generated discriminator value, compares it to a set of potentially valid discriminator values

shared between the transmitting node and the receiving node and, in response to detecting

a match, accepts the data packet, and otherwise discards the packet.'

15 The present invention also provides a receiving computer that receives data packets? ■

from a transmitting computer, wherein the receiving computer comprises computer ·.;

instructions that execute the steps of:

(1) for each received data packet, extracting a discriminator value inserted by

the transmitting computer;

20 (2) comparing the extracted discriminator value to a set of valid discriminator

values on the basis of information previously shared with the transmitting computer, and

(3) in response to detecting a match in step (2), accepting the received data

packet for further processing and otherwise rejecting the data packet.

According to one embodiment, there is provided a secure mechanism for

25 communicating over the internet, including a protocol referred to as the Tunneled Agile

except to TARP routers and servers. The normal or "clear" or "outside" IP header attached

Routing Protocol (TARP), uses a unique two-layer encryption format and special TARP

routers. TARP routers are similar in function to regular IP routers. Each TARP router has

one or more IP addresses and uses normal IP protocol to send IP packet messages

("packets" or "datagrams"). The IP packets exchanged between TARP terminals via

30 TARP routers are actually encrypted packets whose true destination address is concealed

P:\oper\ssb\14353-00 resp.doc-06/12/02

-4B -

• · · ·• · ·• ·• ·• · ·• · ·a » a

to TARP IP packets contains only the address of a next hop router or destination server.

That is, instead of indicating a final destination in the destination field of the IP header, the

TARP packet's IP header always points to a next-hop in a series of TARP router hops, or to .

the final destination. This means there is no overt indication from an intercepted TARP

5 packet of the true destination of the TARP packet since the destination could always be the

next-hop TARP router as well as the final destination.

Each TARP packet's true destination is concealed behind a layer of encryption

generated using a link key. The link key is the encryption key used for encrypted

communication between the hops intervening between an originating TARP terminal and a

10 destination TARP terminal. Each TARP router can remove the

WO 00/27086 PCT/US99/25325

5

10

15

20

25

outer layer of encryption to reveal the destination router for each TARP packet. To

identify the link key needed to decrypt the outer layer of encryption of a TARP

packet, a receiving TARP or routing terminal may identify the transmitting terminal

by the sender/receiver IP numbers in the cleartext IP header.

Once the outer layer of encryption is removed, the TARP router determines

the final destination. Each TARP packet 140 undergoes a minimum number of hops

to help foil traffic analysis. The hops may be chosen at random or by a fixed value.

As a result, each TARP packet may make random trips among a number of

geographically disparate routers before reaching its destination. Each trip is highly

likely to be different for each packet composing a given message because each trip is

independently randomly determined. This feature is called agile routing. The fact that

different packets take different routes provides distinct advantages by making it

difficult for an interloper to obtain all the packets forming an entire multi-packet

message. The associated advantages have to do with the inner layer of encryption

discussed below. Agile routing is combined with another feature that furthers this

purpose; a feature that ensures that any message is broken into multiple packets.

The IP address of a TARP router may not remain constant; a feature called IP
agility. Each TARP router, independently or under direction from another TARP

terminal or router, may change its IP address. A separate, unchangeable identifier or

address is also defined. This address, called the TARP address, is known only to

TARP routers and terminals and may be correlated at any time by a TARP router or a

TARP terminal using a Lookup Table (LUT). When a TARP router or terminal

changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs.

The message payload is hidden behind an inner layer of encryption in the

TARP packet that can only be unlocked using a session key. The session key is not

available to any of the intervening TARP routers. The session key is used to decrypt

the payloads of the TARP packets permitting the data stream to be reconstructed.

5

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

Communication may be made private using link and session keys, which in

tum may be shared and used according any desired method. For example, public

/private keys or symmetric keys may be used.

To transmit a data stream, a TARP originating terminal constructs a series of

TARP packets from a series of IP packets generated by a network (IP) layer process.

(Note that the terms “network layer,” “data link layer,” “application layer,” etc. used

in this specification correspond to the Open Systems Interconnection (OSI) network

terminology.) The payloads of these packets are assembled into a block and chain­

block encrypted using the session key. This assumes, of course, that all the IP packets

are destined for the same TARP terminal. The block is then interleaved and the

interleaved encrypted block is broken into a series of payloads, one for each TARP

packet to be generated. Special TARP headers IPT are then added to each payload

using the IP headers from the data stream packets. The TARP headers can be

identical to normal IP headers or customized in some way. They should contain a

formula or data for deinterleaving the data at the destination TARP terminal, a time-

to-live (TTL) parameter to indicate the number of hops still to be executed, a data

type identifier which indicates whether the payload contains, for example, TCP or

UDP data, the sender’s TARP address, the destination TARP address, and an

indicator as to whether the packet contains real or decoy data or a formula for

filtering out decoy data if decoy data is spread in some way through the TARP

pay load data.

Note that although chain-block encryption is discussed here with reference to

the session key, any encryption method may be used. Preferably, as in chain block

encryption, a method should be used that makes unauthorized decryption difficult

without an entire result of the encryption process. Thus, by separating the encrypted

block among multiple packets and making it difficult for an interloper to obtain

access to all of such packets, the contents of the communications are provided an

extra layer of security.

6

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

Decoy or dummy data can be added to a stream to help foil traffic analysis by

reducing the peak-to-average network load. It may be desirable to provide the TARP

process with an ability to respond to the time of day or other criteria to generate more

decoy data during low traffic periods so that communication bursts at one point in the

Internet cannot be tied to communication bursts at another point to reveal the

communicating endpoints.

Dummy data also helps to break the data into a larger number of

inconspicuously-sized packets permitting the interleave window size to be increased

while maintaining a reasonable size for each packet. (The packet size can be a single

standard size or selected from a fixed range of sizes.) One primary reason for desiring

for each message to be broken into multiple packets is apparent if a chain block

encryption scheme is used to form the first encryption layer prior to interleaving. A

single block encryption may be applied to portion, or entirety, of a message, and that

portion or entirety then interleaved into a number of separate packets. Considering the

agile IP routing of the packets, and the attendant difficulty of reconstructing an entire

sequence of packets to form a single block-encrypted message element, decoy packets

can significantly increase the difficulty of reconstructing an entire data stream.

The above scheme may be implemented entirely by processes operating

between the data link layer and the network layer of each server or terminal

participating in the TARP system. Because the encryption system described above is

insertable between the data link and network layers, the processes involved in

supporting the encrypted communication may be completely transparent to processes

at the IP (network) layer and above. The TARP processes may also be completely

transparent to the data link layer processes as well. Thus, no operations at or above

the Network layer, or at or below the data link layer, are affected by the insertion of

the TARP stack. This provides additional security to all processes at or above the

network layer, since the difficulty of unauthorized penetration of the network layer

(by, for example, a hacker) is increased substantially. Even newly developed servers

7

SUBSTITUTE SHEET (RULE2Q

WO 00/27086 PCT/US99/25325

5

10

15

20

25

running at the session layer leave all processes below the session layer vulnerable to

attack. Note that in this architecture, security is distributed. That is, notebook

computers used by executives on the road, for example, can communicate over the

Internet without any compromise in security.

IP address changes made by TARP terminals and routers can be done at

regular intervals, at random intervals, or upon detection of “attacks.” The variation of

IP addresses hinders traffic analysis that might reveal which computers are

communicating, and also provides a degree of immunity from attack. The level of

immunity from attack is roughly proportional to the rate at which the IP address of

the host is changing.

As mentioned, IP addresses may be changed in response to attacks. An attack

may be revealed, for example, by a regular series of messages indicating that a router

is being probed in some way. Upon detection of an attack, the TARP layer process

may respond to this event by changing its IP address. In addition, it may create a

subprocess that maintains the original IP address and continues interacting with the

attacker in some manner.

Decoy packets may be generated by each TARP terminal on some basis

determined by an algorithm. For example, the algorithm may be a random one which

calls for the generation of a packet on a random basis when the terminal is idle.

Alternatively, the algorithm may be responsive to time of day or detection of low

traffic to generate more decoy packets during low traffic times. Note that packets are

preferably generated in groups, rather than one by one, the groups being sized to

simulate real messages. In addition, so that decoy packets may be inserted in normal

TARP message streams, the background loop may have a latch that makes it more

likely to insert decoy packets when a message stream is being received. Alternatively,

if a large number of decoy packets is received along with regular TARP packets, the

algorithm may increase the rate of dropping of decoy packets rather than forwarding

them. The result of dropping and generating decoy packets in this way is to make the

8

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

apparent incoming message size different from the apparent outgoing message size to

help foil traffic analysis.

In various other embodiments of the invention, a scalable version of the

system may be constructed in which a plurality of IP addresses are preassigned to

each pair of communicating nodes in the network. Each pair of nodes agrees upon an

algorithm for “hopping” between IP addresses (both sending and receiving), such that

an eavesdropper sees apparently continuously random IP address pairs (source and

destination) for packets transmitted between the pair. Overlapping or “reusable” IP

addresses may be allocated to different users on the same subnet, since each node

merely verifies that a particular packet includes a valid source/destination pair from

the agreed-upon algorithm. Source/destination pairs are preferably not reused

between any two nodes during any given end-to-end session, though limited IP block

sizes or lengthy sessions might require it.

Brief Description of the Drawings

FIG. 1 is an illustration of secure communications over the Internet according

to a prior art embodiment.

FIG. 2 is an illustration of secure communications over the Internet according

to a an embodiment of the invention.

FIG. 3a is an illustration of a process of forming a tunneled IP packet

according to an embodiment of the invention.

FIG. 3b is an illustration of a process of forming a tunneled IP packet

according to another embodiment of the invention.

FIG. 4 is an illustration of an OSI layer location of processes that may be used

to implement the invention.

FIG. 5 is a flow chart illustrating a process for routing a tunneled packet

according to an embodiment of the invention.

FIG. 6 is a flow chart illustrating a process for forming a tunneled packet

according to an embodiment of the invention.

9

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

FIG. 7 is a flow chart illustrating a process for receiving a tunneled packet

according to an embodiment of the invention.

FIG. 8 shows how a secure session is established and synchronized between a

client and a TARP router.

FIG. 9 shows an IP address hopping scheme between a client computer and

TARP router using transmit and receive tables in each computer.

FIG. 10 shows physical link redundancy among three Internet Service

Providers (ISPs) and a client computer.

FIG. 11 shows how multiple IP packets can be embedded into a single

“frame” such as an Ethernet frame, and further shows the use of a discriminator field

to camouflage true packet recipients.

FIG. 12A shows a system that employs hopped hardware addresses, hopped

IP addresses, and hopped discriminator fields.

FIG. 12B shows several different approaches for hopping hardware addresses,

IP addresses, and discriminator fields in combination.

FIG. 13 shows a technique for automatically re-establishing synchronization

between sender and receiver through the use of a partially public sync value.

FIG. 14 shows a “checkpoint” scheme for regaining synchronization between

a sender and recipient.

FIG. 15 shows further details of the checkpoint scheme of FIG. 14.

FIG. 16 shows how two addresses can be decomposed into a plurality of

segments for comparison with presence vectors.

FIG. 17 shows a storage array for a receiver’s active addresses.

FIG. 18 shows the receiver’s storage array after receiving a sync request.

FIG. 19 shows the receiver’s storage array after new addresses have been

generated.

FIG. 20 shows a system employing distributed transmission paths.

10

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/2S325

5

10

15

20

25

FIG. 21 shows a plurality of link transmission tables that can be used to route

packets in the system of FIG. 20.

Detailed Description of the Embodiments

Referring to FIG. 2, a secure mechanism for communicating over the internet

employs a number of special routers or servers, called TARP routers 122-127 that are

similar to regular IP routers 128-132 in that each has one or more IP addresses and

uses normal IP protocol to send normal-looking IP packet messages, called TARP

packets 140. TARP packets 140 are identical to normal IP packet messages that are

routed by regular IP routers 128-132 because each TARP packet 140 contains a

destination address as in a normal IP packet. However, instead of indicating a final

destination in the destination field of the IP header, the TARP packet’s 140 IP header

always points to a next-hop in a series of TARP router hops, or the final destination,

TARP terminal 110. Because the header of the TARP packet contains only the next­

hop destination, there is no overt indication from an intercepted TARP packet of the

true destination of the TARP packet 140 since the destination could always be the

next-hop TARP router as well as the final destination, TARP terminal 110.

Each TARP packet’s true destination is concealed behind an outer layer of

encryption generated using a link key 146. The link key 146 is the encryption key

used for encrypted communication between the end points (TARP terminals or TARP

routers) of a single link in the chain of hops connecting the originating TARP

terminal 100 and the destination TARP terminal 110. Each TARP router 122-127,

using the link key 146 it uses to communicate with the previous hop in a chain, can

use the link key to reveal the true destination of a TARP packet. To identify the link

key needed to decrypt the outer layer of encryption of a TARP packet, a receiving

TARP or routing terminal may identify the transmitting terminal (which may indicate

the link key used) by the sender field of the clear IP header. Alternatively, this

identity may be hidden behind another layer of encryption in available bits in the

clear IP header. Each TARP router, upon receiving a TARP message, determines if

11

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

the message is a TARP message by using authentication data in the TARP packet.

This could be recorded in available bytes in the TARP packet’s IP header.

Alternatively, TARP packets could be authenticated by attempting to decrypt using

the link key 146 and determining if the results are as expected. The former may have

computational advantages because it does not involve a decryption process.

Once the outer layer of decryption is completed by a TARP router 122-127,

the TARP router determines the final destination. The system is preferably designed

to cause each TARP packet 140 to undergo a minimum number of hops to help foil

traffic analysis. The time to live counter in the IP header of the TARP message may

be used to indicate a number of TARP router hops yet to be completed. Each TARP

router then would decrement the counter and determine from that whether it should

forward the TARP packet 140 to another TARP router 122-127 or to the destination

TARP terminal 110. If the time to live counter is zero or below zero after

decrementing, for an example of usage, the TARP router receiving the TARP packet

140 may forward the TARP packet 140 to the destination TARP terminal 110. If the

time to live counter is above zero after decrementing, for an example of usage, the

TARP router receiving the TARP packet 140 may forward the TARP packet 140 to a

TARP router 122-127 that the current TARP terminal chooses at random. As a result,

each TARP packet 140 is routed through some minimum number of hops of TARP

routers 122-127 which are chosen at random.

Thus, each TARP packet, irrespective of the traditional factors determining

traffic in the Internet, makes random trips among a number of geographically

disparate routers before reaching its destination and each trip is highly likely to be

different for each packet composing a given message because each trip is

independently randomly determined as described above. This feature is called agile
routing. For reasons that will become clear shortly, the fact that different packets take

different routes provides distinct advantages by making it difficult for an interloper to

obtain all the packets forming an entire multi-packet message. Agile routing is

12

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

combined with another feature that furthers this purpose, a feature that ensures that

any message is broken into multiple packets.

A TARP router receives a TARP packet when an IP address used by the

TARP router coincides with the IP address in the TARP packet’s IP header IPC. The

IP address of a TARP router, however, may not remain constant. To avoid and

manage attacks, each TARP router, independently or under direction from another

TARP terminal or router, may change its IP address. A separate, unchangeable

identifier or address is also defined. This address, called the TARP address, is known

only to TARP routers and terminals and may be correlated at any time by a TARP

router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals

which in tum update their respective LUTs. In reality, whenever a TARP router looks

up the address of a destination in the encrypted header, it must convert a TARP

address to a real IP address using its LUT.

While every TARP router receiving a TARP packet has the ability to

determine the packet’s final destination, the message payload is embedded behind an

inner layer of encryption in the TARP packet that can only be unlocked using a

session key. The session key is not available to any of the TARP routers 122-127

intervening between the originating 100 and destination 110 TARP terminals. The

session key is used to decrypt the payloads of the TARP packets 140 permitting an

entire message to be reconstructed.

In one embodiment, communication may be made private using link and

session keys, which in tum may be shared and used according any desired method.

For example, a public key or symmetric keys may be communicated between link or

session endpoints using a public key method. Any of a variety of other mechanisms

for securing data to ensure that only authorized computers can have access to the

private information in the TARP packets 140 may be used as desired.

13

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

Referring to FIG. 3a, to construct a series of TARP packets, a data stream 300

of IP packets 207a, 207b, 207c, etc., such series of packets being formed by a

network (IP) layer process,, is broken into a series of small sized segments. In the

present example, equal-sized segments 1 -9 are defined and used to construct a set of

interleaved data packets A, B, and C. Here it is assumed that the number of

interleaved packets A, B, and C formed is three and that the number of IP packets

207a-207c used to form the three interleaved packets A, B, and C is exactly three. Of

course, the number of IP packets spread over a group of interleaved packets may be

any convenient number as may be the number of interleaved packets over which the

incoming data stream is spread. The latter, the number of interleaved packets over

which the data stream is spread, is called the interleave window.

To create a packet, the transmitting software interleaves the normal IP packets

207a et. seq. to form a new set of interleaved payload data 320. This payload data 320

is then encrypted using a session key to form a set of session-key-encrypted payload

data 330, each of which, A, B, and C, will form the payload of a TARP packet. Using

the IP header data, from the original packets 207a-207c, new TARP headers IPT are

formed. The TARP headers IPT can be identical to normal IP headers or customized

in some way. In a preferred embodiment, the TARP headers IPT are IP headers with

added data providing the following information required for routing and

reconstruction of messages, some of which data is ordinarily, or capable of being,

contained in normal IP headers:

1. A window sequence number - an identifier that indicates where

the packet belongs in the original message sequence.

2. An interleave sequence number - an identifier that indicates the

interleaving sequence used to form the packet so that the packet can be

deinterleaved along with other packets in the interleave window.

3. A time-to-live (TTL) datum - indicates the number of TARP-

router-hops to be executed before the packet reaches its destination. Note

14

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

that the TTL parameter may provide a datum to be used in a probabilistic

formula for determining whether to route the packet to the destination or

to another hop.

4. Data type identifier — indicates whether the payload contains, for

example, TCP or UDP data.

5. Sender’s address - indicates the sender’s address in the TARP

network.

6. Destination address - indicates the destination terminal’s address

in the TARP network.

7. Decoy/Real - an indicator of whether the packet contains real

message data or dummy decoy data or a combination.

Obviously, the packets going into a single interleave window must include

only packets with a common destination. Thus, it is assumed in the depicted example

that the IP headers of IP packets 207a-207c all contain the same destination address

or at least will be received by the same terminal so that they can be deinterleaved.

Note that dummy or decoy data or packets can be added to form a larger interleave

window than would otherwise be required by the size of a given message. Decoy or

dummy data can be added to a stream to help foil traffic analysis by leveling the load

on the network. Thus, it may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data

during low traffic periods so that communication bursts at one point in the Internet

cannot be tied to communication bursts at another point to reveal the communicating

endpoints.

Dummy data also helps to break the data into a larger number of

inconspicuously-sized packets permitting the interleave window size to be increased

while maintaining a reasonable size for each packet. (The packet size can be a single

standard size or selected from a fixed range of sizes.) One primary reason for desiring

for each message to be broken into multiple packets is apparent if a chain block

15

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

encryption scheme is used to form the first encryption layer prior to interleaving. A

single block encryption may be applied to portion, or entirety, of a message, and that

portion or entirety then interleaved into a number of separate packets.

Referring to FIG. 3b, in an alternative mode of TARP packet construction, a

series of IP packets are accumulated to make up a predefined interleave window. The

payloads of the packets are used to construct a single block 520 for chain block

encryption using the session key. The payloads used to form the block are presumed

to be destined for the same terminal. The block size may coincide with the interleave

window as depicted in the example embodiment of FIG. 3b. After encryption, the

encrypted block is broken into separate payloads and segments which are interleaved

as in the embodiment of Fig 3a. The resulting interleaved packets A, B, and C, are

then packaged as TARP packets with TARP headers as in the Example of FIG. 3a.

The remaining process is as shown in, and discussed with reference to, FIG. 3a.

Once the TARP packets 340 are formed, each entire TARP packet 340,

including the TARP header IPT, is encrypted using the link key for communication

with the first-hop-TARP router. The first hop TARP router is randomly chosen. A

final unencrypted IP header IPC is added to each encrypted TARP packet 340 to form

a normal IP packet 360 that can be transmitted to a TARP router. Note that the

process of constructing the TARP packet 360 does not have to be done in stages as

described. The above description is just a useful heuristic for describing the final

product, namely, the TARP packet.

Note that, TARP header IPT could be a completely custom header

configuration with no similarity to a normal IP header except that it contain the

information identified above. This is so since this header is interpreted by only TARP

routers.

The above scheme may be implemented entirely by processes operating

between the data link layer and the network layer of each server or terminal

participating in the TARP system. Referring to FIG. 4, a TARP transceiver 405 can

16

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

be an originating terminal 100, a destination terminal 110, or a TARP router 122-127.

In each TARP Transceiver 405, a transmitting process is generated to receive normal

packets from the Network (IP) layer and generate TARP packets for communication

over the network. A receiving process is generated to receive normal IP packets

containing TARP packets and generate from these normal IP packets which are

“passed up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is

a router, the received TARP packets 140 are not processed into a stream of IP packets

415 because they need only be authenticated as proper TARP packets and then passed

to another TARP router or a TARP destination terminal 110. The intervening process,

a “TARP Layer” 420, could be combined with either the data link layer 430 or the

Network layer 410. In either case, it would intervene between the data link layer 430

so that the process would receive regular IP packets containing embedded TARP

packets and “hand up” a series of reassembled IP packets to the Network layer 410.

As an example of combining the TARP layer 420 with the data link layer 430, a

program may augment the normal processes running a communications card, for

example, an ethemet card. Alternatively, the TARP layer processes may form part of

a dynamically loadable module that is loaded and executed to support

communications between the network and data link layers.

Because the encryption system described above can be inserted between the

data link and network layers, the processes involved in supporting the encrypted

communication may be completely transparent to processes at the IP (network) layer

and above. The TARP processes may also be completely transparent to the data link

layer processes as well. Thus, no operations at or above the network layer, or at or

below the data link layer, are affected by the insertion of the TARP stack. This

provides additional security to all processes at or above the network layer, since the

difficulty of unauthorized penetration of the network layer (by, for example, a hacker)

is increased substantially. Even newly developed servers running at the session layer

leave all processes below the session layer vulnerable to attack. Note that in this

17

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

architecture, security is distributed. That is, notebook computers used by executives

on the road, for example, can communicate over the Internet without any compromise

in security.

Note that IP address changes made by TARP terminals and routers can be

done at regular intervals, at random intervals, or upon detection of “attacks.” The

variation of IP addresses hinders traffic analysis that might reveal which computers

are communicating, and also provides a degree of immunity from attack.. The level of

immunity from attack is roughly proportional to the rate at which the IP address of

the host is changing.

As mentioned, IP addresses may be changed in response to attacks. An attack

may be revealed, for example, by a regular series of messages indicates that a router

is being probed in some way. Upon detection of an attack, the TARP layer process

may respond to this event by changing its IP address. To accomplish this, the TARP

process will construct a TARP-formatted message, in the style of Internet Control

Message Protocol (ICMP) datagrams as an example; this message will contain the

machine’s TARP address, its previous IP address, and its new IP address. The TARP

layer will transmit this packet to at least one known TARP router; then upon receipt

and validation of the message, the TARP router will update its LUT with the new IP

address for the stated TARP address. The TARP router will then format a similar

message, and broadcast it to the other TARP routers so that they may update their

LUTs. Since the total number of TARP routers on any given subnet is expected to be

relatively small, this process of updating the LUTs should be relatively fast. It may

not, however, work as well when there is a relatively large number of TARP routers

and/or a relatively large number of clients; this has motivated a refinement of this

architecture to provide scalability; this refinement has led to a second embodiment,

which is discussed below.

Upon detection of an attack, the TARP process may also create a subprocess

that maintains the original IP address and continues interacting with the attacker. The

18

SUBSTITUTE SHEET (Riff

WO 00/27086 PCT/US99/25325

5

10

15

20

25

latter may provide an opportunity to trace the attacker or study the attacker’s methods

(called “fishbowling” drawing upon the analogy of a small fish in a fish bowl that

“thinks” it is in the ocean but is actually under captive observation). A history of the

communication between the attacker and the abandoned (fishbowled) IP address can

be recorded or transmitted for human analysis or further synthesized for purposes of

responding in some way.

As mentioned above, decoy or dummy data or packets can be added to

outgoing data streams by TARP terminals or routers. In addition to making it

convenient to spread data over a larger number of separate packets, such decoy

packets can also help to level the load on inactive portions of the Internet to help foil

traffic analysis efforts.

Decoy packets may be generated by each TARP terminal 100, 110 or each

router 122-127 on some basis determined by an algorithm. For example, the

algorithm may be a random one which calls for the generation of a packet on a

random basis when the terminal is idle. Alternatively, the algorithm may be

responsive to time of day or detection of low traffic to generate more decoy packets

during low traffic times. Note that packets are preferably generated in groups, rather

than one by one, the groups being sized to simulate real messages. In addition, so that

decoy packets may be inserted in normal TARP message streams, the background

loop may have a latch that makes it more likely to insert decoy packets when a

message stream is being received. That is, when a series of messages are received, the

decoy packet generation rate may be increased. Alternatively, if a large number of

decoy packets is received along with regular TARP packets, the algorithm may

increase the rate of dropping of decoy packets rather than forwarding them. The result

of dropping and generating decoy packets in this way is to make the apparent

incoming message size different from the apparent outgoing message size to help foil

traffic analysis. The rate of reception of packets, decoy or otherwise, may be

indicated to the decoy packet dropping and generating processes through perishable

19

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

decoy and regular packet counters. (A perishable counter is one that resets or

decrements its value in response to time so that it contains a high value when it is

incremented in rapid succession and a small value when incremented either slowly or

a small number of times in rapid succession.) Note that destination TARP terminal

110 may generate decoy packets equal in number and size to those TARP packets

received to make it appear it is merely routing packets and is therefore not the

destination terminal.

Referring to FIG. 5, the following particular steps may be employed in the

above-described method for routing TARP packets.

• SO. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an

encrypted TARP packet is received.

• S2. The TARP packet may be probed in some way to authenticate the packet

before attempting to decrypt it using the link key. That is, the router may

determine that the packet is an authentic TARP packet by performing a selected

operation on some data included with the clear IP header attached to the

encrypted TARP packet contained in the payload. This makes it possible to avoid

performing decryption on packets that are not authentic TARP packets.

• S3. The TARP packet is decrypted to expose the destination TARP address and

an indication of whether the packet is a decoy packet or part of a real message.

• S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

• S5. Based on the decoy generation/dropping algorithm and the perishable decoy

counter value, if the packet is a decoy packet, the router may choose to throw it

away. If the received packet is a decoy packet and it is determined that it should

be thrown away (S6), control returns to step SO.

20

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

• S7. The TTL parameter of the TARP header is decremented and it is determined

if the TTL parameter is greater than zero.

• S8. If the TTL parameter is greater than zero, a TARP address is randomly chosen

from a list of TARP addresses maintained by the router and the link key and IP

address corresponding to that TARP address memorized for use in creating a new

IP packet containing the TARP packet.

• S9. If the TTL parameter is zero or less, the link key and IP address

corresponding to the TARP address of the destination are memorized for use in

creating the new IP packet containing the TARP packet.

• S10. The TARP packet is encrypted using the memorized link key.

• SI 1. An IP header is added to the packet that contains the stored IP address, the

encrypted TARP packet wrapped with an IP header, and the completed packet

transmitted to the next hop or destination.

Referring to FIG. 6, the following particular steps may be employed in the

above-described method for generating TARP packets.

• S20. A background loop operation applies an algorithm that determines the

generation of decoy IP packets. The loop is interrupted when a data stream

containing IP packets is received for transmission.

• S21. The received IP packets are grouped into a set consisting of messages with a

constant IP destination address. The set is further broken down to coincide with a

maximum size of an interleave window The set is encrypted, and interleaved into

a set of payloads destined to become TARP packets.

• S22. The TARP address corresponding to the IP address is determined from a

lookup table and stored to generate the TARP header. An initial TTL count is

21

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

generated and stored in the header. The TTL count may be random with minimum

and maximum values or it may be fixed or determined by some other parameter.

• S23. The window sequence numbers and interleave sequence numbers are

recorded in the TARP headers of each packet.

• S24. One TARP router address is randomly chosen for each TARP packet and the

IP address corresponding to it stored for use in the clear IP header. The link key

corresponding to this router is identified and used to encrypt TARP packets

containing interleaved and encrypted data and TARP headers.

• S25. A clear IP header with the first hop router’s real IP address is generated and

added to each of the encrypted TARP packets and the resulting packets.

Referring to FIG. 7, the following particular steps may be employed in the

above-described method for receiving TARP packets.

• S40. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an

encrypted TARP packet is received.

• S42. The TARP packet may be probed to authenticate the packet before

attempting to decrypt it using the link key.

• S43. The TARP packet is decrypted with the appropriate link key to expose the

destination TARP address and an indication of whether the packet is a decoy

packet or part of a real message.

• S44. If the packet is a decoy packet, the perishable decoy counter is incremented.

• S45. Based on the decoy generation/dropping algorithm and the perishable decoy

counter value, if the packet is a decoy packet, the receiver may choose to throw it
away.

22

SUBSTITUTE SHEET (Rill

WO 00/27086 PCT/US99/25325

• S46. The TARP packets are cached until all packets forming an interleave

window are received.

• S47. Once all packets of an interleave window are received, the packets are

deinterleaved.

5 · S48. The packets block of combined packets defining the interleave window is

then decrypted using the session key.

• S49. The decrypted block is then divided using the window sequence data and the

IPT headers are converted into normal IPC headers. The window sequence

numbers are integrated in the IPC headers.

10 · S50. The packets are then handed up to the IP layer processes.

Scalability Enhancements

The IP agility feature described above relies on the ability to transmit IP

address changes to all TARP routers. The embodiments including this feature will be

referred to as “boutique” embodiments due to potential limitations in scaling these

15 features up for a large network, such as the Internet. (The “boutique” embodiments

would, however, be robust for use in smaller networks, such as small virtual private

networks, for example). One problem with the boutique embodiments is that if IP

address changes are to occur frequently, the message traffic required to update all

routers sufficiently quickly creates a serious burden on the Internet when the TARP

20 router and/or client population gets large. The bandwidth burden added to the

networks, for example in ICMP packets, that would be used to update all the TARP

routers could overwhelm the Internet for a large scale implementation that

approached the scale of the Internet. In other words, the boutique system’s scalability

is limited.

25 A system can be constructed which trades some of the features of the above

embodiments to provide the benefits of IP agility without the additional messaging

burden. This is accomplished by IP address-hopping according to shared algorithms

23

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

that govern IP addresses used between links participating in communications sessions

between nodes such as TARP nodes. (Note that the IP hopping technique is also

applicable to the boutique embodiment.) The IP agility feature discussed with respect

to the boutique system can be modified so that it becomes decentralized under this

scalable regime and governed by the above-described shared algorithm. Other

features of the boutique system may be combined with this new type of IP-agility.

The new embodiment has the advantage of providing IP agility governed by a

local algorithm and set of IP addresses exchanged by each communicating pair of

nodes. This local governance is session-independent in that it may govern

communications between a pair of nodes, irrespective of the session or end points

being transferred between the directly communicating pair of nodes.

In the scalable embodiments, blocks of IP addresses are allocated to each node

in the network. (This scalability will increase in the future, when Internet Protocol

addresses are increased to 128-bit fields, vastly increasing the number of distinctly

addressable nodes). Each node can thus use any of the IP addresses assigned to that

node to communicate with other nodes in the network. Indeed, each pair of

communicating nodes can use a plurality of source IP addresses and destination IP

addresses for communicating with each other.

Each communicating pair of nodes in a chain participating in any session

stores two blocks of IP addresses, called netblocks, and an algorithm and

randomization seed for selecting, from each netblock, the next pair of

source/destination IP addresses that will be used to transmit the next message. In

other words, the algorithm governs the sequential selection of IP-address pairs, one

sender and one receiver IP address, from each netblock. The combination of

algorithm, seed, and netblock (IP address block) will be called a “hopblock.” A router

issues separate transmit and receive hopblocks to its clients. The send address and the

receive address of the IP header of each outgoing packet sent by the client are filled

with the send and receive IP addresses generated by the algorithm. The algorithm is

24

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

“clocked” (indexed) by a counter so that each time a pair is used, the algorithm turns

out a new transmit pair for the next packet to be sent.

The router’s receive hopblock is identical to the client’s transmit hopblock.

The router uses the receive hopblock to predict what the send and receive IP address

pair for the next expected packet from that client will be. Since packets can be

received out of order, it is not possible for the router to predict with certainty what IP

address pair will be on the next sequential packet. To account for this problem, the

router generates a range of predictions encompassing the number of possible

transmitted packet send/receive addresses, of which the next packet received could

leap ahead. Thus, if there is a vanishingly small probability that a given packet will

arrive at the router ahead of 5 packets transmitted by the client before the given

packet, then the router can generate a series of 6 send/receive IP address pairs (or

“hop window”) to compare with the next received packet. When a packet is received,

it is marked in the hop window as such, so that a second packet with the same IP

address pair will be discarded. If an out-of-sequence packet does not arrive within a

predetermined timeout period, it can be requested for retransmission or simply

discarded from the receive table, depending upon the protocol in use for that

communications session, or possibly by convention.

When the router receives the client’s packet, it compares the send and receive

IP addresses of the packet with the next N predicted send and receive IP address pairs

and rejects the packet if it is not a member of this set. Received packets that do not

have the predicted source/destination IP addresses falling with the window are

rejected, thus thwarting possible hackers. (With the number of possible combinations,

even a fairly large window would be hard to fall into at random.) If it is a member of

this set, the router accepts the packet and processes it further. This link-based IP-

hopping strategy, referred to as “IHOP,” is a network element that stands on its own

and is not necessarily accompanied by elements of the boutique system described

above. If the routing agility feature described in connection with the boutique

25

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

embodiment is combined with this link-based IP-hopping strategy, the router’s next

step would be to decrypt the TARP header to determine the destination TARP router

for the packet and determine what should be the next hop for the packet. The TARP

router would then forward the packet to a random TARP router or the destination

5 TARP router with which the source TARP router has a link-based IP hopping

communication established.

Figure 8 shows how a client computer 801 and a TARP router 811 can

establish a secure session. When client 801 seeks to establish an IHOP session with

TARP router 811, the client 801 sends “secure synchronization” request (“SSYN”)

10 packet 821 to the TARP router 811. This SYN packet 821 contains the client’s 801

authentication token, and may be sent to the router 811 in an encrypted format. The

source and destination IP numbers on the packet 821 are the client’s 801 current fixed

IP address, and a “known” fixed IP address for the router 811. (For security purposes,

it may be desirable to reject any packets from outside of the local network that are

15 destined for the router’s known fixed IP address.) Upon receipt and validation of the

client’s 801 SSYN packet 821, the router 811 respond by sending an encrypted

“secure synchronization acknowledgment” (“SSYN ACK”) 822 to the client 801.

This SSYN ACK 822 will contain the transmit and receive hopblocks that the client

801 will use when communicating with the TARP router 811. The client 801 will

20 acknowledge the TARP router’s 811 response packet 822 by generating an encrypted

SSYN ACK ACK packet 823 which will be sent from the client’s 801 fixed IP

address and to the TARP router’s 811 known fixed IP address. The client 801 will

simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred

to as the Secure Session Initiation (SSI) packet 824, will be sent with the first

25 {sender, receiver} IP pair in the client’s transmit table 921 (FIG. 9), as specified in

the transmit hopblock provided by the TARP router 811 in the SSYN ACK packet

822. The TARP router 811 will respond to the SSI packet 824 with an SSI ACK

packet 825, which will be sent with the first {sender, receiver} IP pair in the TARP

26

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

router’s transmit table 923. Once these packets have been successfully exchanged, the

secure communications session is established, and all further secure communications

between the client 801 and the TARP router 811 will be conducted via this secure

session, as long as synchronization is maintained. If synchronization is lost, then the

client 801 and TARP router 802 may re-establish the secure session by the procedure

outlined in Figure 8 and described above.

While the secure session is active, both the client 901 and TARP router 911

(FIG. 9) will maintain their respective transmit tables 921, 923 and receive tables

922, 924, as provided by the TARP router during session synchronization 822. It is

important that the sequence of IP pairs in the client’s transmit table 921 be identical

to those in the TARP router’s receive table 924; similarly, the sequence of IP pairs in

the client’s receive table 922 must be identical to those in the router’s transmit table

923. This is required for the session synchronization to be maintained. The client 901

need maintain only one transmit table 921 and one receive table 922 during the

course of the secure session. Each sequential packet sent by the client 901 will

employ the next {send, receive} IP address pair in the transmit table, regardless of

TCP or UDP session. The TARP router 911 will expect each packet arriving from the

client 901 to bear the next IP address pair shown in its receive table.

Since packets can arrive out of order, however, the router 911 can maintain a

“look ahead” buffer in its receive table, and will mark previously-received IP pairs as

invalid for future packets; any future packet containing an IP pair that is in the look-

ahead buffer but is marked as previously received will be discarded.

Communications from the TARP router 911 to the client 901 are maintained in an

identical manner; in particular, the router 911 will select the next IP address pair from

its transmit table 923 when constructing a packet to send to the client 901, and the

client 901 will maintain a look-ahead buffer of expected IP pairs on packets that it is

receiving. Each TARP router will maintain separate pairs of transmit and receive

27

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

tables for each client that is currently engaged in a secure session with or through that

TARP router.

While clients receive their hopblocks from the first server linking them to the

Internet, routers exchange hopblocks. When a router establishes a link-based IP-

hopping communication regime with another router, each router of the pair exchanges

its transmit hopblock. The transmit hopblock of each router becomes the receive

hopblock of the other router. The communication between routers is governed as

described by the example of a client sending a packet to the first router.

While the above strategy works fine in the IP milieu, many local networks

that are connected to the Internet are ethemet systems. In ethemet, the IP addresses of

the destination devices must be translated into hardware addresses, and vice versa,

using known processes (“address resolution protocol,” and “reverse address

resolution protocol”). However, if the link-based IP-hopping strategy is employed,

the correlation process would become explosive and burdensome. An alternative to

the link-based IP hopping strategy may be employed within an ethemet network. The

solution is to provide that the node linking the Internet to the ethemet (call it the

border node) use the link-based IP-hopping communication regime to communicate

with nodes outside the ethemet LAN. Within the ethemet LAN, each TARP node

would have a single IP address which would be addressed in the conventional way.

Instead of comparing the {sender, receiver} IP address pairs to authenticate a packet,

the intra-LAN TARP node would use one of the IP header extension fields to do so.

Thus, the border node uses an algorithm shared by the intra-LAN TARP node to

generate a symbol that is stored in the free field in the IP header, and the intra-LAN

TARP node generates a range of symbols based on its prediction of the next expected

packet to be received from that particular source IP address. The packet is rejected if

it does not fall into the set of predicted symbols (for example, numerical values) or is

accepted if it does. Communications from the intra-LAN TARP node to the border

node are accomplished in the same manner, though the algorithm will necessarily be

28

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

different for security reasons. Thus, each of the communicating nodes will generate

transmit and receive tables in a similar manner to that of Figure 9; the intra-LAN

TARP nodes transmit table will be identical to the border node’s receive table, and

the intra-LAN TARP node’s receive table will be identical to the border node’s

transmit table.

The algorithm used for IP address-hopping can be any desired algorithm. For

example, the algorithm can be a given pseudo-random number generator that

generates numbers of the range covering the allowed IP addresses with a given seed.

Alternatively, the session participants can assume a certain type of algorithm and

specify simply a parameter for applying the algorithm. For example the assumed

algorithm could be a particular pseudo-random number generator and the session

participants could simply exchange seed values.

Note that there is no permanent physical distinction between the originating

and destination terminal nodes. Either device at either end point can initiate a

synchronization of the pair. Note also that the authentication/synchronization-request

(and acknowledgment) and hopblock-exchange may all be served by a single message

so that separate message exchanges may not be required.

As another extension to the stated architecture, multiple physical paths can be

used by a client, in order to provide link redundancy and further thwart attempts at

denial of service and traffic monitoring. As shown in Figure 10, for example, client

1001 can establish three simultaneous sessions with each of three TARP routers

provided by different ISPs 1011, 1012, 1013. As an example, the client 1001 can use

three different telephone lines 1021, 1022, 1023 to connect to the ISPs, or two

telephone lines and a cable modem, etc. In this scheme, transmitted packets will be

sent in a random fashion among the different physical paths. This architecture

provides a high degree of communications redundancy, with improved immunity

from denial-of-service attacks and traffic monitoring.

FURTHER EXTENSIONS

29

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

The following describes various extensions to the techniques, systems, and

methods described above. As described above, the security of communications

occurring between computers in a computer network (such as the Internet, an

Ethernet, or others) can be enhanced by using seemingly random source and

5 destination Internet Protocol (IP) addresses for data packets transmitted over the

network. This feature prevents eavesdroppers from determining which computers in

the network are communicating with each other while permitting the two

communicating computers to easily recognize whether a given received data packet is

legitimate or not. In one embodiment of the above-described systems, an IP header

10 extension field is used to authenticate incoming packets on an Ethernet.

Various extensions to the previously described techniques described herein

include: (1) use of hopped hardware or “MAC” addresses in broadcast type network;

(2) a self-synchronization technique that permits a computer to automatically regain

synchronization with a sender; (3) synchronization algorithms that allow transmitting

15 and receiving computers to quickly re-establish synchronization in the event of lost

packets or other events; and (4) a fast-packet rejection mechanism for rejecting

invalid packets. Any or all of these extensions can be combined with the features

described above in any of various ways.

A. Hardware Address Hopping

20 Internet protocol-based communications techniques on a LAN—or across any

dedicated physical medium—typically embed the IP packets within lower-level

packets, often referred to as “frames.” As shown in FIG. 11, for example, a first

Ethernet frame 1150 comprises a frame header 1101 and two embedded IP packets

IP 1 and IP2, while a second Ethernet frame 1160 comprises a different frame header

25 1104 and a single IP packet IP3. Each frame header generally includes a source

hardware address 1101A and a destination hardware address 1101B; other well-

known fields in frame headers are omitted from FIG. 11 for clarity. Two hardware

nodes communicating over a physical communication channel insert appropriate

30

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

source and destination hardware addresses to indicate which nodes on the channel or

network should receive the frame.

It may be possible for a nefarious listener to acquire information about the

contents of a frame and/or its communicants by examining frames on a local network

rather than (or in addition to) the IP packets themselves. This is especially true in

broadcast media, such as Ethernet, where it is necessary to insert into the frame

header the hardware address of the machine that generated the frame and the

hardware address of the machine to which frame is being sent. All nodes on the

network can potentially “see” all packets transmitted across the network. This can be

a problem for secure communications, especially in cases where the communicants do

not want for any third party to be able to identify who is engaging in the information

exchange. One way to address this problem is to push the address-hopping scheme

down to the hardware layer. In accordance with various embodiments of the

invention, hardware addresses are “hopped” in a manner similar to that used to

change IP addresses, such that a listener cannot determine which hardware node

generated a particular message nor which node is the intended recipient.

FIG. 12A shows a system in which Media Access Control (“MAC”) hardware

addresses are “hopped” in order to increase security over a network such as an

Ethernet. While the description refers to the exemplary case of an Ethernet

environment, the inventive principles are equally applicable to other types of

communications media. In the Ethernet case, the MAC address of the sender and

receiver are inserted into the Ethernet frame and can be observed by anyone on the

LAN who is within the broadcast range for that frame. For secure communications, it

becomes desirable to generate frames with MAC addresses that are not attributable to

any specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate

over a communication channel such as an Ethernet. Each node executes one or more

application programs 1203 and 1218 that communicate by transmitting packets

31

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

through communication software 1204 and 1217, respectively. Examples of

application programs include video conferencing, e-mail, word processing programs,

telephony, and the like. Communication software 1204 and 1217 can comprise, for

example, an OSI layered architecture or “stack” that standardizes various services

provided at different levels of functionality.

The lowest levels of communication software 1204 and 1217 communicate

with hardware components 1206 and 1214 respectively, each of which can include

one or more registers 1207 and 1215 that allow the hardware to be reconfigured or

controlled in accordance with various communication protocols. The hardware

components (an Ethernet network interface card, for example) communicate with

each other over the communication medium. Each hardware component is typically

pre-assigned a fixed hardware address or MAC number that identifies the hardware

component to other nodes on the network. One or more interface drivers control the

operation of each card and can, for example, be configured to accept or reject packets

from certain hardware addresses. As will be described in more detail below, various

embodiments of the inventive principles provide for “hopping” different addresses

using one or more algorithms and one or more moving windows that track a range of

valid addresses to validate received packets. Packets transmitted according to one or

more of the inventive principles will be generally referred to as “secure” packets or

“secure communications” to differentiate them from ordinary data packets that are

transmitted in the clear using ordinary, machine-correlated addresses.

One straightforward method of generating non-attributable MAC addresses is

an extension of the IP hopping scheme. In this scenario, two machines on the same

LAN that desire to communicate in a secure fashion exchange random-number

generators and seeds, and create sequences of quasi-random MAC addresses for

synchronized hopping. The implementation and synchronization issues are then

similar to that of IP hopping.

This approach, however, runs the risk of using MAC addresses that are

32

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

currently active on the LAN—which, in turn, could interrupt communications for

those machines. Since an Ethernet MAC address is at present 48 bits in length, the

chance of randomly misusing an active MAC address is actually quite small.

However, if that figure is multiplied by a large number of nodes (as would be found

5 on an extensive LAN), by a large number of frames (as might be the case with packet

voice or streaming video), and by a large number of concurrent Virtual Private

Networks (VPNs), then the chance that a non-secure machine’s MAC address could

be used in an address-hopped frame can become non-trivial. In short, any scheme that

runs even a small risk of interrupting communications for other machines on the LAN

10 is bound to receive resistance from prospective system administrators. Nevertheless,

it is technically feasible, and can be implemented without risk on a LAN on which

there is a small number of machines, or if all of the machines on the LAN are

engaging in MAC-hopped communications.

Synchronized MAC address hopping may incur some overhead in the course

15 of session establishment, especially if there are multiple sessions or multiple nodes

involved in the communications. A simpler method of randomizing MAC addresses

is to allow each node to receive and process every incident frame on the network.

Typically, each network interface driver will check the destination MAC address in

the header of every incident frame to see if it matches that machine’s MAC address;

20 if there is no match, then the frame is discarded. In one embodiment, however, these

checks can be disabled, and every incident packet is passed to the TARP stack for

processing. This will be referred to as “promiscuous” mode, since every incident

frame is processed. Promiscuous mode allows the sender to use completely random,

unsynchronized MAC addresses, since the destination machine is guaranteed to

25 process the frame. The decision as to whether the packet was truly intended for that

machine is handled by the TARP stack, which checks the source and destination IP

addresses for a match in its IP synchronization tables. If no match is found, the packet

is discarded; if there is a match, the packet is unwrapped, the inner header is

33

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

evaluated, and if the inner header indicates that the packet is destined for that

machine then the packet is forwarded to the IP stack—otherwise it is discarded.

One disadvantage of purely-random MAC address hopping is its impact on

processing overhead; that is, since every incident frame must be processed, the

5 machine’s CPU is engaged considerably more often than if the network interface

driver is discriminating and rejecting packets unilaterally. A compromise approach is

to select either a single fixed MAC address or a small number of MAC addresses

(e.g., one for each virtual private network on an Ethernet) to use for MAC-hopped

communications, regardless of the actual recipient for which the message is intended.

10 In this mode, the network interface driver can check each incident frame against one

(or a few) pre-established MAC addresses, thereby freeing the CPU from the task of

physical-layer packet discrimination. This scheme does not betray any useful

information to an interloper on the LAN; in particular, every secure packet can

already be identified by a unique packet type in the outer header. However, since all

15 machines engaged in secure communications would either be using the same MAC

address, or be selecting from a small pool of predetermined MAC addresses, the

association between a specific machine and a specific MAC address is effectively

broken.

In this scheme, the CPU will be engaged more often than it would be in non-

20 secure communications (or in synchronized MAC address hopping), since the

network interface driver cannot always unilaterally discriminate between secure

packets that are destined for that machine, and secure packets from other VPNs.

However, the non-secure traffic is easily eliminated at the network interface, thereby

reducing the amount of processing required of the CPU. There are boundary

25 conditions where these statements would not hold, of course—e.g., if all of the traffic

on the LAN is secure traffic, then the CPU would be engaged to the same degree as it

is in the purely-random address hopping case; alternatively, if each VPN on the LAN

uses a different MAC address, then the network interface can perfectly discriminate

WO 00/27086 PCT/US99/2532S

5

10

15

20

25

secure frames destined for the local machine from those constituting other VPNs.

These are engineering tradeoffs that might be best handled by providing

administrative options for the users when installing the software and/or establishing

VPNs.

Even in this scenario, however, there still remains a slight risk of selecting

MAC addresses that are being used by one or more nodes on the LAN. One solution

to this problem is to formally assign one address or a range of addresses for use in

MAC-hopped communications. This is typically done via an assigned numbers

registration authority; e.g., in the case of Ethernet, MAC address ranges are assigned

to vendors by the Institute of Electrical and Electronics Engineers (IEEE). A

formally-assigned range of addresses would ensure that secure frames do not conflict

with any properly-configured and properly-functioning machines on the LAN.

Reference will now be made to FIGS. 12A and 12B in order to describe the

many combinations and features that follow the inventive principles. As explained

above, two computer nodes 1201 and 1202 are assumed to be communicating over a

network or communication medium such as an Ethernet. A communication protocol

in each node (1204 and 1217, respectively) contains a modified element 1205 and

1216 that performs certain functions that deviate from the standard communication

protocols. In particular, computer node 1201 implements a first “hop” algorithm

1208X that selects seemingly random source and destination IP addresses (and, in one

embodiment, seemingly random IP header discriminator fields) in order to transmit

each packet to the other computer node. For example, node 1201 maintains a

transmit table 1208 containing triplets of source (S), destination (D), and

discriminator fields (DS) that are inserted into outgoing IP packet headers. The table

is generated through the use of an appropriate algorithm (e.g., a random number

generator that is seeded with an appropriate seed) that is known to the recipient node

1202. As each new IP packet is formed, the next sequential entry out of the sender’s

transmit table 1208 is used to populate the IP source, IP destination, and IP header

35

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

extension field (e.g., discriminator field). It will be appreciated that the transmit table

need not be created in advance but could instead be created on-the-fly by executing

the algorithm when each packet is formed.

At the receiving node 1202, the same IP hop algorithm 1222X is maintained

5 and used to generate a receive table 1222 that lists valid triplets of source IP address,

destination IP address, and discriminator field. This is shown by virtue of the first

five entries of transmit table 1208 matching the second five entries of receive table

1222. (The tables may be slightly offset at any particular time due to lost packets,

misordered packets, or transmission delays). Additionally, node 1202 maintains a

10 receive window W3 that represents a list of valid IP source, IP destination, and

discriminator fields that will be accepted when received as part of an incoming IP

packet. As packets are received, window W3 slides down the list of valid entries,

such that the possible valid entries change over time. Two packets that arrive out of

order but are nevertheless matched to entries within window W3 will be accepted;

15 those falling outside of window W3 will be rejected as invalid. The length of

window W3 can be adjusted as necessary to reflect network delays or other factors.

Node 1202 maintains a similar'transmit table 1221 for creating IP packets and

frames destined for node 1201 using a potentially different hopping algorithm 1221X,

and node 1201 maintains a matching receive table 1209 using the same algorithm

20 1209X. As node 1202 transmits packets to node 1201 using seemingly random IP

source, IP destination, and/or discriminator fields, node 1201 matches the incoming

packet values to those falling within window W1 maintained in its receive table. In

effect, transmit table 1208 of node 1201 is synchronized (i.e., entries are selected in

the same order) to receive table 1222 of receiving node 1202. Similarly, transmit

25 table 1221 of node 1202 is synchronized to receive table 1209 of node 1201. It will

be appreciated that although a common algorithm is shown for the source, destination

and discriminator fields in FIG. 12A (using, e.g., a different seed for each of the three

fields), an entirely different algorithm could in fact be used to establish values for

36

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/2S325

5

10

15

20

25

each of these fields. It will also be appreciated that one or two of the fields can be

“hopped” rather than all three as illustrated.

In accordance with another aspect of the invention, hardware or “MAC”

addresses are hopped instead of or in addition to IP addresses and/or the discriminator

field in order to improve security in a local area or broadcast-type network. To that

end, node 1201 further maintains a transmit table 1210 using a transmit algorithm

121 OX to generate source and destination hardware addresses that are inserted into

frame headers (e.g., fields 1101A and 1101B in FIG. 11) that are synchronized to a

corresponding receive table 1224 at node 1202. Similarly, node 1202 maintains a

different transmit table 1223 containing source and destination hardware addresses

that is synchronized with a corresponding receive table 1211 at node 1201. In this

manner, outgoing hardware frames appear to be originating from and going to

completely random nodes on the network, even though each recipient can determine

whether a given packet is intended for it or not. It will be appreciated that the

hardware hopping feature can be implemented at a different level in the

communications protocol than the IP hopping feature (e.g., in a card driver or in a

hardware card itself to improve performance).

FIG. 12B shows three different embodiments or modes that can be employed

using the aforementioned principles. In a first mode referred to as “promiscuous”

mode, a common hardware address (e.g., a fixed address for source and another for

destination) or else a completely random hardware address is used by all nodes on the

network, such that a particular packet cannot be attributed to any one node. Each

node must initially accept all packets containing the common (or random) hardware

address and inspect the IP addresses or discriminator field to determine whether the

packet is intended for that node. In this regard, either the IP addresses or the

discriminator field or both can be varied in accordance with an algorithm as described

above. As explained previously, this may increase each node’s overhead since

37

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

additional processing is involved to determine whether a given packet has valid

source and destination hardware addresses.

In a second mode referred to as “promiscuous per VPN” mode, a small set of

fixed hardware addresses are used, with a fixed source/destination hardware address

5 used for all nodes communicating over a virtual private network. For example, if

there are six nodes on an Ethernet, and the network is to be split up into two private

virtual networks such that nodes on one VPN can communicate with only the other

two nodes on its own VPN, then two sets of hardware addresses could be used: one

set for the first VPN and a second set for the second VPN. This would reduce the

10 amount of overhead involved in checking for valid frames since only packets arriving

from the designated VPN would need to be checked. IP addresses and one or more

discriminator fields could still be hopped as before for secure communication within

the VPN. Of course, this solution compromises the anonymity of the VPNs (i.e., an

outsider can easily tell what traffic belongs in which VPN, though he cannot correlate

15 it to a specific machine/person). It also requires the use of a discriminator field to

mitigate the vulnerability to certain types of DoS attacks. (For example, without the

discriminator field, an attacker on the LAN could stream frames containing the MAC

addresses being used by the VPN; rejecting those frames could lead to excessive

processing overhead. The discriminator field would provide a low-overhead means of

20 rejecting the false packets.)

In a third mode referred to as “hardware hopping” mode, hardware addresses

are varied as illustrated in FIG. 12A, such that hardware source and destination

addresses are changed constantly in order to provide non-attributable addressing.

Variations on these embodiments are of course possible, and the invention is not

25 intended to be limited in any respect by these illustrative examples.

B. Extending the Address Space

Address hopping provides security and privacy. However, the level of

protection is limited by the number of addresses in the blocks being hopped. A

38

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

hopblock denotes a field or fields modulated on a packet-wise basis for the purpose of

providing a VPN. For instance, if two nodes communicate with IP address hopping

using hopblocks of 4 addresses (2 bits) each, there would be 16 possible address-pair

combinations. A window of size 16 would result in most address pairs being accepted

5 as valid most of the time. This limitation can be overcome by using a discriminator

field in addition to or instead of the hopped address fields. The discriminator field

would be hopped in exactly the same fashion as the address fields and it would be

used to determine whether a packet should be processed by a receiver.

Suppose that two clients, each using four-bit hopblocks, would like the same

10 level of protection afforded to clients communicating via IP hopping between two A

blocks (24 address bits eligible for hopping). A discriminator field of 20 bits, used in

conjunction with the 4 address bits eligible for hopping in the IP address field,

provides this level of protection. A 24-bit discriminator field would provide a similar

level of protection if the address fields were not hopped or ignored. Using a

15 discriminator field offers the following advantages: (1) an arbitrarily high level of

protection can be provided, and (2) address hopping is unnecessary to provide

protection. This may be important in environments where address hopping would

cause routing problems.

C. Synchronization Techniques

20 It is generally assumed that once a sending node and receiving node have

exchanged algorithms and seeds (or similar information sufficient to generate quasi­

random source and destination tables), subsequent communication between the two

nodes will proceed smoothly. Realistically, however, two nodes may lose

synchronization due to network delays or outages, or other problems. Consequently,

25 it is desirable to provide means for re-establishing synchronization between nodes in

a network that have lost synchronization.

One possible technique is to require that each node provide an

acknowledgment upon successful receipt of each packet and, if no acknowledgment is

39

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

received within a certain period of time, to re-send the unacknowledged packet. This

approach, however, drives up overhead costs and may be prohibitive in high-

throughput environments such as streaming video or audio, for example.

A different approach is to employ an automatic synchronizing technique that

will be referred to herein as “self-synchronization.” In this approach, synchronization

information is embedded into each packet, thereby enabling the receiver to re­

synchronize itself upon receipt of a single packet if it determines that is has lost

synchronization with the sender. (If communications are already in progress, and the

receiver determines that it is still in sync with the sender, then there is no need to re­

synchronize.) A receiver could detect that it was out of synchronization by, for

example, employing a “dead-man” timer that expires after a certain period of time,

wherein the timer is reset with each valid packet. A time stamp could be hashed into

the public sync field (see below) to preclude packet-retry attacks.

In one embodiment, a “sync field” is added to the header of each packet sent

out by the sender. This sync field could appear in the clear or as part of an encrypted

portion of the packet. Assuming that a sender and receiver have selected a random­

number generator (RNG) and seed value, this combination of RNG and seed can be

used to generate a random-number sequence (RNS). The RNS is then used to

generate a sequence of source/destination IP pairs (and, if desired, discriminator

fields and hardware source and destination addresses), as described above. It is not

necessary, however, to generate the entire sequence (or the first N-l values) in order

to generate the Nth random number in the sequence; if the sequence index N is

known, the random value corresponding to that index can be directly generated (see

below). Different RNGs (and seeds) with different fundamental periods could be

used to generate the source and destination IP sequences, but the basic concepts

would still apply. For the sake of simplicity, the following discussion will assume

that IP source and destination address pairs (only) are hopped using a single RNG
sequencing mechanism.

40

WO 00/27086 PCT/US99/25325

In accordance with a “self-synchronization” feature, a sync field in each

packet header provides an index (i.e., a sequence number) into the RNS that is being

used to generate IP pairs. Plugging this index into the RNG that is being used to

generate the RNS yields a specific random number value, which in turn yields a

5 specific IP pair. That is, an IP pair can be generated directly from knowledge of the

RNG, seed, and index number; it is not necessary, in this scheme, to generate the

entire sequence of random numbers that precede the sequence value associated with

the index number provided.

Since the communicants have presumably previously exchanged RNGs and

10 seeds, the only new information that must be provided in order to generate an IP pair

is the sequence number. If this number is provided by the sender in the packet

header, then the receiver need only plug this number into the RNG in order to

generate an IP pair - and thus verify that the IP pair appearing in the header of the

packet is valid. In this scheme, if the sender and receiver lose synchronization, the

15 receiver can immediately re-synchronize upon receipt of a single packet by simply

comparing the IP pair in the packet header to the IP pair generated from the index

number. Thus, synchronized communications can be resumed upon receipt of a single

packet, making this scheme ideal for multicast communications. Taken to the

extreme, it could obviate the need for synchronization tables entirely; that is, the

20 sender and receiver could simply rely on the index number in the sync field to

validate the IP pair on each packet, and thereby eliminate the tables entirely.

The aforementioned scheme may have some inherent security issues

associated with it — namely, the placement of the sync field. If the field is placed in

the outer header, then an interloper could observe the values of the field and their

25 relationship to the IP stream. This could potentially compromise the algorithm that is

being used to generate the IP-address sequence, which would compromise the

security of the communications. If, however, the value is placed in the inner header,

then the sender must decrypt the inner header before it can extract the sync value and

41

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

validate the IP pair; this opens up the receiver to certain types of denial-of-service

(DoS) attacks, such as packet replay. That is, if the receiver must decrypt a packet

before it can validate the IP pair, then it could potentially be forced to expend a

significant amount of processing on decryption if an attacker simply retransmits

5 previously valid packets. Other attack methodologies are possible in this scenario.

A possible compromise between algorithm security and processing speed is to

split up the sync value between an inner (encrypted) and outer (unencrypted) header.

That is, if the sync value is sufficiently long, it could potentially be split into a

rapidly-changing part that can be viewed in the clear, and a fixed (or very slowly

10 changing) part that must be protected. The part that can be viewed in the clear will be

called the “public sync” portion and the part that must be protected will be called the

“private sync” portion.

Both the public sync and private sync portions are needed to generate the

complete sync value. The private portion, however, can be selected such that it is

15 fixed or will change only occasionally. Thus, the private sync value can be stored by

the recipient, thereby obviating the need to decrypt the header in order to retrieve it. If

the sender and receiver have previously agreed upon the frequency with which the

private part of the sync will change, then the receiver can selectively decrypt a single

header in order to extract the new private sync if the communications gap that has led

20 to lost synchronization has exceeded the lifetime of the previous private sync. This

should not represent a burdensome amount of decryption, and thus should not open

up the receiver to denial-of-service attack simply based on the need to occasionally

decrypt a single header.

One implementation of this is to use a hashing function with a one-to-one

25 mapping to generate the private and public sync portions from the sync value. This

implementation is shown in FIG. 13, where (for example) a first ISP 1302 is the

sender and a second ISP 1303 is the receiver. (Other alternatives are possible from

FIG. 13.) A transmitted packet comprises a public or “outer” header 1305 that is not

42

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

encrypted, and a private or “inner” header 1306 that is encrypted using for example a

link key. Outer header 1305 includes a public sync portion while inner header 1306

contains the private sync portion. A receiving node decrypts the inner header using a

decryption function 1307 in order to extract the private sync portion. This step is

5 necessary only if the lifetime of the currently buffered private sync has expired. (If

the currently-buffered private sync is still valid, then it is simply extracted from

memory and “added” (which could be an inverse hash) to the public sync, as shown

in step 1308.) The public and decrypted private sync portions are combined in

function 1308 in order to generate the combined sync 1309. The combined sync

10 (1309) is then fed into the RNG (1310) and compared to the IP address pair (1311) to

validate or reject the packet.

An important consideration in this architecture is the concept of “future” and

“past” where the public sync values are concerned. Though the sync values,

themselves, should be random to prevent spoofing attacks, it may be important that

15 the receiver be able to quickly identify a sync value that has already been sent —

even if the packet containing that sync value was never actually received by the

receiver. One solution is to hash a time stamp or sequence number into the public

sync portion, which could be quickly extracted, checked, and discarded, thereby

validating the public sync portion itself.

20 In one embodiment, packets can be checked by comparing the

source/destination IP pair generated by the sync field with the pair appearing in the

packet header. If (1) they match, (2) the time stamp is valid, and (3) the dead-man

timer has expired, then re-synchronization occurs; otherwise, the packet is rejected. If

enough processing power is available, the dead-man timer and synchronization tables

25 can be avoided altogether, and the receiver would simply resynchronize (e.g.,

validate) on every packet.

The foregoing scheme may require large-integer (e.g., 160-bit) math, which

may affect its implementation. Without such large-integer registers, processing

43

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

throughput would be affected, thus potentially affecting security from a denial-of-

service standpoint. Nevertheless, as large-integer math processing features become

more prevalent, the costs of implementing such a feature will be reduced.

D, Other Synchronization Schemes

5 As explained above, if W or more consecutive packets are lost between a

transmitter and receiver in a VPN (where W is the window size), the receiver’s

window will not have been updated and the transmitter will be transmitting packets

not in the receiver’s window. The sender and receiver will not recover

synchronization until perhaps the random pairs in the window are repeated by chance.

10 Therefore, there is a need to keep a transmitter and receiver in synchronization

whenever possible and to re-establish synchronization whenever it is lost.

A “checkpoint” scheme can be used to regain synchronization between a

sender and a receiver that have fallen out of synchronization. In this scheme, a

checkpoint message comprising a random IP address pair is used for communicating

15 synchronization information. In one embodiment, two messages are used to

communicate synchronization information between a sender and a recipient:

1. SYNCJREQ is a message used by the sender to indicate that it wants to

synchronize; and

2. SYNC-ACK is a message used by the receiver to inform the transmitter

20 that it has been synchronized.

According to one variation of this approach, both the transmitter and receiver

maintain three checkpoints (see FIG. 14):

1. In the transmitter, ckpt_o (“checkpoint old”) is the IP pair that was used to

re-send the last SYNC_REQ packet to the receiver. In the receiver,

25 ckpt_o (“checkpoint old”) is the IP pair that receives repeated

SYNC_REQ packets from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new”) is the IP pair that will be

used to send the next SYNC_REQ packet to the receiver. In the receiver,

44

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

ckpt_n (“checkpoint new”) is the IP pair that receives a new SYNC_REQ

packet from the transmitter and which causes the receiver’s window to be

re-aligned, ckpt_o set to ckpt_n, a new ckpt_n to be generated and a new

ckpt_r to be generated.

5 3. In the transmitter, ckpt_r is the IP pair that will be used to send the next

SYNC_ACK packet to the receiver. In the receiver, ckpt_r is the IP pair

that receives a new SYNC_ACK packet from the transmitter and which

causes a new ckpt_n to be generated. Since SYNC_ACK is transmitted

from the receiver ISP to the sender ISP, the transmitter ckpt_r refers to the

10 ckpt_r of the receiver and the receiver ckpt_r refers to the ckpt_r of the

transmitter (see FIG. 14).

When a transmitter initiates synchronization, the IP pair it will use to transmit the

next data packet is set to a predetermined value and when a receiver first receives a

SYNC_REQ, the receiver window is updated to be centered on the transmitter’s next

15 IP pair. This is the primary mechanism for checkpoint synchronization.

Synchronization can be initiated by a packet counter (e.g., after every N

packets transmitted, initiate a synchronization) or by a timer (every S seconds, initiate

a synchronization) or a combination of both. See FIG. 15. From the transmitter’s

perspective, this technique operates as follows: (1) Each transmitter periodically

20 transmits a “sync request” message to the receiver to make sure that it is in sync. (2)

If the receiver is still in sync, it sends back a “sync ack” message. (If this works, no

further action is necessary). (3) If no “sync ack” has been received within a period of

time, the transmitter retransmits the sync request again. If the transmitter reaches the

next checkpoint without receiving a “sync ack” response, then synchronization is

25 broken, and the transmitter should stop transmitting. The transmitter will continue to

send sync_reqs until it receives a sync_ack , at which point transmission is

reestablished.

From the receiver’s perspective, the scheme operates as follows: (1) when it

45

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

receives a “sync request” request from the transmitter, it advances its window to the

next checkpoint position (even skipping pairs if necessary), and sends a “sync ack”

message to the transmitter. If sync was never lost, then the “jump ahead” really just

advances to the next available pair of addresses in the table (i.e., normal

5 advancement).

If an interloper intercepts the “sync request” messages and tries to interfere

with communication by sending new ones, it will be ignored if the synchronization

has been established or it it will actually help to re-establish synchronization.

A window is realigned whenever a re-synchronization occurs. This

10 realignment entails updating the receiver’s window to straddle the address pairs used

by the packet transmitted immediately after the transmission of the SYNC_REQ

packet. Normally, the transmitter and receiver are in synchronization with one

another. However, when network events occur, the receiver’s window may have to be

advanced by many steps during resynchronization. In this case, it is desirable to move

15 the window ahead without having to step through the intervening random numbers

sequentially. (This feature is also desirable for the auto-sync approach discussed

above).

E. Random Number Generator with a Jump-Ahead capability

An attractive method for generating randomly hopped addresses is to use

20 identical random number generators in the transmitter and receiver and advance them

as packets are transmitted and received. There are many random number generation

algorithms that could be used. Each one has strengths and weaknesses for address

hopping applications.

Linear congruential random number generators (LCRs) are fast, simple and

25 well characterized random number generators that can be made to jump ahead n steps

efficiently. An LCR generates random numbers X,, X2, X3... Xk starting with seed Xo

using a recurrence

Xr(a Xj.j + b) mod c, (1)

46

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

where a, b and c define a particular LCR. Another expression for Xj5

XKiaXXo+bj-bXia-l)) mod c (2)

enables the jump-ahead capability. The factor a1 can grow very large even for modest

i if left unfettered. Therefore some special properties of the modulo operation can be

5 used to control the size and processing time required to compute (2). (2) can be

rewritten as:

X^a'(X0(a-l)+b)-b)/(a-l) mode. (3)

It can be shown that:

(a'(Xo(a-l)+b)-b)/(a-l) mod c =

10 ((a'mod((a-l)c)(X0(a-l)+b)-b)/(a-1)) mod c (4).

(X0(a-l)+b) can be stored as (X0(a-l)+b) mod c, b as b mod c and compute a1

mod((a-l)c) (this requires O(log(i)) steps).

A practical implementation of this algorithm would jump a fixed distance, n,

between synchronizations; this is tantamount to synchronizing every n packets. The

15 window would commence n IP pairs from the start of the previous window. Using

Xjw, the random number at the j* checkpoint, as Xo and n as z, a node can store a"

mod((a-l)c) once per LCR and set

Xj+,w=Xn(j+1)=((a"mod((a-l)c) (Xf (a-l)+b)-b)/(a-l))mod c, (5)

to generate the random number for the j+lth synchronization. Using this construction,

20 a node could jump ahead an arbitrary (but fixed) distance between synchronizations

in a constant amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs, in particular, will

eventually repeat their cycles. This repetition may present vulnerability in the IP

hopping scheme. An adversary would simply have to wait for a repeat to predict

25 future sequences. One way of coping with this vulnerability is to create a random

number generator with a known long cycle. A random sequence can be replaced by a

new random number generator before it repeats. LCRs can be constructed with

known long cycles. This is not currently true of many random number generators.

47

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

Random number generators can be cryptographically insecure. An adversary

can derive the RNG parameters by examining the output or part of the output. This is

true of LCGs. This vulnerability can be mitigated by incorporating an encryptor,

designed to scramble the output as part of the random number generator. The random

5 number generator prevents an adversary from mounting an attack—e.g., a known

plaintext attack—against the encryptor.

F, Random Number Generator Example

Consider a RNG where a=31,b=4 and c=15. For this case equation (1)

becomes:

10 Xj=(31 Xj.| + 4) mod 15. (6)

If one sets X0=l, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10,

14, 3,7, 11,0, 4, 8, 12. This sequence will repeat indefinitely. For a jump ahead of 3

numbers in this sequence a'- 313=29791, c*(a-l)=15*30=450 and a" mod((a-l)c) =

313mod(15*30)=29791mod(450)=91. Equation (5) becomes:

15 ((91 (X;30+4)-4)/30)mod 15 (7).

Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and

jump ahead 3.

48

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

TABLE 1

I Xi (Xj30+4) 91 (Xf30+4)-4 ((91 (Xj3 0+4)-4)/30 X>+3

1 5 154 14010 467 2

4 2 64 5820 194 14

7 14 424 38580 1286 11

10 11 334 30390 1013 8

13 8 244 22200 740 5

5

10

15

20

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a packet has a valid

header and thus requires further processing, or has an invalid header (a hostile packet)

and should be immediately rejected. Such rapid determinations will be referred to as

“fast packet filtering.” This capability protects the VPN from attacks by an adversary

who streams hostile packets at the receiver at a high rate of speed in the hope of

saturating the receiver’s processor (a so-called “denial of service” attack). Fast packet

filtering is an important feature for implementing VPNs on shared media such as

Ethernet.

Assuming that all participants in a VPN share an unassigned “A” block of

addresses, one possibility is to use an experimental “A” block that will never be

assigned to any machine that is not address hopping on the shared medium. “A”

blocks have a 24 bits of address that can be hopped as opposed to the 8 bits in “C”

blocks. In this case a hopblock will be the “A” block. The use of the experimental

“A” block is a likely option on an Ethernet because:

1. The addresses have no validity outside of the Ethernet and will not be routed out

to a valid outside destination by a gateway.

49

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

2. There are 224 (-16 million) addresses that can be hopped within each “A” block.

This yields >280 trillion possible address pairs making it very unlikely that an

adversary would guess a valid address. It also provides acceptably low probability

of collision between separate VPNs (all VPNs on a shared medium independently

generate random address pairs from the same “A” block).

3. The packets will not be received by someone on the Ethemet who is not on a

VPN (unless the machine is in promiscuous mode) minimizing impact on non­

VPN computers.

The Ethemet example will be used to describe one implementation of fast

packet filtering. The ideal algorithm would quickly examine a packet header,

determine whether the packet is hostile, and reject any hostile packets or determine

which active IP pair the packet header matches. The problem is a classical associative

memory problem. A variety of techniques have been developed to solve this problem

(hashing, B-trees etc). Each of these approaches has its strengths and weaknesses.

For instance, hash tables can be made to operate quite fast in a statistical sense, but

can occasionally degenerate into a much slower algorithm. This slowness can persist

for a period of time. Since there is a need to discard hostile packets quickly at all

times, hashing would be unacceptable.

H. Presence Vector Algorithm

A presence vector is a bit vector of length 2" that can be indexed by «-bit

numbers (each ranging from 0 to 2n—1). One can indicate the presence of k n-bit

numbers (not necessarily unique), by setting the bits in the presence vector indexed

by each number to 1. Otherwise, the bits in the presence vector are 0. An n-bit

number, x, is one of the k numbers if and only if the Xth bit of the presence vector is 1.

A fast packet filter can be implemented by indexing the presence vector and looking

for a 1, which will be referred to as the “test.”

For example, suppose one wanted to represent the number 135 using a

presence vector. The 135th bit of the vector would be set. Consequently, one could

50

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

very quickly determine whether an address of 135 was valid by checking only one

bit: the 135th bit. The presence vectors could be created in advance corresponding to

the table entries for the IP addresses. In effect, the incoming addresses can be used as

indices into a long vector, making comparisons very fast. As each RNG generates a

5 new address, the presence vector is updated to reflect the information. As the

window moves, the presence vector is updated to zero out addresses that are no

longer valid.

There is a trade-off between efficiency of the test and the amount of memory

required for storing the presence vector(s). For instance, if one were to use the 48 bits

10 of hopping addresses as an index, the presence vector would have to be 35 terabytes.

Clearly, this is too large for practical purposes. Instead, the 48 bits can be divided into

several smaller fields. For instance, one could subdivide the 48 bits into four 12-bit

fields (see FIG. 16). This reduces the storage requirement to 2048 bytes at the

expense of occasionally having to process a hostile packet. In effect, instead of one

15 long presence vector, the decomposed address portions must match all four shorter

presence vectors before further processing is allowed. (If the first part of the address

portion doesn’t match the first presence vector, there is no need to check the

remaining three presence vectors).

A presence vector will have a 1 in the yth bit if and only if one or more

20 addresses with a corresponding field of y are active. An address is active only if each

presence vector indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 checkpoints. A hostile packet

will be rejected by the indexing of one presence vector more than 99% of the time. A

hostile packet will be rejected by the indexing of all 4 presence vectors more than

25 99.9999995% of the time. On average, hostile packets will be rejected in less than

1.02 presence vector index operations.

The small percentage of hostile packets that pass the fast packet filter will be

rejected when matching pairs are not found in the active window or are active

51

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

checkpoints. Hostile packets that serendipitously match a header will be rejected

when the VPN software attempts to decrypt the header. However, these cases will be

extremely rare. There are many other ways this method can be configured to arbitrate

the space/speed tradeoffs.

I. Further Synchronization Enhancements

A slightly modified form of the synchronization techniques described above

can be employed. The basic principles of the previously described checkpoint

synchronization scheme remain unchanged. The actions resulting from the reception

of the checkpoints are, however, slightly different. In this variation, the receiver will

maintain between OoO (“Out of Order”) and 2xWINDOW_SIZE+OoO active

addresses (1 <OoO <WINDOW_SIZE and WINDOWJSIZE >1). OoO and

WINDOW_SIZE are engineerable parameters, where OoO is the minimum number

of addresses needed to accommodate lost packets due to events in the network or out

of order arrivals and WINDOW_SIZE is the number of packets transmitted before a

SYNC_REQ is issued. FIG. 17 depicts a storage array for a receiver’s active

addresses.

The receiver starts with the first 2xWINDOW_SIZE addresses loaded and

active (ready to receive data). As packets are received, the corresponding entries are

marked as “used” and are no longer eligible to receive packets. The transmitter

maintains a packet counter, initially set to 0, containing the number of data packets

transmitted since the last initial transmission of a SYNC_REQ for which

SYNC_ACK has been received. When the transmitter packet counter equals

WINDOW_SIZE, the transmitter generates a SYNC_REQ and does its initial

transmission. When the receiver receives a SYNC_REQ corresponding to its current

CKPT_N, it generates the next WINDOW_SIZE addresses and starts loading them in

order starting at the first location after the last active address wrapping around to the

beginning of the array after the end of the array has been reached. The receiver’s

52

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

array might look like FIG. 18 when a SYNC_REQ has been received. In this case a

couple of packets have been either lost or will be received out of order when the

SYNC_REQ is received.

FIG. 19 shows the receiver’s array after the new addresses have been

generated. If the transmitter does not receive a SYNC_ACK, it will re-issue the

SYNC_REQ at regular intervals. When the transmitter receives a SYNC_ACK, the

packet counter is decremented by WINDOW_SIZE. If the packet counter reaches

2xWINDOW_SIZE - OoO then the transmitter ceases sending data packets until the

appropriate SYNC_ACK is finally received. The transmitter then resumes sending

data packets. Future behavior is essentially a repetition of this initial cycle. The

advantages of this approach are:

1. There is no need for an efficient jump ahead in the random number generator,

2. No packet is ever transmitted that does not have a corresponding entry in the

receiver side

3. No timer based re-synchronization is necessary. This is a consequence of 2.

4. The receiver will always have the ability to accept data messages transmitted

within OoO messages of the most recently transmitted message.

J. Distributed Transmission Path Variant

Another embodiment incorporating various inventive principles is shown in

FIG. 20. In this embodiment, a message transmission system includes a first

computer 2001 in communication with a second computer 2002 through a network

2011 of intermediary computers. In one variant of this embodiment, the network

includes two edge routers 2003 and 2004 each of which is linked to a plurality of

Internet Service Providers (ISPs) 2005 through 2010. Each ISP is coupled to a

plurality of other ISPs in an arrangement as shown in FIG. 20, which is a

representative configuration only and is not intended to be limiting. Each connection

between ISPs is labeled in FIG. 20 to indicate a specific physical transmission path

(e.g., AD is a physical path that links ISP A (element 2005) to ISP D (element 2008)).

53

SUBSTITUTE SHEET (RLfLE26)

Packets arriving at each edge router are selectively transmitted to one of the ISPs to

which the router is attached on the basis of a randomly or quasi-randomly selected

basis.

As shown in FIG. 21, computer 2001 or edge router 2003 incorporates a

5 plurality of link transmission tables 2100 that identify, for each potential transmission

path through the network, valid sets of IP addresses that can be used to transmit the

packet. For example, AD table 2101 contains a plurality of IP source/destination

pairs that are randomly or quasi-randomly generated. When a packet is to be

transmitted from first computer 2001 to second computer 2002, one of the link tables

10 is randomly (or quasi-randomly) selected, and the next valid source/destination

address pair from that table is used to transmit the packet through the network. If

path AD is randomly selected, for example, the next source/destination IP address

pair (which is pre-determined to transmit between ISP A (element 2005) and ISP B

(element 2008)) is used to transmit the packet. If one of the transmission paths

15 becomes degraded or inoperative, that link table can be set to a “down” condition as

shown in table 2105, thus preventing addresses from being selected from that table.

Other transmission paths would be unaffected by this broken link.

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers or
steps.

54

WO 00/27086 PCT/US99/25325

CLAIMS

1. A method of transmitting information between a first computer and a

second computer, comprising the steps of:

(1) embedding in each of a plurality of data packets a discriminator value that

5 periodically changes between successive data packets, wherein each discriminator

value is not based solely on the value of other data in each data packet;

(2) transmitting the plurality of data packets between the first computer and
the second computer;

(3) receiving the transmitted data packets at the second computer; and

10 (4) for each received data packet, comparing the discriminator value to a set of

valid discriminator values and, in response to detecting a match, accepting the

received data packet for further processing, and otherwise rejecting the received data

packet.

2. The method of claim 1, wherein step (1) comprises the step of using an

15 Internet Protocol address in an Internet Protocol header as the discriminator value,

wherein the Internet Protocol address is used to route the data packets over the

Internet.

3. The method of claim 2, further comprising the step of changing in value

only part of the Internet Protocol addresses between successive packets.

20 4. The method of claim 1, further comprising the step of using as the

discriminator value a data field external to an Internet Protocol header of each data
packet.

5. The method of claim 1, wherein steps (1) and (4) are performed in a data

link layer of an ISO standard communication protocol.

25 6. The method of claim 1, wherein step (1) comprises the step of using a

Media Access Control (MAC) hardware address as the discriminator value, wherein

the MAC hardware address is used to route the data packets on a local area network.

7. The method of claim 1, wherein step (1) comprises the step of using a

55

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

5

10

15

20

25

different discriminator value for each successive packet.

8. The method of claim 1, wherein step (4) comprises the step of comparing

each discriminator value to a window of valid discriminator values, wherein the

window is wide enough to permit comparison to only a small number of potentially

valid discriminator values, and further comprising the step of moving the window as

successive data packets are received.

9. The method of claim 1, further comprising the step of sharing between the

first computer and the second computer information sufficient to generate the set of

valid discriminator values.

10. The method of claim 1, further comprising the step of transmitting from

the first computer to the second computer an algorithm for selecting successively

valid discriminator values.

11. The method of claim 1, wherein step (4) comprises the step of using a

presence vector to determine whether to accept each data packet.

12. The method of claim 1, wherein step (4) comprises the step of using a

hashing function to determine whether the discriminator value is valid.

13. The method of claim 1, further comprising the step of transmitting a

synchronization request between the first computer and the second computer, wherein

the second computer uses the synchronization request to maintain synchronization of

valid discriminator values.

14. The method of claim 13, further comprising the step of, in response to

failure to receive a synchronization acknowledgement from the second computer,

shutting off transmission of data packets to the second computer.

15. The method of claim 13, further comprising the step of embedding a

synchronization value in each data packet that permits the second computer to re­

establish synchronization in a set of potentially valid discriminator values.

16. The method of claim 13, further comprising the step of moving a window

of valid discriminator values in the second computer in response to receiving the

56

SUBSTITUTE SHEET (RULE26)

P:\oper\ssb\l455J-00 resp.doc-06/12/02

-57-

synchronization request from the first computer.

17. The method of claim 1, wherein step (1) comprises the steps of using an Internet

Protocol source address in an Internet Protocol header as a first part of the discriminator

5 value and using an Internet Protocol destination address in the Internet Protocol header as a

second part of the discriminator value, wherein the source and destination addresses are

used to route each data packet over the Internet.

18. The method of claim 17, further comprising the steps of:

10 embedding a plurality of the data packets into a frame; and

embedding a source and destination hardware address in the frame, wherein the

source and destination hardware address are quasi-randomly generated and used to route

the frame on a network.

15 19. . The method of claim l, further comprising the step of maintaining ih the first ;

computer a first transmit table and a first receive table, and maintaining in the second-

computer a second transmit table, and a second receive table,

wherein each transmit table comprises a list of valid discriminator values that are to

be inserted into outgoing data packets;

20 wherein each receive table comprises a list of valid discriminator values that are to

be compared against incoming data packets; and

wherein the first transmit table in the first computer matches the second receive

table in the second computer; and wherein the first receive table in the first computer

matches the second transmit table in the second computer.

25

20. A system comprising:

a first computer that embeds into each of a plurality of data packets a discriminator

value that periodically changes between successive data packets, wherein each

discriminator value is not based solely on the value of other data in each data packet; and

30 a second computer coupled to the first computer through a network,

wherein the first computer transmits the plurality of data packets to the second

P:\opcrtssb\14553-00 resp.doc-06/12/02

-58-

computer, and

wherein the second computer receives the transmitted data packets, compares the

discriminator value in each received data packet to a set of valid discriminator values and,

in response to detecting a match, accepts the received data packet for further processing,

and otherwise rejects the received data packet.

• 99• 9• · 10

21. The system of claim 20, wherein the first computer embeds into each of the

plurality of data packets an Internet Protocol address in an Internet Protocol header as the

discriminator value, wherein the Internet Protocol address is used to route the data packets

over the Internet.

22. The system of claim 21, wherein the first computer changes in value only part of

the Internet Protocol addresses between successive packets.

15'

• ·· ·

23. The system of claim 20, wherein the first computer embeds the discriminator value · ,

in a data field external to an Internet Protocol header of each data packet. - i; λ , : -

'· · ·• · ·• ··

• 99 99 9 9 9• 9 20

24. The system of claim 20, wherein the first computer embeds each discriminator

value in a first data link layer of an ISO standard communication protocol, and wherein the

second computer compares each discriminator value in a second data link layer of the ISO

standard communications protocol.

5

25

25. The system of claim 20, wherein the first computer embeds a Medial Access

Control (MAC) hardware address as the discriminator value, wherein the MAC hardware

address is used to route the data packets on a local area network.

26. The system of claim 20, wherein the first computer embeds a different

discriminator value for each successive packet.

30 27. The system of claim 20, wherein the second computer compares each discriminator

value to a window of valid discriminator values, wherein the window is wide enough to

P:\opcr\ssb\14553-00 resp.doc -06/12/02

-59-

permit comparison to only a small number of potentially valid discriminator values, and

wherein the window is moved as successive data packets are received.

28. The system of claim 20, wherein the first and second computers share common

5 information sufficient to generate the set of valid discriminator values.

29. The system of claim 20, wherein the first computer transmits to the second

computer an algorithm for selecting successively valid discriminator values.

10 30. The system of claim 20, wherein the second computer uses a presence vector to

determine whether to accept each data packet.

31. The system of claim 20, wherein the second computer uses a hashing function to

determine whether the discriminator value is valid.

32. The system of claim 20, wherein the first computer transmits to the second ■·■,

computer a synchronization request, wherein the second computer uses the synchronization

request to maintain synchronization of valid discriminator values.

20 33. The system of claim 32, wherein the first computer, in response to failure to receive

a synchronization acknowledgement from the second computer, shuts off transmission of

data packets to the second computer.

34. The system of claim 32, wherein the first computer embeds a synchronization value

25 in each data packet that permits the second computer to re-establish synchronization in a

set of potentially valid discriminator values.

35. The system of claim 32, wherein the second computer moves a window of valid

discriminator values in response to receiving the synchronization request from the first

30 computer.

P:\opcrtssb\14553-00 resp.doc -06/12/02

-60-

36. The system of claim 20, wherein the first computer embeds an Internet Protocol

source address in an Internet Protocol header as a first part of the discriminator value and

embeds an Internet Protocol destination address in the Internet Protocol header as a second

part of the discriminator value, wherein the source and destination addresses are used to

5 route each data packet over the Internet.

37. The system of claim 36, wherein the first computer embeds a plurality of the data

packets into a frame and embeds a source and destination hardware address in the frame,

wherein the source and destination hardware address are quasi-randomly generated and

10 used to route the frame on a network.

38. The system of claim 20,

wherein the first computer comprises a first transmit table and a first receive table,

wherein the second computer comprises a second transmit table and a second

15 receive table, . . . :-

- wherein each transmit table comprises a list of valid discriminator values that are to

be inserted into outgoing data packets,

wherein each receive table comprises a list of valid discriminator values that are to

be compared against incoming data packets,

20 wherein the first transmit table in the first computer matches the second receive

table in the second computer, and

wherein the first receive table in the first computer matches the second transmit

table in the second computer.

25 39. A system comprising in combination:

a transmitting node that generates pseudo-random discriminator values and embeds

the pseudo-random discriminator values into data packets for transmission; and

a receiving node that receives data packets transmitted by the transmitting node,

wherein the receiving node, for each received packet, extracts the pseudo-randomly

30 generated discriminator value, compares it to a set of potentially valid discriminator values

shared between the transmitting node and the receiving node and, in response to detecting

P:\opc6ssb\14553-00 resp.doc-06/12/02

-61 -

a match, accepts the data packet, and otherwise discards the packet.

40. The system of claim 39, wherein the receiving node maintains a window of valid

discriminator values, wherein the window is moved in response to detecting a match.

5

41. The system of claim 39, wherein each pseudo-randomly generated discriminator

value comprises a valid Internet Protocol address that is assigned to the receiving node.

• · · ·
• · ·• · ·• ··

• ·
• · · ·
• · ··

42. The system of claim 39, wherein each pseudo-randomly generated discriminator

10 value comprises a valid Media Access Control (MAC) hardware address that is assigned to

the receiving node.

43. The system of claim 39, wherein the transmitting node generates a different

pseudo-randomly generated discriminator value for each successive data packet. .

.15 . ■ · ■
44. A receiving computer that receives data packets from a transmitting computer,

wherein the receiving computer comprises computer instructions that execute the steps of:

(4) for each received data packet, extracting a discriminator value inserted by

the transmitting computer;

(5) comparing the extracted discriminator value to a set of valid discriminator

values on the basis of information previously shared with the transmitting computer, and

(6) in response to detecting a match in step (2), accepting the received data

packet for further processing and otherwise rejecting the data packet.

25 45. The receiving computer of claim 44, wherein the receiving computer further

comprises computer instructions that extract as the discriminator value an Internet Protocol

address from a header portion of each data packet.

46. The receiving computer of claim 44, wherein the receiving computer maintains a

30 window of valid discriminator values, wherein the window is moved in response to

detecting matches.

P:'opcrtssb\l4353-00 resp.doc-06/12/02

-62­

47. The receiving computer of claim 44, wherein the receiving computer receives

information from the transmitting computer sufficient to establish the set of valid

discriminator values. .

5 48. A method of transmitting information between a first computer and a second

computer substantially as hereinbefore described with reference to Figures 2 to 21.

«

49. A system substantially as hereinbefore described with reference to Figures 2 to 21.

10 50. A receiving computer substantially as hereinbefore described with reference to

Figures 2 to 21.

DATED this 6th day of December, 2002

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

15 > by DAVIES COLLISON CAVE - .
Patent Attorneys for the Applicant

• ·

1/23

WO 00/27086 PCT/US99/25325

Fig. 1

SUBSTITUTE SHEET (RULE26)

2/23

WO 00/27086 PCT/US99/25325

Fig. 2

SUBSTITUTE SHEET (RULE26)

3/23

WO 00/27086 PCT/US99/25325

Fig. 3a

SUBSTITUTE SHEET (RULE26)

207b 207c 207d · · ·

data stream 300

207a

IP IP IP

\
encrypted block divided

into payloads 522

block-encrypted (session-key)
payload sequence 520

encrypted block divided
into payloads interleaved

inter eave window 517

TARP packets with
encrypted payloads 340

SU
BSTITU

TE SH
EET (R

U
LE 26)

|b|

Fig. 3b

J
Dummy blocks or data

may be added

encrypted block divided
payloads interleaved

Xx

ΓΌ
UJ

W
O 00/27086

PC
T/U

S99/25325

S
JB

S
TnU

TC
 S
H
E
E
T

i
Other alternative

to combine
TARP processing

with D.L. Processor
(e.g., burn into boarc

PROM)

TARP Transceiver 405

One alternative to
combine

TARP processing
with O/S IP
Processor

lpc il llEllilillll I
I
I

data link protocol
wrapper 450

Fig. 4

tn

ro
Cm

PC
T/U

S99/25325

PCT/US99/25325WO 00/27086

Fig. 5

SUBSTITUTE SHEET (RULE26)

7/23

WO 00/27086 PCT/US99/25325

S20

S21

S22

S23

S24

S25

Fig. 6

SUBSTITUTE SHEET (RULE26)

WO 00/27086 PCT/US99/25325

Fig. 7
SUBSTITUTE SHEET (RULE 26)

FIG. 8

S
U
B
S
TITU

TE
 S
H
E
E
T

SECURE SESSION ESTABLISHMENT
AND SYNCHRONIZATION

CLIENT TERMINAL
SSYN PACKET 821

SSYN ACK PACKET 822

SSYN ACK ACK PACKET 823

SECURE SESSION INITIATION 824

SECURE SESSION INITIATION ACK 825

CO

W
O

 00/27086
PC

T/U
S99/25325

/TARP^
ROUTER
k 911 ,

FIG. 9

IHOP TRANSMIT AND RECEIVE TABLES

S
B
S
TnU

TE
 SH

EET
 (R

U
LE26)

TRANSMIT TABLE 921

131.218.204.98
131.218.204.221
131.218.204.139
131.218.204.12

131.218.204.65
131.218.204.97
131.218.204.186
131.218.204.55

RECEIVE TABLE 922

131.218.204.161
131.218.204.66
131.218.204.201
131.218.204.119

131.218.204.89
131.218.204.212
131.218.204.127
131.218.204.49

RECEIVE TABLE 924

131.218.204.98 ,, 131.218.204.65
131.218.204.221 ,, 131.218.204.97
131.218.204.139 ;, 131.218.204.186 o

131.218.204.12 , 131.218.204.55 CM

TRANSMITTABLE 923

131.218.204.161
131.218.204.66
131.218.204.201
131.218.204.119

131.218.204.89
131.218.204.212
131.218.204.127
131.218.204.49

W
O 00/27086

PC
T/U

S99/25325

W
O 00/27086

FIG. 10

ro
CM

1150

1104A

1160

\

1102C

1101 / ETHERNET FRAME
HEADER

SRC. HW ADDRESS: 53

DEST. HW ADDRESS: 88

1102 (

\

IP PACKET
HEADER

SOURCE IPADDRESS: 10
DEST. IP ADDRESS: 14

DISCRIM FIELD: 77

PAYLOAD #1

1103^ IP PACKET
HEADER

SOURCE IP ADDRESS: 13
DEST. IP ADDRESS: 15

DISCRIM FIELD: 13

PAYLOAD #2

1110

1103A

1112

■1103B
1103C

1102A
-1102B

1101A

1101B

1105A
1105B
1105C

ETHERNET FRAME
HEADER

^1104

SRC. HW ADDRESS: 53

DEST. HW ADDRESS: 88
IP PACKET
HEADER

^1105

SOURCE IP ADDRESS: 71
DEST. IP ADDRESS: 91
DISCRIM FIELD: 45

PAYLOAD #3

PC
T/U

S99/25325

FIG. 11

W
O 00/27086

PC
T/U

S99/25325

S
U
B
S
TITU

TE
 SH

EET
 (R

U
LE26)

FIG. 12A

SU
BSTITU

TE
 SH

EET (R
U
LE26)

MODE
OR

EMBODIMENT

HARDWARE
ADDRESSES

IP ADDRESSES DISCRIMINATOR FIELD
VALUES

O 00/27086

I4/23

1. PROMISCUOUS
SAME FOR ALL NODES

OR COMPLETELY
RANDOM

CAN BE VARIED
IN SYNC

CAN BE VARIED
IN SYNC

2. PROMISCUOUS
PER VPN

FIXED FOR EACH VPN
CAN BE VARIED

IN SYNC
CAN BE VARIED

IN SYNC

3. HARDWARE
HOPPING

CAN BE VARIED
IN SYNC

CAN BE VARIED
IN SYNC

CAN BE VARIED
IN SYNC

PC
T/U

S99/25325

FIG. 12B

1301

SU
BSTITU

TE
 SH

EET
 (R

U
LE26)

1305

1306

1302 1303 1304

> CLIENT B

<_n
rxs
Um

DISCARD
PACKET

PC
T/U

S99/25325

FIG. 13

Kept in Sync for Sender to Recipient Synchronizer ◄----------- ----- --------->
Kept in Sync for Recipient to Sender Synchronizer ◄------------------------- ►

W
O 00/27086

PC
T/U

S99/25325

FIG. 14

SU
BSTITU

TE
 SH

EET
 (R

U
LE26)

@
@ When Synchronization
Begins Transmit (Retransmit
Periodically Until ACKed)
S YNC_REQ Using New
Transmitter Checkpoint IP
Pair ckpt_n and Generate
New Receiver Response
Checkpoint ckpt_r

#
When SYNC_ACK
Arrives with Incoming
Header = ckpt_r:
Generate New
Checkpoint IP Pair
ckpt_n in Transmitter

*

▼
1

t

*When SYNC_REQ Arrives
with Incoming Header =

4 Receiver’s ckpt_n:
w

▼
•Update Window
•Generate New
Checkpoint IP Pair
ckpt_n in Receiver
• Generate New
Checkpoint IP Pair
ckpt_r in Transmitter
•Transmit SYNC ACK
Using New Checkpoint
IP Pair ckpt r

ro
CM

W
O 00/27086

PC
T/U

S99/25325

FIG. 15

FIG. 16

19/23

WO 00/27086 PCT/US99/25325

Inactive
Active
Used

FIG. 17

SUBSTITUTE SHEET (RULE26)

20/23

WO 00/27086 PCT/US99/25325

Inactive
| Active
H Used

FIG. 18

1

SUBSTITUTE SHEET (RULE26)

21/23

WO 00/27086 PCT/US99/25325

Inactive
Active
Used

FIG. 19

SUBSTITUTE SHEET (RULE 26)

22/23

WO 00/27086 PCT/US99/25325

20
11

SUBSTITUTE SHEET (RULE26)

23/23

WO 00/27086 PCT/US99/25325

SUBSTITUTE SHEET (RULE26)

