

US 20160054304A1

(19) United States

(12) Patent Application Publication Janssen et al.

(10) **Pub. No.: US 2016/0054304 A1**(43) **Pub. Date:** Feb. 25, 2016

(54) MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL IN THE TREATMENT OF FIBROTIC DISEASES

(71) Applicant: GALAPAGOS NV, Mechelen (BE)

(72) Inventors: Richard Antonius Jozef Janssen,
Leiden (NL); Annemarie Nicolete
Lekkerkerker, Palo Alto, CA (US);
Thomas Van Es, Voorschoen (NL);
Johannes Melchior Petrus Stallen,
Leiden (NL)

(21) Appl. No.: 14/775,790

(22) PCT Filed: Mar. 7, 2014

(86) PCT No.: **PCT/EP2014/054441**

§ 371 (c)(1),

(2) Date: **Nov. 3, 2015**

Related U.S. Application Data

(60) Provisional application No. 61/781,220, filed on Mar. 14, 2013.

Publication Classification

(51) Int. Cl. G01N 33/50 (2006.01) C07K 16/40 (2006.01) C07K 16/28 (2006.01)

C12N 15/113 (2006.01) (52) U.S. Cl.

CPC *G01N 33/5055* (2013.01); *C12N 15/113* (2013.01); *C07K* 16/40 (2013.01); *C07K*

16/2869 (2013.01); *C12N 2310/14* (2013.01); *C12N 2310/531* (2013.01)

(57) ABSTRACT

The present invention relates to methods and assays for identifying agents useful in the treatment of fibrotic conditions. The invention provides polypeptide and nucleic acid TARGETs, siRNA sequences based on these TARGETs and antibodies against the TARGETs. The invention is further related to pharmaceutical composition comprising siRNA sequences based on the TARGETs and antibodies against the TARGETs for use in the treatment of fibrotic conditions. The invention further provides in vitro methods for reduction or inhibition of macrophage differentiation into alternatively-activated macrophages (M2).

Figure 1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A													Ni	NI										
В													Ni	NI										
C													142	142										
D													N2	N2										
E													143	N3										
۴													N3	N3										
G																								
Н																								
1																								
3																								
K																								
Ł																								
М																								
N																								
0														Pis										
p																								

NI luc_v13
R2 ffluc_v19
R3 ffluc_v24
CCL18_v1
STAT6_v5
STAT6_v6
IL4R_v6
JAK1_v23
Samples

Figure 2

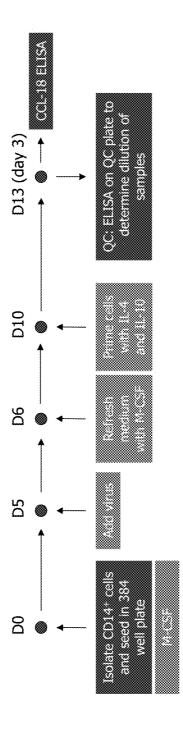
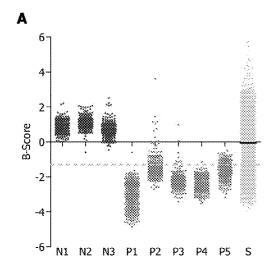



Figure 3

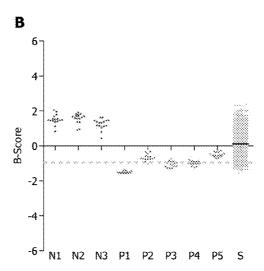


Figure 4

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A																								
В																								
С			N1	N1					N3	N3					N2	N2					Ni	N1		
D			N1	81					N3	N3					142	N2					141	NI		
E					142	N2					222222	NI					143	143						
F					142	142					Ni	N1					N3	N3						
G							143	N3					N2	N2					Ni	Ni				
н							N3	N3					N2	N2					NI	NI				
I			N3	N3					5000000	141					3/3	N3					1/2	142		
3			NЗ	N3					Mi	NI					N3	N3					182	N2		
K					Ni	N1					N2	N2					NI	N						
L					NI	Ni					N2	NΩ						Ni						
М							N2	N2					N3	N3					N2	112				
N							142	N2					N3	N3					N2	N2				
0																								
P																								

NI	luc_v13
N2	ffluc_v19
N3	ffluc_v24
	CCL18_v1
	STAT6_v5
	STAT6_v6
	IL4R_v6
	JAK1_v23
	Samples
	Empty
_	

Figure 5

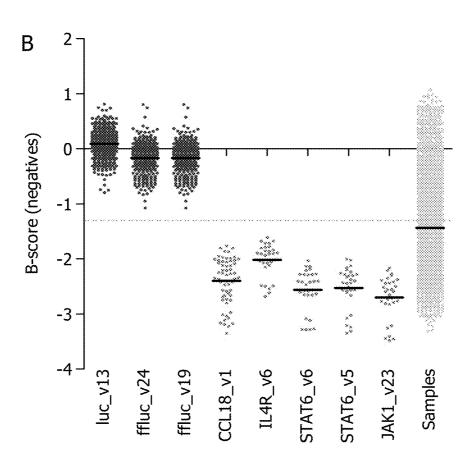


Figure 6

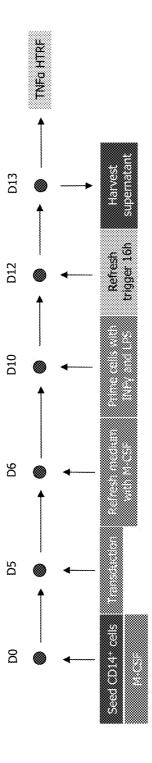


Figure 7

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A			ļ					ļ	ļ										·					
В			Ţ				ļ	·										ļ	·					
С			Ni	Ni					N3	N3					N2	102					NI	NI		
D			N1	Ni					143	N3					N2	N2					Ni	N1		
E					N2	N2					N 1	NI						NB						
F					N2	N2					NI	N1					N3	N3						
G							NS	NB					142	112					N2	PV1	•	63		
Н							NG	N3					N2	N2								Ρ3		
I			193	NB						NI					143	N3					N2	N2		
3			N3	143					N1	N1					N3	N3					N2	N2 N2		
K					NI	Ni			P3		N2	N2					Ni	Na						
Ł					N1	NI			P 3	94	N2	N2					M	NI						
М							142	1/2					N3	N3					N2	142				
N							102	N2					N3	N3					f42					
0																								
P								<u> </u>	<u> </u>			<u> </u>						<u> </u>						

ffuc_v13 fffuc_v19 fffuc_v24 MYD88_v4 TRAF6_v4 TNF_v12 Samples Empty

Figure 8

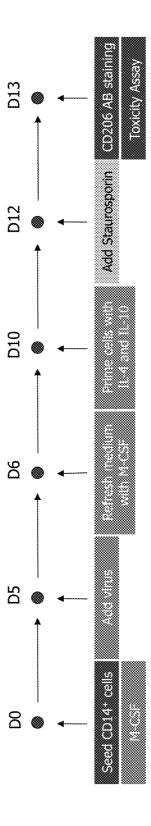


Figure 9

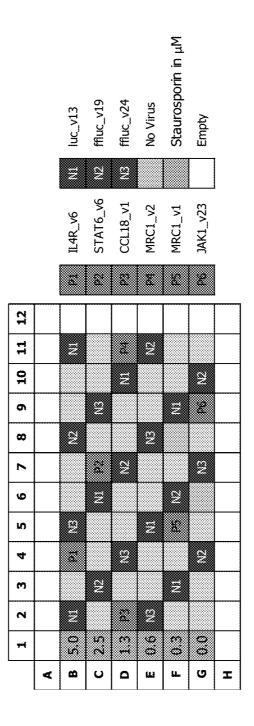
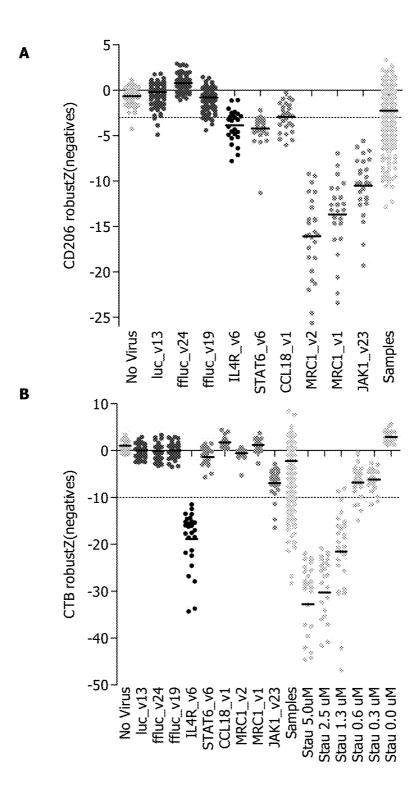



Figure 10

MOLECULAR TARGETS AND COMPOUNDS, AND METHODS TO IDENTIFY THE SAME, USEFUL IN THE TREATMENT OF FIBROTIC DISEASES

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention is in the field of molecular biology and biochemistry. The present invention relates to methods for identifying agents useful in treatment of fibrotic disease, in particular, agents that reduce or inhibit macrophage differentiation into the alternatively-activated (M2) phenotype. Reduction or inhibition of differentiation into the alternatively-activated (M2) phenotype is useful in the prevention and/or treatment of fibrotic conditions and other diseases where alternatively-activated (M2) macrophages play a role. In particular, the present invention provides methods for identifying agents for use in the prevention and/or treatment of fibrotic diseases.

BACKGROUND OF THE INVENTION

[0002] Fibrosis is characterized by excessive deposition of scar tissue by fibroblasts and it is currently one of the largest groups of diseases for which there is no therapy. Fibrosis is responsible for morbidity and mortality associated with organ failure in a variety of chronic diseases affecting the lungs, heart, kidneys, liver and skin. It has been estimated that nearly 45% of all deaths in the developed world are caused by or related to fibrotic conditions which include: cardiovascular disease, pulmonary fibrosis, diabetic nephropathy and liver cirrhosis (Wynn et. al., 2004).

[0003] Fibrosis and, especially, idiopathic pulmonary fibrosis (IPF) is a disease that is receiving increasing attention. The pathogenesis of fibrosis has been relatively undefined and only recently the various cellular and molecular processes that contribute to this disease have been unveiled. The overall consensus is that fibrosis is a result of an imbalance in the immune and repair response following infection and/or tissue damage (reviewed by Lekkerkerker et al 2012). These responses are the result of an intricate interplay between various cell types such as epithelial cells, fibroblasts, macrophages, fibrocytes, smooth muscle cells and endothelial cells. An imbalance in the activity in one or more of these cell types is expected to contribute to fibrosis.

[0004] Macrophages are responsible for immune surveillance and tissue homeostasis. They are able to engulf pathogens using a broad repertoire of pathogen recognition receptors (PRRs) and destroy them via degradation within lysosomes. Within the process of tissue homeostasis, macrophages play an essential role in removing dead and dying cells and toxic materials. Furthermore, macrophages are crucial in the orchestration of the wound healing process. To perform these important functions, macrophages consist of different subpopulations which are strategically positioned throughout the body (Mantovani et al., 2004).

[0005] During an immune response, monocytes are recruited from the circulation in the tissues and differentiate into macrophages. Following tissue damage and/or infection, macrophages exhibit primarily a pro-inflammatory phenotype and secrete pro-inflammatory mediators such as TNF α and IL-1. These pro-inflammatory macrophages are often called classically activated macrophages or M1 macrophages. Various chronic inflammatory disease and autoimmune

diseases, such as, for example, rheumatoid arthritis, are associated with activation of M1 macrophages (Murphy et al., 2003).

[0006] To prevent an exacerbated immune response and collateral damage to surrounding tissue the M1 macrophage response needs to be tightly controlled. Macrophages that play a role in wound healing have been designated as alternatively-activated macrophages or, otherwise, M2 macrophages. This subset of macrophages secretes anti-inflammatory mediators and is strongly associated with Th2 mediated inflammation and antagonizes M1 macrophages to regulate the immune response.

[0007] A major initiator of fibrosis is the persistence of exogenous and endogenous stimuli of pathogens or tissue injury (Meneghin et al., 2007). Both classically activated (M1) and alternatively-activated (M2) macrophages are involved in the process of fibrosis. Nevertheless, M2 macrophages are considered to be the predominant macrophage subtype contributing to fibrosis (Song et al., 2000; Murray et al., 2011; Wynn, 2004). Furthermore, alveolar macrophages isolated from IPF patients are predominantly of a M2 macrophage phenotype (Thannickal et al., 2004).

[0008] A key characteristic of many fibrotic diseases is abnormal or exaggerated deposition of extracellular matrix degradation (ECM) (Cox et al, 2011). M2 macrophages can directly affect fibrosis by the excretion of pro-fibrotic mediators, such as tissue inhibitors of metalloproteinases and thereby directly inhibiting ECM turnover (Duffield et al., 2005). M2 macrophages also produce fibronectin, a key component of the ECM and thus contribute, directly to the buildup of excessive ECM. Besides the direct effect of M2 macrophages on fibrosis, M2 macrophages also indirectly contribute to fibrosis through activation of other cell types such as T cells, fibroblasts, and endothelial cells and thereby aggravating fibrosis (Wynn, 2008).

[0009] A hallmark of M2 macrophages is the production of CCL18, also known as pulmonary activation-related chemokine (PARC), and it is highly expressed in alveolar macrophages of IPF patients (Prasse et al., 2006, 2007, 2009). Other markers of M2 macrophages have been also identified, among them CD206 and CD163 (Mantovani et al, 2004). Prasse et al. showed that CCL18 concentration within the serum of idiopathic pulmonary fibrosis (IPF) patients strongly correlates with severity of IPF and is a predictive value for mortality (Prasse and Probst et al., 2009). In addition, CCL18 production is strongly increased in the lungs of patients with pulmonary fibrosis and affects cells such as fibroblasts, functioning directly as a pro-fibrotic factor (Atamas et al., 2003). Given that CCL18 is predominantly produced by M2 macrophages, it is likely that a misbalance between M1 and M2 macrophages favoring the M2 macrophages is involved in fibrosis. Recent studies have shown that M1 macrophages can convert into M2 macrophages indicating a dynamic balance between both macrophage subtypes (Duffield et al. 2005). Therefore, interfering in the M1/M2 balance, in particular preventing the occurrence of the M2 phenotype, provides a strategy to intervene in the process of

[0010] Over the past few decades much effort has been put into the development of in vitro and in vivo models to unravel the molecular mechanisms regulating fibrotic processes. Employment of primary cells and, preferably, those from fibrosis patients will provide us with better insights in the molecular processes involved in fibrotic disease. It is, how-

ever, important to use these cells under physiological conditions and in a disease-relevant context. The study of macrophages in functional assays relevant for fibrosis in combination with functional genomics can give invaluable insight into possible molecular mechanisms contributing to fibrosis and identify novel genetic targets for treatment of fibrosis. Therefore, there is a clear need to understand molecular and cellular processes related to fibrosis and to provide new methods of identifying targets, novel targets, and compounds useful for treatment of fibrosis.

SUMMARY OF THE INVENTION

[0011] The present invention is based on the discovery that agents that inhibit the expression and/or activity of the TAR-GETS disclosed herein are capable of reducing or inhibiting the differentiation of macrophages into alternatively-activated macrophages (M2 macrophages), as indicated by a inhibition of expression and/or release of markers of M2 macrophages, in particular a suppression of the release or expression of CCL18 and/or CD206. The present invention, therefore, provides TARGETS which play a role in the differentiation of macrophages into M2 macrophages, methods for screening for agents capable of down-regulating the expression and/or activity of TARGETS and the use of these agents in the prevention and/or treatment of fibrotic diseases, in particular diseases associated with alternatively-activated macrophages, by inhibiting the differentiation of macrophages into M2 macrophages. The present invention provides TARGETS which are involved in the formation and biology of M2 macrophages, in particular with fibrosis and fibrotic diseases. In a particular aspect, the present invention provides TARGETS which are involved in or otherwise associated with development of fibrosis.

[0012] The present invention relates to a method for identifying a compound useful for the treatment of fibrosis, said method comprising: contacting a test compound with a TAR-GET polypeptide, fragments and structurally functional derivatives thereof, determining a binding affinity of the test compound to said polypeptide or an activity of said polypeptide, contacting the test compound with a population of macrophage cells, measuring a property related to differentiation of macrophages into M2 macrophages, and identifying a compound capable of reducing or inhibiting macrophage differentiation into M2 macrophages and which either demonstrate a binding affinity to said polypeptide or are able to inhibit the activity of said polypeptide.

[0013] The present invention further relates to a method for identifying a compound useful for the treatment of fibrosis, said method comprising: contacting a test compound with population of macrophage cells and expressing a TARGET polypeptide, measuring expression and/or amount of said polypeptide in said cells, measuring a property related to differentiation of macrophages into M2 macrophages, and identifying a compound which reduces the expression and/or amount of said polypeptide and which is capable of reducing or inhibiting the differentiation of macrophages into M2 macrophages.

[0014] The present invention relates to a method for identifying a compound capable of reducing or inhibiting differentiation of macrophages into M2 macrophages said method comprising: contacting a test compound with a TARGET polypeptide, fragments or structurally functional derivatives thereof, determining a binding affinity of the test compound to said polypeptide or an activity of said polypeptide, con-

tacting the test compound with a population of macrophage cells, measuring a property related to differentiation of macrophages into M2 macrophages, and identifying a compound capable of inhibiting macrophage differentiation into M2 macrophages and which demonstrates a binding affinity to said polypeptide and/or is able to inhibit the activity of said polypeptide.

[0015] The present invention provides a method for identifying a compound capable of reducing or inhibiting differentiation of macrophages into M2 macrophages said method comprising: contacting a test compound with a TARGET polypeptide, fragments or structurally functional derivatives thereof, determining a binding affinity of the test compound to said polypeptide or expression or an activity of said polypeptide, and identifying a compound capable of inhibiting macrophage differentiation into M2 macrophages as a compound which demonstrates a binding affinity to said polypeptide and/or is able to inhibit the expression or activity of said polypeptide.

[0016] The present invention also relates to:

[0017] a) pharmaceutical compositions comprising an antibody or a fragment thereof which specifically binds to a TARGET polypeptide, for use in the treatment of a fibrotic condition.

[0018] b) pharmaceutical compositions comprising an agent selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA (siRNA) and a short-hairpin RNA (shRNA) for use in the treatment of a fibrotic condition, wherein said agent comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid sequence selected encoding a TARGET polypeptide for use in the treatment of a fibrotic condition

[0019] Another aspect of this invention relates to an in vitro method of reducing or inhibiting the differentiation of macrophages into alternatively-activated (M2) macrophages, said method comprising contacting a population of macrophage cells with an inhibitor of the activity or expression of a TAR-GET polypeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 shows the plate layout of the primary screen. Layout of the library plates with the negative control viruses (N1, N2, and N3) and the positive control viruses (P1, P2, P3, P4, and P5) in column 13 and 14. The remainder of the plate consisted of random viruses (Samples) from the Adenoviral library.

[0021] FIG. 2 depicts the primary screen set-up.

[0022] FIG. 3 shows B-score values for the individual controls and samples in primary screen. The graphs show the B-score of the negative controls (N1, N2, and N3), the positive controls (P1, P2, P3, P4, and P5) and the samples (S) for the complete screen (A) and the four separate analyzed plates (B). The dashed lines indicate the cut-off used for hit calling. [0023] FIG. 4 shows rescreen plate layout. Layout of the library plates with the negative control viruses and the positive control viruses distributed over the plate. The remaining of the plate consisted of randomly distributed viruses which were identified as hits in the primary screen. The outer wells

[0024] FIG. 5 shows B-score values for the individual controls and samples in re-screen. The graphs show the B-score

were not used.

of the negative controls, the positive controls and the samples. The dashed lines indicate the cut-off used for hit calling.

[0025] FIG. 6 shows the experimental setup of the M1 counter screen.

[0026] FIG. 7 shows plate layout of the M1 counter screen. Layout of the 384-well plates with the negative control viruses (N1, N2, and N3), the TNF_v12 positive control viruses (P3), the other positive control viruses (P1 and P2) and the random viruses (Samples) from the adenoviral library. The outer wells were left empty.

[0027] FIG. 8 shows the schematic overview of the M2 validation screen.

[0028] FIG. 9 shows the M2 validation screen plate layout. Layout of the validation screen source plates containing the negative control viruses (N1, N2, and N3), the positive control viruses (P1, P2, P3, P4, P5, and P6), no virus wells and candidate Targets from the adenoviral library (the rest of the wells). The edges of the plates were left empty, except for the wells as indicated in column one in which various concentrations of stauroporin were added.

[0029] FIG. 10 shows the results of the M2 validation screen. The graphs represent the performance of the controls containing no virus and negative controls compared to positive controls in the CD206 screen (A) and the CTB screen (B). The hit calling cut-offs for the CD206 screen (-3) and for the CTB screen (-10) are indicated with the dashed lines. All values depicted are normalized data points using the Robust Z score.

DETAILED DESCRIPTION

Definitions

[0030] The following terms are intended to have the meanings presented below and are useful in understanding the description and intended scope of the present invention.

[0031] The term 'agent' means any molecule, including polypeptides, polynucleotides, natural products and small molecules. In particular the term agent includes compounds such as test compounds or drug candidate compounds.

[0032] The term 'activity inhibitory agent' or 'activity inhibiting agent' means an agent, e.g. a polypeptide, small molecule, compound designed to interfere or capable of interfering selectively with the activity of a specific polypeptide or protein normally expressed within or by a cell.

[0033] The term 'agonist' refers to an agent that stimulates the receptor the agent binds to in the broadest sense.

[0034] As used herein, the term 'antagonist' is used to describe an agent that does not provoke a biological response itself upon binding to a receptor, but blocks or dampens agonist-mediated responses, or prevents or reduces agonist binding and, thereby, agonist-mediated responses.

[0035] The term 'assay' means any process used to measure a specific property of an agent, including a compound. A 'screening assay' means a process used to characterize or select compounds based upon their activity from a collection of compounds.

[0036] The term 'binding affinity' is a property that describes how strongly two or more compounds associate with each other in a non-covalent relationship. Binding affinities can be characterized qualitatively, (such as 'strong', 'weak', 'high', or low') or quantitatively (such as measuring the KD).

[0037] The term 'carrier' means a non-toxic material used in the formulation of pharmaceutical compositions to provide

a medium, bulk and/or useable form to a pharmaceutical composition. A carrier may comprise one or more of such materials such as an excipient, stabilizer, or an aqueous pH buffered solution. Examples of physiologically acceptable carriers include aqueous or solid buffer ingredients including phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®. [0038] The term 'complex' means the entity created when two or more compounds bind to, contact, or associate with each other.

[0039] The term 'compound' is used herein in the context of a 'test compound' or a 'drug candidate compound' described in connection with the assays and methods of the present invention. As such, these compounds comprise organic or inorganic compounds, derived synthetically or from natural sources. The compounds include inorganic or organic compounds such as polynucleotides (e.g. siRNA or cDNA), lipids or hormone analogs. Other biopolymeric organic test compounds include peptides comprising from about 2 to about 40 amino acids and larger polypeptides comprising from about 40 to about 500 amino acids, including polypeptide ligands, enzymes, receptors, channels, antibodies or antibody conjugates.

[0040] The term 'condition' or 'disease' means the overt presentation of symptoms (i.e., illness) or the manifestation of abnormal clinical indicators (for example, biochemical or cellular indicators). Alternatively, the term 'disease' refers to a genetic or environmental risk of or propensity for developing such symptoms or abnormal clinical indicators.

[0041] The term 'contact' or 'contacting' means bringing at least two moieties together, whether in an in vitro system or an in vivo system.

[0042] The term 'derivatives of a polypeptide' relates to those peptides, oligopeptides, polypeptides, proteins and enzymes that comprise a stretch of contiguous amino acid residues of the polypeptide and that retain a biological activity of the protein, for example, polypeptides that have amino acid mutations compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may further comprise additional naturally occurring, altered, glycosylated, acylated or non-naturally occurring amino acid residues compared to the amino acid sequence of a naturally occurring form of the polypeptide. It may also contain one or more non-amino acid substituents, or heterologous amino acid substituents, compared to the amino acid sequence of a naturally occurring form of the polypeptide, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence.

[0043] The term 'derivatives of a polynucleotide' relates to DNA-molecules, RNA-molecules, and oligonucleotides that comprise a stretch of nucleic acid residues of the polynucleotide, for example, polynucleotides that may have nucleic acid mutations as compared to the nucleic acid sequence of a naturally occurring form of the polynucleotide. A derivative may further comprise nucleic acids with modified backbones

such as PNA, polysiloxane, and 2'-O-(2-methoxy)ethyl-phosphorothioate, non-naturally occurring nucleic acid residues, or one or more nucleic acid substituents, such as methyl-, thio-, sulphate, benzoyl-, phenyl-, amino-, propyl-, chloro-, and methanocarbanucleosides, or a reporter molecule to facilitate its detection.

[0044] The term 'endogenous' shall mean a material that a mammal naturally produces. Endogenous in reference to the term 'enzyme', 'protease', 'kinase', or G-Protein Coupled Receptor ('GPCR') shall mean that which is naturally produced by a mammal (for example, and not by limitation, a human). In contrast, the term non-endogenous in this context shall mean that which is not naturally produced by a mammal (for example, and not by limitation, a human). Both terms can be utilized to describe both in vivo and in vitro systems. For example, and without limitation, in a screening approach, the endogenous or non-endogenous TARGET may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous TARGET, screening of a candidate compound by means of an in vivo system is feasible.

[0045] The term 'expressible nucleic acid' means a nucleic acid coding for or capable of encoding a proteinaceous molecule, peptide or polypeptide, and may include an RNA molecule, or a DNA molecule.

[0046] The term 'expression' comprises both endogenous expression and non-endogenous expression, including over-expression by transduction.

[0047] The term 'expression inhibitory agent' or 'expression inhibiting agent' means an agent, e.g. a polynucleotide designed to interfere or capable of interfering selectively with the transcription, translation and/or expression of a specific polypeptide or protein normally expressed within or by a cell. More particularly and by example, 'expression inhibitory agent' comprises a DNA or RNA molecule that contains a nucleotide sequence identical to or complementary to at least about 15-30, particularly at least 17, sequential nucleotides within the polyribonucleotide sequence coding for a specific polypeptide or protein. Exemplary such expression inhibitory molecules include ribozymes, microRNAs, double stranded siRNA molecules, self-complementary single-stranded siRNA molecules, genetic antisense constructs, and synthetic RNA antisense molecules with modified stabilized backbones.

[0048] The term "RNAi inhibitor" refers to any molecule that can down regulate, reduce or inhibit RNA interference function or activity in a cell or organism. An RNAi inhibitor can down regulate, reduce or inhibit RNAi (e.g., RNAi mediated cleavage of a target polynucleotide, translational inhibition, or transcriptional silencing) by interaction with or interfering with the function of any component of the RNAi pathway, including protein components such as RISC, or nucleic acid components such as miRNAs or siRNAs. A RNAi inhibitor can be an siNA molecule, an antisense molecule, an aptamer, or a small molecule that interacts with or interferes with the function of RISC, a miRNA, or an siRNA or any other component of the RNAi pathway in a cell or organism. By inhibiting RNAi (e.g. RNAi mediated cleavage of a target polynucleotide, translational inhibition, or transcriptional silencing), an RNAi inhibitor of the invention can be used to modulate (e.g., down regulate) the expression of a target gene.

[0049] The term "microRNA" or "miRNA" or "miR" as used herein refers to its meaning as is generally accepted in the art. More specifically, the term refers a small double-stranded RNA molecules that regulate the expression of target messenger RNAs either by mRNA cleavage, translational repression/inhibition or heterochromatic silencing (see for example Ambros, 2004, Nature, 431, 350-355; Barrel, 2004, Cell, 1 16, 281-297; Cullen, 2004, Virus Research, 102, 3-9; He et al, 2004, Nat. Rev. Genet., 5, 522-531; Ying el al, 2004, Gene, 342, 25-28; and Sethupathy et al, 2006, RNA, 12:192-197). As used herein, the term includes mature single stranded miRNAs, precursor miRNAs (pre-miR), and variants thereof, which may be naturally occurring. In some instances, the term "miRNA" also includes primary miRNA transcripts and duplex miRNAs.

[0050] The term 'fragment of a polynucleotide' relates to oligonucleotides that comprise a stretch of contiguous nucleic acid residues that exhibit substantially a similar, but not necessarily identical, activity as the complete sequence. In a particular aspect, 'fragment' may refer to a oligonucleotide comprising a nucleic acid sequence of at least 5 nucleic acid residues (preferably, at least 10 nucleic acid residues, at least 15 nucleic acid residues, at least 20 nucleic acid residues, at least 25 nucleic acid residues, at least 40 nucleic acid residues, at least 50 nucleic acid residues, at least 60 nucleic residues, at least 70 nucleic acid residues, at least 80 nucleic acid residues, at least 90 nucleic acid residues, at least 100 nucleic acid residues, at least 125 nucleic acid residues, at least 150 nucleic acid residues, at least 175 nucleic acid residues, at least 200 nucleic acid residues, or at least 250 nucleic acid residues) of the nucleic acid sequence of said complete sequence.

[0051] The term 'fragment of a polypeptide' relates to peptides, oligopeptides, polypeptides, proteins, monomers, subunits and enzymes that comprise a stretch of contiguous amino acid residues, and exhibit substantially a similar, but not necessarily identical, functional or expression activity as the complete sequence. In a particular aspect, 'fragment' may refer to a peptide or polypeptide comprising an amino acid sequence of at least 5 amino acid residues (preferably, at least 10 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 40 amino acid residues, at least 50 amino acid residues, at least 60 amino residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid residues, at least 100 amino acid residues, at least 125 amino acid residues, at least 150 amino acid residues, at least 175 amino acid residues, at least 200 amino acid residues, or at least 250 amino acid residues) of the amino acid sequence of said complete sequence.

[0052] The term 'hybridization' means any process by which a strand of nucleic acid binds with a complementary strand through base pairing. The term 'hybridization complex' refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (for example, COt or ROt analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (for example, paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed). The term "stringent conditions" refers to conditions that permit hybridization between polynucleotides and the claimed polynucle-

otides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, for example, formamide, temperature, and other conditions well known in the art. In particular, reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature can increase stringency. The term 'standard hybridization conditions' refers to salt and temperature conditions substantially equivalent to 5×SSC and 65° C. for both hybridization and wash. However, one skilled in the art will appreciate that such 'standard hybridization conditions' are dependent on particular conditions including the concentration of sodium and magnesium in the buffer, nucleotide sequence length and concentration, percent mismatch, percent formamide, and the like. Also important in the determination of "standard hybridization conditions" is whether the two sequences hybridizing are RNA-RNA, DNA-DNA or RNA-DNA. Such standard hybridization conditions are easily determined by one skilled in the art according to well known formulae, wherein hybridization is typically 10-20NC below the predicted or determined Tm with washes of higher stringency, if desired.

[0053] The term 'inhibit' or 'inhibiting', in relationship to the term 'response' means that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

[0054] The term 'inhibition' refers to the reduction, down regulation of a process or the elimination of a stimulus for a process, which results in the absence or minimization of the expression or activity of a protein or polypeptide.

[0055] The term 'induction' refers to the inducing, up-regulation, or stimulation of a process, which results in the expression, enhanced expression, activity, or increased activity of a protein or polypeptide.

[0056] The term 'ligand' means an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

[0057] The term 'pharmaceutically acceptable salts' refers to the non-toxic, inorganic and organic acid addition salts, and base addition salts, of compounds which inhibit the expression or activity of TARGETS as disclosed herein. These salts can be prepared in situ during the final isolation and purification of compounds useful in the present invention. [0058] The term 'polypeptide' relates to proteins (such as TARGETS), proteinaceous molecules, fragments of proteins,

TARGETS), proteinaceous molecules, fragments of proteins, monomers or portions of polymeric proteins, peptides, oligopeptides and enzymes (such as kinases, proteases, GPCR's etc.).

[0059] The term 'polynucleotide' means a polynucleic acid, in single or double stranded form, and in the sense or antisense orientation, complementary polynucleic acids that hybridize to a particular polynucleic acid under stringent conditions, and polynucleotides that are homologous in at least about 60 percent of its base pairs, and more particularly 70 percent of its base pairs are in common, particularly 80 percent, most particularly 90 percent, and in a special embodiment 100 percent of its base pairs. The polynucleotides include polyribonucleic acids, polydeoxyribonucleic acids, and synthetic analogues thereof. It also includes nucleic acids with modified backbones such as peptide nucleic acid (PNA), polysiloxane, and 2'-O-(2-methoxy)ethylphosphorothioate. The polynucleotides are described by sequences that vary in length, that range from about 10 to about 5000 bases, particularly about 100 to about 4000 bases, more particularly about 250 to about 2500 bases. One polynucleotide embodiment comprises from about 10 to about 30 bases in length. A special embodiment of polynucleotide is the polyribonucleotide of from about 17 to about 22 nucleotides, more commonly described as small interfering RNAs (siRNAs-double stranded siRNA molecules or selfcomplementary single-stranded siRNA molecules (shRNA)). Another special embodiment are nucleic acids with modified backbones such as peptide nucleic acid (PNA), polysiloxane, and 2'-O-(2-methoxy)ethylphosphorothioate, or including non-naturally occurring nucleic acid residues, or one or more nucleic acid substituents, such as methyl-, thio-, sulphate, benzoyl-, phenyl-, amino-, propyl-, chloro-, and methanocarbanucleosides, or a reporter molecule to facilitate its detection. Polynucleotides herein are selected to be 'substantially' complementary to different strands of a particular target DNA sequence. This means that the polynucleotides must be sufficiently complementary to hybridize with their respective strands. Therefore, the polynucleotide sequence need not reflect the exact sequence of the target sequence. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the polynucleotide, with the remainder of the polynucleotide sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the polynucleotide, provided that the polynucleotide sequence has sufficient complementarity with the sequence of the strand to hybridize therewith under stringent conditions or to form the template for the synthesis of an extension product.

[0060] The term 'preventing' or 'prevention' refers to a reduction in risk of acquiring or developing a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop) in a subject that may be exposed to a disease-causing agent, or predisposed to the disease in advance of disease onset.

[0061] The term 'prophylaxis' is related to and encompassed in the term 'prevention', and refers to a measure or procedure the purpose of which is to prevent, rather than to treat or cure a disease. Non-limiting examples of prophylactic measures may include the administration of vaccines; the administration of low molecular weight heparin to hospital patients at risk for thrombosis due, for example, to immobilization; and the administration of an anti-malarial agent such as chloroquine, in advance of a visit to a geographical region where malaria is endemic or the risk of contracting malaria is high.

[0062] The term 'subject' includes humans and other mam-

[0063] The term 'TARGET' or 'TARGETS' means the protein(s) identified in accordance with the assays described herein and determined to be involved in differentiation of macrophages into M2 macrophages, otherwise referred to as an alternatively-activated macrophages. The term TARGET or TARGETS includes and contemplates alternative species forms, isoforms, and variants, such as splice variants, allelic variants, alternate in frame exons, and alternative or premature termination or start sites, including known or recognized isoforms or variants thereof such as indicated in Table 1. The NCBI accession numbers are provided to assist a skilled person to identify the transcripts and polypeptides. However, the term TARGET or TARGETS is not limited to those particular versions of the sequences and encompasses functional variants of nucleic acids and polypeptides corresponding to those sequences.

[0064] 'Therapeutically effective amount' or 'effective amount' means that amount of a compound or agent that will elicit the biological or medical response in or of a subject that is being sought by or is accepted by a medical doctor or other clinician.

[0065] The term 'treating' or 'treatment' of any disease or disorder refers, in one embodiment, to ameliorating the disease or disorder (i.e., arresting the disease or reducing the manifestation, extent or severity of at least one of the clinical symptoms thereof). Accordingly, 'treating' refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treating include those already with the disorder as well as those in which the disorder is to be prevented. The related term 'treatment,' as used herein, refers to the act of treating a disorder, symptom, disease or condition. In another embodiment 'treating' or 'treatment' refers to ameliorating at least one physical parameter, which may not be discernible by the subject. In yet another embodiment, 'treating' or 'treatment' refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter or of a physiologically measurable parameter), or both. In a further embodiment, 'treating' or 'treatment' relates to slowing the progression of the disease.

[0066] The term "vectors" also relates to plasmids as well as to viral vectors, such as recombinant viruses, or the nucleic acid encoding the recombinant virus.

[0067] The term "vertebrate cells" means cells derived from animals having vertebral structure, including fish, avian, reptilian, amphibian, marsupial, and mammalian species. Preferred cells are derived from mammalian species, and most preferred cells are human cells. Mammalian cells include feline, canine, bovine, equine, caprine, ovine, porcine, murine, such as mice and rats, and rabbits.

[0068] As used herein the term 'fibrotic diseases' refers to diseases characterized by excessive or persistent scarring, particularly due to excessive or abnormal production, deposition of extracellular matrix, and are that are associated with the abnormal accumulation of cells and/or fibronectin and/or collagen and/or increased fibroblast recruitment and include but are not limited to fibrosis of individual organs or tissues such as the heart, kidney, liver, joints, lung, pleural tissue, peritoneal tissue, skin, cornea, retina, musculoskeletal and digestive tract. In particular aspects, the term fibrotic diseases refers to idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis and Peyronie's disease. More particularly, the term "fibrotic diseases" refers to idiopathic pulmonary fibrosis (IPF).

[0069] The term "M2 macrophage phenotype" or "alternatively-activated macrophages" or "M2 macrophages" is used throughout to refer to the subtype of macrophages which are activated by interleukin-4 (IL-4), IL-10, or a combination thereof, and demonstrating the ability to express particular markers e.g. CCL-18, CD206 and CD163 (Mantovani et al., 2004, Prasse 2007) many subtypes of M2 phenotype are covered by this term. They would be known to a skilled person. (e.g. described in Mantovani et al., 2004, 2012).

[0070] The term "M1 macrophage phenotype" or "classically-activated macrophages" or "M1 macrophages" is used throughout to refer to the subtype of macrophages activated by bacterial lipopolysaccharide (LPS) and interferon- γ (IFN- γ). and demonstrating characteristics which include production of large amounts of pro-inflammatory signaling and effector molecules such as TNF α .

[0071] The term "M1 macrophage phenotype" or "M0 macrophages" refers to monocyte derived naive macrophages that have not yet differentiated into either M1 or M2 macrophages, characterized by the absence of CCL18 and TNF α .

TARGETS

[0072] Applicant's invention is relevant to the treatment, prevention and alleviation of fibrotic conditions and disorders, particularly associated with increased numbers of M2 macrophages or enhanced differentiation of macrophages into M2 macrophages.

[0073] The present invention is based on extensive work by the present inventors to develop an in vitro (cell-free or cell based) assay system suitable to provide a scientifically valid substitute for the naturally occurring in vivo process of macrophage differentiation. The process of differentiation of macrophages into M2 macrophages is known to be involved in fibrosis, however it is a complex process. The present invention provides an artificial model for the natural system using distinct and quantifiable in vitro parameters which is suitable for the identification of compounds able to inhibit the differentiation of macrophages into M2 macrophages, and, thus, identify compounds that may be useful in the treatment and/or prevention of fibrosis.

[0074] The present invention provides methods for assaying for drug candidate compounds useful in treatment of fibrotic conditions, particularly useful in reducing or inhibiting the differentiation of macrophages into M2 macrophages, comprising contacting the compound with a cell expressing a TARGET, and determining the relative amount or degree of inhibition of differentiation of macrophages into M2 macrophages in the presence and/or absence of the compound. The present invention provides methods for assaying for drug candidate compounds useful in treatment of fibrotic conditions, particularly useful in reducing or inhibiting the differentiation of macrophages into M2 macrophages, comprising contacting the compound with a cell expressing a TARGET, and determining the relative amount or degree of inhibition of the expression or activity of the TARGET, whereby inhibition of expression or activity of the TARGET is associated with or results in inhibition of or reduced differentiation of macrophages into M2 macrophages in the presence and/or absence of the compound. Such methods may be used to identify target proteins that act to inhibit said differentiation; alternatively, they may be used to identify compounds that down-regulate or inhibit the expression or activity of TARGET proteins. The invention provides methods for assaying for drug candidate compounds useful in the treatment of fibrosis, comprising contacting the compound with a TARGET, under conditions wherein the expression or activity of the TARGET may be measured, and determining whether the TARGET expression

polypeptides and/or their encoding polynucleotides is causative, correlative or associated with reduced or inhibited differentiation of macrophages into M2 macrophages. Alternatively, a reduced activity or expression of the TARGET polypeptides and/or their encoding polynucleotides is causative, correlative or associated with decrease of the markers of M2 macrophages.

[0076] In a particular embodiment of the invention, the TARGET polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 26-50 as listed in Table 1.

TABLE 1

			IABLE I			
Target Gene Symbol	GenBank Nucleic Acid Acc #:		GenBank Protein Acc #	SEQ ID NO: Protein	NAME	Class
S1PR2	NM_004230.3	1	NP_004221.3	26	sphingosine-1-	GPCR
USP22	NM_015276.1	2	NP_056091.1	27	phosphate receptor 2 ubiquitin specific peptidase 22	Protease
BPNT1	NM_006085.4	3	NP_006076.4	28	3'(2'),5'-bisphosphate nucleotidase 1	Phosphatase
C1RL	NM_016546.2	4	NP_057630.2	29	complement component 1, r subcomponent-like	Secreted/ Extracellular
DCN	NM_133505.2	5	NP_598012.1	30	decorin	Secreted/
	NM 133507.2	6	NP_598014.1	31		Extracellular
	NM 133506.2	7	NP 598013.1	32		
	NM_133504.2	8	NP_598011.1	33		
	NM_001920.3	9	NP_001911.1	34		
	NM_133503.2	10	NP_598010.1	35		
EFEMP2	NM_016938.4	11	NP_058634.4	36	EGF containing fibulin-like extracellular matrix protein 2	Secreted/ Extracellular
EFNB2	NM_004093.3	12	NP_004084.1	37	ephrin-B2	Receptor
GPR155	NM 001033045.3	13	NP 001028217.1	38	G protein-coupled	GPCR
GIRISS	NM 152529.6	14	NP 689742.4	39	receptor 155	Grek
	NM_001267050.1	15	NP_001253979.1	40	receptor 133	
	NM 001267051.1	16	NP 001253979.1 NP 001253980.1	41		
KCNMB4	NM_014505.5	17	NP_055320.4	42	potassium large conductance calcium- activated channel, subfamily M, beta member 4	Ion channel
LIF	NM 002309.4	18	NP 002300.1	43	leukemia inhibitory	Secreted/
	NM_001257135.1	19	NP_001244064.1	44	factor	Extracellular
MS4A4A	NM_148975.2	20	NP_683876.1	45	membrane-spanning 4-	Receptor
	NM_024021.3	21	NP 076926.2	46	domains, subfamily A,	
	NM 001243266.1	22	NP 001230195.1	47	member 4A	
RAF1	NM_002880.3	23	NP_002871.1	48	v-raf-1 murine leukemia viral oncogene homolog 1	Kinase
SLC15A3	NM_016582.2	24	NP_057666.1	49	solute carrier family 15, member 3	Transporter
ZMPSTE24	NM_005857.4	25	NP_005848.2	50	zinc metallopeptidase STE24	Protease

or activity is altered in the presence of the compound, contacting a population of macrophage cells with said test compound and measuring a property related to differentiation of macrophages into M2 macrophages. Exemplary such methods can be designed and determined by the skilled artisan. Particular such exemplary methods are provided herein.

[0075] The present invention is based on the inventors' discovery that the TARGET polypeptides and their encoding nucleic acids, identified as a result of screens described below in the Examples, are factors involved in fibrosis and in particular in differentiation of macrophages into M2 macrophages. A reduced activity or expression of the TARGET

[0077] A particular embodiment of the invention comprises the GPCR TARGETs identified as SEQ ID NO: 26 and 38-41. A particular embodiment of the invention comprises the protease TARGETs identified as SEQ ID NO: 27 and 50. A particular embodiment of the invention comprises the phosphatase TARGET identified as SEQ ID NO: 28. A particular embodiment of the invention comprises the secreted/extracellular TARGETs identified as SEQ ID NO: 29, 30-35, 36 and 43-44. A particular embodiment of the invention comprises the receptor TARGETs identified as SEQ ID NO: 37, 45-47. A particular embodiment of the invention comprises the ion channel TARGET identified as SEQ ID NO: 42. A particular embodiment of the invention comprises the kinase

TARGET identified as SEQ ID NO: 48. A particular embodiment of the invention comprises the transporter TARGETs identified as SEQ ID NO: 49.

Methods of the Invention

[0078] In one aspect, the present invention relates to a method for identifying a compound useful for the treatment of fibrosis, said method comprising:

[0079] a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, fragments and functional derivatives thereof;

[0080] b) measuring a binding affinity of the test compound to said polypeptide;

[0081] c) contacting the test compound with a population of macrophage cells;

[0082] d) measuring a property related to differentiation of macrophages into M2 macrophages; and

[0083] e) identifying a compound capable of reducing or inhibiting macrophage differentiation into M2 macrophages and demonstrating binding affinity to said polypeptide.

[0084] In a further aspect, the present invention relates to a method for identifying a compound that reduces or inhibits differentiation of macrophages into M2 macrophages, said method comprising:

[0085] a) contacting a test compound with a nucleic acid encoding an amino acid selected from the group consisting of SEQ ID NOs: 26-50 or a fragment or functional derivative thereof;

[0086] b) identifying and/or measuring a binding affinity of the test compound to said nucleic acid;

[0087] c) contacting the test compound with a population of macrophage cells;

[0088] d) measuring a property related to differentiation of macrophages into M2 macrophages; and

[0089] e) identifying a compound capable of reducing or inhibiting macrophage differentiation into M2 macrophages and demonstrating binding affinity to said polypeptide

[0090] In one aspect, the present invention relates to a method for identifying a compound that reduces or inhibits differentiation of macrophages into M2 macrophages, said method comprising:

[0091] a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, fragments and functional derivatives thereof or with a nucleic acid encoding an amino acid selected from the group consisting of SEQ ID NOs: 26-50 or a functional derivative thereof;

[0092] b) identifying and/or measuring a binding affinity of the test compound to said polypeptide or nucleic acid;
 [0093] c) contacting the test compound with a population

of macrophage cells;
[0094] d) measuring a property related to or indicating differentiation of macrophages into M2 macrophages;

[0095] e) identifying a compound capable of inhibiting or reducing macrophage differentiation into M2 macrophages and demonstrating binding affinity to said polypeptide or nucleic acid.

[0096] In a further aspect of the above method, the nucleic acid encoding an amino acid selected from the group consist-

ing of SEQ ID NOs: 26-50 or a functional derivative thereof may be selected from the group consisting of SEQ ID NOs: 1-25.

[0097] The order of taking these measurements is not believed to be critical to the practice of the present invention, which may be practiced in any order. In a particular aspect the method steps (c) and (d) may be performed before performing steps (a) and (b). For example, one may first perform a screening assay of a set of compounds for which no information is known respecting the compounds' binding affinity for the polypeptide. Alternatively, one may screen a set of compounds identified as having binding affinity for a polypeptide domain, or a class of compounds identified as being an inhibitor of the polypeptide.

[0098] In another aspect, steps (a)-(d) method may also be performed simultaneously in a cell-based assay by contacting a test compound with a population of macrophages, measuring a binding affinity of the test compound to a TARGET polypeptide and a property related to differentiation of macrophages into M2 macrophages, and identifying a compound capable of inhibiting of macrophage differentiation into said M2 macrophages and which demonstrates binding affinity to said polypeptide.

[0099] The binding affinity of a compound with the polypeptide TARGET can be measured by methods known in the art, such as using surface plasmon resonance biosensors (Biacore®), by saturation binding analysis with a labeled compound (for example, Scatchard and Lindmo analysis), by differential UV spectrophotometer, fluorescence polarization assay, Fluorometric Imaging Plate Reader (FLIPR®) system, Fluorescence resonance energy transfer, and Bioluminescence resonance energy transfer. The binding affinity of compounds can also be expressed in dissociation constant (Kd) or as IC₅₀ or EC₅₀. The IC₅₀ represents the concentration of a compound that is required for 50% inhibition of binding of another ligand to the polypeptide. The EC₅₀ represents the concentration required for obtaining 50% of the maximum effect in any assay that measures TARGET function. The dissociation constant, Kd, is a measure of how well a ligand binds to the polypeptide, it is equivalent to the ligand concentration required to saturate exactly half of the binding-sites on the polypeptide. Compounds with a high affinity binding have low Kd, IC₅₀ and EC₅₀ values, for example, in the range of 100 nM to 1 pM; a moderate- to low-affinity binding relates to high Kd, IC₅₀ and EC₅₀ values, for example in the micromolar

[0100] In one aspect, the assay method includes contacting a TARGET polypeptide with a compound that exhibits a binding affinity in the micromolar range. In an aspect, the binding affinity exhibited is at least 10 micromolar. In an aspect, the binding affinity is at least 1 micromolar. In an aspect, the binding affinity is at least 500 nanomolar.

[0101] In a particular aspect a test compound is selected based its ability to bind to a TARGET class or from a known libraries of compounds having ability to bind to a TARGET class

[0102] In further aspect, the present invention relates to a method for identifying a compound useful for the treatment of fibrosis, said method comprising:

[0103] a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, functional fragments and functional derivatives thereof;

[0104] b) measuring an activity of said polypeptide;

- [0105] c) contacting the test compound with a population of macrophage cells;
- [0106] d) measuring a property related to differentiation of macrophages into alternatively-activated macrophages; and
- [0107] e) identifying a compound capable of reducing or inhibiting differentiation of macrophages into M2 macrophages and inhibiting the activity of said polypeptide.
- [0108] In an additional aspect, the present invention relates to a method for identifying a compound that reduces or inhibits differentiation of macrophages into M2 macrophages, said method comprising:
 - [0109] a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, functional fragments and functional derivatives thereof;
 - [0110] b) measuring an activity of said polypeptide;
 - [0111] c) contacting the test compound with a population of macrophage cells;
 - [0112] d) measuring a property related to differentiation of macrophages into alternatively-activated macrophages; and
 - [0113] e) identifying a compound capable of reducing or inhibiting differentiation of macrophages into M2 macrophages and inhibiting the activity of said polypeptide.
- [0114] In a further aspect, the present invention relates to a method for identifying a compound that reduces or inhibits differentiation of macrophages into M2 macrophages, said method comprising:
 - [0115] a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, functional fragments and functional derivatives thereof or with a nucleic acid encoding an amino acid selected from the group consisting of SEQ ID NOs: 26-50 or a functional derivative thereof;
 - [0116] b) measuring the expression or an activity of said polypeptide;
 - [0117] c) identifying a compound capable of inhibiting the expression or activity of said polypeptide whereby inhibition of expression or activity of said polypeptide results in or is associated with reduction or inhibition of differentiation of macrophages into M2 macrophages.
- [0118] In an additional aspect of the above method, the nucleic acid encoding an amino acid selected from the group consisting of SEQ ID NOs: 26-50 or a functional derivative thereof may be selected from the group consisting of SEQ ID NOs: 1-25.
- [0119] The order of taking these measurements is not believed to be critical to the practice of the present invention, which may be practiced in any order. In a particular aspect of the method steps (c) and (d) may be performed before performing steps (a) and (b). For example, one may first perform a screening assay of a set of compounds for which no information is known respecting the compounds' binding affinity for the polypeptide. Alternatively, one may screen a set of compounds identified as having binding affinity for a polypeptide domain, or a class of compounds identified as being an inhibitor of the polypeptide.
- [0120] Table 1 lists the TARGETS identified using applicants' knock-down library in the M2 differentiation assay exemplified herein, including the class of polypeptides identified. TARGETS have been identified in polypeptide classes including kinases, proteases, enzymes, ion channels, GPCRs,

- and extracellular proteins, for instance. A skilled artisan would be aware of different methods of measuring activity of those classes both in cell-free preparations as well in cell-based assays. A variety of methods exists and might be adapted to a particular target. Those adaptations are a matter of routine experimentation and rely on the existent techniques and methods. Some exemplary methods are described herein.
- [0121] Ion channels are membrane protein complexes and their function is to facilitate the diffusion of ions across biological membranes. Membranes, or phospholipid bilayers, build a hydrophobic, low dielectric barrier to hydrophilic and charged molecules. Ion channels provide a high conducting, hydrophilic pathway across the hydrophobic interior of the membrane. The activity of an ion channel can be measured using classical patch clamping. High-throughput fluorescence-based or tracer-based assays are also widely available to measure ion channel activity. These fluorescent-based assays screen compounds on the basis of their ability to either open or close an ion channel thereby changing the concentration of specific fluorescent dyes across a membrane. In the case of the tracer-based assay, the changes in concentration of the tracer within and outside the cell are measured by radioactivity measurement or gas absorption spectrometry.
- [0122] Specific methods to determine the inhibition by the compound by measuring the cleavage of the substrate by the polypeptide, which is a protease, are well known in the art. Classically, substrates are used in which a fluorescent group is linked to a quencher through a peptide sequence that is a substrate that can be cleaved by the target protease. Cleavage of the linker separates the fluorescent group and quencher, giving rise to an increase in fluorescence.
- [0123] G-protein coupled receptors (GPCR) are capable of activating an effector protein, resulting in changes in second messenger levels in the cell. The TARGETs represented by SEQ ID NO: 26, 38-41 are GPCRs. The activity of a GPCR can be measured by measuring the activity level of such second messengers. Two important and useful second messengers in the cell are cyclic AMP (cAMP) and Ca²⁺. The activity levels can be measured by methods known to persons skilled in the art, either directly by ELISA or radioactive technologies or by using substrates that generate a fluorescent or luminescent signal when contacted with Ca²⁺ or indirectly by reporter gene analysis. The activity level of the one or more secondary messengers may typically be determined with a reporter gene controlled by a promoter, wherein the promoter is responsive to the second messenger. Promoters known and used in the art for such purposes are the cyclic-AMP responsive promoter that is responsive for the cyclic-AMP levels in the cell, and the NF-AT responsive promoter that is sensitive to cytoplasmic Ca²⁺-levels in the cell. The reporter gene typically has a gene product that is easily detectable. The reporter gene can either be stably infected or transiently transfected in the host cell. Useful reporter genes are alkaline phosphatase, enhanced green fluorescent protein, destabilized green fluorescent protein, luciferase and β-galactosi-
- [0124] In another aspect the present relation relates to a method for identifying a compound useful for the treatment of fibrosis, said method comprising
 - [0125] a) contacting a test compound with population of macrophage cells expressing a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50;

- [0126] b) measuring expression, activity and/or amount of said polypeptide in said cells;
- [0127] c) measuring a property related to differentiation of macrophages into M2 macrophages; and
- [0128] d) identifying a compound producing reduction of expression, activity and/or amount of said polypeptide and capable of reducing or inhibiting differentiation of macrophages into M2 macrophages.

[0129] In a further aspect the present relation relates to a method for identifying a compound that reduces or inhibits differentiation of macrophages into M2 macrophages, said method comprising

- [0130] a) contacting a test compound with population of macrophage cells expressing a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50;
- [0131] b) measuring expression, activity and/or amount of said polypeptide in said cells;
- [0132] c) optionally measuring a property related to differentiation of macrophages into M2 macrophages; and
- [0133] d) identifying a compound producing reduction of expression, activity and/or amount of said polypeptide and capable of reducing or inhibiting differentiation of macrophages into M2 macrophages.

[0134] In particular aspect the method steps of the invention related to measuring of binding to a TARGET or activity are performed with a population of mammalian cells, in particular human cells, which have been engineered so as to express said TARGET polypeptide. In an alternative aspect the methods of the invention are performed using a population of macrophages, which have been engineered so as to express said TARGET polypeptide. This can be achieved by expression of the TARGET polypeptide in the cells using appropriate techniques known to a skilled person. In a specific embodiment, this can be achieved by over-expression of the TARGET polypeptide in the cells using appropriate techniques known to a skilled person. Alternatively, the method of the invention may be performed with a population of macrophages which are known to naturally express said TARGET polypeptide.

[0135] In particular aspect the measurements of expression and/or amount of a TARGET polypeptide and a measurement of a property related to differentiation of macrophages into M2 macrophages can be done in separate steps using different populations of macrophage cells. The measurements in steps (b) and (c) can also be performed in reverse order. The order of taking these measurements is not believed to be critical to the practice of the present invention, which may be practiced in any order.

[0136] One particular means of measuring the activity or expression of the polypeptide is to determine the amount of said polypeptide using a polypeptide binding agent, such as an antibody, or to determine the activity of said polypeptide in a biological or biochemical measure, for instance the amount of phosphorylation of a target of a kinase polypeptide.

[0137] TARGET gene expression (mRNA levels) can be measured using techniques well-known to a skilled artisan. Particular examples of such techniques include northern analysis or real-time PCR. Those methods are indicative of the presence of nucleic acids encoding TARGETs in a sample, and thereby correlate with the expression of the transcript from the polynucleotide.

[0138] The population of cells may be exposed to the compound or the mixture of compounds through different means,

for instance by direct incubation in the medium, or by nucleic acid transfer into the cells. Such transfer may be achieved by a wide variety of means, for instance by direct transfection of naked isolated DNA, or RNA, or by means of delivery systems, such as recombinant vectors. Other delivery means such as liposomes, or other lipid-based vectors may also be used. Particularly, the nucleic acid compound is delivered by means of a (recombinant) vector such as a recombinant virus.

[0139] In vivo animal models of fibrotic diseases may be utilized by the skilled artisan to further or additionally screen, assess, and/or verify the agents or compounds identified in the present invention, including further assessing TARGET modulation in vivo. Such animal models include, but are not limited to, lung fibrosis models (e.g Bleomycin model, irradiation model, silica model, (inducible) transgenic mouse model, FITC model, adoptive transfer model), renal fibrosis models (e.g. COL4A3-deficiency model, nephrotoxic serum nephritis model; unilateral ureteral obstruction model) and liver fibrosis models (e.g. CCL4 intoxication model).

[0140] A population of macrophage cells in the methods of the invention does not have to be pure or require a particular degree of purity. A population of mammalian cells wherein some of said cells are macrophage cells is sufficient to practice the methods of present invention. The number or amount of macrophage cells should be sufficient to determine whether there are significant or relevant changes in differentiation into M2 macrophages or in relative amounts of M2 macrophages, including versus other types such as M1 macrophages, or should be sufficient to evaluate differences, such as a significant decrease or increase, in a macrophage marker or factor. In particular aspect said marker is CCL18. In one aspect such population of macrophage cells can be derived from another cell type (e.g. monocytes) or any other cells that can potentially differentiate into macrophage cells. It should be understood that a population of macrophage cells can be also obtained directly from an organ or alternatively grown using appropriate medium. The techniques of generating a population of macrophage cells are known to a person skilled in the art. Some of such techniques are provided in the Examples of the invention.

[0141] In a specific embodiment the methods may additionally comprise the step of comparing the compound to be tested to a control. Suitable controls should always be in place to insure against false positive or negative readings. In a particular embodiment of the present invention the screening method comprises the additional step of comparing the compound to a suitable control. In one embodiment, the control may be a cell or a sample that has not been in contact with the test compound. In an alternative embodiment, the control may be a cell that does not express the TARGET; for example in one aspect of such an embodiment the test cell may naturally express the TARGET and the control cell may have been contacted with an agent, e.g. an siRNA, which inhibits or prevents expression of the TARGET. Alternatively, in another aspect of such an embodiment, the cell in its native state does not express the TARGET and the test cell has been engineered so as to express the TARGET, so that in this embodiment, the control could be the untransformed native cell. The control may also alternatively utilize a known inhibitor of differentiation of macrophages into M2 macrophages or a compound known not to have any significant effect on the M2 macrophages. Whilst exemplary controls are described herein, this should not be taken as limiting; it is within the scope of a person of skill in the art to select appropriate controls for the experimental conditions being used.

[0142] Examples of negative controls include, but not limited to, cells that have been not treated with any compound, cells treated with a compound known not to be an inhibitor of differentiation of macrophages into M2 macrophages, compounds known not to interfere with the pathways involved in differentiation of macrophages into M2 macrophages. Examples of positive controls include, but not limited to, cells contacted with compounds known to inhibit activity or expression of STAT6, IL4R, JAK1 or CCL18, cells contacted with a compound known to inhibit the differentiation of macrophages into M2 macrophages.

[0143] In a particular embodiment the binding and activity testing in the invention methods is performed in an in vitro cell-free preparation.

[0144] In an alternative embodiment the binding and activity testing in the invention methods is performed in a cell.

[0145] In a particular aspect the invention methods activity and binding testing is performed in a mammalian cell, particularly a human cell. More specifically these steps are performed in macrophage cells.

[0146] It should be understood that the cells expressing the polypeptides may be cells naturally expressing the polypeptides, or the cells may be may be transfected to express the polypeptides. Also, the cells may be transduced to overexpress the polypeptide, or may be transfected to express a non-endogenous form of the polypeptide, which can be differentially assayed or assessed.

[0147] The polynucleotide expressing the TARGET polypeptide in cells might be included within a vector. The polynucleic acid is operably linked to signals enabling expression of the nucleic acid sequence and is introduced into a cell utilizing, particularly, recombinant vector constructs, which will express the nucleic acid once the vector is introduced into the cell. A variety of viral-based systems are available, including adenoviral, retroviral, adeno-associated viral, lentiviral, herpes simplex viral or a sendai viral vector systems. All may be used to introduce and express a TARGET polypeptide in the target cells.

[0148] In a particular embodiment the assay methods of the invention involve measurement of the inhibition of release or expression of a marker of alternatively-activated macrophages (M2 macrophage marker).

[0149] Many of the M2 macrophage markers are known to a skilled person. The selection of such markers depends on the availability of reagents, scale of the practiced assay methods and other factors related to a specific assay design. In a specific embodiment a M2 macrophage marker is selected from the group consisting of CCL18, CCL13, TGF β , CCL22, CCL17, soluble fibronectin, folate receptor β , CD206, and CD163. In a specific embodiment the M2 macrophage marker is CCL18 or CD206.

[0150] The means of measuring such markers, depending on the assay setup and throughput, are known to a skilled artisan. Although human ELISA's are commercially available their sensitivity is not always to detect low levels of the markers. Therefore, the assay might be optimized on the Meso Scale Discovery platform (MSD) (Meso Scale Discovery, Maryland, US) as a sandwich immunoassay where signaling molecules are specifically captured and detected by antibodies. MSD technology uses micro-plates with carbon electrodes integrated at the bottom of the plates; Biological reagents, immobilized to the carbon simply by passive

adsorption, retain high biological activity. MSD assays use electro-chemiluminescent labels for ultra-sensitive detection. The detection process is initiated at electrodes located at the bottom of the micro-plates. Labels near the electrode only are excited and detected reducing background signal. The antibodies for such assay might be purchased from different producers and the skilled artisan is in the position to choose correct antibodies to perform the assay.

[0151] Alternatively the expression levels of the M1 and M2 phenotype markers can be measured using known methods including quantitative real time polymerase chain reaction (Q-PCR/qPCR/qrt-PCR). qPCR is a laboratory technique based on PCR, which is used to amplify and simultaneously quantify a targeted DNA molecule. For one or more specific sequences in a DNA sample, Real Time-PCR enables both detection and quantification. The quantity can be either an absolute number of copies or a relative amount when normalized to DNA input or additional normalizing genes.

[0152] In a specific embodiment the methods of the invention utilize cells that have been triggered by a factor which induces macrophage differentiation into M2 macrophages (M2 inducing factor). Many of such factors have been described in the literature and they are well-known to a skilled person. In a particular embodiment the methods of the invention utilize cells that have been triggered by one or more M2 inducing factors selected from the group consisting of IL4, IL10, IL13, immune complexes, and lipopolysaccharides. An immune complex is formed from the integral binding of an antibody to a soluble antigen. The bound antigen and antibody act as a specific epitope, and is referred to as a singular immune complex.

[0153] In more particular embodiment the assay methods are performed using cells that have been triggered by a combination of IL10 and IL4.

[0154] In a particular embodiment the assay methods might be supplemented by additional steps of: measuring a property related to the differentiation of macrophages into classically-activated (M1) macrophages, and identifying a compound that does not inhibit said differentiation. In a specific embodiment said property is the level and/or expression of a marker of the M1 macrophage phenotype (M1 macrophage marker), and a compound is identified which does not increase the levels of said marker.

[0155] In a particular embodiment $TNF\alpha$ is used as a marker of the M1 macrophage phenotype. Many other alternative M1 macrophage markers have been described in the literature and will be known to a skilled person.

Candidate Compounds

Expression-Inhibiting Agents

[0156] In a particular embodiment the methods of the invention a test compound is selected from the group consisting of an antisense polynucleotide, a ribozyme, short-hairpin RNA (shRNA), microRNA (miRNA) and a small interfering RNA (siRNA).

[0157] A special embodiment of these methods comprises the expression-inhibitory agent selected from the group consisting of antisense RNA, antisense oligodeoxynucleotide (ODN), a ribozyme that cleaves the polyribonucleotide coding for SEQ ID NO: 26-50, a small interfering RNA (siRNA) or microRNA (miRNA) that is sufficiently homologous to a portion of the polyribonucleotide corresponding to SEQ ID

NO: 1-25, such that the expression-inhibitory agent interferes with the translation of the TARGET polyribonucleotide to the TARGET polypeptide.

[0158] The down regulation of gene expression using antisense nucleic acids can be achieved at the translational or transcriptional level. Antisense nucleic acids of the invention are particularly nucleic acid fragments capable of specifically hybridizing with all or part of a nucleic acid encoding a TARGET polypeptide or the corresponding messenger RNA. In addition, antisense nucleic acids may be designed which decrease expression of the nucleic acid sequence capable of encoding a TARGET polypeptide by inhibiting splicing of its primary transcript. Any length of antisense sequence is suitable for practice of the invention so long as it is capable of down-regulating or blocking expression of a nucleic acid coding for a TARGET. Particularly, the antisense sequence is at least about 15-30, and particularly at least 17 nucleotides in length. The preparation and use of antisense nucleic acids, DNA encoding antisense RNAs and the use of oligo and genetic antisense is known in the art.

[0159] In a more specific embodiment a test compound comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a TARGET polynucleotide.

[0160] The skilled artisan can readily utilize any of several strategies to facilitate and simplify the selection process for antisense nucleic acids and oligonucleotides effective in inhibition of TARGET and differentiation of macrophages into alternatively-activated macrophages. Predictions of the binding energy or calculation of thermodynamic indices between an oligonucleotide and a complementary sequence in an mRNA molecule may be utilized (Chiang et al. (1991) J. Biol. Chem. 266:18162-18171; Stull et al. (1992) Nucl. Acids Res. 20:3501-3508). Antisense oligonucleotides may be selected on the basis of secondary structure (Wickstrom et al (1991) in Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS, Wickstrom, ed., Wiley-Liss, Inc., New York, pp. 7-24; Lima et al. (1992) Biochem. 31:12055-12061). Schmidt and Thompson (U.S. Pat. No. 6,416,951) describe a method for identifying a functional antisense agent comprising hybridizing an RNA with an oligonucleotide and measuring in real time the kinetics of hybridization by hybridizing in the presence of an intercalation dye or incorporating a label and measuring the spectroscopic properties of the dye or the label's signal in the presence of unlabelled oligonucleotide. In addition, any of a variety of computer programs may be utilized which predict suitable antisense oligonucleotide sequences or antisense targets utilizing various criteria recognized by the skilled artisan, including for example the absence of self-complementarity, the absence of hairpin loops, the absence of stable homodimer and duplex formation (stability being assessed by predicted energy in kcal/mol). Examples of such computer programs are readily available and known to the skilled artisan and include the OLIGO 4 or OLIGO 6 program (Molecular Biology Insights, Inc., Cascade, Colo.) and the Oligo Tech program (Oligo Therapeutics Inc., Wilsonville, Oreg.). In addition, antisense oligonucleotides suitable in the present invention may be identified by screening an oligonucleotide library, or a library of nucleic acid molecules, under hybridization conditions and selecting for those which hybridize to the target RNA or nucleic acid (see for example U.S. Pat. No. 6,500,615). Mishra and Toulme have also developed a selection procedure based on selective amplification of oligonucleotides that bind target (Mishra et al (1994) Life Sciences 317:977-982). Oligonucleotides may also be selected by their ability to mediate cleavage of target RNA by RNAse H, by selection and characterization of the cleavage fragments (Ho et al (1996) Nucl Acids Res 24:1901-1907; Ho et al (1998) Nature Biotechnology 16:59-630). Generation and targeting of oligonucleotides to GGGA motifs of RNA molecules has also been described (U.S. Pat. No. 6,277,981).

[0161] The antisense nucleic acids are particularly oligonucleotides and may consist entirely of deoxyribo-nucleotides, modified deoxyribonucleotides, or some combination of both. The antisense nucleic acids can be synthetic oligonucleotides. The oligonucleotides may be chemically modified, if desired, to improve stability and/or selectivity. Specific examples of some particular oligonucleotides envisioned for this invention include those containing modified backbones, for example, phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Since oligonucleotides are susceptible to degradation by intracellular nucleases, the modifications can include, for example, the use of a sulfur group to replace the free oxygen of the phosphodiester bond. This modification is called a phosphorothioate linkage. Phosphorothioate antisense oligonucleotides are water soluble, polyanionic, and resistant to endogenous nucleases. In addition, when a phosphorothioate antisense oligonucleotide hybridizes to its TARGET site, the RNA-DNA duplex activates the endogenous enzyme ribonuclease (RNase) H, which cleaves the mRNA component of the hybrid molecule. Oligonucleotides may also contain one or more substituted sugar moieties. Particular oligonucleotides comprise one of the following at the 2' position: OH, SH, SCH3, F, OCN, heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonucleotide; or a group for improving the pharmacodynamic properties of an oligonucleotide and other substituents having similar properties. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide.

[0162] In addition, antisense oligonucleotides with phosphoramidite and polyamide (peptide) linkages can be synthesized. These molecules should be very resistant to nuclease degradation. Furthermore, chemical groups can be added to the 2' carbon of the sugar moiety and the 5 carbon (C-5) of pyrimidines to enhance stability and facilitate the binding of the antisense oligonucleotide to its TARGET site. Modifications may include 2'-deoxy, 0-pentoxy, 0-propoxy, 0-methoxy, fluoro, methoxyethoxy phosphorothioates, modified bases, as well as other modifications known to those of skill in the art.

[0163] Another type of expression-inhibitory agent that reduces the levels of TARGETS is the ribozyme. Ribozymes are catalytic RNA molecules (RNA enzymes) that have separate catalytic and substrate binding domains. The substrate binding sequence combines by nucleotide complementarity and, possibly, non-hydrogen bond interactions with its TARGET sequence. The catalytic portion cleaves the TARGET RNA at a specific site. The substrate domain of a ribozyme can be engineered to direct it to a specified mRNA sequence.

The ribozyme recognizes and then binds a TARGET mRNA through complementary base pairing. Once it is bound to the correct TARGET site, the ribozyme acts enzymatically to cut the TARGET mRNA. Cleavage of the mRNA by a ribozyme destroys its ability to direct synthesis of the corresponding polypeptide. Once the ribozyme has cleaved its TARGET sequence, it is released and can repeatedly bind and cleave at other mRNAs.

[0164] Exemplary ribozyme forms include a hammerhead motif, a hairpin motif, a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) motif or *Neurospora* VS RNA motif Ribozymes possessing a hammerhead or hairpin structure are readily prepared since these catalytic RNA molecules can be expressed within cells from eukaryotic promoters (Chen, et al. (1992) Nucleic Acids Res. 20:4581-9). A ribozyme of the present invention can be expressed in eukaryotic cells from the appropriate DNA vector. If desired, the activity of the ribozyme may be augmented by its release from the primary transcript by a second ribozyme (Ventura, et al. (1993) Nucleic Acids Res. 21:3249-55).

[0165] Ribozymes may be chemically synthesized by combining an oligodeoxyribonucleotide with a ribozyme catalytic domain (20 nucleotides) flanked by sequences that hybridize to the TARGET mRNA after transcription. The oligodeoxyribonucleotide is amplified by using the substrate binding sequences as primers. The amplification product is cloned into a eukaryotic expression vector.

[0166] Ribozymes are expressed from transcription units inserted into DNA, RNA, or viral vectors. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol (I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on nearby gene regulatory sequences. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Gao and Huang, (1993) Nucleic Acids Res. 21:2867-72). It has been demonstrated that ribozymes expressed from these promoters can function in mammalian cells (Kashani-Sabet, et al. (1992) Antisense Res. Dev. 2:3-15).

[0167] In a particular embodiment the methods of the invention might be practiced using antisense polynucleotide, siRNA or shRNA comprising an antisense strand of 17-25 nucleotides complementary to a sense strand, wherein said sense strand is selected from 17-25 continuous nucleotides of a TARGET polynucleotide.

[0168] A particular inhibitory agent is a small interfering RNA (siRNA, particularly small hairpin RNA, "shRNA"). siRNA, particularly shRNA, mediate the post-transcriptional process of gene silencing by double stranded RNA (dsRNA) that is homologous in sequence to the silenced RNA. siRNA according to the present invention comprises a sense strand of 15-30, particularly 17-30, most particularly 17-25 nucleotides complementary or homologous to a contiguous 17-25 nucleotide sequence selected from the group of sequences described in SEQ ID NO: 1-25, more particularly from the group of sequences described in SEQ ID NOs: 64-109, and an antisense strand of 15-30, particularly 17-30, most particularly 17-25, more specifically 19-21 nucleotides complementary to the sense strand. More particular siRNA according to the present invention comprises a sense strand selected from

the group of sequences comprising SEQ ID NOs: 64-109. The most particular siRNA comprises sense and anti-sense strands that are 100 percent complementary to each other and the TARGET polynucleotide sequence. Particularly the siRNA further comprises a loop region linking the sense and the antisense strand.

[0169] A self-complementing single stranded shRNA molecule polynucleotide according to the present invention comprises a sense portion and an antisense portion connected by a loop region linker. Particularly, the loop region sequence is 4-30 nucleotides long, more particularly 5-15 nucleotides long and most particularly 8 or 12 nucleotides long. In a most particular embodiment the linker sequence is UUGCUAUA or GUUUGCUAUAAC (SEQ ID NO: 110). Self-complementary single stranded siRNAs form hairpin loops and are more stable than ordinary dsRNA. In addition, they are more easily produced from vectors.

[0170] Analogous to antisense RNA, the siRNA can be modified to confirm resistance to nucleolytic degradation, or to enhance activity, or to enhance cellular distribution, or to enhance cellular uptake, such modifications may consist of modified internucleoside linkages, modified nucleic acid bases, modified sugars and/or chemical linkage the siRNA to one or more moieties or conjugates. The nucleotide sequences are selected according to siRNA designing rules that give an improved reduction of the TARGET sequences compared to nucleotide sequences that do not comply with these siRNA designing rules (For a discussion of these rules and examples of the preparation of siRNA, WO 2004/094636 and US 2003/0198627, are hereby incorporated by reference).

[0171] Particular inhibitory agents include MicroRNAs (referred to as "miRNAs"). miRNA are small non-coding RNAs, belonging to a class of regulatory molecules found in many eukaryotic species that control gene expression by binding to complementary sites on target messenger RNA (mRNA) transcripts.

[0172] In vivo miRNAs are generated from larger RNA precursors (termed pre-miRNAs) that are processed in the nucleus into approximately 70 nucleotide pre-miRNAs, which fold into imperfect stem-loop structures. The pre-miRNAs undergo an additional processing step within the cytoplasm where mature miRNAs of 18-25 nucleotides in length are excised from one side of the pre-miRNA hairpin by an RNase III enzyme.

[0173] miRNAs have been shown to regulate gene expression in two ways. First, miRNAs binding to protein-coding mRNA sequences that are exactly complementary to the miRNA induce the RNA-mediated interference (RNAi) pathway. Messenger RNA targets are cleaved by ribonucleases in the RISC complex. In the second mechanism, miRNAs that bind to imperfect complementary sites on messenger RNA transcripts direct gene regulation at the posttranscriptional level but do not cleave their mRNA targets. miRNAs identified in both plants and animals use this mechanism to exert translational control over their gene targets.

Low Molecular Weight Compounds

[0174] Particular drug candidate compounds are low molecular weight compounds. Low molecular weight compounds, for example with a molecular weight of 500 Dalton or less, are likely to have good absorption and permeation in biological systems and are consequently more likely to be successful drug candidates than compounds with a molecular

weight above 500 Dalton (Lipinski et al., 2001)). Peptides comprise another particular class of drug candidate compounds. Peptides may be excellent drug candidates and there are multiple examples of commercially valuable peptides such as fertility hormones and platelet aggregation inhibitors. Natural compounds are another particular class of drug candidate compound. Such compounds are found in and extracted from natural sources, and which may thereafter be synthesized. The lipids are another particular class of drug candidate compound.

Antibodies

[0175] Another preferred class of drug candidate compounds is an antibody. The present invention also provides antibodies directed against the TARGETS. These antibodies may be endogenously produced to bind to the TARGETS within the cell, or added to the tissue to bind to the TARGET polypeptide present outside the cell. These antibodies may be monoclonal antibodies or polyclonal antibodies. The present invention includes chimeric, single chain, and humanized antibodies, as well as FAb fragments and the products of a FAb expression library, and Fv fragments and the products of an Fv expression library.

[0176] In certain embodiments, polyclonal antibodies may be used in the practice of the invention. The skilled artisan knows methods of preparing polyclonal antibodies. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. Antibodies may also be generated against the intact TARGET protein or polypeptide, or against a fragment, derivatives including conjugates, or other epitope of the TARGET protein or polypeptide, such as the TARGET embedded in a cellular membrane, or a library of antibody variable regions, such as a phage display library.

[0177] It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants that may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). One skilled in the art without undue experimentation may select the immunization protocol.

[0178] In some embodiments, the antibodies may be monoclonal antibodies. Monoclonal antibodies may be prepared using methods known in the art. The monoclonal antibodies of the present invention may be "humanized" to prevent the host from mounting an immune response to the antibodies. A "humanized antibody" is one in which the complementarity determining regions (CDRs) and/or other portions of the light and/or heavy variable domain framework are derived from a non-human immunoglobulin, but the remaining portions of the molecule are derived from one or more human immunoglobulins. Humanized antibodies also include antibodies characterized by a humanized heavy chain associated with a donor or acceptor unmodified light chain or a chimeric light chain, or vice versa. The humanization of antibodies may be accomplished by methods known in the art (see, e.g. Mark and Padlan, (1994) "Chapter 4. Humanization of Monoclonal Antibodies", The Handbook of Experimental Pharmacology Vol. 113, Springer-Verlag, New York). Transgenic animals may be used to express humanized antibodies.

[0179] Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter, (1991) J. Mol. Biol. 227: 381-8; Marks et al. (1991). J. Mol. Biol. 222:581-97). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77; Boerner, et al (1991). J. Immunol., 147(1):86-95).

[0180] Techniques known in the art for the production of single chain antibodies can be adapted to produce single chain antibodies to the TARGETS. The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain cross-linking. Alternatively; the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent cross-linking.

[0181] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens and preferably for a cell-surface protein or receptor or receptor subunit. In the present case, one of the binding specificities is for one domain of the TARGET; the other one is for another domain of the TARGET.

[0182] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, (1983) Nature 305:537-9). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. Affinity chromatography steps usually accomplish the purification of the correct molecule. Similar procedures are disclosed in Trauneeker, et al. (1991) EMBO J. 10:3655-9.

[0183] A special aspect of the methods of the present invention relates to the down-regulation or blocking of the expression of a TARGET polypeptide by the induced expression of a polynucleotide encoding an intracellular binding protein that is capable of selectively interacting with the TARGET polypeptide. An intracellular binding protein includes an activity-inhibitory agent and any protein capable of selectively interacting, or binding, with the polypeptide in the cell in which it is expressed and neutralizing the function of the polypeptide. Particularly, the intracellular binding protein may be an antibody, particularly a neutralizing antibody, or a fragment of an antibody or neutralizing antibody having binding affinity to an epitope of the TARGET polypeptide of SEQ ID NO: 26-50. More particularly, the intracellular binding protein is a single chain antibody.

Pharmaceutical Compositions, Related Uses and Methods

[0184] The antibodies or a fragments thereof which specifically bind to a TARGET polypeptide and expression inhibiting agents selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA

(siRNA), microRNA (miRNA) and a short-hairpin RNA (shRNA) that may be used as therapeutic agents for the treatment of conditions in mammals that are causally related or attributable to differentiation of macrophages into M2 macrophages.

[0185] The present invention relates to pharmaceutical compositions comprising an antibody or a fragment thereof which specifically binds to a TARGET polypeptide, for use in the treatment of a fibrotic condition. In a particular embodiment a fibrotic condition is fibrotic diseases associated with differentiation of macrophages into M2 macrophages.

[0186] In particular aspect, the present invention provides a method of treating a mammal having, or at risk of having a fibrotic disease, said method comprising administering an effective condition-treating or condition-preventing amount of one or more of the pharmaceutical compositions comprising an antibody or a fragment thereof which specifically binds to a TARGET polypeptide. In a particular aspect, the present invention provides a method of treating a mammal having, or at risk of having idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In specific embodiment, said antibody is a monoclonal antibody. In alternative embodiment said antibody is a single chain antibody. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0187] In another aspect the present invention provides an antibody or a fragment thereof which specifically binds to a TARGET polypeptide for use in the treatment, and/or prophylaxis of a fibrotic condition. In a specific embodiment, said fibrotic condition is selected from idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic druginduced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage dis-

orders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In specific embodiment, said antibody is a monoclonal antibody. In alternative embodiment said antibody is a single chain antibody. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0188] In yet another aspect, the present invention provides an antibody or a fragment thereof which specifically binds to a TARGET polypeptide, or a pharmaceutical composition comprising an antibody or a fragment thereof which specifically binds to a TARGET polypeptide for use in the manufacture of a medicament for the treatment, or prophylaxis of a fibrotic condition. In a specific embodiment, said fibrotic condition is selected from idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In specific embodiment, said antibody is a monoclonal antibody. In alternative embodiment said antibody is a single chain antibody. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0189] A particular regimen of the present method comprises the administration to a subject suffering from a fibrotic

disease involving differentiation of macrophages into M2 macrophages, of an effective amount of an antibody or a fragment thereof which specifically binds to a TARGET polypeptide for a period of time sufficient to reduce the level of abnormal fibrosis in the subject, and preferably terminate the processes responsible for said fibrotic condition. A special embodiment of the method comprises administering of an effective amount of an antibody or a fragment thereof which specifically binds to a TARGET polypeptide to a subject patient suffering from or susceptible to the development of a fibrotic disease, for a period of time sufficient to reduce or prevent, respectively, fibrotic condition in said patient, and preferably terminate, the processes responsible for said fibrotic condition. In specific embodiment, said antibody is a monoclonal antibody. In alternative embodiment said antibody is a single chain antibody. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0190] The present invention further relates to compositions comprising said agents, wherein said agent is selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA (siRNA), microRNA (miRNA), and a short-hairpin RNA (shRNA), wherein said agent comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-25. These agents are, otherwise, referred herein to as expression inhibitory agents.

[0191] In particular aspect, the present invention provides a method of treating a mammal having, or at risk of having a fibrotic disease, said method comprising administering an effective condition-treating or condition-preventing amount of one or more of the pharmaceutical compositions comprising said expression inhibitory agent. In a particular aspect, the present invention provides a method of treating a mammal having, or at risk of having idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0192] In another aspect the present invention provides expression inhibitory agents for use in the treatment, and/or prophylaxis of a fibrotic condition. In a specific embodiment, said fibrotic condition is selected from idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic druginduced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0193] In yet another aspect, the present invention provides expression inhibitory agents, or a pharmaceutical composition comprising said expression inhibitory agents for use in the manufacture of a medicament for the treatment, or prophylaxis of a fibrotic condition. In a specific embodiment, said fibrotic condition is selected from idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic druginduced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis,

vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis, Peyronie's disease, and/or diseases associated with differentiation of macrophages into M2 macrophages. In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0194] A particular regimen of the present method comprises the administration to a subject suffering from a fibrotic disease involving differentiation of macrophages into M2 macrophages, of an effective amount of an expression inhibitory agent for a period of time sufficient to reduce the level of abnormal fibrosis in the subject, and preferably terminate the processes responsible for said fibrotic condition. A special embodiment of the method comprises administering of an effective amount of an antibody or a fragment thereof which specifically binds to a TARGET polypeptide to a subject patient suffering from or susceptible to the development of a fibrotic disease, for a period of time sufficient to reduce or prevent, respectively, fibrotic condition in said patient, and preferably terminate, the processes responsible for said fibrotic condition In particular embodiment said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into M2 macrophages.

[0195] Another aspect of the present invention relates to compositions, comprising a DNA expression vector capable of expressing a polynucleotide capable of inhibition of expression of a TARGET polypeptide and described as an expression inhibitory agent.

[0196] The present invention provides compounds, compositions, and methods useful for modulating the expression of the TARGET genes, specifically those TARGET genes associated with a fibrotic disease and for treating such conditions by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules including, but not limited to, short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), short hairpin RNA (shRNA) and circular RNA molecules and methods used to modulate the expression of the TARGET genes and/or other genes involved in pathways of the TARGET gene expression and/or activity.

[0197] A particular aspect of these compositions and methods relates to the down-regulation or blocking of the expression of the TARGET by the induced expression of a polynucleotide encoding an intracellular binding protein that is capable of selectively interacting with the TARGET. An intracellular binding protein includes any protein capable of selectively interacting, or binding, with the polypeptide in the cell in which it is expressed and neutralizing the function of the polypeptide. Preferably, the intracellular binding protein is a neutralizing antibody or a fragment of a neutralizing antibody having binding affinity to an epitope of a TARGET selected from the group consisting of SEQ ID NO: 26-50. More preferably, the intracellular binding protein is a single chain antibody.

[0198] Antibodies according to the invention may be delivered as a bolus only, infused over time or both administered as a bolus and infused over time. Those skilled in the art may employ different formulations for polynucleotides than for proteins. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations,

[0199] A particular embodiment of this composition comprises the expression-inhibiting agent selected from the group

consisting of antisense RNA, antisense oligodeoxynucleotide (ODN), a ribozyme that cleaves the polyribonucleotide coding for a TARGET selected from the group consisting of SEQ ID NO: 1-25, a small interfering RNA (siRNA), and a microRNA that is sufficiently homologous to a portion of the polyribonucleotide coding for a TARGET selected from the group consisting of SEQ ID NO: 1-25, such that the siRNA or microRNA interferes with the translation of the TARGET polyribonucleotide to the TARGET polypeptide.

[0200] The polynucleotide expressing the expression-in-hibiting agent, or a polynucleotide expressing the TARGET polypeptide in cells, is particularly included within a vector. The polynucleic acid is operably linked to signals enabling expression of the nucleic acid sequence and is introduced into a cell utilizing, preferably, recombinant vector constructs, which will express the antisense nucleic acid once the vector is introduced into the cell. A variety of viral-based systems are available, including adenoviral, retroviral, adeno-associated viral, lentiviral, herpes simplex viral or a sendaiviral vector systems, and all may be used to introduce and express polynucleotide sequence for the expression-inhibiting agents or the polynucleotide expressing the TARGET polypeptide in the target cells.

[0201] Particularly, the viral vectors used in the methods of the present invention are replication defective. Such replication defective vectors will usually pack at least one region that is necessary for the replication of the virus in the infected cell. These regions can either be eliminated (in whole or in part), or be rendered non-functional by any technique known to a person skilled in the art. These techniques include the total removal, substitution, partial deletion or addition of one or more bases to an essential (for replication) region. Such techniques may be performed in vitro (on the isolated DNA) or in situ, using the techniques of genetic manipulation or by treatment with mutagenic agents. Preferably, the replication defective virus retains the sequences of its genome, which are necessary for encapsidating, the viral particles.

[0202] In a preferred embodiment, the viral element is derived from an adenovirus. Preferably, the vehicle includes an adenoviral vector packaged into an adenoviral capsid, or a functional part, derivative, and/or analogue thereof. Adenovirus biology is also comparatively well known on the molecular level. Many tools for adenoviral vectors have been and continue to be developed, thus making an adenoviral capsid a preferred vehicle for incorporating in a library of the invention. An adenovirus is capable of infecting a wide variety of cells. However, different adenoviral serotypes have different preferences for cells. To combine and widen the target cell population that an adenoviral capsid of the invention can enter in a preferred embodiment, the vehicle includes adenoviral fiber proteins from at least two adenoviruses. Preferred adenoviral fiber protein sequences are serotype 17, 45 and 51. Techniques or construction and expression of these chimeric vectors are disclosed in US 2003/0180258 and US 2004/ 0071660, hereby incorporated by reference.

[0203] In a preferred embodiment, the nucleic acid derived from an adenovirus includes the nucleic acid encoding an adenoviral late protein or a functional part, derivative, and/or analogue thereof. An adenoviral late protein, for instance an adenoviral fiber protein, may be favorably used to target the vehicle to a certain cell or to induce enhanced delivery of the vehicle to the cell. Preferably, the nucleic acid derived from an adenovirus encodes for essentially all adenoviral late proteins, enabling the formation of entire adenoviral capsids or

functional parts, analogues, and/or derivatives thereof. Preferably, the nucleic acid derived from an adenovirus includes the nucleic acid encoding adenovirus E2A or a functional part, derivative, and/or analogue thereof. Preferably, the nucleic acid derived from an adenovirus includes the nucleic acid encoding at least one E4-region protein or a functional part, derivative, and/or analogue thereof, which facilitates, at least in part, replication of an adenoviral derived nucleic acid in a cell. The adenoviral vectors used in the examples of this application are exemplary of the vectors useful in the present method of treatment invention.

[0204] Certain embodiments of the present invention may use retroviral vector systems. Retroviruses are integrating viruses that infect dividing cells, and their construction is known in the art. Retroviral vectors can be constructed from different types of retrovirus, such as, MoMuLV ("murine Moloney leukemia virus") MSV ("murine Moloney sarcoma virus"), HaSV ("Harvey sarcoma virus"); SNV ("spleen necrosis virus"); RSV ("Rous sarcoma virus") and Friend virus. Lentiviral vector systems may also be used in the practice of the present invention.

[0205] In other embodiments of the present invention, adeno-associated viruses ("AAV") are utilized. The AAV viruses are DNA viruses of relatively small size that integrate, in a stable and site-specific manner, into the genome of the infected cells. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies.

[0206] As discussed hereinabove, recombinant viruses may be used to introduce DNA encoding polynucleotide agents useful in the present invention. Recombinant viruses according to the invention are generally formulated and administered in the form of doses of between about 104 and about 1014 pfu. In the case of AAVs and adenoviruses, doses of from about 106 to about 1011 pfu are particularly used. The term pfu ("plaque-forming unit") corresponds to the infective power of a suspension of virions and is determined by infecting an appropriate cell culture and measuring the number of plaques formed. The techniques for determining the pfu titre of a viral solution are well documented in the prior art.

[0207] In the vector construction, the polynucleotide agents of the present invention may be linked to one or more regulatory regions. Selection of the appropriate regulatory region or regions is a routine matter, within the level of ordinary skill in the art. Regulatory regions include promoters, and may include enhancers, suppressors, etc.

[0208] Promoters that may be used in the expression vectors of the present invention include both constitutive promoters and regulated (inducible) promoters. The promoters may be prokaryotic or eukaryotic depending on the host. Among the prokaryotic (including bacteriophage) promoters useful for practice of this invention are lac, lacZ, T3, T7, lambda P_r, P₁, and trp promoters. Among the eukaryotic (including viral) promoters useful for practice of this invention are ubiquitous promoters (e.g. HPRT, vimentin, actin, tubulin), therapeutic gene promoters (e.g. MDR type, CFTR, factor VIII), tissuespecific promoters, including animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals, e.g. chymase gene control region which is active in mast cells (Liao et al., (1997), Journal of Biological Chemistry, 272: 2969-2976), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl, et al. (1984) Cell 38:647-58; Adames, et al. (1985) Nature 318:533-8; Alexander, et al. (1987) Mol. Cell. Biol. 7:1436-44), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder, et al. (1986) Cell 45:485-95), beta-globin gene control region which is active in myeloid cells (Mogram, et al. (1985) Nature 315:338-40; Kollias, et al. (1986) Cell 46:89-94), the CMV promoter and the Visna LTR (Sidiropoulos et al., (2001), Gene Therapy, 8:223-231)

[0209] Other promoters which may be used in the practice of the invention include promoters which are preferentially activated in dividing cells, promoters which respond to a stimulus (e.g. steroid hormone receptor, retinoic acid receptor), tetracycline-regulated transcriptional modulators, cytomegalovirus immediate-early, retroviral LTR, metallothionein, SV-40, Ela, and MLP promoters. Further promoters which may be of use in the practice of the invention include promoters which are active and/or expressed in macrophages or other cell types contributing to inflammation such as dendritic cells, monocytes, neutrophils, mast cells, endothelial cells, epithelial cells, muscle cells, etc.

[0210] Additional vector systems include the non-viral systems that facilitate introduction of polynucleotide agents into a patient. For example, a DNA vector encoding a desired sequence can be introduced in vivo by lipofection. Synthetic cationic lipids designed to limit the difficulties encountered with liposome-mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Feigner, et. al. (1987) Proc. Natl. Acad Sci. USA 84:7413-7); see Mackey, et al. (1988) Proc. Natl. Acad. Sci. USA 85:8027-31; Ulmer, et al. (1993) Science 259:1745-8). The use of cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes (Feigner and Ringold, (1989) Nature 337:387-8). Particularly useful lipid compounds and compositions for transfer of nucleic acids are described in International Patent Publications WO 95/18863 and WO 96/17823, and in U.S. Pat. No. 5,459,127. The use of lipofection to introduce exogenous genes into the specific organs in vivo has certain practical advantages and directing transfection to particular cell types would be particularly advantageous in a tissue with cellular heterogeneity, for example, pancreas, liver, kidney, and the brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides, e.g., hormones or neurotransmitters, and proteins for example, antibodies, or non-peptide molecules could be coupled to liposomes chemically. Other molecules are also useful for facilitating transfection of a nucleic acid in vivo, for example, a cationic oligopeptide (e.g., International Patent Publication WO 95/21931), peptides derived from DNA binding proteins (e.g., International Patent Publication WO 96/25508), or a cationic polymer (e.g., International Patent Publication WO 95/21931).

[0211] It is also possible to introduce a DNA vector in vivo as a naked DNA plasmid (see U.S. Pat. Nos. 5,693,622, 5,589,466 and 5,580,859). Naked DNA vectors for therapeutic purposes can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, e.g., Wilson, et al. (1992) J. Biol. Chem. 267:963-7; Wu and Wu, (1988) J. Biol. Chem. 263:14621-4; Hartmut, et al. Canadian Patent Application No. 2,012,311, filed Mar. 15, 1990; Williams, et al (1991). Proc. Natl. Acad. Sci. USA 88:2726-30). Receptor-mediated

DNA delivery approaches can also be used (Curiel, et al. (1992) Hum. Gene Ther. 3:147-54; Wu and Wu, (1987) J. Biol. Chem. 262:4429-32).

[0212] A biologically compatible composition is a composition, that may be solid, liquid, gel, or other form, in which the compound, polynucleotide, vector, and antibody of the invention is maintained in an active form, e.g., in a form able to effect a biological activity. For example, a compound of the invention would have inverse agonist or antagonist activity on the TARGET; a nucleic acid would be able to replicate, translate a message, or hybridize to a complementary mRNA of the TARGET; a vector would be able to transfect a target cell and express the antisense, antibody, ribozyme or siRNA as described hereinabove; an antibody would bind a the TARGET polypeptide domain.

[0213] A particular biologically compatible composition is an aqueous solution that is buffered using, e.g., Tris, phosphate, or HEPES buffer, containing salt ions. Usually the concentration of salt ions will be similar to physiological levels. Biologically compatible solutions may include stabilizing agents and preservatives. In a more preferred embodiment, the biocompatible composition is a pharmaceutically acceptable composition. Such compositions can be formulated for administration by topical, oral, parenteral, intranasal, subcutaneous, and intraocular, routes. Parenteral administration is meant to include intravenous injection, intramuscular injection, intraarterial injection or infusion techniques. The composition may be administered parenterally in dosage unit formulations containing standard, wellknown non-toxic physiologically acceptable carriers, adjuvants and vehicles as desired.

[0214] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient. Pharmaceutical compositions for oral use can be prepared by combining active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethyl-cellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate. Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinyl-pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

[0215] Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with filler or binders, such as lactose or starches,

lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

[0216] Particular sterile injectable preparations can be a solution or suspension in a non-toxic parenterally acceptable solvent or diluent. Examples of pharmaceutically acceptable carriers are saline, buffered saline, isotonic saline (for example, monosodium or disodium phosphate, sodium, potassium; calcium or magnesium chloride, or mixtures of such salts), Ringer's solution, dextrose, water, sterile water, glycerol, ethanol, and combinations thereof 1,3-butanediol and sterile fixed oils are conveniently employed as solvents or suspending media. Any bland fixed oil can be employed including synthetic mono- or di-glycerides. Fatty acids such as oleic acid also find use in the preparation of injectables.

[0217] The compounds or compositions of the invention may be combined for administration with or embedded in polymeric carrier(s), biodegradable or biomimetic matrices or in a scaffold. The carrier, matrix or scaffold may be of any material that will allow composition to be incorporated and expressed and will be compatible with the addition of cells or in the presence of cells. Particularly, the carrier matrix or scaffold is predominantly non-immunogenic and is biodegradable. Examples of biodegradable materials include, but are not limited to, polyglycolic acid (PGA), polylactic acid (PLA), hyaluronic acid, catgut suture material, gelatin, cellulose, nitrocellulose, collagen, albumin, fibrin, alginate, cotton, or other naturally-occurring biodegradable materials. It may be preferable to sterilize the matrix or scaffold material prior to administration or implantation, e.g., by treatment with ethylene oxide or by gamma irradiation or irradiation with an electron beam. In addition, a number of other materials may be used to form the scaffold or framework structure, including but not limited to: nylon (polyamides), dacron (polyesters), polystyrene, polypropylene, polyacrylates, polyvinyl compounds (e.g., polyvinylchloride), polycarbonate (PVC), polytetrafluorethylene (PTFE, teflon), thermanox (TPX), polymers of hydroxy acids such as polylactic acid (PLA), polyglycolic acid (PGA), and polylactic acid-glycolic acid (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and a variety of polyhydroxyalkanoates, and combinations thereof. Matrices suitable include a polymeric mesh or sponge and a polymeric hydrogel. In the particular embodiment, the matrix is biodegradable over a time period of less than a year, more particularly less than six months, most particularly over two to ten weeks. The polymer composition, as well as method of manufacture, can be used to determine the rate of degradation. For example, mixing increasing amounts of polylactic acid with polyglycolic acid decreases the degradation time. Meshes of polyglycolic acid that can be used can be obtained commercially, for instance, from surgical supply companies (e.g., Ethicon, N.J.). In general, these polymers are at least partially soluble in aqueous solutions, such as water, buffered salt solutions, or aqueous alcohol solutions, that have charged side groups, or a monovalent ionic salt thereof.

[0218] The composition medium can also be a hydrogel, which is prepared from any biocompatible or non-cytotoxic homo- or hetero-polymer, such as a hydrophilic polyacrylic acid polymer that can act as a drug absorbing sponge. Certain of them, such as, in particular, those obtained from ethylene and/or propylene oxide are commercially available. A hydro-

gel can be deposited directly onto the surface of the tissue to be treated, for example during surgical intervention.

[0219] Embodiments of pharmaceutical compositions of the present invention comprise a replication defective recombinant viral vector encoding the agent of the present invention and a transfection enhancer, such as poloxamer. An example of a poloxamer is Poloxamer 407, which is commercially available (BASF, Parsippany, N.J.) and is a non-toxic, biocompatible polyol. A poloxamer impregnated with recombinant viruses may be deposited directly on the surface of the tissue to be treated, for example during a surgical intervention. Poloxamer possesses essentially the same advantages as hydrogel while having a lower viscosity.

[0220] The active agents may also be entrapped in microcapsules prepared, for example, by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences (1980) 16th edition, Osol, A. Ed.

[0221] Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, for example, films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate, nondegradable ethylene-vinyl acetate, degradable lactic acidglycolic acid copolymers such as the LUPRON DEPOTTM. (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

[0222] As used herein, therapeutically effective dose means that amount of protein, polynucleotide, peptide, or its antibodies, agonists or antagonists, which ameliorate the symptoms or condition. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, for example, ED_{50} (the dose therapeutically effective in 50% of the population) and LD_{50} (the dose lethal to 50% of the population). The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, $\mathrm{LD}_{50}/\mathrm{ED}_{50}$. Pharmaceutical compositions that exhibit large therapeutic indices are particular. The data obtained from cell culture assays and animal studies are used in formulating a range of dosage for human use. The dosage of such com-

pounds lies particularly within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

[0223] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. The exact dosage is chosen by the individual physician in view of the patient to be treated. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Additional factors which may be taken into account include the severity of the disease state, age, weight and gender of the patient; diet, desired duration of treatment, method of administration, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long acting pharmaceutical compositions might be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

[0224] The pharmaceutical compositions according to this invention may be administered to a subject by a variety of methods. They may be added directly to targeted tissues, complexed with cationic lipids, packaged within liposomes, or delivered to targeted cells by other methods known in the art. Localized administration to the desired tissues may be done by direct injection, transdermal absorption, catheter, infusion pump or stent. The DNA, DNA/vehicle complexes, or the recombinant virus particles are locally administered to the site of treatment. Alternative routes of delivery include, but are not limited to, intravenous injection, intramuscular injection, subcutaneous injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. Examples of ribozyme delivery and administration are provided in Sullivan et al. WO 94/02595.

[0225] Administration of an expression-inhibiting agent or an antibody of the present invention to the subject patient includes both self-administration and administration by another person. The patient may be in need of treatment for an existing disease or medical condition, or may desire prophylactic treatment to prevent or reduce the risk for diseases and medical conditions affected by differentiation of macrophages into alternatively-activated macrophages. The expression-inhibiting agent of the present invention may be delivered to the subject patient orally, transdermally, via inhalation, injection, nasally, rectally or via a sustained release formulation.

In Vitro Methods

[0226] The present invention also provides an in vitro method of reducing or inhibiting the differentiation of macrophages into M2 macrophages, said method comprising contacting a population of macrophage cells with an inhibitor of the activity or expression of a TARGET polypeptide. In a particular embodiment said inhibitor is an antibody. In an alternative embodiment said antibody is a monoclonal antibody

[0227] The present invention further relates to an in vitro method of inhibiting the differentiation of macrophages into

M2 macrophages, said method comprising contacting a population of macrophage cells with an inhibitor selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA (siRNA) and a short-hairpin RNA (shRNA), wherein said inhibitor comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid encoding a TARGET polypeptide.

[0228] The down regulation of gene expression using antisense nucleic acids can be achieved at the translational or transcriptional level. Antisense nucleic acids of the invention are particularly nucleic acid fragments capable of specifically hybridizing with all or part of a nucleic acid encoding a TARGET polypeptide or the corresponding messenger RNA. In addition, antisense nucleic acids may be designed which decrease expression of the nucleic acid sequence capable of encoding a TARGET polypeptide by inhibiting splicing of its primary transcript. Any length of antisense sequence is suitable for practice of the invention so long as it is capable of down-regulating or blocking expression of a nucleic acid coding for a TARGET. Particularly, the antisense sequence is at least about 15-30, and particularly at least 17 nucleotides in length. The preparation and use of antisense nucleic acids, DNA encoding antisense RNAs and the use of oligo and genetic antisense is known in the art.

Examples

[0229] The invention is further illustrated using examples provided below. It would be obvious to a person skilled in the art that the examples might be easily modified or adapted to particular types of conditions, scale or cell types using routine adaptations.

[0230] Example 1 describes the M2 screening assay.

[0231] Example 2 describes the M2 re-screen.

[0232] Example 3 describes the M1 counter assay.

[0233] Example 4 describes the M2 assay using CD206 marker.

[0234] Example 5 describes on target and toxicity assessment of selected shRNA constructs.

[0235] Example 6 describes infection units (IU)-based on target screen and toxicity assessment of selected shRNA constructs.

[0236] Example 7 describes the analysis of expression of TARGETs in macrophages.

Example 1

Screening Adenoviral Library Using the M2 Macrophage Differentiation Assay

1.1 Background of the Assay

[0237] M2 macrophages can be generated by priming M0 macrophages derived from human peripheral monocytes with a combination of IL-4 and IL-10. The polarized M2 macrophages express high levels of secreted CCL18 and the surface-bound markers CD163 and CD206. Furthermore, a person of skill in the art will appreciate that several positive controls may also be selected based on available literature on the signaling pathway of IL-4 and IL-10 and the read-out, CCL18.

1.2 Cell Cultures

[0238] To obtain M0 macrophages, buffy coats from healthy donors and not older than 50 years, were purchased via the blood bank (Sanquin, The Netherlands) for isolation of peripheral blood mononuclear cells PBMCs. The isolation was performed using a Ficoll-Paque PLUS gradient (GE healthcare, cat#17-1440-03) and subsequently the CD14+ monocytes were extracted using CD14 MicroBeads (Miltenyi, cat. #130-050-201). After the CD14 isolation a QC regarding the purity was performed on the isolated CD14+ fraction based on CD14 fluorescent labelled antibody staining using flow cytometric analysis (Facscalibur BD) and CellQuest Pro software.

[0239] To differentiate the CD14 positive cells into M0 macrophages, the cells were seeded in 96-well plates with RPMI Glutamax medium, containing 10% FBS, 1% P/S and 100 ng/mL M-CSF. In total four plates were seeded per donor at a cell density of 20,000 cells/well and cultured for six days. On day six, one plate from both donors containing the M0 macrophages were harvested for RNA isolation and the other three plates were refreshed. Ten days after seeding, the second plate from both donors containing M0 macrophages was harvested for RNA isolation. The other two plates from each donor were triggered with 20 ng/ml IFNy and 5 ng/mL IFNy or 20 ng/mL IL-10 and 20 ng/mL LPS in RPMI Glutamax medium containing 10% FBS and 1% P/S, to generate M1 or M2, respectively. The cells were cultured for another three days before the macrophages were harvested for RNA isolation. After harvest, specific cell markers were tested using flow cytometry to confirm the M0, M1 and M2 phenotypes. This was done by assessing the expression markers CD163 and CD206. The CD163 and CD206 expression were enhanced in the M2 macrophages and decreased in the M1 macrophages compared to the M0 macrophages, in both donors.

1.3 Positive and Negative Controls

[0240] STAT6_v5 was used together with CCL18_v1, IL-4R_v6, JAK1_v23 and STAT6_v6 as positive controls, based on public available resources (for example, Sica et al, 2012) regarding the IL-10 and IL-4 pathway. Ffluc_v19, ffluc_v24 and luc_v13 are shRNA against non-expressed genes (firefly luciferase and luciferase, respectively) and were used as negative controls.

TABLE 2

Overview of the knock-down sequences of the controls in M2 macrophage assay												
Control code	Control name	Sequence	SEQ ID NO									
N1	luc_v13	GGTTACCTAAGGGTGTGGC	51									
N2	ffluc_v19	GAATCGATATTGTTACAAC	52									
N3	ffluc_v24	GCATAAGGCTATGAAGAGA	53									
P1	CCL18_v1	GTCTATACCTCCTGGCAGA	54									
P2	STAT6_v5	GCCAAAGACCTGTCCATTC	55									
Р3	STAT6_v6	GTCCCAGCTACCATCAAGA	56									

TABLE 2-continued

Overview of the knock-down sequences of the controls in M2 macrophage assay												
Control code	Control name	Sequence	SEQ ID NO									
P4	IL4R_v6	CCCGGCAGATTTCAGAATC	57									
P5	JAK1_v23	GAGTCTGTGGTCAGCATTA	58									

1.4 CCL18 384-Well Luminescent ELISA

[0241] The CCL18 detection assay using high binding MSD plates was developed and automated. The antibody pair used in the commercial CCL18 ELISA was used with a 384well Meso Scale Discovery (MSD) assay (see: http://www. mesoscale.com/CatalogSystemWeb/WebRoot/technology/ ecl/walkthrough.htm), for an overview of the MSD technology). Automation was performed on the Bravo system (Agilent). Automation was performed using the Bravo system. White 384-well high binding plates (Lumitrac 600, Greiner Bio-one) were used and coated with CCL18 capture antibody (Human CCL18/PARC MAb (Clone 64507), Mouse IgG1, R&D Systems) in PBS incubated o/n at 4° C. The plates were blocked with 5% BSA in PBS-Tween at RT for one hour. After blocking and washing of the plates, a single concentration of CCL18 and a standard curve was added to the plate and incubated for two hours at RT. Hereafter, the plates were washed and incubated with biotin labeled CCL18 detection antibody (CCL18/PARC Biotinylated Affinity Purified PAb, Goat IgG, R&D Systems). Subsequently, the plates were washed three times in wash buffer (PBS-Tween) and incubated with Streptavidin-HRP (Cat# DY998, R&D Systems) in reagent buffer (1% BSA in PBS-Tween). After 30 minutes incubation at room temperature while shaking, the plates were washed three times in wash buffer before luminescent substrate (BM Chemiluminescence ELISA Substrate (HRP), Roche) was added which prepared 15 minutes in advance. After approximately five minutes the plates were measured on an Envision machine (PerkinElmer) using Victor Wallac software.

1.5 Screening Protocol

[0242] The primary screen was performed using shRNA constructs comprising the complete adenoviral shRNA library (12210 shRNA constructs designed against 4438 genes). The library consisted of 34×384-well plates and the screen was performed in biological duplicate. MO14 was chosen based on the pilot screen. All individual 384-well source plates contained 12 negative and 20 positive control viruses positioned in column 13 and 14 (FIG. 1). Additional QC plates were also measured. The QC plates contained only the control viruses positioned in column 13 and 14 in order to determine the sample dilution factor. The remainder of the wells consisted of cells that were not transduced with adenovirus to assess the performance of the negative controls and the intra-plate variation. In total three dilutions were made of the QC samples from all three donors used (donor CQ, CR and CU). Column 21 was used for the CCL18 standard, to determine the optimal dilution factor for each donor separately. Three out of the five positive controls should give more than 40% inhibition compared to the negative controls. The set-up of the protocol is outline in FIG. 2.

[0243] To perform the screen, 5,000 CD14+ cells/well were seeded in 384-well culture plates on day 0 with RPMI Glutamax medium (cat #: 1870-010), containing 10% fetal bovine serum (FBS), 1% penicillin/streptomycin P/S and 100 ng/mL Macrophage colony stimulating factor (M-CSF). After five days, the M0 macrophages were transduced with the adenoviruses followed by a refreshment step one day later. On day ten the cells were primed with RPMI Glutamax medium containing 10% FBS, 1% P/S, 20 ng/mL IL-4 and 20 ng/mL IL-10 to trigger the cells to differentiate into M2 macrophages. Medium was harvested on day 13 and secreted CCL18 was detected using a CCL18 384-well luminescent ELISA (as described in 1.4) after measuring a QC plate to determine sample dilution.

1.6 QC, Data Analysis and Hit Identification

[0244] The sample population had a non-Gaussian distribution based on a Shapiro-Wilk test and normalization was required. The robust Z-score was used, that utilizes median and median absolute deviation (MAD) instead of the mean and SD (Zhang et al., 2006). This normalization method is less sensitive to extreme values and asymmetry in the distribution and therefore suitable for the skewed sample distribution observed with the raw data points. Potential plate effects were assessed using the heat maps.

[0245] To correct for these positional effects a normalization method, similar to the robust Z-score was used. The method is referred as the B-score and attempts to correct for possible plate edge/row/column effects and the plate center effect. The calculation is similar to the robust Z-score, except for the median calculation that is replaced by median value of the plate adjusted for each well separately depending on its position on the plate (Malo et al. 2006).

[0246] After calculating the B-score, the control and sample performance was determined for each plate separately and compared to each other. To assess the performance of the duplicate values, the Spearman correlation coefficient based on the sample values was calculated. Based on the performance of the positive controls and the negative controls, a B-score cut-off was selected for hit calling. Kappa statistics was used as a statistical measure of inter-replicate agreement of the hits after hit calling.

1.7 Results

[0247] On all three QC plates the untransduced samples showed little intra-plate variation (data not shown) and the negative controls remained within the 25% reduction and induction range compared to the no virus control.

[0248] The average Spearman correlation coefficient of the primary screen was 0.87, ranging from 0.81 till 0.92 per plate pair.

[0249] A B-score cut-off of -1.3 was used for hit calling (FIG. 3A). Four plates were analyzed separately and a cut-off of -0.95 was used for hit calling (FIG. 3B). With these cut-offs none of the negative controls were identified as a hit and more than 95% of the positive controls were identified as a hit.

[0250] In total 999 shRNA hits were identified in the primary screen with an average kappa value of 0.80 on the plates with a cut-off of -1.3 and an average kappa value of 0.72 on the plates with a cut-off of -0.95. An overview of the assay statistical analysis is shown in Table 3. In this table the assay performance is summarized.

TABLE 3

	Assay	parameters	overview c	f the primar	y screen.	
Readout	Cut-off	# source plates	Average Hit rate (%)	Average Spearman	Range Spearman	Average Kappa
CCL18 CCL18	-1.30 -0.95	33 2	8.4 7.5	0.87	0.81-0.92	0.80 0.72

Example

2. Re-Screen of Identified Hits Using M2 Macrophage Differentiation Assay

2.1 Background

[0251] The primary screen was followed by the rescreen for which the same assay set up was used as described in Example 1. The 999 viruses identified in the primary M2 macrophage differentiation screen (Example 1) were further evaluated in the rescreen. For the rescreen a different transduction plate layout was designed. In this layout the outer wells were omitted and the negative controls were arranged in such a way to allow detection of possible plate effects. Furthermore, >30% of the plate content consisted of negative controls as the hit calling analysis is performed based on the mean of the negative controls. All identified hits from the primary screen were repropagated and were distributed randomly over the plate

[0252] The adenoviral shRNA constructs from the adenoviral library that were identified as a hit in the primary screen of Example 1 as well as the same control viruses were re-propagated for the rescreen. The new propagations of the controls (same controls were used as in the Example 1) and a representative part of the hit set were tested in the pilot rescreen to assess the quality of the viruses and to establish an optimal transduction volume for the rescreen. Similar criteria as used as for development of the primary screen

2.2 Re-Screen Protocol

[0253] The rescreen consisted of eight 384-well plates and was performed in biological duplicate, at MO14 in one donor. The cells were obtained according to the same protocol as in Example 1. All individual 384-well source plates contained 80 negative and 12 positive control viruses distributed over the plate as shown in FIG. 4. The assay set up was identical to the primary M2 macrophage differentiation screen (see Example 1). A QC plate was included in the assay, containing only the controls according to the plate layout. The QC plate was used to determine the dilution factor for the supernatant in which the CCL18 secretion was measured. The samples were diluted 1:37.5.

2.3 Data Analysis

[0254] Normalization of the data was done using the Robust Z score based on the mean negative controls. The robust Z score based on negatives, is calculated by dividing the readout value minus the median of the negative controls by the MAD (median absolute deviation) of the negative controls. To assess the performance of the duplicate values, the Spearman correlation coefficient based on the sample values was calculated.

2.4 Results

[0255] In FIG. 5 the control and sample performance of the rescreen is shown, in which a clear separation of the positive and negative controls can be seen. A strong correlation between the duplicate data points was observed with an average Spearman of 0.93, ranging from 0.91 till 0.96 per duplicate plate. Based on the performance of the positive controls compared to the negative controls, a B-score cut-off of -1.3 was used for hit calling. With this cut-off none of the negative controls were identified as a hit and 100% of the positive controls were identified as a hit.

[0256] The rescreen was performed successfully and with a cut-off of -1.3 resulted in 619 hits. After QC and thorough analysis, these 619 hits represent 616 genes and are designated confirmed candidate TARGETs (Table 4). Based on the rescreen, 616 genes were taken forward for the validation phase.

TABLE 4

	Assay parameters overview of the rescreen.												
Readout	Cut-off B- score	# Source plates	Confirmation rate %	# Hits	Average Spearman								
CCL18	-1.30	8	58	619	0.93 (0.91-0.96)								

Example 3

M1 Counter Assay

3.1 Background of the Assay

[0257] 600 confirmed candidate TARGETs were identified in the primary screen and rescreen that inhibitions of which inhibited differentiation of macrophages into M2 macrophages (Example 1 and 2). To assess that these shRNA do not interfere with development of classically activated M1 macrophages, a M1 counter screen can be developed to exclude the shRNA constructs inhibiting expression of targets which in turn inhibit the M1 phenotype.

[0258] A hallmark of M1 macrophages is the secretion of TNF α (Mantovani, 2004). The expression of TNF α upon triggering with LPS and IFN' (known to polarize macrophages to the M1 phenotype), allows the M1 macrophages to be distinguished from M0 and M2 macrophages. Hence, a M1 counter screen might be performed in which secreted TNF α can be used as a read-out. To establish a robust and reproducible M1 counter assay the following aspects should be assessed: determination of TNF α secretion, optimization of the M1 counter screen assay, and selection of positive and negative controls.

3.2 Cell Donors and Cell Protocol

[0259] To obtain macrophages, buffy coats from healthy donors were purchased via the blood bank (Sanquin, The Netherlands) for isolation of peripheral blood mononuclear cells PBMCs. The isolation was performed using a Ficoll-Paque gradient (GE healthcare) and subsequently the CD14+ cells were extracted using CD14 MicroBeads (Miltenyi, cat. #130-050-201). After the CD14 isolation a QC regarding the purity was performed on the PBMCs and the isolated CD14+

fraction using flow cytometric analysis (Facscalibur BD) and CellQuest Pro software with CD14 fluorescent labelled antibody staining

3.3 TNFa HTRF Assay

[0260] The secreted TNF α was measured using the homogeneous time-resolved fluorescence (HTRF) technique according to manufacturers' protocol (Cisbio Bioassays, cat. #: 62TNFPEC). The signal was measured on an envision machine (Perkin Elmer) at 665 and 620 nm and analyzed using Victor Wallac software. A calibration curve was used to correlate the raw fluorescent signals to the TNF α concentration.

[0261] To confirm the specificity of the read-out, the secretion of TNF α by M1 macrophages was compared to the secretion by M2 macrophages. The TNF α secretion by M1 macrophages was strongly enhanced, whereas in supernatants obtained from M2 macrophages TNF α could not be detected. The TNF α HTRF was therefore suitable to distinguish M1 macrophages from M2 macrophages.

3.4 Positive and Negative Controls

[0262] In addition to the positive control virus TNF_v12, a selection of new putative positive controls, targeting genes in the M1 pathway (MYD88, TLR4, NFKB1, TRAF6 and TNF α) was assessed for TNF α inhibition to further validate the M1 counter screen. The TRAF6_v4 positive control showed more than 60% inhibition in donor EK and treatment with the TNF_v9 positive control resulted in more than 40% TNF α reduction in donor EK. The MYD88_v4 positive control showed around 40% inhibition in donor EL. Only the TNF_v12 positive control showed in both donors over 60% inhibition compared to the average of the negative controls. All these positive controls were taken forward to develop M1 counter screen.

TABLE 5

	Summary	of the controls	
Control code	Control name	Sequence	SEQ ID NO
N1	luc_v13	GGTTACCTAAGGGTGTGGC	51
N2	ffluc_v19	GAATCGATATTGTTACAAC	52
N3	ffluc_v24	GCATAAGGCTATGAAGAGA	53
P1	MYD88_v4	GGAACAGACAAACTATCGA	59
P2	TRAF6_v4	GTTCTGGTCATGGATCTCT	60
Р3	TNF_v12	CGTGGAGCTGAGAGATAAC	61

3.5 Set-Up of M1 Counter Assay

[0263] The experimental setup was as follows: On day 0 5,000 CD14+ cells/well were seeded in 384-well plates with medium containing M-CSF. Five days later the transduction was preformed followed by a refresh the next day. On day ten the trigger containing 20 ng/mL IFN- γ and 5 ng/mL LPS was added and refreshed on day 12. The trigger was refreshed 16 hours before harvest. The supernatants were harvested on day 13 in which the secreted TNF α was determined using a TNF α HTRF assay (FIG. 6). The M1 counter screen consisted of

eight 384-well source plates similar to the viral repropagation aliquot set of the rescreen. The layout was therefore identical to that of the rescreen except for the CCL18 positive controls which were replaced by three positive controls for the TNF α read-out: MYD88_v4, TRAF6_v6 and TNF_v12 (FIG. 7). The screen was performed in two donors (donors EO and EP) at M018 in one batch. In addition, one QC plate for each donor containing only the virus controls was included in the experimental setup. These plates were assessed first, using the TNF α HTRF, to determine which donor provided the most optimal assay window.

[0264] In both donors the reduction in TNF α secretion was over 40% after transduction with the TNF_v12 positive control compared to the average of the negative controls. A different donor ET was selected for analysis of the complete set based on a slightly higher TNF α concentration as compared to donor ES.

3.6 Data Analysis

[0265] Normalization of the TNF α data was performed using the robust Z-score based on the mean negative controls. Positional effects were corrected by subsequently calculating the B-score.

[0266] The average Spearman from donor ET was 0.77, ranging from 0.70 till 0.86 per duplicate plate, indicating a strong correlation between duplicates. Based on the performance of the TNF_v12 positive controls compared to the negative controls, a B-score cut-off of >-1.3 was used for hit calling. With these cut-offs 1.67% of the negative controls were identified as a hit and 90.60% of the TNF_v12 positive controls were identified as a hit.

3.7 Results

[0267] 729 hits were identified in the counter screen. Since the same virus set of the rescreen was used, and the results of the counter screen were compared with the results of the M2 macrophage differentiation rescreen (Example 1). This resulted in the identification of a total of 408 confirmed candidate TARGETs which did not affect M1 differentiation (Table 6). These 408 confirmed candidate Targets were taken forward for further validation.

TABLE 6

	Results M1 counter screen												
Read-out	Cut-off Robust Z-score	# Source plates	# Hits	Average Spearman									
TNFα	>-1.3	8	729	0.77 (0.70-0.86)									

Example 4

M2 Assay Using CD206 Marker

4.1 Background of the Assay

[0268] To confirm that the candidate shRNA constructs inhibited M2 differentiation, a validation assay with a different read-out to the primary CCL18 read-out can be developed. Two surface markers, CD163 and CD206, are known to be expressed on M2 macrophages and can be used to distinguish between M0, M1 and M2 macrophages (Murray et al., 2011). During the M2 assay development and throughout the screen-

ing phase, both CD163 and CD206 expression levels were used for QC analysis to assess macrophage differentiation (see Example 1). M2 primed macrophages showed enhanced expression of CD163 and CD206 compared to M0 and M1 macrophages. The induction of CD206 expression upon M2 priming was more profound than CD163 and it was therefore decided to develop a validation assay with CD206 as readout.

4.2 CD206 Detection Method (ICC)

[0269] For indirect labelling, a mouse-anti-human CD206 primary antibody (BD Pharmingen, cat. 555953) in combination with a goat-anti-mouse Alexa488 secondary antibody (Invitrogen, cat. A-11001) was used. Both the primary and secondary antibodies were tested in different dilutions to find the most optimal staining conditions.

[0270] These results were obtained when the primary antibody was used in a 1:200 dilution and the secondary antibody was used in a 1:500 dilution. The images were taken on the GE INcell Analyzer 2000 with a 10x objective in the DAPI (nuclei) and the FITC (Alexa488) channel. Using this indirect labelling the CD206 expression in M2 primed macrophages was strongly enhanced compared to M0 macrophages and reduced in the M1 macrophages.

4.3 Algorithm to Quantify CD206

[0271] To quantify the CD206 ICC staining in a high throughput screening format an algorithm was developed. The output of the algorithm should provide a representative value of the number of CD206 expressing macrophages observed in the imaged areas (FIG. 8). Based on the FACS data from previous experiments, M0, M1 and M2 macrophages all express some level of CD206. M2 macrophages could only be distinguished from M1 and M0 populations based on the enhanced expression of CD206.

[0272] The algorithm calculated the number of CD206 positive cells by using a threshold for the CD206 expression. Next, based on the nuclei count, the total number of cells in the well was determined and this number was used to determine the percentage of CD206 positive cells, i.e. M2 macrophages. By applying this algorithm percentage of M2 macrophages can be determined. It should be noted that the absolute values differed between donors, but a robust window was observed within a single donor.

4.4 Positive and Negative Controls

[0273] The three negative control viruses used in the Examples 1 and 2 were also tested in the M2 validation assay. The negative controls should not inhibit or induce the readout more than 25% compared to the no virus control. All three negative controls fulfilled this criterion and were selected as negative controls for the M2 validation assay.

[0274] For the selection of positive controls various viruses, which target CD206 (also named Mannose Receptor C type 1 (MRC1)), were tested in the M2 validation assay. Four out of the six viruses targeting CD206 resulted in >60% reduction compared to the average of the negative controls. Two viruses, MRC1_v1 and MRC1_v2, gave the most consistent results in all donors tested and were therefore selected as positive controls for the M2 validation assay read-out.

[0275] In addition, the panel of positive controls used in Example 1 was also included in the CD206 assay. The STAT6_v5 and STAT6_v6 positive controls inhibited the per-

centages of CD206 more than 40% and were therefore also selected as positive controls for the M2 validation assay. The CCL18_v1 positive control did not or only minimally affect CD206 expression. This is expected as CCL18 is an end stage molecule in the IL-4/IL-10 pathway and is therefore unlikely to affect CD206 expression, except through a possible autocrine or paracrine loop.

TABLE 7

Summary of controls used in CD206 screen											
Control code	Name	Sequence	SEQ ID NO								
N1	luc_v13	GGTTACCTAAGGGTGTGGC	51								
N2	ffluc_v19	GAATCGATATTGTTACAAC	52								
N3	ffluc_v24	GCATAAGGCTATGAAGAGA	53								
P1	CCL18_v1	GTCTATACCTCCTGGCAGA	54								
P2	IL4R_v6	CCCGGCAGATTTCAGAATC	57								
P3	MRC1_v1	GACTTAGCTAGCATCAATA	62								
P4	STAT6_v6	GTCCCAGCTACCATCAAGA	56								
P5	JAK1_v23	GAGTCTGTGGTCAGCATTA	58								
P6	MRC1_v2	GGATATTGTCCATTGAAAT	63								

4.5 Toxicity Assessment Assay

[0276] A toxicity assay was developed as part of the validation to exclude false positive hits due to toxic effects. The commercially available Cell Titer Blue (CTB) reagent (Promega, cat. G8081) can be used to measure the metabolic capacity of the cells. The CTB reagent contains a dye, resazurin, which viable cells can convert into resorufin which is highly fluorescent. The CTB reagent was added to the cells in a one in five dilution either by replacing the medium or adding it directly to the medium on the cells. After 24 hours, the relative fluorescent units (RFU), representing viability, were measured on an Envision machine.

[0277] To evaluate the sensitivity of the CTB reaction in the macrophages, various cell densities were seeded and the viability was measured. This resulted in a strong correlation between number of cells and RFU signals, indicating that the assay is very sensitive and suitable for measuring cell viability in macrophages. Subsequently, the cells were treated with control virus from the shRNA adenoviral library to assess the toxicity.

[0278] To exclude false positive candidate TARGETs, the shRNA constructs from the adenoviral library should not show more than 30% cellular toxicity compared to the no virus controls. Therefore, the macrophages were treated with either no virus or a negative control virus (ffluc_v24). Additionally, staurosporin was added to the cells as a positive control for toxicity. Furthermore, the positive control IL4R_v6 was also included as a positive control since treatment with the IL4R_v6 positive control resulted in a significant decrease in nuclei counts, which indicate toxicity. This observation was done in multiple donors during assay development of the CD206 validation screen.

[0279] The RFU of the negative controls was comparable to the no virus control and therefore not toxic. In the stauro-

sporin-treated macrophages the signal and thus viability, decreased dramatically. Treatment with the IL4R_v6 positive control induced around 30% toxicity in M0 and M2 macrophages and more than 50% in M1 macrophages.

4.6 Set-Up of the Screening Protocol for CD206 Read-Out

[0280] shRNAs against 408 candidate TARGETs, which followed from the M2 macrophage screen (Example 1) and M1 counter screen (Example 2), were tested in the M2 CD206 validation screen which consisted of thirteen 96-well virus source plates. The screen was performed in biological duplicate, at MO14. The combined protocol together with toxicity assay is presented in FIG. 9.

[0281] To perform the screen, on day 0 CD14+ cells were seeded in 96-well μ clear plates with medium containing M-CSF to allow the cells to differentiate to M0 macrophages. On day five the transduction was performed followed by a refreshment of the medium one day later. On day ten the interleukins were added to obtain the M2 macrophages. Three days later the cells were fixed for the CD206 ICC assay or CTB was added to measure cytotoxicity. The shRNA adenovirus layout and the experimental setup were identical to the pilot screen, except for column one were staurosporin was added on day 12 to induce toxicity (FIG. 9).

4.7 Results

[0282] The average Spearman with the CD206 assay was 0.73, ranging from 0.54 to 0.86 per duplicate plate, which indicates a strong correlation between replicates. The control performance demonstrated a clear separation between the positive controls (MRC1_v1, MRC1_v2 and JAK1_v23) and the negative controls. The negative controls performed in the same range as the no virus controls, indicating the absence of a-specific viral effects on the read-out. The cut-off for hitcalling was determined based on the separation between the positive and negative controls. Furthermore, the cut-off was also based on the percentage of CD206 positive cells in M0 macrophages which consisted of -60% CD206 positive cells (FIG. 10A). Based on these parameters a robust Z score cut-off of ≤-3 was chosen. None of the negative controls were identified as a hit and 100% of the MRC1_v1, MRC1_v2 and JAK1_v23 positive controls were identified as a hit.

[0283] To eliminate false positive hits due to toxicity, the CTB data was analyzed. The Spearman calculations showed a strong replicate correlation. The average Spearman was 0.82, ranging from 0.70 to 0.93 per duplicate plate. The cutoff for hit-calling was based on the 30% signal reduction level, relative to the no virus control. This corresponded to a Robust Z-score value of –10. As a positive control for toxicity various staurosporin concentrations and the IL4R_v6 virus were used to introduce toxicity. The IL4R_v6 Robust Z scores were lower than the 30% inhibition score of –10 which corresponds with previous obtained data. The addition of various staurosporin concentrations resulted in a dose-respond curve, indicating the sensitivity of the CTB assay (FIG. 10B). Based on these results the cut-off for hit calling was determined to be

[0284] Both, the CD206 screen and the CTB screen were performed successfully based on the Spearman values and the control performance. In total 371 candidate Targets passed the toxicity assay using a cut-off of >−10 (Table 8). From the CD206 screen 73 viruses were identified as a hit with a cut-off of ≤−3. From these 73 confirmed candidate TARGETs, 17

virus constructs were identified as toxic. This resulted in a selection of shRNA constructs against 56 candidate Targets that inhibited the M2 phenotype and classified not to induce toxic effects. These 56 candidate TARGETs were taken forward to the "on target" validation.

TABLE 8

Hit performance in M2 validation and toxicity screen.										
Read-out	Cut-off Robust	# Source	#	Average						
	Z-score	plates	Hits	Spearman						
CD206	≤-3	13	73	0.73 (0.54-0.86)						
CTB	>-10	13	371	0.82 (0.70-0.93)						

Example 5

"On Target" and Toxicity Assessment of Selected shRNA Constructs

5.1 Background

[0285] To exclude that the knockdown constructs have an effect on expression of a different mRNA then the intended mRNA, so called off-target effect, an on target validation was performed with the confirmed candidate Targets. The 56 confirmed candidate TARGETs that passed the screens of Examples 1-3, were selected for the on target validation. To this end, multiple adenoviral-shRNA targeting different sites of the same confirmed candidate Target were designed and tested using the primary screen and the M1 counter screen setup. The confirmed candidate Targets are designated 'ontarget' if at least two independent shRNA sequences, including the original sequence, pass the criteria of the M2 and M1 validation screens.

[0286] The following additional shRNA constructs have been used in "on-target" analysis and demonstrated the ability to inhibit the expression of the target:

5.2 Controls Used in "on Target" Analysis

[0287] Two different control panels were used for M1 and M2 differentiation assays as described in Examples 3 and 1 correspondingly.

5.3 Protocol for M2 and M1 "on Target" Screens and Toxicity Assessment

[0288] For the on target validation a different virus layout was designed. In that layout the outer wells were omitted and >30% of the plate was filled with negative controls in order to enable hit calling based on negative controls and correction for potential plate effects. Positive controls were included for both the M2 and M1 on target validation. Furthermore, a serial dilution of Staurosporin was added in column one on untransduced cells as reference for the toxicity assay. All adenoviral-shRNAs directed against the candidate TARGETs were randomly distributed over the plate. "No-virus" controls (samples without virus treatment) were positioned on the plates on spots without viruses.

[0289] The experimental setup of the M2 and M1 assays (Examples 1 and 3) was adjusted for the "on target" validation. CD14+ cells were isolated as described in Example 1(1.2). On day zero, 5,000 (M2) or 10,000 (M1) CD14+ cells/well were seeded in 384-well culture plates with RPMI

Glutamax medium containing 10% FBS, 1% P/S and 100 ng/ml M-CSF. After five days, the M0 macrophages were transduced with the adenoviruses followed by medium refreshment one day later. On day ten the cells were primed with RPMI Glutamax medium containing 10% FBS, 1% P/S and the required cytokines to prime the cells towards M2 (20 ng/ml IL-4 and 20 ng/ml IL-10) or M1 (20 ng/ml INF γ and 5 ng/ml LPS) macrophages. The M1 priming condition was refreshed 16 hours before harvesting the supernatants. On day 13, the M2 and M1 supernatants were harvested and the CTB reagent was added to the cells. CCL18 and TNF α were measured for the M2 and M1 on target validation, respectively. The toxicity was assessed 24 hours after addition of CTB.

5.4 Data Analysis

5.4.1 M2 "on Target" Screen Data Analysis

[0290] The B-score analysis was applied to normalize the CCL18 data obtained from the M2 on target screen followed by assessing the replicate performance using the Spearman rank correlation coefficient. The average Spearman correlation for the M2 on target screen was 0.95 indicating a strong correlation between replicates. The control performance demonstrated a clear separation between the positive controls (CCL18_v1, STAT6_v6 and JAK1_v23) and the negative controls. The negative controls performed in the same range as the "no virus" controls. Based on these results a B-score cut-off of ≤−1.6 was used for hit calling.

5.4.2 CTB Assay in M2 "on Target" Screen Data Analysis

[0291] The data obtained from the CTB assessment in the M2 on target validation screen was also analyzed using the B-score normalization and Spearman rank correlation. The average Spearman correlation for the M2 CTB screen was 0.89 which indicated a strong correlation between replicates. The cut-off for hit calling was based on the 30% signal reduction level, relative to the no virus controls which corresponded to a B-score value of -8. As a positive control for toxicity various Staurosporin concentrations and the IL4R_ v6 virus were used to introduce toxicity. The IL4R v6 positive control was identified as a hit at a cut-off of -8. The addition of various Staurosporin concentrations resulted in a dose-response curve, indicating that the CTB assay is a sensitive measurement for toxicity. Based on these results the cut-off for hit calling of nontoxic targets in M2 macrophages was set at a B-score of \geq -8.

5.4.3 M1 "on Target" Screen Data Analysis

[0292] The TNF α data derived from the M1 on target screen were also analyzed using the B-score normalization. The average Spearman for M1 on target assay was 0.84 indicating a strong correlation between replicates. The control performance demonstrated a clear separation between two of the positive controls (TNF_v12, TRAF6_v6), whereas TRAF6_v4 and MYD88_v4 showed less inhibition of the TNF α signal. The negative controls showed a small effect compared to the no virus condition, which was also observed in previous M1 assay. This effect is within 25% margin compared to the no virus control and therefore passes the assay criteria. Based on these results a cut-off of >–3 was used for hit calling.

5.4.4 CTB Assay in M1 "on Target" Screen Data Analysis

[0293] Based on the CTB read-out of the M1 on target toxicity assay, the B-score was used for normalization and the replicate performance was assessed. The average Spearman for M1 on target assay was 0.83. The cut-off for hit calling was based on the 30% signal reduction level, relative to the no virus control. This corresponded to a B-score value of -8. As a positive control for toxicity various staurosporin concentrations and the IL4R_v6 virus were used to introduce toxicity. The addition of various staurosporin concentrations resulted in a dose-respond curve, indicating the sensitivity of the CTB assay. Based on these results the cut-off for hit calling was determined to be >-8

5.5 Results

[0294] When at least two independent shRNA sequences, passed the cut-off criteria of the M2 and M1 "on target" validation screen without observing toxicity, the shRNA was designated as "on target". Based on these criteria, 14 gene targets were identified as on target Summary of the results is presented in Table 14.

Example 6

M2 and M1 "on Target" Screen Using Different IU and Tox Assessment

6.1 Background

[0295] The 34 targets for which the original construct was not identified as hit in Example 5 were retested in a different "on target" screen. The plate layout and the experimental set-up were identical to the "on target" validation in Example 5. The transduction was performed using two source plates, one containing virus constructs with a relatively low IU and one containing virus constructs with a relatively high IU.

6.2 Protocol for M2 and M1 "on Target" Screens

[0296] For both the M2 and M1 screens, multiple virus dilutions were made of the two source plates and used to transduce the cells. This was done in such a way that all virus constructs were added at a MOI range of 3-5 for the M2 screens and 6.5-9 for the M1 screens. By doing this, the performance of all virus constructs were more comparable to the performance of the negative and positive controls which were added in a MOI of 4 and 8 for the M2 and M1 assays, respectively.

6.3 Data analysis

[0297] Data was normalized using the B-score. For the determination of B scores, negative controls with MOIs comparable to the samples were used. The replicate performance was analyzed using the Spearman correlations and were al >0.4. In all four screens an adequate window was observed between the positive and negative controls. The cut-offs for hit calling were based on the control performance (Table 9).

6.4 Results

[0298] When at least two independent shRNA sequences, including the original hit, were confirmed in the screens the target was declared "on target". In total 13 targets are found to be on target based on the results of the IU based M2 and M1 on target validation and toxicity screens.

TABLE 9

Assay overview IU based on target screens								
Spearman	COF							
0.82	≤-3							
0.67	>-3							
0.79	>-6							
0.74	>-8							
	Spearman 0.82 0.67 0.79							

[0299] When combined with the results of the Example 5, 27 confirmed candidate Targets were designated on target and therefore considered confirmed Targets. These targets were taken forward into further target validation.

Example 7

Analysis of Expression of the TARGETs in Macrophages and BALF

7.1 Background

[0300] To confirm mRNA expression of the identified targets in macrophages, mRNA was isolated from these cells to perform whole transcriptome sequencing. To be relevant for fibrotic conditions the TARGETs should be expressed in relevant tissue of the disease. Therefore, in addition to confirm the expression of the TARGETs in patient material alveolar macrophages (AM) were isolated from lung tissue from an IPF patient).

[0301] Whole transcriptome sequencing, or mRNA-seq, is a cDNA sequencing application that can be used to profile the entire mRNA population and that enables mapping and quantification of all transcripts. With no probes or primer design needed, mRNA-seq has the potential to provide relatively unbiased sequence information from polyA-tailed RNA for analysis of gene expression, novel transcripts, novel isoforms, alternative splice sites, and rare transcripts in a single experiment, depending on read depth.

7.2 Sample Preparation for the mRNA-Seq Study in Macrophages

[0302] To obtain macrophages, buffy coats from two healthy donors, were purchased via the blood bank (Sanquin, The Netherlands) for isolation of PBMCs. The isolation was performed using a Ficoll gradient and subsequently the CD14+ cells were extracted using CD14 MicroBeads (Miltenyi, cat. 130-050-201). After the CD14 isolation a QC regarding the purity was performed on the PBMCs and the isolated CD14+ fraction using flow cytometric analysis.

[0303] To differentiate the CD14 positive cells into M0 macrophages, the cells were seeded in 96-well plates with RPMI Glutamax medium, containing 10% FBS, 1% P/S and 100 ng/mL M-CSF. In total four plates were seeded per donor at a cell density of 20,000 cells/well and cultured for six days. On day six, one plate from both donors containing the M0 macrophages were harvested for RNA isolation and the other three plates were refreshed. Ten days after seeding, the second plate from both donors containing M0 macrophages was harvested for RNA isolation. The other two plates from each donor were triggered with 20 ng/mL IFNy and 5 ng/mL IFNy or 20 ng/mL IL-10 and 20 ng/mL LPS in RPMI Glutamax medium containing 10% FBS and 1% P/S, to generate M1 or M2, respectively. The cells were cultured for another three days before the macrophages were harvested for RNA isolation. After harvest, specific cell markers were tested using flow cytometry to confirm the M0, M1 and M2 phenotypes. This was done by assessing the expression markers CD163 and CD206. The CD163 and CD206 expression were enhanced in the M2 macrophages and decreased in the M1 macrophages compared to the M0 macrophages, in both donors.

7.4 RNA Determination

[0304] Total RNA was isolated from M0 and M2 macrophages as well as AM using a commercially available RNA isolation kit (RNeasy Mini Kit, Qiagen). Concentration and purity was checked using the NanoDrop 2000 (Thermo Scientific).

7.5 mRNA Analysis

[0305] The quality and integrity of the RNA sample(s) was analyzed on a RNA 6000 Lab-on-a-Chip using the Bioanalyzer 2100 (Agilent Technologies). Sample quality met the requirements for sample preparation. The Illumina® mRNA-Seq Sample Prep Kit was used to process the samples. The sample preparation was performed according to the Illumina protocol "Preparing Samples for Sequencing of mRNA" (1004898 Rev. D). Briefly, mRNA was isolated from total RNA using the poly-T-oligo-attached magnetic beads. After fragmentation of the mRNA, cDNA synthesis was performed. This was used for ligation with the sequencing adapters and PCR amplification of the resulting product. The quality and yield after sample preparation was measured with a DNA 1000 Lab-on-a-Chip (Agilent Technologies) and all samples passed the quality control. The size of the resulting products was consistent with the expected product with a broad size distribution between 300-600 bp.

7.6 Clustering and DNA Sequencing

[0306] Clustering and DNA sequencing using the Illumina HiSeq 2000 (Solexa) were performed according manufacturer's protocols. A total of 6.5 pmol of DNA was used. Two sequencing reads of 100 cycles each using the Read 1 and Read 2 sequencing primers were performed with the flow cell.

7.7 Raw Data Processing

[0307] Image analysis, base-calling, and quality check was performed with the Illumina data analysis pipeline RTA v1.13.48 and/or OLB v1.9 and CASAVA v1.8.2. QA analysis performed to evaluate the quality of an Illumina sequencing run was based on quality metrics for a standard run of good quality using the Solexa technology. All lanes of the flow cell passed the QA analysis. Additionally, detailed error rate information based on an Illumina supplied Phi X control was reported. The Phi X control is spiked into the sample in a small amount (up to 5% of the reads). The reads from the Illumina control DNA were removed by the Illumina pipeline during processing of the data. The error rate is calculated after alignment of the reads passing the quality filter to the Phi X reference genome using the ELAND aligner in the Illumina pipeline. All error rates were within the allowed criteria.

7.8 Data Analysis

[0308] Reads obtained from the Illumina HiSeq 2000 sequencer were filtered by quality scores with a minimum threshold of Q25 and minimum length of 50 bases. Reads were then aligned to the human reference genome (hg19) with the Bowtie v0.12.7 aligner for each sample. New iso-

forms were identified with the Cufflinks v2.02 package using default settings and the known transcriptome annotation as mask (*Homo_sapiens*.GRCh37.65.gff). After new isoform identification for each sample, the newly detected isoforms were merged for all samples and added to the standard transcriptome annotation. Finally, FPKM (Fragments PerKilobase of transcript per Million fragments mapped) values were calculated with Cufflinks for each sample and reported in the default Cufflinks output. The FPKM values are a quantitative representation of the mRNAs in the samples and therefore in the cells used for the mRNA-seq analysis and the screening assays. Highly abundant mRNAs result in high FPKM values whereas low FPKM values represent low copy numbers of the mRNA.

7.9 Sample Preparation for the Expression Study in Alveolar Macrophages from Patient Material

[0309] IPF patient tissue sample was obtained from Tissue Solutions. Isolation of alveolar macrophages was performed by adherence on a T80 cell culture flask. Part of the cells was used for flow cytometric analysis to determine the quantity of the macrophage population in this cell preparation. For this, a mouse-anti-human CD68-FITC antibody (Miltenyi, cat. 130-096-964) was used to detect the CD68 expression marker, which is known to be expressed on alveolar macrophages (Kunisch et al, 2004). In total 73% of the gated cells were found to be CD68 positive, representing the macrophage population.

[0310] The remainder of the cells were lysed and used for RNA isolation using the RNeasy Mini Kit (Qiagen, cat. 74106). Reverse transcription was performed using the Taq-Man® Reverse Transcription Reagents (Applied Bioscience, cat. N8080234) to generate cDNA. This cDNA was quantified on the LightCycler® 480 Real-Time PCR System (Roche Diagnostics) using TaqMan® Fast Advanced Master Mix (Life Technologies, cat. 4444964) with commercially available validated TaqMan® Assays (Life Technologies or Qiagen). A set of four housekeeping genes was tested to confirm the quality of the sample. Roche LightCycler refers to Cp as the cycle number that crosses the threshold, also referred to Ct in other instruments. Bustin et al., 2009) proposes to unify the different nomenclatures to Cq (quantification cycle).

7.10 Results mRNA-Seq

[0311] The results of this mRNA-seq analysis are included in Table 12 and were used as selection criteria for the TAR-GETs. Expression data are listed as FPKM values and used as selection criteria for the TARGETS. Genes were considered to be expressed if FKPM values were determined. The results demonstrate that the TARGETs are expressed in both M0 and M2 macrophages

7.11 Results of qPCR on AM

[0312] The results of this analysis are included in Table 15. Expression data are listed as Cq values and used as selection criteria for the TARGETS. Genes were considered to be expressed with Cq values up to 35, C values above 35 were considered as "not expressed". The results demonstrate that the TARGETs are expressed in AM.

Example 8

Testing siRNA Against the TARGETs in the CCL18 Assav

8.1 Background

[0313] To exclude that the shRNA knockdown constructs have an effect on expression of a different mRNA then the

intended mRNA, so called off-target effect, an on-target validation was performed with the confirmed candidate Targets using siRNA constructs against selected TARGETS.

8.2 Controls Used in siRNA "on Target" Analysis

[0314] siRNA against CCL18, JAK1 and STAT6 were used as positive controls and non-targeting siRNA (Thermo Fisher Scientific Biosciences GMBH) was used as a negative control.

8.3 Protocol for M2 "on Target" siRNA Assay and Toxicity Assessment

[0315] The experimental setup was as follows: On day 0 CD14+ 20,000 cells/well were seeded in 96-well plates with RPMI Glutamax medium containing 10% FBS, 1% P/S and 100 ng/ml M-CSF. Five days later the siRNA transfection was preformed. Cells were transfected using 0.02-0.2 µL/well of Dharmafect 1 (Thermo, Cat # T-2001-03). OnTarget Plus siRNA (Thermo Fisher Scientific Biosciences GMBH) in the final concentration of 20 nM were used as smart pools of 4 constructs per well. For EFEMP2 each siRNA construct was also tested individually. One day after cells were primed with RPMI Glutamax medium containing 10% FBS, 1% P/S and the required cytokines to prime the cells towards M2 (20 ng/mL IL-4 and 20 ng/mL IL-10). On day 8 cells the Staurosporin was added to the control wells on each plate (one single row on each plate). On day 9 supernatants were harvested and the CTB reagent was added to the cells. On the same day RNA isolation is performed using standard MagMax Total RNA isolation kit (Ambion, Cat # AM1830) together with Cell Titer Blue assay (Promega, Cat # G808B) as a quality control. The CCL18 is measured in the supernatant using ELISA as described for Example 1.

8.4 Data Analysis

[0316] Normalized percentage inhibition (NPI) analysis was used to quantify the effect of siRNA constructs on the read-out. CCL18 siRNA was used as a positive control and non-targeting siRNA as a negative control in the calculations. Normalized percentage inhibition (NPI) was calculated by dividing the difference between sample measurements and the average of positive controls through the difference between positive and negative controls.

Example 9

TARGET Expression in Animal Models of Fibrosis

9.1 Background

[0317] To study the expression of the TAREGT genes in vivo, several mouse and rat models of fibrosis were tested and expression in specific tissues like kidney, lung and skin were determined.

9.2 Mouse UUO (Unilateral Ureteral Obstruction) Renal Fibrosis Model

[0318] Unilateral ureteral obstruction was performed on Balb/c female mice (from Harlan-France), with 10 mice/group. On day 0, mice were anaesthetized by intra-peritoneal injection and after incision of the skin, the left ureter was dissected out and ligatured with 4.0 silk at two points along its length. The ureter was then sectioned between the 2 ligatures. Intact mice were used as control. Mice were sacrificed by exsanguinations with scissors under anaesthesia after 10 or 21 days.

9.3 Rat % NTX (% Nephrectomy) Renal Fibrosis Model

[0319] Nephrectomy was performed on Sprague-Dawley male rats (from CERJ-France), with 10 rats/group. At DayO, rats were anaesthetized and after incision of the skin, the kidney capsule was removed while preserving the adrenal gland. The renal hilum was ligated and right kidney was removed. The ends of the left kidney are cut with a scalpel resulting in 5% nephrectomy. Rats were sacrificed after 4 or 8 weeks

9.4 Mouse BLM (Bleomycine) Pulmonary Fibrosis Model

[0320] Lung fibrosis was induced on CD1 male mice (from CERJ-France) for bleomycin i.v. administration with 6 to 8 mice/group and on C57/B16 J female mice (from Janvier) for bleomycin i.t. administration with 14 mice/group.

[0321] For intravenous administration (i.v.) mice were injected intravenously with bleomycin (10 mg/kg; 100 µl/mouse) or saline as a control once per day for the first five consecutive days (Oku et al., 2004). Mice were sacrificed by exsanguinations with scissors under anaesthesia after 3 or 6 weeks.

[0322] For intra-peritoneal (i.p) administration mice were anaesthetized by intra-peritoneal injection (under a volume of $10\,\text{mL/kg}$) of anaesthetic solution (18 mL NaCl0.9%+0.5 mL xylazine (5 mg/kg)+1.5 mL ketamine (75 mg/kg)). Bleomycin solution at 2 U/kg or saline was administered by intratracheal route (10 mg/kg; 40 $\mu\text{L/mouse}$). Mice were sacrificed by exsanguinations with scissors under anaesthesia after 3 weeks

9.5 Mouse Scleroderma Model (SCL)

[0323] Scleroderma was induced on Balb/c female mice (from CERJ-France), with 15 mice per group. On day 0 mice were anesthetised by intra-peritoneal injection of a solution (Xylazine 5 mg/kg, ketamine 75 mg/kg) and shaved. A volume of 100 µl of bleomycin solution at 1 mg/ml or saline was injected subcutaneously with a 26 g needle into the shaved backs of mice. Bleomycin was injected 5 days per week for 3 consecutive weeks. The total experimental period was 6 weeks. Mice were sacrificed by exsanguinations with scissors under anaesthesia after 6 weeks.

9.6 Gene Expression and Regulation in Animal Fibrosis Models

[0324] At the end of the in vivo experiment, animals were sacrificed and tissues (½ mouse kidney for UUO model, ⅓ rat kidney for 5% NTX model, a piece of skin for mouse sclero-derma model and 1 lobe of lung for mouse lung fibrosis model) were collected in 2 ml-microtubes (Ozyme #03961-1-405.2) containing RNALater® stabilization solution (Am-

bion #AM7021). Tissues were disrupted with 1.4 mm ceramic beads (Ozyme #03961-1-103, BER1042) in a Precellys® 24 Tissue Homogenizer (Bertin Technologies). Total RNA was isolated, subjected to recombinant DNase digestion and purified using Qiazol® (Qiagen #79306) and NucleoSpin® RNA kit (Macherey-Nagel #740955.250) as recommended by the manufacturers. RNA was eluted with 60 µl RNase-free water. RNA concentration and purity were determined by absorbance at 260, 280 and 230 nm cDNA was prepared from 500 ng total RNA by reverse transcription using a high-capacity cDNA RT kit (Applied Biosystems #4368814). 5 µl of 10 times diluted cDNA preparations were used for real-time quantitative PCR. qPCR was performed with gene-specific primers from Qiagen using SYBR Green technology. Reactions were carried out with a denaturation step at 95° C. for 5 min followed by 40 cycles (95° C. for 10 sec, 60° C. for 30 sec) in a ViiA7 real-time PCR system (Applied Biosystems).

[0325] The following rodent β-actin primers (Eurogentee) were used: 5'-ACCCTGTGCTGCTCACCG-3' (forward primer: SEQ ID NO 111) and 5'-AGGTCTCAAACAT-GATCTGGGTC-3' (reverse primer SEQ ID NO 112).

[0326] Mouse and rat assay mixes are listed in the table below.

TABLE 10

TARGET	Mouse mix	Rat mix
BPNT1	QT02530745	QT00176540
MS4A4A	QT01659476	QT02375744
S1PR2	QT00262773	QT00401884
SLC15A3	QT00139307	QT01080009
JSP22	QT01070531	QT02386580
ZMPSTE24	QT01750329	,
LIF	QT00111090	
EFEMP2	QT00162134	

9.7 Data Analysis

[0327] Expression levels of each gene were estimated by their threshold cycle (C_T) values in control animals.

[0328] The quantification of relative changes in gene expression were expressed using the $2^{-\Delta\Delta C}_T$ method (where $\Delta\Delta C_T$ =(C_T -target- C_T β-actin)_{diseased animal}-(C_T -target- C_T β-actin)_{control animal}. Statistical analysis of $2^{-\Delta\Delta C}_T$ values were performed using unpaired Student's t-test versus control group (***: p<0.001; **: p<0.01; *: p<0.05)

9.8 Results

[0329] All tested mRNA are well expressed in fibrotic tissues (kidney, lung and skin) except for MS4A4A which is poorly expressed in kidney (see Table 11)

TABLE 11

mRNA expression levels in intact animals (Ct $>$ 30: low, 25 $<$ Ct $<$ 30: medium, Ct $<$ 25: high)											
	BPNT1	MS4A4A	S1PR2	SLC15A3	USP22	EFEMP2	LIF	ZMPSTE24			
Mouse UUO (10 days)	20.7	31.1	28.2	28.7	23.1	24.7	30.7	21.8			
Mouse UUO (21 days)	19.9	30.4	26.8	27.5	22.5	24.1	29.8	21.3			

TABLE 11-continued

m	mRNA expression levels in intact animals (Ct > 30: low, 25 < Ct < 30: medium, Ct < 25: high)										
	BPNT1	MS4A4A	S1PR2	SLC15A3	USP22	EFEMP2	LIF	ZMPSTE24			
Rat NTX (4 week)	19.5	>35	24.5	22.4	20.8	_	_	_			
Rat NTX (8 week)	20.2	30.4	25.9	22.3	22.6	_	_	_			
Mouse BLM (i.v. 3 w)	23.9	24.9	23.3	23.8	22.6	_	_	_			
Mouse BLM (i.v. 6 weeks)	23.3	23.9	23.6	23.1	22.1	_	_	_			
Mouse BLM (single i.t.)	_	26.1	24.5	24.9	_	23.4	21	24.6			
Mouse SCL	23.1	24.3	25.1	28.3	23.4	25.2	29.5	24.9			

[0330] Many genes are up or down regulated in mouse UUO model whereas only few regulations were observed in rat NTX model (4 & 8 weeks), and in lung and skin fibrosis models. EFEMP2 and LIF agenes are up regulated in at least one mouse fibrosis model. LIF is strongly upregulated in UUO at both times (10 and 21 days). ZMPSTE24 is significantly downregulated in UUO model at both times (10 and 21 days) (see Table 12)

TABLE 12

qPCR analysis of the fibrosis models (fold >1.8: significant fold induction vs intact animals; fold <-1.8: significant fold inhibition vs intact animals; ns: no significant change; ***: p < 0.001; **: p < 0.01; *: p < 0.05)

	BPNT1	MS4A4A	S1PR2	SLC15A3	USP22	EFEMP2	LIF	ZMPSTE24
Mouse UUO	-3.5***	25.2***	1.6 (***)	2.1***	1.3 (**)	2.1***	23.3***	-2.3***
(10 days) Mouse UUO	-3.9***	65.1***	4.1***	5.7***	ns	1.7 (***)	14.2***	-3.9***
(21 days) Rat NTX	-1.3 (**)	ns	ns	ns	-1.3 (**)	_	_	_
(4 week) Rat NTX	-1.9 (**)	ns	2.5*	-1.6 (*)	ns	_	_	_
(8 week) Mouse	1.5 (**)	ns	ns	1.5 (*)	ns	_	_	_
BLM (i.v. 3 w) Mouse BLM (i.v.	ns	ns	ns	ns	ns	_	_	_
6 weeks) Mouse BLM		-1.2 (*)	-1.3 (**)	ns		1.4 (***)	3.3***	ns
(single i.t.) Mouse SCL	-1.2 (*)	ns	ns	2.9***	1.4 (**)	ns	1.6 (*)	1.2 (*)

[0331] This table gives an overview of the performance of the 56 candidate Targets that were shown to be on-target. The first column shows the Target gene symbol. Duplicate B-scores are shown for the primary CCL18 screen and rescreen where a cutoff of B-score ≤-1.3 was used. Next to this the M1 TNFα counter screen is shown where a cutoff of ≥-1.3 was used. Results of the M2 CD206 validation assay are shown with duplicate Z-scores where a cutoff of robustZ ≤-3 was used. The M2 CTB toxicity assay is shown with duplicate Z-scores where a cutoff of robustZ >-10 was used to include targets which show no toxicity. The columns on the right show the M2 nuclear count in the M2 CD206 validation assay.

TABLE 13

								imary scre d M2 toxi				
		nary 3 screen		L18 creen		I1		D206 say	M2 CT	B assay	M2 1	nuclei
Gene	В-	В-	В-	В-	В-	В-	Z-	Z-	Z-	Z-	co	unt
symbol	score 1	score 2	score 1	score 2	score 1	score 2	score 1	score 2	score 1	score 2	Nuclei 1	Nuclei 2
BPNT1	-3.13	-3.21	-2.00	-2.12	-0.84	1.07	-4.14	-4.40	1.12	-1.02	1438	1834
C1RL	-2.07	-2.17	-2.03	-1.88	3.68	3.13	-6.17	-5.43	2.78	2.32	1391	1359
DCN	-1.33	-1.70	-1.63	-1.78	5.83	2.65	-3.94	-5.15	-3.17	-1.91	1164	1145
EFEMP2	-1.44	-1.42	-1.68	-1.98	-0.22	1.08	-4.10	-4.31	0.50	0.66	1303	1509
EFNB2	-1.93	-1.63	-1.52	-1.64	0.92	-1.23	-3.26	-3.07	-0.03	-0.38	1244	1192
GPR155	-2.68	-1.82	-2.21	-2.34	1.75	1.45	-9.27	-8.54	-1.65	0.82	1158	1431
KCNMB4	-2.32	-2.08	-1.83	-1.67	2.87	2.65	-10.09	-12.84	5.11	0.88	1383	1393
LIF	-1.56	-1.39	-1.80	-1.84	10.29	9.83	-3.00	-3.46	-0.94	-1.13	1553	777
MS4A4A	-1.61	-1.77	-2.19	-2.18	9.88	6.06	-3.07	-3.75	-0.11	-0.26	1505	1379
RAF1	-2.17	-2.47	-2.11	-2.52	7.43	5.95	-3.28	-3.36	-3.07	-1.68	1407	1390
S1PR2	-3.26	-3.06	-1.87	-2.09	0.49	-1.12	-5.28	-4.97	3.34	0.84	1509	1888
SLC15A3	-2.68	-2.66	-1.84	-2.17	4.56	6.44	-4.88	-3.36	-0.76	-0.77	621	1068
USP22	-3.01	-2.99	-2.11	-2.34	3.97	5.67	-6.05	-4.83	-9.08	-2.26	723	882
ZMPSTE24	-1.92	-1.78	-1.99	-1.96	-0.31	-0.36	-5.42	-6.47	-0.30	1.76	992	1206

[0332] This table gives an overview of the performance of the Targets in the on-target assays. The confirmed candidate Target gene symbol and the knock-down sequence of the adenoviral constructs are shown. Results for the shRNAs which were considered a hit are shown. If shRNA was a hit in both OT assays and was an original hit in the primary screen the corresponding values are highlighted in bold. The ontarget validation was performed in two batches, A and B. Duplicate results are shown of the M2 CCL18 on-target

screen with a cutoff B-score \leq -1.6 for batch A or \leq -3 for batch B. Results of the M1 TNF α counter screen as readout are shown as B-score where non-hits were identified using a cutoff of B-score \geq -3 for both batches. CTB results are shown for both M2 and M1 assays as duplicate B-scores. Hits were included based on non-toxic effect in the M2 assay if B-score \geq -8 and in the M1 assay if B-score \geq -8 (batch A) or B-score \geq -6 (batch B). On-target indicates if at least 2 independent shRNAs including the original shRNA give the same effect.

TABLE 14

	Overview of the	per	formance	of the	TARGETs i	n the on	-target	validatio	on.	
				OT M1 counter		OT M	2 CTB	OT M1 CTB assay		
		SEQ	OT M2	screen	screen		ası	say	-	B-
Gene	Sequence	ID NO	B- score 1	B- score 2	B- score 1	B- score 2	B- score 1	B- score 2	B- score 1	score 2
BPNT1	TGAAGCAACCATGCCCATC	64	-13.5	-8.7	-1.2	-0.8	-1.9	-3.6	0.0	0.0
BPNT1	TGTGTTGCTGCTATGAACC	65	-8.4	-9.9	0.3	-2.3	0.4	-3.3	-2.2	-4.9
BPNT1	GAGCTGATTGAAGACAGTC	66	-2.8	-2.0	0.0	3.7	0.2	0.9	1.2	1.0
BPNT1	GTCTTCTTGACAATGTAAC	67	-12.4	-9.2	-0.7	-2.7	-2.4	-4.9	0.6	-0.6
BPNT1	GTACCACAAGGATGTGAAG	68	-5.7	-6.6	5.4	5.4	1.5	-0.5	-2.1	-2.6
C1RL	GAATGAGTCCCATAACTTT	69	-3.2	-3.4	-1.2	2.0	-2.6	-2.6	-3.1	-3.3
C1RL	CCGTGGCTGTGAACTATAG	70	-4.2	-6.2	-1.1	-1.6	0.2	-0.8	-0.7	-0.4
C1RL	GGTCTGTCTGCCCGATAAT	71	-5.9	-4.6	0.5	0.2	-0.2	-0.9	0.1	0.5
C1RL	CCAGAGTGTGAATGTGTTC	72	-3.7	-5.6	0.7	-1.7	0.6	-0.6	-1.3	-0.1
C1RL	GGTGCTCAGCTATGTGGAC	73	-3.7	-6.5	1.5	7.2	-0.3	-2.9	-3.4	-3.1
DCN	GGTTGTCTACCTTCATAAC	74	-5.3	-6.9	4.4	4.9	0.0	-2.1	-0.7	-0.2
DCN	GAAGATGAGGCTTCTGGGA	75	-4.9	-6.8	0.4	1.0	2.5	-2.4	3.1	1.6
EFEMP2	CCAAACCTGTGTCAACTTC	76	-5.2	-5.0	1.7	2.0	-2.0	-3.7	-1.1	-1.3

TABLE 14-continued

Overview of the performance of the TARGETs in the on-target validation.										
					OT M1	counter	OT M	2 CTB	OT M1	
		SEQ	OT M2	screen	scr	een	assay		•	B-
Gene	Sequence	NO NO	B- score 1	B- score 2	B- score 1	B- score 2	B- score 1	B- score 2	B- score 1	score 2
EFEMP2	GAGATGGTCACCATGAATT	77	-8.7	-9.0	2.5	2.0	-0.9	-3.2	-2.0	2.0
EFEMP2	TGATGGTTACCGCAAGATC	78	-4.3	-3.9	-2.0	0.0	-1.0	0.2	2.5	0.6
EFNB2	GCCTATCTATTGGAATTCC	79	-11.8	-7.3	1.8	0.5	-1.0	-1.4	-2.2	-2.0
EFNB2	AATAAAGATCCAACAAGAC	80	-3.0	-3.2	-1.6	-2.6	-0.3	-1.0	-0.9	-0.6
EFNB2	GCCAAACCAGACCAAGATA	81	-6.5	-4.0	4.8	3.1	4.2	1.5	1.2	0.7
GPR155	GATCGAAAGGTACCTGTAT	82	-6.5	-6.3	2.0	3.9	-4.3	-5.1	-0.9	-3.2
GPR155	ATTGGCCTGTTCGCTAATC	83	-2.3	-3.1	0.9	1.8	0.4	-1.0	-0.9	-0.3
GPR155	GAGAGAGGGTACAAATTCC	84	-8.9	-7.2	-0.7	-1.2	-5.4	-4.1	3.0	2.7
GPR155	CCAGAGCTGCATATTAGCC	85	-12.3	-9.7	0.1	1.8	-2.6	-4.9	-3.8	-0.2
KCNMB4	ATTTGTGGTGGGCGTTCTC	86	-4.2	-2.0	-2.2	-2.5	0.6	0.4	-0.4	0.1
KCNMB4	AGAAGCTGTACTCATCGGC	87	-13.3	-10.4	-1.9	-1.7	-0.6	-1.0	-3.8	-3.3
LIF	CAACCTCATGAACCAGATC	88	-4.8	-8.0	7.7	10.0	-1.1	-2.8	-1.7	-1.1
LIF	CTCGGGTAAGGATGTCTTC	89	-3.4	-2.0	-2.3	-0.4	1.0	1.9	-1.7	-0.2
LIF	ACAACCTGGACAAGCTATG	90	-8.2	-8.3	6.7	2.4	-1.4	-5.6	-2.1	-2.5
MS4A4A	CCATCACCCTTACTGTAAC	91	-7.8	-7.3	3.0	2.2	-1.0	-4.2	-3.1	-2.8
MS4A4A	GCATGGTGCTCCTCTTAAG	92	-7.2	-6.1	2.5	1.9	-4.4	-3.5	-1.0	2.1
RAF1	GTTTGGCAACAGTAAAGTC	93	-16.4	-11.9	7.1	3.1	-3.1	-5.2	-3.3	-5.8
RAF1	GAGGATGCAATTCGAAGTC	94	-11.3	-9.2	7.3	5.9	0.8	-1.8	-1.0	-0.5
RAF1	CCGAATGCAGGATAACAAC	95	-10.0	-7.1	3.0	-2.1	-3.0	-3.0	-3.2	-1.9
RAF1	GCACGCTTAGATTGGAATA	96	-4.8	-5.4	-1.9	-0.9	-3.6	-0.8	0.4	-1.6
S1PR2	CCTGAATTCCCTGCTCAAC	97	-7.6	-7.1	3.4	3.9	-2.4	-1.7	0.7	0.5
S1PR2	GTTCCACTCGGCAATGTAC	98	-6.1	-6.5	3.5	2.9	0.3	1.3	-1.1	-0.4
S1PR2	GTAGCCAATACCTTGCTCT	99	-7.6	-8.9	5.1	6.4	0.2	0.2	1.8	3.3
SLC15A3	GGACTTTGGGAACATCAAC	100	-7.4	-7.2	3.6	-0.1	-4.6	-3.3	-0.6	-3.3
SLC15A3	CCTCGTGCTGTACCTCAAC	101	-8.2	-6.1	6.4	6.1	-7.7	-3.4	2.5	1.5
SLC15A3	CCTCTATGCTTAAGCTCGC	102	-8.5	-9.1	4.2	4.5	-2.4	-4.4	2.7	2.3
SLC15A3	GATGGAGCGCTTACACTAC	103	-4.1	-5.1	4.8	3.6	3.3	3.3	4.4	1.5
USP22	GGACAGTCTCAACAATGAC	104	-7.4	-5.4	1.5	2.8	-3.0	-1.3	-4.8	-5.4
USP22	GCTGTTGTTAACCATCAAG	105	-9.1	-8.1	1.0	0.7	-1.9	-2.1	-5.4	-3.2
USP22	GCTGAAGCACAACCCGAAA	106	-3.3	-4.3	-0.5	-1.5	1.2	0.3	3.7	-0.7
	4 TGGTTGTTCTCAATGTGGC				4.4					
	4 GACTGAAGGCACTCTTATT			-3.7			1.8		-0.1	0.6
дирыт Е 24	4 GCCATGGAGTCTTTATAAT	T03	-6.8	-4.7	3.0	5.8	-1.5	-1.7	-1.8	-2.2

[0333] The confirmed candidate Target codes are shown with the corresponding gene class of the Target. Expression data obtained from RNA-seq is shown as an average FPKM value of two healthy donor derived M0 or M2 macrophages. mRNA expression is shown as Ct values (AM=alveolar macrophage, ND=Not Detectable, nt=not tested, AVG=average).

TABLE 15

Overview of the expression of the TARGETS that were confirmed to be on-target by shRNA.								
Gene	Gene class	RNA seq M0 (AVG)	RNA seq M2 (AVG)	qPCR AM from IPF (Ct)				
BPNT1	Enzyme	15.25	22.48	31.89				
C1RL	Secreted/Extracellular	0.93	3.29	30.95				
DCN	Secreted/Extracellular	0.10	0.11	nt				
EFEMP2	Secreted/Extracellular	0.69	0.41	31.64				
EFNB2	Other	0.02	0.03	33.46				
GPR155	GPCR	8.94	18.51	30.57				
KCNMB4	Ion channel	0.33	0.13	32.46				
LIF	Secreted/Extracellular	2.98	0.57	31.60				
MS4A4A	Other	234.68	467.98	23.80				
RAF1	Kinase	32.81	24.89	30.45				
S1PR2	GPCR	6.05	5.31	29.42				
SLC15A3	Transporter	504.20	636.80	27.00				
USP22	Enzyme	33.21	31.74	28.15				
ZMPSTE24	Enzyme	29.71	26.57	28.75				

REFERENCES

- [0334] Atamas S P, Luzina I G, Choi J et al. Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. *Am J Respir Cell Mol Biol* 2003; 29:743-9.
- [0335] Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin Chem.* 2009 April; 55(4):611-22
- [0336] Duffield J S, Forbes S J, Constandinou C M et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. *J Clin Invest* 2005; 115:56-65.
- [0337] Cox T R and Erler J T *Disease Model Mech* 2011, 4(2):165-178.
- [0338] Kunisch et al Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1)

- widely used for immunohistochemistry and flow cytometry *Ann Rheum Dis* 2004; 63:774-784
- [0339] Mantovani A, Sica A, Sozzani S et al. The chemokine system in diverse forms of macrophage activation and polarization. *Trends Immunol* 2004; 25:677-86.
- [0340] Mantovani A, Sica A, Macrophage plasticity and polarization: in vivo veritas. *J Clin Invest*. 2012; 122:787-795
- [0341] Murphy C A, Langrish C L, Chen Y et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198: 1951-7
- [0342] Murray P J, Wynn T A. Protective and pathogenic functions of macrophage subsets. *Nat Rev Immunol* 2011; 11:723-37.
- [0343] Meneghin A, Hogaboam C M. Infectious disease, the innate immune response, and fibrosis. *J Clin Invest* 2007; 117:530-8.
- [0344] Prasse A, Pechkovsky D V, Toews G B et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. *Am J Respir Crit Care Med* 2006; 173:781-92.
- [0345] Prasse A, Pechkovsky DV, Toews GB et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. *Arthritis Rheum* 2007; 56:1685-93.
- [0346] Prasse A, Probst C, Bargagli E et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2009; 179:717-23.
- [0347] Prasse A, Muller-Quernheim J. Non-invasive biomarkers in pulmonary fibrosis. *Respirology* 2009; 14:788-95.
- [0348] Sica Antonio, Mantovani Alberto Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. (2012); 122(3):787-795.
- [0349] Song E, Ouyang N, Horbelt M et al. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. *Cell Immunol* 2000; 204:19-28.
- [0350] Thannickal V J, Toews G B, White E S et al. Mechanisms of pulmonary fibrosis. *Annu Rev Med* 2004; 55:395.
- [0351] Wynn T A. Fibrotic disease and the T(H)1/T(H)2 paradigm. *Nat Rev Immunol* 2004; 4:583-9.
- [0352] Wynn T A. Cellular and molecular mechanisms of fibrosis. *J Pathol* 2008; 214:199-210.

SEQUENCE LISTING

acgctggaaa	cgcaggagac	gacctcccgc	caggtggcct	cggccttcat	cgtcatcctc	240	
tgttgcgcca	ttgtggtgga	aaaccttctg	gtgctcattg	cggtggcccg	aaacagcaag	300	
ttccactcgg	caatgtacct	gtttctgggc	aacctggccg	cctccgatct	actggcaggc	360	
gtggccttcg	tagccaatac	cttgctctct	ggctctgtca	cgctgaggct	gacgcctgtg	420	
cagtggtttg	cccgggaggg	ctctgccttc	atcacgctct	cggcctctgt	cttcagcctc	480	
ctggccatcg	ccattgagcg	ccacgtggcc	attgccaagg	tcaagctgta	tggcagcgac	540	
aagagctgcc	gcatgcttct	gctcatcggg	gcctcgtggc	tcatctcgct	ggtcctcggt	600	
ggcctgccca	tccttggctg	gaactgcctg	ggccacctcg	aggcctgctc	cactgtcctg	660	
cctctctacg	ccaagcatta	tgtgctgtgc	gtggtgacca	tcttctccat	catcctgttg	720	
gccatcgtgg	ccctgtacgt	gcgcatctac	tgcgtggtcc	gctcaagcca	cgctgacatg	780	
gccgccccgc	agacgctagc	cctgctcaag	acggtcacca	tegtgetagg	cgtctttatc	840	
gtctgctggc	tgcccgcctt	cagcatcctc	cttctggact	atgcctgtcc	cgtccactcc	900	
tgcccgatcc	tctacaaagc	ccactacttt	ttcgccgtct	ccaccctgaa	ttccctgctc	960	
aaccccgtca	tctacacgtg	gcgcagccgg	gacctgcggc	gggaggtgct	teggeegetg	1020	
cagtgctgga	ggccgggggt	gggggtgcaa	ggacggaggc	ggggcgggac	cccgggccac	1080	
cacctcctgc	cactccgcag	ctccagctcc	ctggagaggg	gcatgcacat	gcccacgtca	1140	
cccacgtttc	tggagggcaa	cacggtggtc	tgagggtggg	ggtggaccaa	caaccaggcc	1200	
agggcagagg	ggttcatgga	gaggccactg	ggtgacccca	gatagagact	tggggctact	1260	
gagccagatg	cccccgcccc	acagacctgg	gtgatgttgc	aaatatttca	cacctggaaa	1320	
ggccagataa	ggcactgact	agtcacatag	cagtgttgca	gtgcggtcct	gagggccagt	1380	
ccagtggcta	gtgtgacccc	tttagaactg	gatcctgggg	aggccagggc	aggggacctg	1440	
tgaagagcca	gggtgagggc	aggcagcatt	taaggggagc	tcagggcagg	agcactttac	1500	
cacctggtac	aaaggatttt	tttttttt	tgagacggaa	tcttgcactg	ctgcccaggc	1560	
tggagtgcag	tggcgtgatc	teggeteace	gcaagctccg	cctcctgggt	tcatgtcgtt	1620	
ctcctgcctc	agcctcccaa	gtagctggga	ctataggcgc	ctgccaccac	acctggctaa	1680	
ttttttgtac	ctttagtaga	gatggggttt	caccgtgtta	gccaggatgg	tcttgatctc	1740	
ctgacctcgt	gatccgcccg	cctcggcctc	ccaaagtgct	gggattacag	gcgtgagcca	1800	
ccgtgcccgg	ctttttttt	tttttttt	ttttttttt	tttttttga	gatgaagtct	1860	
cgctctgttg	cccaggctgg	agagtgcagt	ggtacggtct	cagctcactg	caacctccac	1920	
ctcccaggtt	caagcgattc	tccagcctga	gcctcctgag	tagctgggat	tacaggtgcc	1980	
taccaccacg	cccaggtaat	tttttttt	tttgtatttt	tagtagagac	ggggtttcac	2040	
catgttggcc	aggctggtct	cgaactcctg	acctcatgat	ccgcccgtgt	tggcctccca	2100	
aagtgtggga	ttacaggcgt	aagccacctc	acctggcggt	acaaagaatt	tctgcatttt	2160	
cttccctggc	ccctagtcct	gcaccgattt	ctccttttcg	aatgtattcc	tcctgccacc	2220	
	aacttcgtgc					2280	
	cagageccaa					2340	
						2400	
	gtctctctga						
ctgaggtcca	ttcctcattc	tcagacctca	ttgctcagtt	gcactatttg	gggcacagaa	2460	

-continued	
taatcaccaa aagtgagaaa aacgagtttg ggtggctggg gaggactttg ggactcttga	2520
tgcaaggcgc aacttgagaa aattctgggt gtgatatttg cacagacacc ctcctttcaa	2580
aaacagccac cccccaaget atteteaget ccacacetge agecccaget aaggtaccag	2640
gtctcctgag caaggcagag agaagccttg agccttctct gtgtcttctt tcaagaaccc	2700
cgctgtgtct tctttcaaga ttttttttt gagacagttt caagattttt gttttgtttt	2760
tgagatggag tctcactgtg tcacccaggc tgaggtggca gtggttcaat ctccgttcac	2820
tgccacctcc acctcccggg ttcaagcgat tctcctgctt cagcctctcg agtagctggg	2880
actacaggca cctgccacca tgtctggcta atttttgtat ttttagtaga gacagggttt	2940
cactacgttg gccaggctgg teteaaacte etgaceteaa gtgateegee egeeteggee	3000
tccccaattg ctgggattac aggcgtgagc cactgtgccc ggccttcttc tttcaagtta	3060
tatagaatgg agcatggggg tggcagtggc tagggacatt tcctggggac actctcccct	3120
aaccccccag aaggacttca caaaaacctg tggataatgg aagggatgtt acggtacaaa	3180
cgtatattta tgtgtgtgtg tgtgtatgtg tgtgcgcgcg cgcgtgtgca cataggcgtg	3240
atgtetgtga eceteetete etegteacat tteeeceaga atgaatgetg teetgtetge	3300
tcatgtttgt gttgaagctg ccaaagtcgg ggagctctgg tcctgcccag acccctttgg	3360
aattgctggc ccatcctccc actggagagc tggggtgcag ctcaccttgg ggaaggaaac	3420
ctcatgcctc agagtaattt cttgtgaatg caaagcctgg gggagcgggt ctttgggggg	3480
caaggagcca gtcaggggct tgtttcccct catagagctc cccagacgtg cctccgcaat	3540
gcctgaaacc cagacctagg ctaataaacg gttcaatttc tgttaaaaa	3589
<210> SEQ ID NO 2 <211> LENGTH: 5220 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 2	
gcagccgcag ctcgggggcg gtgcctgcct tgcagcctcc cctcggcgat cgcgcagccc	60
catctttgtc cggcctccgc gctttgttct cggcgcccgg gccttggcca gcctggccag	120
cegeegagea geeceeaege egegetggeg tegteetege etecetegee geegeeeeee	180
gegegeggee gggeettgee ecceatggtg teeeggeeag agecegaggg egaggeeatg	240
gacgccgagc tggcggtagc gccgccgggc tgctcgcacc tgggcagctt caaggtggac	300
aactggaagc agaacctgcg ggccatctac cagtgcttcg tgtggagcgg cacggctgag	360
gcccgcaagc gcaaggccaa gtcctgtatc tgccatgtct gtggcgtcca cctcaacagg	420
ctgcattcct gcctctactg tgtcttcttc ggctgtttca caaagaagca tattcacgag	480
catgcgaagg cgaagcggca caacctggcc attgatctga tgtacggagg catctactgt	540
tttctgtgcc aggactacat ctatgacaaa gacatggaaa taatcgccaa ggaggagcag	600
cgaaaagctt ggaaaatgca aggcgttgga gagaagtttt caacttggga accaaccaaa	660
cgggagcttg aactgctgaa gcacaacccg aaaaggagaa agatcacctc gaactgcacc	720
ataggtctgc gtgggctgat caaccttggg aacacatgct tcatgaactg catcgtgcag	780

840

gccctgaccc acacgccact tctgcgggac ttcttcctgt ctgacaggca ccgctgtgag

atgcagagcc ccagctcctg tctggtctgt gagatgtcct cactgtttca ggagttttac

aggeacetag caggetacga geageaggae geceacgagt tecteatege ggecetggae 1020 gtgetecace gacactgcaa aggtgatgae aatgggaaga aggecaacaa eeceaaccae 1080 tgeaactgca teatagaeca gatetteaca ggegggttge agteagaegt cacetgcaa 1140 gtetgecatg gagtetecae caceategae eeettetggg acateagaegt ggateteeee 1200 ggaaagecaeg tgtegggaae caceacgete aggactgee tgegaegatt eaceagaeca 1320 gaaagecaeg tgtegggaae caceacgete aeggaetgee tgegaegatt eaceagaeca 1320 gageacttgg geageagge caagateaag tgeageggt geeatageta eacaggatee 1380 acaaageage teactatgaa gaaactgee atggaeget gttteatet eaaacgattt 1440 gaacateag ceaagetgeg geggaagate accaegtatg tgteetteee eetggagetg 1500 gaacateag ceaagetgeg geggaagate accaegtatg tgteetteee eetggagetg 1500 gaacateag eetteaacaa tgacaacaag tatteeetgt ttgetgttgt taaccateaa 1620 gaggaecttgg agagtggeea etacaceage tttateegge ageacaaaga eeagtggtte 1680 aagtgtgaeg atgeeateat eaceaaggee ageateaagg acgteetgga eageggaggg 1740 taettgetgt tetateacaa acagtteetg gaatacgagt acceetggaegggga geteetggae 1800 agaaaaacaa aggeaatgea ttggeaagee teacaaagg accttatet geagetggte 1800 agaaaaacaa aggeaatgea ttggeaagee teacaaagg accteetegg agatgggge 1920 eetetgeaee tgggaeceat egggteggga tggaeceae ggaeggggag geteeteggag 1980
gtgetceace gacactgeaa aggtgatgac aatgggaaga aggccaacaa coccaaccac 1080 tgcaactgca tcatagacca gatetteaca ggegggttg agtcagacgt cacetgecaa 1140 gtctgecatg gagtetceac caccategac coettetggg acatcagett ggateteece 1200 ggetctteca ceccattetg gecectgage ceaggaggg agggcaacgt ggtaaacggg 1260 gaaagccacg tgtegggaac caccacgete acggactgec tgcgacgatt caccagacca 1320 gagcacttgg geagcagege caagatcaag tgcageggtt gecatageta ecaggagtec 1380 acaaagcage teactatgaa gaaactgece ategtageet gttteatet caaacgattt 1440 gaacacteag ceaagetgeg geggaagate accacgtatg tgteetteee ectggagetg 1500 gacatgacce ettteatgge etccagcaaa gagageagga tgaatggaca gtaccagcag 1560 cccacggaca gtetcaacaa tgacaacaag tatteeetgt ttgetgttgt taaccatcaa 1620 gggacettgg agagtggeca etacaccage tttateegge agcacaaaga ccagtggtte 1680 aagtgtgacg atgccatcat caccaaggee agcatcaagg acgteetgga cagegaaggg 1740 tacttgetgt tetatcacaa acagtteetg gaatacgagt agcettatet geagetggte 1800 agaaaaacaa aggcaatgca ttggcaagce tcacaaagtg atecteeetg geececect 1860 eccecaagte teeegeegee teeeeggeet ggtgacacca ecteceetg agattgggee 1920
tgcaactgca tcatagacca gatcttcaca ggcgggttgc agtcagacgt cacctgccaa 1140 gtctgccatg gagtctccac caccatcgac cccttctggg acatcagctt ggatctcccc 1200 ggctcttcca ccccattctg gcccctgagc ccagggagcg agggcaacgt ggtaaacggg 1260 gaaagccacg tgtcgggaac caccacgctc acggactgcc tgcgacgatt caccagacca 1320 gagcacttgg gcagcagcgc caagatcaag tgcagcggtt gccatagcta ccaggagtcc 1380 acaaagcagc tcactatgaa gaaactgccc atcgtagcct gtttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcggaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atccccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc
gtctgccatg gagtctccac caccatcgac cccttctggg acatcagctt ggatctcccc 1200 ggctcttcca ccccattctg gcccctgage ccagggageg agggcaacgt ggtaaacggg 1260 gaaagccacg tgtcgggaac caccacgctc acggactgcc tgcgacgatt caccagacca 1320 gagcacttgg gcagcagcgc caagatcaag tgcagcggtt gccatagcta ccaggagtcc 1380 acaaagcagc tcactatgaa gaaactgccc atcgtagcct gttttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
ggctcttcca ccccattctg gcccctgagc ccagggagcg agggcaacgt ggtaaacggg 1260 gaaagccacg tgtcgggaac caccacgctc acggactgcc tgcgacgatt caccagacca 1320 gagcacttgg gcagcagcgc caagatcaag tgcagcggtt gccatagcta ccaggagtcc 1380 acaaagcagc tcactatgaa gaaactgccc atcgtagcct gtttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggtc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgcgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
gaaagccacg tgtcgggaac caccacgcte acggactgcc tgcgacgatt caccagacca 1320 gagcacttgg gcagcagcgc caagatcaag tgcagcggtt gccatagcta ccaggagtcc 1380 acaaagcagc tcactatgaa gaaactgccc atcgtagcct gtttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
gagcacttgg gcagcagcgc caagatcaag tgcagcggtt gccatagcta ccaggagtcc 1380 acaaagcagc tcactatgaa gaaactgccc atcgtagcct gttttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
acaaagcagc tcactatgaa gaaactgccc atcgtagcct gttttcatct caaacgattt 1440 gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
gaacactcag ccaagctgcg gcggaagatc accacgtatg tgtccttccc cctggagctg 1500 gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
gacatgaccc ctttcatggc ctccagcaaa gagagcagga tgaatggaca gtaccagcag 1560 cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
cccacggaca gtctcaacaa tgacaacaag tattccctgt ttgctgttgt taaccatcaa 1620 gggaccttgg agagtggcca ctacaccagc tttatccggc agcacaaaga ccagtggttc 1680 aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgcgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
gggacettgg agagtggcca ctacaccage tttateegge ageacaaaga ccagtggtte 1680 aagtgtgacg atgecateat caccaaggee ageateaagg acgteetgga cagegaaggg 1740 taettgetgt tetateacaa acagtteetg gaataegagt ageettatet geagetggte 1800 agaaaaacaa aggeaatgea ttggcaagee teacaaagtg ateeteetg geececeet 1860 cceccaagte teeeggeee teeeeggeet ggtgacacca ceteccatge agatgtggee 1920
aagtgtgacg atgccatcat caccaaggcc agcatcaagg acgtcctgga cagcgaaggg 1740 tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccgcgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
tacttgctgt tctatcacaa acagttcctg gaatacgagt agccttatct gcagctggtc 1800 agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccggcgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
agaaaaacaa aggcaatgca ttggcaagcc tcacaaagtg atcctccctg gccccccct 1860 cccccaagtc tcccggcgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
cccccaagtc tcccgccgcc tccccggcct ggtgacacca cctcccatgc agatgtggcc 1920
cetetgeace tgggacecat egggteggga tggaceacae ggaeggggag geteetggag 1980
ctgctttgaa gatggatgag atgaggggtg tgctctgggt gggaggagca gcgtacaccc 2040
gtcaccagaa catctettgt gtcatgacat gggggtgcaa cgggggcete acagcacaga 2100
gtgaccgctg cctggcgttc cccagcactc ggtgtggaaa ggcccctacc tgctgtaaga 2160
ttatgggtcc atgaaagcag taagctggac acagaggtgt agtgtgcggg acagagggcc 2220
ttgcagatgc ctttctgttg gtgttttagt gttaaaatac ggagagtatg gaactcttca 2280
cetecatttt eteagegget gtgaageage eteetagett eggaagtaeg gaeactaegt 2340
cgcgttttca agcgtgtctg ttctgcaggt aacagcatca agctgcacgt ggaagcatct 2400
cgcggttttc tagaaacagg cattttetta teeeteteee geteettttt eeacaaaggt 2460
gaatttcata aatgtaatac tagtaaagtg aatgaattac tgagtttata cagaaattta 2520
ggtaacttot ootttagtot oaagagogag tottgotttt taatgggtgo ogtttatgtt 2580
getgeeegee etgtgtgeet ggeteetetg ggtgeettgg tgtetgetgg tggetgge
tgggcgcagc ggaggagagt tgtgctgcag ctcatacggt gtgtctgtca tctcagtctg 2700
gagtaaatge agtgtetgee ggtgtetgat gggttetgte eetegtattt tetttgeett 2760
ctatcccatt gcctggctac cgctgcctgg cagccaaggg tgttggtcgc gaagctggag 2820
tggcctctgg tggagcctgc atcttgtctc gtctgcctct gctttacatt tggtgtactt 2880
togggogtgg tggcagtaaa atgacaccgt gattgagott gtoagcagag otgaaagaga 2940
aagtagaagg atgtgcattg tttcttgtaa gatatcttgc atgtatctgt gtattcaaat 3000
tcaaacagag atggtttgtc catttgtcca ctgagaaatt agaaactagg gacaaggggg 3060
aggaaaagta ctgaaataca gtttatgaag caagtgtgtc tcgggctgtg cttgtcccag 3120

tcagcggtgg	gcagatgttt	tcatagacag	ccagggagta	aacactgttg	gctctgtggg	3240
ctgtatggtc	tctgccataa	atagtacaga	gatgtggctg	tgtctagtac	aacttttaga	3300
cacagaaatc	tgaatgacat	atattgttct	gtgtcaagaa	acttagattt	tttttttaac	3360
tatttaaaaa	cgtgaaacct	attcttagct	cacaggccat	ggagaagctg	gtggggacca	3420
gacccagctc	cttagctggc	tgggctgggg	agggggtagt	gacagtggca	gctgctactc	3480
actgctcagt	gtggaaaaca	caggacttgg	caatcacagc	ccgcagaacc	atcatgtgtg	3540
gcagaagcct	gagggatgcg	gtttcttgcc	cacgtgctct	gttcattttc	tgttgttttt	3600
ctgcacttaa	agaattcaca	tggaagcatg	ttttataaaa	tgaattacca	gagaaacaga	3660
gatgggccga	gattttcaga	aatggtccca	tgtgaccaag	ttctgctgtt	tgggtgacag	3720
tgctttgaag	atctcctttg	aggatgtgca	gtctttttt	tttttttt	gagatggagt	3780
ttgttgccca	ggctggagtg	agtggcacag	tctcggctca	ctgcaacctc	cacctcctgg	3840
gttcaagcag	ttctcgtgcc	gcagcctccc	aagtagctgg	gactacaggc	atgcaccacc	3900
acgccaggct	aatttttgta	tttttagtag	agatggggtt	tcaccatgtc	tcaaactcct	3960
gacctcaggc	gatccaccca	cctcagcgtc	ccaaagtgct	gggattatag	gcgtgagcca	4020
ccgcacctgg	cctatgagtg	gtcttttaat	taggaacaaa	tctaatggaa	aggagagttg	4080
actgaagttg	gcccacagga	ttgtgagctg	ggcagtgcct	tcatgaaggc	ttgccacctt	4140
gggacgcccc	agtttactgg	ggtgtcttgc	ggagtgcaga	aggetttetg	gcagctgcct	4200
gggtttggcc	agaccctgcc	tcccctcccg	ccggccaacc	cctagtcccc	ttcctgtctc	4260
cacttgcatt	caggggtggc	tgctgttctg	agaacattag	aactgggaag	agagatggag	4320
tcacatggat	ttttggtggg	cattattcta	aactttcgta	tccaagttag	tccccttat	4380
tccactgtgg	cattgccgtt	ctaagcagtt	acctgatgcc	tgctgctgaa	gagctgctca	4440
caggaggcgg	cggcggccct	ggcactgccc	cttgcattag	gtcttgtgtt	tgatgtgttc	4500
ttgtgaattt	actttgtcag	aacaaaatat	ttacgcgttg	ggttcaggaa	tttcttttag	4560
ctccccatct	ggctgtgaaa	ttcaggaaac	ctcccgttgc	ctagtaatca	ccccatgtag	4620
gtgtacattg	tgacaaagtg	catctgacca	ctaaggggcc	cccttggtga	ccccagcaca	4680
ttcacagcag	tgttaaaatg	gcctgcattt	tggagatgct	ggctggcctt	tcagtgcctc	4740
ccaggaagac	acatggcctt	tccctcttca	gatgcctgaa	gggagtgctt	tgaggcaggt	4800
gatgtgctgg	gagtgtgggc	ggcctccctc	tggccccggg	gccctctgtg	gaccttggct	4860
ccctccgtgg	acctgggctt	cgtggtgagc	actgcagcct	ccctgggcat	tccctccagc	4920
gccagcacca	ctgcaacata	tagacctgag	tgctattgta	ttttggcttg	gtgtgtatgc	4980
tcttcattgt	gtaaaattgc	tgttcttttg	acaatttaag	tgattgtttt	gtttactgta	5040
agtttgaaaa	taaaaatgaa	gaaaaaaatt	ccaatgactg	tgctgtggtt	ggagacttta	5100
tttaccaaga	tgtttactct	tcctttcccc	ttccattttg	aggagctgtg	tcactcctcc	5160
tecececcag	tgctttgtag	tctctcctat	gtcataataa	agctacattt	tctctgagaa	5220

<210> SEQ ID NO 3

-continued

<211> LENGTH: 2461 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 3 gegegeagtt teeegeatge teagtagetg aggtagggat gecateette teaaaagaet 60 tattgacagt gccaaagctc ggtactggac acaacgaggg acctgggtct acgataacgc 120 gettttgete eteetgaagt gtetttggte caaegttgtt ceagagtgta ecatggette cagtaacact gtgttgatgc ggttggtagc ctccgcatat tctattgctc aaaaggcagg 300 aatqataqtc aqacqtqtta ttqctqaaqq aqacctqqqt attqtqqaqa aqacctqtqc aacagacctg cagaccaaag ctgaccgatt ggcacagatg agcatatgtt cttcattggc 360 420 ccggaaattc cccaaactca caattatagg ggaagaggat ctgccttctg aggaagtgga tcaagagctg attgaagaca gtcagtggga agaaatactg aagcaaccat gcccatcgca 480 qtacaqtqct attaaaqaaq aaqatctcqt qqtctqqqtt qatcctctqq atqqaaccaa 540 ggaatatacc gaaggtette ttgacaatgt aacagttett attggaattg ettatgaagg 600 aaaaqccata qcaqqaqtta ttaaccaqcc atattacaac tatqaqqcaq qaccaqatqc 660 720 tqtqttqqqq aqqacaatct qqqqaqtttt aqqtttaqqc qcctttqqqt ttcaqctqaa agaagteeet getgggaaac acattateac aactaetega teecatagea acaagttggt 780 840 taagattatt cagctgattg aaggcaaagc ctctgcttat gtatttgcaa gtcctggttg 900 taagaagtgg gatacttgtg ctccagaagt tattttacat gctgtgggag gcaagttaac 960 cgatatccat gggaatgttc ttcagtacca caaggatgtg aagcatatga actctgcagg 1020 agtcctggcc acactgagga attatgacta ctatgcaagc cgagttccag aatctattaa 1080 aaatgcactt gttccttaaa ggaaagtttc atttggccgg gcgcggtggc tcatgcctgt 1140 aatcccagca ctttgggagg ccgaggcagg tggatcactt gagctcagga gtttgagacc 1200 agcctgggca atatcgtgag accccatctc tacaaaaata caaattaact gggcatcctg 1260 tcatgcgcct gtcatcccag ctacttgaga ggctgaagca gaagaatctc ttgagcccgg 1320 aaggcagagg ttgcagtgag ctgagatcgt gccactgcac tccagcctga gtgacaggag 1380 ttaagccctg tctcagaaaa aaaaaaaaca aaaacccaaa aagtacttaa agtttcattt acttagctag gagaaagact tggttctcaa aataatacat tttaagatta attgggtaga 1500 attagagttc cacctttatt cattgttgag cagtgattta tatttagtta ttatatttag 1560 gaatagaaaa tagaattaaa taatttaact tgattaatca accagaccaa ttttgacgtc 1620 tggagaactt ataaactcaa tatgttatat ttgttttcct gtatttaggt ggagaaatga 1680 gaaaaagctt tagttccaat tgacagttca ggtcaatgtt caatgaacat tcctatcttc 1740 taaaccagat ttctctttt ttttcctgag acggagtctc gctctgtagc ctaggctaga 1800 atgtagtggc gtgatctcgg ctcactgcaa gctccgcctc ccgggttcat gccattctcc 1860 tgcctcagcc tcccgagtag ctgggactgc aggcaccgcc accacgcctg gctaattttt tgtattttta gtagagaagg tgtttcaccg tgttagccag gatggtcttg atctcctgac 1980 ategtgatet gtetgeeteg gaeteecaaa gtgetgggat tacaggtgtg agecacegca 2040

CONCIN	.ucu		
cotggodaa accagattto tttagggoac aattttttot ggaatotoac	tcttgttttt	2100	
cacagtaatt ttaaaaacgt ttctactcca attaagaata tatatgatgt	tattatatat	2160	
gcttatgaaa cagatttatg agaaaagttt tttttaaata aattatttaa	tcctagctct	2220	
ttgttattca ccagcttttt aaaaaagtgt ttgaaaatta tacattctcg	actttgggga	2280	
ttagtttatt cttgtggcat cattataagg cttaattgtg gaaagctaag	tacttgcttc	2340	
tatteettee aatgagagat tataacataa actattaaaa ttattetget	aatataccta	2400	
gatttttatt tttaggtoto tgtocattgo ttttaattaa aattatotgt	tttcaaatca	2460	
а		2461	
<210> SEQ ID NO 4 <211> LENGTH: 3398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 4			
attteeagga aetteeteet eeceeacegg eetteacett ttgtteeeta	tcctgggcca	60	
gttctctcgc aggtcccaga tgtccagttc cagatgcctg gacccagagt	gtggggaaa	120	
tatetetgga gaageeetea eteeaaagge tgteeaggeg caatgtggtg	gctgcttctc	180	
tggggagtee tecaggettg eccaaceegg ggeteegtee tettggeeca	agagetacee	240	
cagcagetga cateeeeegg gtaeeeagag eegtatggea aaggeeaaga	gagcagcacg	300	
gacatcaagg ctccagaggg ctttgctgtg aggctcgtct tccaggactt	cgacctggag	360	
ccgtcccagg actgtgcagg ggactctgtc acaatctcat tcgtcggttc	ggatccaagc	420	
cagttetgtg gteageaagg eteceetetg ggeaggeece etggteagag	ggagtttgta	480	
teeteaggga ggagtttgeg getgaeette egeacaeage etteetegga	gaacaagact	540	
gcccacctcc acaagggett cetggeeete taccaaaccg tggetgtgaa	ctatagtcag	600	
cccatcagcg aggccagcag gggctctgag gccatcaacg cacctggaga	caaccctgcc	660	
aaggtccaga accactgcca ggagccctat tatcaggccg cggcagcagg	ggcactcacc	720	
tgtgcaaccc cagggacctg gaaagacaga caggatgggg aggaggttct	tcagtgtatg	780	
cctgtctgcg gacggccagt cacccccatt gcccagaatc agacgaccct	eggttettee	840	
agagccaagc tgggcaactt cccctggcaa gccttcacca gtatccacgg	ccgtgggggc	900	
ggggccctgc tgggggacag atggatcctc actgctgccc acaccatcta	ccccaaggac	960	
agtgtttctc tcaggaagaa ccagagtgtg aatgtgttct tgggccacac	agccatagat	1020	
gagatgetga aactggggaa ecaceetgte cacegtgteg ttgtgcacee	cgactaccgt	1080	
cagaatgagt cccataactt tagcggggac atcgccctcc tggagctgca	gcacagcatc	1140	
cccctgggcc ccaacgtcct cccggtctgt ctgcccgata atgagaccct	ctaccgcagc	1200	
ggcttgttgg gctacgtcag tgggtttggc atggagatgg gctggctaac	tactgagctg	1260	
aagtactcga ggctgcctgt agctcccagg gaggcctgca acgcctggct	ccaaaagaga	1320	
cagagacccg aggtgttttc tgacaatatg ttctgtgttg gggatgagac	gcaaaggcac	1380	
agtgtctgcc agggggacag tggcagcgtc tatgtggtat gggacaatca	tgcccatcac	1440	
tgggtggcca cgggcattgt gtcctggggc atagggtgtg gcgaagggta	tgacttctac	1500	

accaaggtgc tcagctatgt ggactggatc aagggagtga tgaatggcaa gaattgaccc 1560

tgggggcttg aacagggact gaccagcaca gtggaggccc caggcaacag agggcctgga	1620
gtgaggactg aacactgggg taggggttgg gggtgggggg ttgggggagg cagggaaatc	1680
ctattcacat cactgttgca ccaagccact gcaagagaaa cccccacccg gcaagcccgc	1740
cccatcccag acaggaagca gagtcccaca gaccgctcct cctcaccctc tacctccctg	1800
tgetcatgca ctaggeceeg ggaageetgt acateteaac aaetttegee ttgaatgtee	1860
ttagaaccgc cttcccctac ttcatctgtt gacacagctt ttatactcac ctgtggaaga	1920
gtcagctact caccegetat tagagtatgg aggaaggggt tttcattgca ttgcatttct	1980
gaaacattcc taagaccctt tagttgacct tcaaatattc aagctattct gcagctccaa	2040
gatgcaatta tagaaacagc teetttttta ttttatgtee tetatatgee aggtgettea	2100
cctgttattt cacttaatcc tcataccata tttgcaaagg atgtgttatt atctatgtgt	2160
gacaaatgag gaaactgagg ctcaggggat aaagggactt gcccaagtcc cacagctggt	2220
gtgtgactgc agagactgtg ctcttcccag tgtgctgcaa tacttctcaa ccctcctcta	2280
acctgctgtg tcacccgctt tccctcccag cccccacatc cttaccattt tccctccctg	2340
ggaatteetg ettetgegaa aatggtatee tetageteae aettteetaa tggeeceate	2400
teetgeagaa geeaggtgag ceeageactg gaetgaagtt ettgeagaea ceeeacetgt	2460
geceetatea teaggggaae tgeteeacet gagaggaeea aetetttaat tittagtaaa	2520
acctggaggt gatgggccgg gcgcagtggc tcacgcctgt aatcccaaca ccttaggagt	2580
ccgaggtggg tggatcacga ggtcaggaga tccagcccat cctggccaac atggtgaaac	2640
cccatctcta ctaaaaatac aaaaattagc cgggcgtggt gacacgtgcc tgtagtccca	2700
getacteggg aggetgagge aggagaatea ettgaacetg ggaggeggag gttgeagtga	2760
getaagatea egecaetgea etecageetg eggacagace aagaetteat eecececaaa	2820
aaaaaaagat tggaggtgat ttacagtgaa agacacaaat aaaatacaac tgttcaatgg	2880
aaatagaaaa taaacaccat aaaagagaga agagaggtaa tttgttagca tcaagagtca	2940
agttgctata tggtcaaagg ttaaatttat ctctaaaaaa tggcaggatt caaagttgta	3000
catacatgtg attacttctg ttttttacac ccacatacag tacaaaagat tattaaaaat	3060
attcccaaaa ggcaggtgca atgatgcaca cttatacccc cagccactca ggaggctgat	3120
gcaagaggat cgcttgagcc caggagttga agtccagcct aagcaacata gtgaaacccc	3180
atcgccaaaa atataataat aattctctca aaatactaaa cagaggtggt tttattgata	3240
agattttggc tgtttggttt tccactattc tctattggct aaaatttgtt taatgagcat	3300
gaaatgtttt tattttattt tgcttatttt tatgattgca aaaaatgata tgagtttctc	3360
cctgccaagg caaaaaaata tatatatacc tatattta	3398
<210> SEQ ID NO 5 <211> LENGTH: 1456 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 5	
atgaaggeea etateateet eettetgett geacaagttt eetgggetgg acegttteaa	60
cagagaggct tatttgactt tatgctagaa gatgaggctt ctgggatagg cccagaagtt	120

cctgatgacc gcgacttcga gccctcccta ggcccagtgt gccccttccg ctgtcaatgc

-continued	
catcttcgag tggtccagtg ttctgatttg ggtcttcctc cttcccttac ggaattacat	240
cttgatggca acaaaatcag cagagttgat gcagctagcc tgaaaggact gaataatttg	300
gctaagttgg gattgagttt caacagcatc tctgctgttg acaatggctc tctggccaac	360
acgcctcatc tgagggaget tcacttggac aacaacaagc ttaccagagt acctggtggg	420
ctggcagagc ataagtacat ccaggttgtc taccttcata acaacaatat ctctgtagtt	480
ggatcaagtg acttctgccc acctggacac aacaccaaaa aggcttctta ttcgggtgtg	540
agtettttea geaaceeggt eeagtactgg gagatacage catecacett cagatgtgte	600
tacgtgcgct ctgccattca actcggaaac tataagtaat tctcaagaaa gccctcattt	660
ttataacctg gcaaaatctt gttaatgtca ttgctaaaaa ataaataaaa gctagatact	720
ggaaacctaa ctgcaatgtg gatgttttac ccacatgact tattatgcat aaagccaaat	780
ttccagttta agtaattgcc tacaataaaa agaaattttg cctgccattt tcagaatcat	840
cttttgaagc tttctgttga tgttaactga gctactagag atattcttat ttcactaaat	900
gtaaaatttg gagtaaatat atatgtcaat atttagtaaa gcttttcttt tttaatttcc	960
aggaaaaaat aaaaagagta tgagtcttct gtaattcatt gagcagttag ctcatttgag	1020
ataaagtcaa atgccaaaca ctagctctgt attaatcccc atcattactg gtaaagcctc	1080
atttgaatgt gtgaattcaa tacaggctat gtaaaatttt tactaatgtc attattttga	1140
aaaaataaat ttaaaaaatac attcaaaatt actattgtat acaagcttaa ttgttaatat	1200
tccctaaaca caattttatg aagggagaag acattggttt gttgacaata acagtacatc	1260
ttttcaagtt ctcagctatt tcttctacct ctccctatct tacatttgag tatggtaact	1320
tatgtcatct atgttgaatg taagcttata aagcacaaag catacatttc ctgactggtc	1380
tagagaactg atgtttcaat ttacccctct gctaaataaa tattaaaact atcatgtgaa	1440
aaaaaaaaa aaaaaa	1456
<210> SEQ ID NO 6 <211> LENGTH: 1223 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 6	
atgaaggcca ctatcatcct ccttctgctt gcacaagttt cctgggctgg accgtttcaa	60
cagagagget tatttgaett tatgetagaa gatgaggett etgggatagg eecagaagtt	120
cctgatgacc gcgacttcga gccctcccta ggcccagtgt gccccttccg ctgtcaatgc	180
catcttcgag tggtccagtg ttctgatttg ggttgtctac cttcataaca acaatatctc	240
tgtagttgga tcaagtgact tctgcccacc tggacacaac accaaaaagg cttcttattc	300
gggtgtgagt cttttcagca acceggteca gtactgggag atacagceat ceacettcag	360
atgtgtctac gtgcgctctg ccattcaact cggaaactat aagtaattct caagaaagcc	420
ctcattttta taacctggca aaatcttgtt aatgtcattg ctaaaaaaata aataaaagct	480
agatactgga aacctaactg caatgtggat gttttaccca catgacttat tatgcataaa	540
gccaaatttc cagtttaagt aattgcctac aataaaaaga aattttgcct gccattttca	600
gaatcatctt ttgaagcttt ctgttgatgt taactgagct actagagata ttcttatttc	660

720

actaaatgta aaatttggag taaatatata tgtcaatatt tagtaaagct tttcttttt

aaaaaaaaa aaaaaa

-continued

aatttccagg aaaaaataaa aagagtatga gtcttctgta attcattgag cagttagctc	780
atttgagata aagtcaaatg ccaaacacta gctctgtatt aatccccatc attactggta	840
aagcctcatt tgaatgtgtg aattcaatac aggctatgta aaatttttac taatgtcatt	900
attttgaaaa aataaattta aaaatacatt caaaattact attgtataca agcttaattg	960
ttaatattcc ctaaacacaa ttttatgaag ggagaagaca ttggtttgtt gacaataaca	1020
gtacatettt teaagttete agetatttet tetaeetete eetatettae atttgagtat	1080
ggtaacttat gtcatctatg ttgaatgtaa gcttataaag cacaaagcat acatttcctg	1140
actggtctag agaactgatg tttcaattta cccctctgct aaataaatat taaaactatc	1200
atgtgaaaaa aaaaaaaaa aaa	1223
<210> SEQ ID NO 7 <211> LENGTH: 1336 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 7	
atgaaggcca ctatcatcct ccttctgctt gcacaagttt cctgggctgg accgtttcaa	60
cagagaggct tatttgactt tatgctagaa gatgaggctt ctgggatagg cccagaagtt	120
cctgatgacc gcgacttcga gccctcccta ggcccagtgt gccccttccg ctgtcaatgc	180
catcttcgag tggtccagtg ttctgatttg ggtctggaca aagtgccaaa ggatcttccc	240
cctgacacaa ctctgctaga cctgcaaaac aacaaaataa ccgaaatcaa agatggagac	300
tttaagaacc tgaagaacct tcacgttgtc taccttcata acaacaatat ctctgtagtt	360
ggatcaagtg acttctgccc acctggacac aacaccaaaa aggettetta ttegggtgtg	420
agtettttea geaaceeggt eeagtaetgg gagataeage cateeacett eagatgtgte	480
tacgtgcgct ctgccattca actcggaaac tataagtaat tctcaagaaa gccctcattt	540
ttataacctg gcaaaatctt gttaatgtca ttgctaaaaa ataaataaaa gctagatact	600
ggaaacctaa ctgcaatgtg gatgttttac ccacatgact tattatgcat aaagccaaat	660
ttccagttta agtaattgcc tacaataaaa agaaattttg cctgccattt tcagaatcat	720
cttttgaagc tttctgttga tgttaactga gctactagag atattcttat ttcactaaat	780
gtaaaatttg gagtaaatat atatgtcaat atttagtaaa gcttttcttt tttaatttcc	840
aggaaaaaat aaaaagagta tgagtettet gtaatteatt gageagttag eteatttgag	900
ataaagtcaa atgccaaaca ctagctctgt attaatcccc atcattactg gtaaagcctc	960
atttgaatgt gtgaattcaa tacaggctat gtaaaatttt tactaatgtc attattttga	1020
aaaaataaat ttaaaaatac attcaaaatt actattgtat acaagcttaa ttgttaatat	1080
tccctaaaca caattttatg aagggagaag acattggttt gttgacaata acagtacatc	1140
ttttcaagtt ctcagctatt tcttctacct ctccctatct tacatttgag tatggtaact	1200
tatgtcatct atgttgaatg taagcttata aagcacaaag catacattte ctgactggtc	1260
tagagaactg atgtttcaat ttacccctct gctaaataaa tattaaaact atcatgtgaa	1320

1336

<210> SEQ ID NO 8 <211> LENGTH: 1570 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 8 atgaaggcca ctatcatect ecttetgett geacaagttt eetgggetgg acegttteaa 60 cagagaggct tatttgactt tatgctagaa gatgaggctt ctgggatagg cccagaagtt 120 cctgatgacc gcgacttcga gccctcccta ggcccagtgt gccccttccg ctgtcaatgc catcttcgag tggtccagtg ttctgatttg gaactgggca ccaatccgct gaagagctca ggaattgaaa atggggcttt ccagggaatg aagaagctct cctacatccg cattgctgat accaatatca ccagcattcc tcaaggtctt cctccttccc ttacggaatt acatcttgat 420 qqcaacaaaa tcaqcaqaqt tqatqcaqct aqcctqaaaq qactqaataa tttqqctaaq ttgggattga gtttcaacag catctctgct gttgacaatg gctctctggc caacacgcct 480 catctqaqqq aqcttcactt qqacaacaac aaqcttacca qaqtacctqq tqqqctqqca 540 gagcataagt acatccaggt tgtctacctt cataacaaca atatctctgt agttggatca 600 agtgacttct gcccacctgg acacaacacc aaaaaggctt cttattcggg tgtgagtctt 660 ttcagcaacc cggtccagta ctgggagata cagccatcca ccttcagatg tgtctacgtg 720 cgctctgcca ttcaactcgg aaactataag taattctcaa gaaagccctc atttttataa 780 cctggcaaaa tcttgttaat gtcattgcta aaaaataaat aaaagctaga tactggaaac 840 ctaactgcaa tgtggatgtt ttacccacat gacttattat gcataaagcc aaatttccag 900 tttaagtaat tgcctacaat aaaaagaaat tttgcctgcc attttcagaa tcatcttttg 960 aagctttctg ttgatgttaa ctgagctact agagatattc ttatttcact aaatgtaaaa 1020 tttggagtaa atatatatgt caatatttag taaagctttt cttttttaat ttccaggaaa 1080 aaataaaaag agtatgagtc ttctgtaatt cattgagcag ttagctcatt tgagataaag 1140 tcaaatgcca aacactagct ctgtattaat ccccatcatt actggtaaag cctcatttga 1200 atgtgtgaat tcaatacagg ctatgtaaaa tttttactaa tgtcattatt ttgaaaaaat 1260 aaatttaaaa atacattcaa aattactatt gtatacaagc ttaattgtta atattcccta 1320 aacacaattt tatgaaggga gaagacattg gtttgttgac aataacagta catcttttca 1380 agttctcagc tatttcttct acctctccct atcttacatt tgagtatggt aacttatgtc atctatgttg aatgtaagct tataaagcac aaagcataca tttcctgact ggtctagaga 1500 actgatgttt caatttaccc ctctgctaaa taaatattaa aactatcatg tgaaaaaaaa 1560 aaaaaaaaa 1570 <210> SEO ID NO 9 <211> LENGTH: 2305 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 9 gaatctacaa taagacaaat ttcaaatcaa gttgctccac tatactgcat aagcagttta gaatettaag cagatgeaaa aagaataaag caaatgggag gaaaaaaaaag geegataaag 120 tttctggcta caatacaaga gacatatcat taccatatga tctaatgtgg gtgtcagccg 180

gattgtgttc attgagggaa accttatttt ttaactgtgc tatggagtag aagcaggagg	240
ttttcaacct agtcacagag cagcacctac cccctcctcc tttccacacc tgcaaactct	300
tttacttggg ctgaatattt agtgtaatta catctcagct ttgagggctc ctgtggcaaa	360
ttcccggatt aaaaggttcc ctggttgtga aaatacatga gataaatcat gaaggccact	420
atcatcctcc ttctgcttgc acaagtttcc tgggctggac cgtttcaaca gagaggctta	480
tttgacttta tgctagaaga tgaggcttct gggataggcc cagaagttcc tgatgaccgc	540
gacttcgage cetecetagg eccagtgtge ceettceget gteaatgeca tettegagtg	600
gtccagtgtt ctgatttggg tctggacaaa gtgccaaagg atcttccccc tgacacaact	660
ctgctagacc tgcaaaacaa caaaataacc gaaatcaaag atggagactt taagaacctg	720
aagaaccttc acgcattgat tottgtcaac aataaaatta gcaaagttag tootggagca	780
tttacacctt tggtgaagtt ggaacgactt tatctgtcca agaatcagct gaaggaattg	840
ccagaaaaaa tgcccaaaac tcttcaggag ctgcgtgccc atgagaatga gatcaccaaa	900
gtgcgaaaag ttactttcaa tggactgaac cagatgattg tcatagaact gggcaccaat	960
ccgctgaaga gctcaggaat tgaaaatggg gctttccagg gaatgaagaa gctctcctac	1020
atcogcattg ctgataccaa tatcaccagc attoctcaag gtcttcctcc ttcccttacg	1080
gaattacate ttgatggcaa caaaatcage agagttgatg cagetageet gaaaggaetg	1140
aataatttgg ctaagttggg attgagtttc aacagcatct ctgctgttga caatggctct	1200
ctggccaaca cgcctcatct gagggagctt cacttggaca acaacaagct taccagagta	1260
cctggtgggc tggcagagca taagtacatc caggttgtct accttcataa caacaatatc	1320
tctgtagttg gatcaagtga cttctgccca cctggacaca acaccaaaaa ggcttcttat	1380
tegggtgtga gtetttteag caaceeggte cagtactggg agatacagee atceacette	1440
agatgtgtct acgtgcgctc tgccattcaa ctcggaaact ataagtaatt ctcaagaaag	1500
ccctcatttt tataacctgg caaaatcttg ttaatgtcat tgctaaaaaa taaataaaag	1560
ctagatactg gaaacctaac tgcaatgtgg atgttttacc cacatgactt attatgcata	1620
aagccaaatt teeagtttaa gtaattgeet acaataaaaa gaaattttge etgeeatttt	1680
cagaatcatc ttttgaagct ttctgttgat gttaactgag ctactagaga tattcttatt	1740
tcactaaatg taaaatttgg agtaaatata tatgtcaata tttagtaaag cttttctttt	1800
ttaatttcca ggaaaaaata aaaagagtat gagtcttctg taattcattg agcagttagc	1860
tcatttgaga taaagtcaaa tgccaaacac tagctctgta ttaatcccca tcattactgg	1920
taaagcctca tttgaatgtg tgaattcaat acaggctatg taaaattttt actaatgtca	1980
ttattttgaa aaaataaatt taaaaaataca ttcaaaatta ctattgtata caagcttaat	2040
tgttaatatt ccctaaacac aattttatga agggagaaga cattggtttg ttgacaataa	2100
cagtacatct tttcaagttc tcagctattt cttctacctc tccctatctt acatttgagt	2160
atggtaactt atgtcatcta tgttgaatgt aagcttataa agcacaaagc atacatttcc	2220
tgactggtct agagaactga tgtttcaatt tacccctctg ctaaataaat attaaaacta	2280
tcatgtgaaa aaaaaaaaa aaaaa	2305

<210> SEQ ID NO 10

-continued

<211> LENGTH: 2151 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 10 ggaataataa gacacgccct gaaggagtac atcgtctagt gagggacaga ccaagcacgc 60 aaaacaaatt gcaatataat gtgataagtt ctttaaaaga ggtaagagca acgtgctttg 120 ggagcagaga agagggagaa agcagcatct tgcctggatg agccagggga cacagaagag aagcccacta tctcatttaa tctttacaac tctcttgcaa ggttccctgg ttgtgaaaat acatgagata aatcatgaag gccactatca tecteettet gettgeacaa gttteetggg ctggaccgtt tcaacagaga ggcttatttg actttatgct agaagatgag gcttctggga 360 420 taggcccaga agttcctgat gaccgcgact tcgagccctc cctaggccca gtgtgcccct tccgctgtca atgccatctt cgagtggtcc agtgttctga tttgggtctg gacaaagtgc 480 caaaqqatct tcccctqac acaactctqc taqacctqca aaacaacaaa ataaccqaaa 540 tcaaagatgg agactttaag aacctgaaga accttcacgc attgattctt gtcaacaata 600 aaattagcaa agttagtoot ggagcattta cacctttggt gaagttggaa cgactttato 660 tqtccaaqaa tcaqctqaaq qaattqccaq aaaaaatqcc caaaactctt caqqaqctqc 720 gtgcccatga gaatgagatc accaaagtgc gaaaagttac tttcaatgga ctgaaccaga 780 tgattgtcat agaactgggc accaatccgc tgaagagctc aggaattgaa aatggggctt 840 tccagggaat gaagaagctc tcctacatcc gcattgctga taccaatatc accagcattc 900 ctcaaggtct tcctccttcc cttacggaat tacatcttga tggcaacaaa atcagcagag 960 ttgatgcagc tagcctgaaa ggactgaata atttggctaa gttgggattg agtttcaaca 1020 gcatctctgc tgttgacaat ggctctctgg ccaacacgcc tcatctgagg gagcttcact 1080 tggacaacaa caagcttacc agagtacctg gtgggctggc agagcataag tacatccagg 1140 ttgtctacct tcataacaac aatatctctg tagttggatc aagtgacttc tgcccacctg 1200 gacacaacac caaaaaggct tcttattcgg gtgtgagtct tttcagcaac ccggtccagt 1260 actgggagat acagccatcc accttcagat gtgtctacgt gcgctctgcc attcaactcg 1320 gaaactataa gtaattotoa agaaagooot catttttata acctggcaaa atottgttaa 1380 tgtcattgct aaaaaataaa taaaagctag atactggaaa cctaactgca atgtggatgt 1440 tttacccaca tgacttatta tgcataaagc caaatttcca gtttaagtaa ttgcctacaa 1500 taaaaagaaa ttttgcctgc cattttcaga atcatctttt gaagctttct gttgatgtta 1560 actgagctac tagagatatt cttatttcac taaatgtaaa atttggagta aatatatatg 1620 tcaatattta gtaaagcttt tctttttaa tttccaggaa aaaataaaaa gagtatgagt 1680 cttctgtaat tcattgagca gttagctcat ttgagataaa gtcaaatgcc aaacactagc 1740 totqtattaa tooccatcat tactqqtaaa qootcatttq aatqtqtqaa ttoaatacaq 1800 gctatgtaaa atttttacta atgtcattat tttgaaaaaa taaatttaaa aatacattca 1860 aaattactat tgtatacaag cttaattgtt aatattccct aaacacaatt ttatgaaggg agaagacatt ggtttgttga caataacagt acatcttttc aagttctcag ctatttcttc 1980 tacctctccc tatcttacat ttgagtatgg taacttatgt catctatgtt gaatgtaagc 2040

ttataaagca caaagcatac att	tcctgac	tggtctagag	aactgatgtt	tcaatttacc	2100	
cctctgctaa ataaatatta aaa					2151	
-		-				
<210> SEQ ID NO 11 <211> LENGTH: 2096						
<212> TYPE: DNA <213> ORGANISM: Homo sapi	iens					
<400> SEQUENCE: 11						
gggcetgtgg etggeegggg geg	ggagaagc	aaaaaatcaa	aatccctccc	cctaacacta	60	
geteaggaat eegeegaagg geg					120	
ggegggeggg gggegettee tgg					180	
gtetgeege aggeattgee ega					240	
tegegggee aaccecagga tge					300	
ctgggcgctg ctactgttgc tct					360	
					420	
tatcaacaaa tatctaacaa tac					480	
tgtcaacgag tgtctgacca tcc						
ctacggggc tacttgtgcc tgc					540	
gggacccccg ccaccagtgc ctc					600	
gcccgacgat caggacagct gtg					660	
tegececage caggaetgee ata					720	
ttaccgcaag atcgggcccg agt	gtgtgga	catagacgag	tgccgctacc	gctactgcca	780	
gcaccgctgc gtgaacctgc ctg	ggctcctt	ccgctgccag	tgcgagccgg	gcttccagct	840	
ggggcctaac aaccgctcct gtg	gttgatgt	gaacgagtgt	gacatggggg	ccccatgcga	900	
gcagcgctgc ttcaactcct ato	gggacctt	cctgtgtcgc	tgccaccagg	gctatgagct	960	
gcatcgggat ggcttctcct gca	agtgatat	tgatgagtgt	agctactcca	gctacctctg	1020	
tcagtaccgc tgcatcaacg ago	ccaggccg	tttctcctgc	cactgcccac	agggttacca	1080	
getgetggee acaegeetet gee	caagacat	tgatgagtgt	gagtetggtg	cgcaccagtg	1140	
ctccgaggcc caaacctgtg tca	aacttcca	tgggggctac	cgctgcgtgg	acaccaaccg	1200	
ctgcgtggag ccctacatcc agg	gtctctga	gaaccgctgt	ctctgcccgg	cctccaaccc	1260	
tctatgtcga gagcagcctt cat	ccattgt	gcaccgctac	atgaccatca	cctcggagcg	1320	
gagcgtgccc gctgacgtgt tcc	cagatcca	ggcgacctcc	gtctaccccg	gtgcctacaa	1380	
tgcctttcag atccgtgctg gaa	aactcgca	gggggacttt	tacattaggc	aaatcaacaa	1440	
cgtcagcgcc atgctggtcc tcg	gaaaggaa	ggtgacgggc	ccccgggagt	acgtgctgga	1500	
cctggagatg gtcaccatga att	ccctcat	gagctaccgg	gccagctctg	tactgaggct	1560	
caccgtcttt gtaggggcct aca	accttctg	aggagcagga	gggagccacc	ctccctgcag	1620	
ctaccctage tgaggageet gtt					1680	
					1740	
gaaagteetg gtggetgagg tgg						
gtggcacttg ggggggcagg cca					1800	
aggggccccc attgacagga gct	gggagct	ctgcaccacg	agcttcagtc	accccgagag	1860	
gagaggaggt aacgaggagg gcg	ggactcca	ggccccggcc	cagagatttg	gacttggctg	1920	

gcttgcaggg gtcctaagaa actccactct ggacagcgcc aggaggccct gggttccatt	1980	,
cctaactctg cctcaaactg tacatttgga taagccctag tagttccctg ggcctgtttt	2040	j
tctataaaac gaggcaactg gactgttaaa aaaaaaaaaa	2096	;
<210> SEQ ID NO 12 <211> LENGTH: 4404 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 12		
aggattgggg gtcccagcct gcgtcccgtc agtcccttct tggcccggag tgcgcggagc	60	J
tgggagtggc ttcgccatgg ctgtgagaag ggactccgtg tggaagtact gctggggtgt	120	j
tttgatggtt ttatgcagaa ctgcgatttc caaatcgata gttttagagc ctatctattg	180)
gaatteeteg aacteeaaat ttetaeetgg acaaggaetg gtaetataee cacagatagg	240	J
agacaaattg gatattattt gccccaaagt ggactctaaa actgttggcc agtatgaata	300	ı
ttataaagtt tatatggttg ataaagacca agcagacaga tgcactatta agaaggaaaa	360	ı
tacccctctc ctcaactgtg ccaaaccaga ccaagatatc aaattcacca tcaagtttca	420	ı
agaattcagc cctaacctct ggggtctaga atttcagaag aacaaagatt attacattat	480	ı
atctacatca aatgggtctt tggagggcct ggataaccag gagggagggg tgtgccagac	540	ı
aagagccatg aagatcctca tgaaagttgg acaagatgca agttctgctg gatcaaccag	600	J
gaataaagat ccaacaagac gtccagaact agaagctggt acaaatggaa gaagttcgac	660	J
aacaagtccc tttgtaaaac caaatccagg ttctagcaca gacggcaaca gcgccggaca	720	ı
ttcggggaac aacatcctcg gttccgaagt ggccttattt gcagggattg cttcaggatg	780	J
catcatcttc atcgtcatca tcatcacgct ggtggtcctc ttgctgaagt accggaggag	840	ı
acacaggaag cactegeege ageacaegae caegetgteg etcageacae tggecacaee	900	į
caagegeage ggeaacaaca aeggeteaga geeeagtgae attateatee egetaaggae	960	,
tgeggacage gtettetgee etcaetaega gaaggteage ggggaetaeg ggeaceeggt	1020	,
gtacatcgtc caggagatgc ccccgcagag cccggcgaac atttactaca aggtctgaga	1080	,
gggaccctgg tggtacctgt gctttcccag aggacaccta atgtcccgat gcctcccttg	1140	,
agggtttgag agcccgcgtg ctggagaatt gactgaagca cagcaccggg ggagagggac	1200	,
actectecte ggaagageee gtegegetgg acagettace tagtettgta geatteggee	1260	ı
ttggtgaaca cacacgctcc ctggaagctg gaagactgtg cagaagacgc ccattcggac	1320	ı
tgetgtgeeg egteceaegt etecteeteg aagecatgtg etgeggteae teaggeetet	1380	ı
gcagaagcca agggaagaca gtggtttgtg gacgagaggg ctgtgagcat cctggcaggt	1440	ı
gccccaggat gccacgcctg gaagggccgg cttctgcctg gggtgcattt cccccgcagt	1500)
gcataccgga cttgtcacac ggacctcggg ctagttaagg tgtgcaaaga tctctagagt	1560)
ttagteetta etgteteaet egttetgtta eecagggete tgeageaeet eacetgagae	1620)
ctocactoca catotgoato actoatggaa cactoatgto tggagtocoo teotocagoo	1680)
gctggcaaca acagcttcag tccatgggta atccgttcat agaaattgtg tttgctaaca	1740	
aggtgccett tagccagatg ctaggctgtc tgcgaagaag gctaggagtt catagaaggg	1800	
	1860	
agtggggctg gggaaagggc tggctgcaat tgcagctcac tgctgctgcc tctgaaacag	T900	

aaagttggaa	aggaaaaaag	aaaaaagcaa	ttaggtagca	cagcactttg	gttttgctga	1920
gatcgaagag	gccagtagga	gacacgacag	cacacacagt	ggattccagt	gcatggggag	1980
gcactcgctg	ttatcaaata	gcgatgtgca	ggaagaaaag	cccctcttca	ttccggggaa	2040
caaagacggg	tattgttggg	aaaggaacag	gcttggaggg	aagggagaaa	gtaggccgct	2100
gatgatatat	tegggeagga	ctgttgtggt	actggcaata	agatacacag	ctccgagctg	2160
taggagagtc	ggtctgcttt	ggatgatttt	ttaagcagac	tcagctgcta	tacttatcac	2220
attttattaa	acacagggaa	agcatttagg	agaatagcag	agagccaaat	ctgacctaaa	2280
agttgaaaag	ccaaaggtca	aacaggctgt	aattccatca	tcatcgttgt	tattaaagaa	2340
tccttatcta	taaaaggtag	gtcagatccc	cctccccca	ggttcctcct	tcccctcccg	2400
attgagcctt	acgacacttt	ggtttatgcg	gtgctgtccg	ggtgccaggg	ctgcagggtc	2460
ggtactgatg	gaggctgcag	cgcccggtgc	tctgtgtcaa	ggtgaagcac	atacggcaga	2520
cctcttagag	tccttaagac	ggaagtaaat	tatgatgtcc	agggggagaa	ggaagatagg	2580
acgtatttat	aataggtata	tagaacacaa	gggatataaa	atgaaagatt	tttactaata	2640
tatattttaa	ggttgcacac	agtacacacc	agaagatgtg	aaattcattt	gtggcaatta	2700
agtggtccca	atgctcagcg	cttaaaaaaa	caaattggac	agctacttct	gggaaaaaca	2760
acatcattcc	aaaaagaaca	ataatgagag	caaatgcaaa	aataaccaag	tcctccgaag	2820
gcatctcacg	gaaccgtaga	ctaggaagta	cgagccccac	agagcaggaa	gccgatgtga	2880
ctgcatcata	tatttaacaa	tgacaagatg	ttccggcgtt	tatttctgcg	ttgggttttc	2940
ccttgcctta	tgggctgaag	tgttctctag	aatccagcag	gtcacactgg	gggcttcagg	3000
tgacgattta	gctgtggctc	cctcctcctg	tcctcccccg	caccccctcc	cttctgggaa	3060
acaagaagag	taaacaggaa	acctactttt	tatgtgctat	gcaaaataga	catctttaac	3120
atagtcctgt	tactatggta	acactttgct	ttctgaattg	gaagggaaaa	aaaatgtagc	3180
gacagcattt	taaggttctc	agacctccag	tgagtacctg	caaaaatgag	ttgtcacaga	3240
aattatgatc	ctctatttcc	tgaacctgga	aatgatgttg	gtccaaagtg	cgtgtgtgta	3300
tgtgtgagtg	ggtgcgtggt	atacatgtgt	acatatatgt	ataatatata	tctacaatat	3360
atattatata	tatctatatc	atatttctgt	ggagggttgc	catggtaacc	agccacagta	3420
catatgtaat	tctttccatc	accccaacct	ctcctttctg	tgcattcatg	caagagtttc	3480
ttgtaagcca	tcagaagtta	cttttaggat	gggggagagg	ggcgagaagg	ggaaaaatgg	3540
gaaatagtct	gattttaatg	aaatcaaatg	tatgtatcat	cagttggcta	cgttttggtt	3600
ctatgctaaa	ctgtgaaaaa	tcagatgaat	tgataaaaga	gttccctgca	accaattgaa	3660
aagtgttctg	tgcgtctgtt	ttgtgtctgg	tgcagaatat	gacaatctac	caactgtccc	3720
tttgtttgaa	gttggtttag	ctttggaaag	ttactgtaaa	tgccttgctt	gtatgatcgt	3780
ccctggtcac	ccgactttgg	aatttgcacc	atcatgtttc	agtgaagatg	ctgtaaatag	3840
gttcagattt	tactgtctat	ggatttgggg	tgttacagta	gccttattca	cctttttaat	3900
aaaaatacac	atgaaaacaa	gaaagaaatg	gcttttctta	cccagattgt	gtacatagag	3960
caatgttggt	tttttataaa	gtctaagcaa	gatgttttgt	ataaaatctg	aattttgcaa	4020
tgtatttagc	tacagcttgt	ttaacggcag	tgtcattccc	ctttgcactg	taatgaggaa	4080
aaaatggtat	aaaaggttgc	caaattgctg	catatttgtg	ccgtaattat	gtaccatgaa	4140

-continued	
tatttattta aaatttogtt gtocaatttg taagtaacac agtattatgo otgagttata	4200
aatatttttt tetttetttg ttttatttta atageetgte ataggtttta aatetgettt	4260
agtttcacat tgcagttagc cccagaaaat gaaatccgtg aagtcacatt ccacatctgt	4320
ttcaaactga atttgttctt aaaaaaataa aatatttttt teetatggaa aaagtgeett	4380
caaagtaaaa aaaaaaaaa aaaa	4404
<210> SEQ ID NO 13 <211> LENGTH: 7554 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 13	
ggggcctcgc ggccggcgag gggctgagct gacagggccg catcggctta ccccacctta	60
etttategga aegtgeetaa getgetgeag etggeaceeg gttgegeteg gegaagaggg	120
ctgggggcgg gagatgacgg tggtcttctc cctgcttggc accctgcgag caccagctcc	180
ctteteeteg ecaetecaag gttgeagaeg aageaggtae tgteetagat gttaaggaea	240
caacattgag caaaaacatg catagtccct gcttccgtga cacttgagtg aactgaatgt	300
gcaaagtccc tgtggcacaa agtccctggg gccagtgtgt gtggcgggtg tagaaggagc	360
taaagagate tggttggagt tggagggtga gagaaaatga attetaattt acetgcagag	420
aacttaacca ttgcagtcaa tatgaccaag actttgccta cagcagtaac gcatggattt	480
aattccacta atgacccacc ttcaatgtca attacaaggc tttttccagc cttactggaa	540
tgctttggca ttgtcctttg tggctacata gcaggaaggg ccaatgtcat aacatcaacc	600
caggccaaag gactaggaaa ttttgtctcc agatttgcac ttccagcttt attattcaaa	660
aacatggttg tacttaattt ttccaatgtg gactggtcct tcctatatag tatcttaatt	720
gccaaagctt ctgtattttt cattgtatgt gtattaacct tattggttgc cagtcctgat	780
agtegattta geaaagetgg actatteeet atttttgeta cacaaagtaa tgaetttgea	840
ttgggatacc ctatagttga agctttatat caaactacat acccagaata tctccagtac	900
atttatttgg tggcaccaat atctcttatg atgttaaacc ctatagggtt tattttctgt	960
gaaatccaaa agtggaaaga cactcaaaat gcttctcaaa ataaaataaa	1020
ctcggactcc tgcgtgtatt acagaaccca atagtattta tggtcttcat tggcatcgcc	1080
ttcaatttta ttcttgatcg aaaggtacct gtatatgtcg aaaattttct tgatggactt	1140
ggaaattott tttotggato agoootattt tatottggto toaogatggt gggaaaaata	1200
aagagactga agaagtcggc atttgtagta ctaattcttc tcatcacagc taaacttctg	1260
gtgctgccac ttctgtgcag agaaatggtg gaactcttgg acaagggcga cagtgtggtg	1320
aaccatacaa gtttatcaaa ttatgcattt ctgtatggtg tatttcctgt agcaccagga	1380
gtggctatct ttgcaacaca attcaacatg gaagtagaaa ttataacctc agggatggtg	1440
ataagcacat ttgtgtctgc tcccatcatg tacgtttctg cctggttact gacctttccc	1500
actatggacc ctaagccatt ggcatatgcc atccagaatg ttagttttga tataagtatt	1560
gtcagcctga tctccttgat ctggtctctg gctattcttc ttttgagtaa gaaatataaa	1620
cagetteete atatgettae aactaattta eteattgete agtetattgt etgtgetgga	1680
atgatgatat ggaattitgt taaagaaaaa aattitgtig gacaaattit ggigtitigti	1740
angunganan ggaannoogo taaagaaaaa aannoogoog ganaaannoo ggogoogoo	2,10

ctattgtaca	gctccctcta	tagcacctac	ctgtggacag	gccttctagc	aatttctttg	1800
tttcttttga	aaaagcgaga	gagggtacaa	attcctgttg	gaataatcat	aatatctggc	1860
tggggaattc	ctgctctcct	tgttggtgtt	cttttgataa	ctggaaaaca	caatggagat	1920
agcattgact	cagccttctt	ttatggaaaa	gaacagatga	tcaccacagc	agtcaccctg	1980
ttctgcagca	tcctgatagc	tggcatatcc	ctcatgtgca	tgaaccagac	tgcccaagca	2040
ggaagctatg	aaggtttcga	tcagtctcag	agccacaaag	tggtggagcc	tggaaatact	2100
gcttttgagg	agagtccagc	accagtaaat	gaaccagaac	tttttacaag	ctctattcca	2160
gaaacaagtt	gctgctcctg	ctccatggga	aatggtgaat	tacactgccc	atcaatagag	2220
ccaatagcaa	acacaagcac	cagtgagcct	gtgattcctt	cgtttgagaa	aaacaatcat	2280
tgtgtgagtc	gctgtaactc	ccagagctgc	atattagccc	aggaagaaga	acagtatcta	2340
cagagtggag	accagcaact	gacccgacat	gtgttgctgt	gtttacttct	catcattggc	2400
ctgttcgcta	atctttccag	ttgtttatgg	tggctattca	accaagagcc	tggaagactt	2460
tatgttgagt	tacagttttt	ctgtgccgtg	tttaactttg	gtcagggatt	tatttccttt	2520
ggaatctttg	gattagataa	acatttaatc	atcctgcctt	tcaaaagaag	acttgaattc	2580
ctatggaaca	ataaagacac	agcagaaaac	agggattctc	ctgtttcaga	ggaaataaaa	2640
atgacctgtc	aacaatttat	ccattatcac	cgtgacctct	gtatccgaaa	cattgtcaaa	2700
gaaagaaggt	gtggtgcaaa	gacttctgct	ggaactttct	gtggctgtga	cctggtgagc	2760
tggctaattg	aagteggeet	tgcctccgac	cgtggtgaag	ctgtgatata	cggagacagg	2820
ctggtacaag	ggggagtcat	ccaacatatt	accaacgagt	atgaattccg	ggatgagtac	2880
ttgttttaca	gatttcttca	aaagagtcct	gaacagagtc	ctcctgctat	taatgcaaac	2940
actctccaac	aggaaagata	taaagaaatt	gagcattcat	ccccaccctc	acattcccct	3000
aagacctaaa	ttatgcaggg	gagaacccta	catggaatca	tattctagcc	gegtatteat	3060
tagtttttag	ctgggtgacc	ttgggcaagt	taacagaggc	aacctctctg	agcctcagtt	3120
gtetettetg	taaaatgtga	aaagatgtgc	teccaccaca	tgcgcagggt	ctgtgatttt	3180
acatgtatgt	aaaacacata	ggaagetgae	ttaggaaaaa	gagaaaacca	aattaaagtt	3240
ctgataatga	atataatata	gtcatccttt	agtatccaag	gggattggtt	ccaggactcc	3300
tgaagatccc	aaaatctgag	gatactcaag	tcccttatat	aaaatggtgt	aggccgggca	3360
tggtggctca	cgcctgtaat	cccagtactt	tgggaggccg	agtcaggtgg	atcacctgag	3420
gtcaggagtt	caagaccagc	ctggccaaca	tggcgaaacc	ccgtctctac	tataaaatac	3480
aaaaaattag	ttgggtgtgg	tggcgggtgc	ctgtaatccc	agctactcag	gaggctgagg	3540
caggagaatc	gcttgaatct	gggaggcaga	ggttgctgtg	agccgagatc	gtgccactgc	3600
actccagcct	gagcaacaga	gcaagactct	atctcaaaaa	taaaataaaa	taaaataaaa	3660
taattaataa	aatggtgtag	tatttgcata	taacctatgc	acattctccc	atatagttta	3720
atcatcttta	gatacttata	atgcctaata	caatgtaaat	gctatgtaaa	tagttgttgt	3780
tatactgtat	tgtttaggga	ataacaataa	gaaaaacagt	ctgtacatgt	tcactacaga	3840
tgcaaccatt	gttaagcctg	actacatctt	tttatctgcg	gttgattgaa	tctatggatg	3900
tggaacctgt	gcatatggag	ggtcaactgt	actataaata	atacgaatat	gccaacatta	3960
tataatcatt	gctttctgca	actgtttact	ataatttcaa	aattaatatc	ctattaactg	4020

ttcctataaa ttatcaaatt tggcaagtgt attactagca ggagatggac cttaaattat	4080
gacaacttta tattttttga tagcatctct tgaaaaagaa ttttaatgat tctaataaga	4140
ggttcttttt cttttttcca tttccttgac aaatagtact catttaaaaa ctagagggct	4200
aggettagtg geteaegeet gtaateteag eactttggga ggetgaggeg ggeagatege	4260
ttgaggtcag gagttcaaga ccagcccggg caacgtggtg aaacccggtc tgtactaaaa	4320
aaaaaaaaaa agaaaaagaa aaagaaaaaa gaatacccag gtgtggtagt gcatgcctgt	4380
agtcccagct actttggaga ctgaggtggg agtacccctt gagcctggga ggcgcaggtt	4440
gcagtgaacc aagatcacat cactgcactt caacctgggt gacagagcaa gaccctgtct	4500
caaaaacaaa aaacaagcaa aaaaaaccta gaggcactat ttttttttaa agtttgtctt	4560
ttcttttcta cccaaattac taatctatgc cattaaggaa aggaataaga acctccatat	4620
gtattattat ctccacagtc ctgcagaagt acaatctgat ctttaacttt catgctacaa	4680
ataataattt gagtagatta atttgaattt tatcaacaaa attattgcca tatgatgtat	4740
catttctgtg tttgaacaaa gcatcgtaat gcaggataac ttctacttta ttccctgtag	4800
ttaaaaaaaa aaaaactata tagttcaagc caatatttaa aaattctaaa cctaggctgg	4860
gcatggtgac tcatacctgt aatcccagca ctttgggagg ccgaggcagg tgaattgctt	4920
cageceagga gttegagace ageetggeea atgtggtgaa acceeatete taetaaaaaa	4980
aaaaaaaaa aaaaaaatta gccaggtgtg gtggtgtgca cctgtaatcc cagctaccca	5040
ggaggctgag gcaggaaaat tgcttgaaac caggaggcag aggttgcagt gagctgagat	5100
cgtgccactg cactccagcc tgagtgtcag agtgagactc tgtctcagaa aaaaaaaaa	5160
aaattctaaa gattacattt agaatttagt ctttttaaag tgtccatgta taaaaatata	5220
taatttttaa aattactaaa tgttgccttt tctcttagtc taatatttta gctactaaaa	5280
caaaatataa actggatagc ttataaacaa cataaactta tttctcacag ttttggaggc	5340
tgtgaagtcc aagattaagg cactaacaga tctagtgtct ggtaaggcaa atttctggct	5400
catagatggt accttcttgc tgtgtcccca catggtagat gggaagaact ggtctcattg	5460
gccccttata aggacattaa ttccactcaa taggctccac cctcatgatc taataacctc	5520
tcaaaggccc tacctcctaa tactaacaca ttgaggatgt gacttcaact ttacatttct	5580
acaggcagag aagtggggct gtgtaaattc ttcccatcag tacttgaatg ttcatttaac	5640
aaataactta tcgagcatct agcatgttcc agacacaatc tgaacactga gcacacaaca	5700
gttggaacaa atatgattcc tatcctcatg gagcttctat tctcctgtga aaaacagatg	5760
ttaaacatga ttgaggatta ggtttcaaca taagaattct aggaggacac agacatttag	5820
accatagcat cttcaggtaa actttatctt cagtaaatta aagagatcta tttagatgac	5880
ctttgagcat cttaattatt agatgtcagt gctagtttaa cttattttaa acgtttcaga	5940
tatttattta attatacttt aagtgtctca tgtaaaaaag ttatttataa aataatttat	6000
agggttagag tcattgccct tttaatgcaa caaataaaca gttttttaaa aacctgcatg	6060
ggggccaggc gcggtggttc atacctgcaa tcccagcact ttgggaggtc gaggctggcg	6120
gatcacgagg tcaggagatc gagaccaccc tgattaatgc ggtgaaatcc cgtctctact	6180
aaaaatacaa aaaattagee agaegtggtg gtgggeaeet atagteeeag etaeteggga	6240
	6240
ggctgaggca ggagaatggc atgaacccgg aaggcggagc ttgcagtgaa ccaagatcgc	6300

-continued	
gccactgcac tccagcctgg gcgacagagt gagactccat cgcaaaaaaa aaaaaaaaa	6360
aacctgcatg gaagcctagt atatttatta ataacaaata aattatactt tagtgtacta	6420
ttaacctata ccaattttaa gttgtgatta gggaatgggg atgtttttaa gctgaattgt	6480
cttgctgcgg aactttcctt ttttaataag accatattat gactctgaat gctcaagggt	6540
aagtctaagg cctcattgct gttaccagga gatttttcta gttacagtaa taaagatgtt	6600
aattcacatg catgcagaca actgaaactc aagtggagaa tttgtttgtg aacaagtcat	6660
actacttctg ttatttgcat gaatggaatc tgcaatatct ttttccatgg gagaccctaa	6720
aagaaaaccc tggatcagaa tgatctgcag tttcagataa taaaggcttt taagagacat	6780
ttttagaatt aaaaatatgc taattttatt aaatgaaaat atttgtaact gttaactttc	6840
tcactgacaa agcaagtttc tcaataaaat acctatttta acttgcatta ctgacatctt	6900
ttctttgagt aatctgaata atgcagaagc catcatagag gtcttttcta tacattctca	6960
atgttttctt aaatgggttt cctgagttct gttcttcatg actctgggct ctgcaaacag	7020
ggtttcccaa ttacgcattc tataaacact tttatgaatg agtcaatatg acattgagtc	7080
cttttcatac atttcatcat ttccaatatg tagagtgaca gctagaaaaa tgataaaatt	7140
ttgattaaaa ootatotott tttottoago atagtoaatt gttttottaa ototoaatga	7200
gtaactccat gcctagcttg tgcttagctt tcaatatttt tagactaaga caaagtgtat	7260
ttggcatttt gagaacaaca attaatggtc agtaaatttc taaagcaaga aaaatgtgaa	7320
actagtgttt tatatgtttg ttacgcagca gaatgcggct cttagtgttt gccccttcat	7380
atctcatcat gtaaaatatt aaattacttt aggccactgc acataggtag tcctgtcatg	7440
agtgatggct ggagaaaagt tcaggatcat aaatgttatc atcattcttc aagaaaagat	7500
gagattataa atttctgcaa ttggtatgat aaaaggttga aataattaat gaaa	7554
<210> SEQ ID NO 14 <211> LENGTH: 7405 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 14	
ggggcctcgc ggccggcgag gggctgagct gacagggccg catcggctta ccccacctta	60
ctttatcgga acgtgcctaa gctgctgcag ctggcacccg gttgcgctcg gcgaagaggg	120
ctgggggcgg gagatgacgg tggtcttctc cctgcttggc accctgcgag caccagctcc	180
cttctcctcg ccactccaag gttgcagacg aagcagagat ctggttggag ttggagggtg	240
agagaaaatg aattotaatt taootgoaga gaacttaaco attgoagtoa atatgaccaa	300
gactttgcct acagcagtaa cgcatggatt taattccact aatgacccac cttcaatgtc	360
aattacaagg ctttttccag ccttactgga atgctttggc attgtccttt gtggctacat	420
agcaggaagg gccaatgtca taacatcaac ccaggccaaa ggactaggaa attttgtctc	480
cagatttgca cttccagctt tattattcaa aaacatggtt gtacttaatt tttccaatgt	540
ggactggtcc ttcctatata gtatcttaat tgccaaagct tctgtatttt tcattgtatg	600
tgtattaacc ttattggttg ccagtcctga tagtcgattt agcaaagctg gactattccc	660
tatttttgct acacaaagta atgactttgc attgggatac cctatagttg aagctttata	720

tcaaactaca tacccagaat atctccagta catttatttg gtggcaccaa tatctcttat

gatgttaaac cctatagggt	ttattttctg	tgaaatccaa	aagtggaaag	acactcaaaa	840	
tgcttctcaa aataaaataa	aaattgtggg	actcggactc	ctgcgtgtat	tacagaaccc	900	
aatagtattt atggtcttca	ttggcatcgc	cttcaatttt	attcttgatc	gaaaggtacc	960	
tgtatatgtc gaaaattttc	ttgatggact 1	tggaaattct	ttttctggat	cagccctatt	1020	
ttatcttggt ctcacgatgg	tgggaaaaat a	aaagagactg	aagaagtcgg	catttgtagt	1080	
actaattett eteateacag	ctaaacttct	ggtgctgcca	cttctgtgca	gagaaatggt	1140	
ggaactcttg gacaagggcg	acagtgtggt (gaaccataca	agtttatcaa	attatgcatt	1200	
tctgtatggt gtatttcctg	tagcaccagg a	agtggctatc	tttgcaacac	aattcaacat	1260	
ggaagtagaa attataacct	cagggatggt (gataagcaca	tttgtgtctg	ctcccatcat	1320	
gtacgtttct gcctggttac	tgacctttcc	cactatggac	cctaagccat	tggcatatgc	1380	
catccagaat gttagttttg	atataagtat	tgtcagcctg	atctccttga	tctggtctct	1440	
ggctattctt cttttgagta	agaaatataa a	acagetteet	catatgctta	caactaattt	1500	
actcattgct cagtctattg	tetgtgetgg	aatgatgata	tggaattttg	ttaaagaaaa	1560	
aaattttgtt ggacaaattt	tggtgtttgt	tctattgtac	agctccctct	atagcaccta	1620	
cctgtggaca ggccttctag	caatttcttt	gtttcttttg	aaaaagcgag	agagggtaca	1680	
aattootgtt ggaataatoa	taatatctgg (ctggggaatt	cctgctctcc	ttgttggtgt	1740	
tcttttgata actggaaaac	acaatggaga	tagcattgac	tcagccttct	tttatggaaa	1800	
agaacagatg atcaccacag	cagtcaccct	gttctgcagc	atcctgatag	ctggcatatc	1860	
cctcatgtgc atgaaccaga	ctgcccaagc	aggaagctat	gaaggtttcg	atcagtetea	1920	
gagccacaaa gtggtggagc	ctggaaatac	tgcttttgag	gagagtccag	caccagtaaa	1980	
tgaaccagaa ctttttacaa	getetattee	agaaacaagt	tgetgeteet	gctccatggg	2040	
aaatggtgaa ttacactgcc	catcaataga 🤉	gccaatagca	aacacaagca	ccagtgagcc	2100	
tgtgattcct tcgtttgaga	aaaacaatca	ttgtgtgagt	cgctgtaact	cccagagetg	2160	
catattagcc caggaagaag	aacagtatct	acagagtgga	gaccagcaac	tgacccgaca	2220	
tgtgttgctg tgtttacttc	tcatcattgg (cctgttcgct	aatctttcca	gttgtttatg	2280	
gtggctattc aaccaagagc	ctggaagact	ttatgttgag	ttacagtttt	tctgtgccgt	2340	
gtttaacttt ggtcagggat	ttatttcctt	tggaatcttt	ggattagata	aacatttaat	2400	
cateetgeet tteaaaagaa	gacttgaatt (cctatggaac	aataaagaca	cagcagaaaa	2460	
cagggattct cctgtttcag	aggaaataaa a	aatgacctgt	caacaattta	tccattatca	2520	
ccgtgacctc tgtatccgaa	acattgtcaa	agaaagaagg	tgtggtgcaa	agacttctgc	2580	
tggaactttc tgtggctgtg	acctggtgag (ctggctaatt	gaagtcggcc	ttgcctccga	2640	
ccgtggtgaa gctgtgatat	acggagacag	gctggtacaa	gggggagtca	tccaacatat	2700	
taccaacgag tatgaattcc	gggatgagta (cttgttttac	agatttcttc	aaaagagtcc	2760	
tgaacagagt cctcctgcta	ttaatgcaaa (cactctccaa	caggaaagat	ataaagaaat	2820	
tgagcattca tccccaccct	cacatteece	taagacctaa	attatgcagg	ggagaaccct	2880	
acatggaatc atattctagc	cgcgtattca 1	ttagttttta	gctgggtgac	cttgggcaag	2940	
ttaacagagg caacctctct					3000	
ctcccaccac atgcgcaggg					3060	
seconded argugeaggg	Josephyalit	Jacatytaty	Judacacat	~yyuayetya	2000	

cttaggaaaa	agagaaaacc	aaattaaagt	tctgataatg	aatataatat	agtcatcctt	3120
tagtatccaa	ggggattggt	tccaggactc	ctgaagatcc	caaaatctga	ggatactcaa	3180
gtcccttata	taaaatggtg	taggccgggc	atggtggctc	acgcctgtaa	tcccagtact	3240
ttgggaggcc	gagtcaggtg	gatcacctga	ggtcaggagt	tcaagaccag	cctggccaac	3300
atggcgaaac	cccgtctcta	ctataaaata	caaaaaatta	gttgggtgtg	gtggcgggtg	3360
cctgtaatcc	cagctactca	ggaggctgag	gcaggagaat	cgcttgaatc	tgggaggcag	3420
aggttgctgt	gagccgagat	cgtgccactg	cactccagcc	tgagcaacag	agcaagactc	3480
tatctcaaaa	ataaaataaa	ataaaataaa	ataattaata	aaatggtgta	gtatttgcat	3540
ataacctatg	cacattetee	catatagttt	aatcatcttt	agatacttat	aatgcctaat	3600
acaatgtaaa	tgctatgtaa	atagttgttg	ttatactgta	ttgtttaggg	aataacaata	3660
agaaaaacag	tctgtacatg	ttcactacag	atgcaaccat	tgttaagcct	gactacatct	3720
ttttatctgc	ggttgattga	atctatggat	gtggaacctg	tgcatatgga	gggtcaactg	3780
tactataaat	aatacgaata	tgccaacatt	atataatcat	tgctttctgc	aactgtttac	3840
tataatttca	aaattaatat	cctattaact	gttcctataa	attatcaaat	ttggcaagtg	3900
tattactagc	aggagatgga	ccttaaatta	tgacaacttt	atattttttg	atagcatctc	3960
ttgaaaaaga	attttaatga	ttctaataag	aggttctttt	tctttttcc	atttccttga	4020
caaatagtac	tcatttaaaa	actagagggc	taggcttagt	ggctcacgcc	tgtaatctca	4080
gcactttggg	aggctgaggc	gggcagatcg	cttgaggtca	ggagttcaag	accagcccgg	4140
gcaacgtggt	gaaacccggt	ctgtactaaa	aaaaaaaaa	aagaaaaaga	aaaagaaaaa	4200
agaataccca	ggtgtggtag	tgcatgcctg	tagtcccagc	tactttggag	actgaggtgg	4260
gagtacccct	tgagcctggg	aggcgcaggt	tgcagtgaac	caagatcaca	tcactgcact	4320
tcaacctggg	tgacagagca	agaccctgtc	tcaaaaacaa	aaaacaagca	aaaaaaacct	4380
agaggcacta	tttttttta	aagtttgtct	tttctttct	acccaaatta	ctaatctatg	4440
ccattaagga	aaggaataag	aacctccata	tgtattatta	tctccacagt	cctgcagaag	4500
tacaatctga	tctttaactt	tcatgctaca	aataataatt	tgagtagatt	aatttgaatt	4560
ttatcaacaa	aattattgcc	atatgatgta	tcatttctgt	gtttgaacaa	agcatcgtaa	4620
tgcaggataa	cttctacttt	attccctgta	gttaaaaaaa	aaaaaactat	atagttcaag	4680
ccaatattta	aaaattctaa	acctaggctg	ggcatggtga	ctcatacctg	taatcccagc	4740
actttgggag	gccgaggcag	gtgaattgct	tcagcccagg	agttcgagac	cagcctggcc	4800
aatgtggtga	aaccccatct	ctactaaaaa	aaaaaaaaa	aaaaaaaatt	agccaggtgt	4860
ggtggtgtgc	acctgtaatc	ccagctaccc	aggaggctga	ggcaggaaaa	ttgcttgaaa	4920
ccaggaggca	gaggttgcag	tgagctgaga	tcgtgccact	gcactccagc	ctgagtgtca	4980
gagtgagact	ctgtctcaga	aaaaaaaaa	aaaattctaa	agattacatt	tagaatttag	5040
tctttttaaa	gtgtccatgt	ataaaaatat	ataatttta	aaattactaa	atgttgcctt	5100
ttctcttagt	ctaatatttt	agctactaaa	acaaaatata	aactggatag	cttataaaca	5160
acataaactt	atttctcaca	gttttggagg	ctgtgaagtc	caagattaag	gcactaacag	5220
atctagtgtc	tggtaaggca	aatttctggc	tcatagatgg	taccttcttg	ctgtgtcccc	5280
acatggtaga	tgggaagaac	tggtctcatt	ggccccttat	aaggacatta	attccactca	5340

ataggeteca ecetea	tgat ctaataacct ctcaaaggco	ctacctccta atactaacac	5400
attgaggatg tgactt	caac tttacatttc tacaggcaga	gaagtggggc tgtgtaaatt	5460
cttcccatca gtactt	gaat gttcatttaa caaataactt	atcgagcatc tagcatgttc	5520
cagacacaat ctgaac	actg agcacacaac agttggaaca	aatatgattc ctatcctcat	5580
ggagetteta ttetee	tgtg aaaaacagat gttaaacatg	attgaggatt aggtttcaac	5640
ataagaattc taggag	gaca cagacattta gaccatagca	tcttcaggta aactttatct	5700
tcagtaaatt aaagag	atct atttagatga cctttgagca	tcttaattat tagatgtcag	5760
tgctagttta acttat	ttta aacgtttcag atatttattt	aattatactt taagtgtctc	5820
atgtaaaaaa gttatt	tata aaataattta tagggttaga	gtcattgccc ttttaatgca	5880
acaaataaac agtttt	ttaa aaacctgcat gggggccagg	g cgcggtggtt catacctgca	5940
atcccagcac tttggg	aggt cgaggctggc ggatcacgag	gtcaggagat cgagaccacc	6000
ctgattaatg cggtga	aatc ccgtctctac taaaaataca	aaaaattagc cagacgtggt	6060
ggtgggcacc tatagt	ccca gctactcggg aggctgaggc	aggagaatgg catgaacccg	6120
gaaggcggag cttgca	gtga accaagatcg cgccactgca	ctccagcctg ggcgacagag	6180
tgagactcca tcgcaa	aaaa aaaaaaaaaa aaacctgcat	ggaagcctag tatatttatt	6240
aataacaaat aaatta	tact ttagtgtact attaacctat	accaatttta agttgtgatt	6300
agggaatggg gatgtt	ttta agetgaattg tettgetgeg	gaactttcct tttttaataa	6360
gaccatatta tgactc	tgaa tgctcaaggg taagtctaag	gcctcattgc tgttaccagg	6420
agatttttct agttac	agta ataaagatgt taattcacat	gcatgcagac aactgaaact	6480
caagtggaga atttgt	ttgt gaacaagtca tactacttct	gttatttgca tgaatggaat	6540
ctgcaatatc tttttc	catg ggagacccta aaagaaaacc	ctggatcaga atgatctgca	6600
gtttcagata ataaag	gctt ttaagagaca tttttagaat	taaaaatatg ctaattttat	6660
taaatgaaaa tatttg	taac tgttaacttt ctcactgaca	aagcaagttt ctcaataaaa	6720
tacctatttt aacttg	catt actgacatct tttctttgag	taatctgaat aatgcagaag	6780
ccatcataga ggtctt	ttot atacattoto aatgttttot	taaatgggtt teetgagtte	6840
tgttcttcat gactct	gggc tetgeaaaca gggttteeca	attacgcatt ctataaacac	6900
ttttatgaat gagtca	atat gacattgagt ccttttcata	catttcatca tttccaatat	6960
gtagagtgac agctag	aaaa atgataaaat tttgattaaa	acctatctct ttttcttcag	7020
catagtcaat tgtttt	ctta actotoaatg agtaactooa	tgeetagett gtgettaget	7080
	taag acaaagtgta tttggcattt		7140
	caag aaaaatgtga aactagtgtt		7200
	tgtt tgccccttca tatctcatca		7260
	ggta gtootgtoat gagtgatggo		7320
	tott caagaaaaga tgagattata		7380
			7405
taaaaggttg aaataa	ccaa cyaaa		, 103

<210> SEQ ID NO 15

-continued

<211> LENGTH: 7451 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 15 ggggcctcgc ggccggcgag gggctgagct gacagggccg catcggctta ccccacctta 60 ctttatcgga acgtgcctaa gctgctgcag ctggcacccg gttgcgctcg gcgaagaggg 120 ctgggggcgg gagatgacgg tggtcttctc cctgcttggc accctgcgag caccagctcc cttctcctcg ccactccaag gttgcagacg aagcagatgt gattataaag acttcagtgg aataatcgca agttcccatg tgagatctgg ttggagttgg agggtgagag aaaatgaatt ctaatttacc tgcagagaac ttaaccattg cagtcaatat gaccaagact ttgcctacag 360 420 caqtaacqca tqqatttaat tccactaatq acccaccttc aatqtcaatt acaaqqcttt ttccagcctt actggaatgc tttggcattg tcctttgtgg ctacatagca ggaagggcca 480 atgtcataac atcaacccag gccaaaggac taggaaattt tgtctccaga tttgcacttc 540 cagettatt atteaaaaac atgettetae ttaattttte caatgegae tegteettee 600 tatatagtat cttaattgcc aaagcttctg tatttttcat tgtatgtgta ttaaccttat 660 tqqttqccaq tcctqataqt cqatttaqca aaqctqqact attccctatt tttqctacac 720 aaagtaatga ctttgcattg ggatacccta tagttgaagc tttatatcaa actacatacc 780 cagaatatet ceagtacatt tatttggtgg caccaatate tettatgatg ttaaaceeta 840 tagggtttat tttctgtgaa atccaaaagt ggaaagacac tcaaaatgct tctcaaaata 900 aaataaaaat tgtgggactc ggactcctgc gtgtattaca gaacccaata gtatttatgg 960 tcttcattgg catcgccttc aattttattc ttgatcgaaa ggtacctgta tatgtcgaaa 1020 attttcttga tggacttgga aattcttttt ctggatcagc cctattttat cttggtctca 1080 cgatggtggg aaaaataaag agactgaaga agtcggcatt tgtagtacta attcttctca 1140 tcacagctaa acttctggtg ctgccacttc tgtgcagaga aatggtggaa ctcttggaca 1200 agggcgacag tgtggtgaac catacaagtt tatcaaatta tgcatttctg tatggtgtat 1260 ttcctgtagc accaggagtg gctatctttg caacacaatt caacatggaa gtagaaatta 1320 taacctcagg gatggtgata agcacatttg tgtctgctcc catcatgtac gtttctgcct 1380 ggttactgac ctttcccact atggacccta agccattggc atatgccatc cagaatgtta 1440 gttttgatat aagtattgtc agcctgatct ccttgatctg gtctctggct attcttcttt 1500 tgagtaagaa atataaacag cttcctcata tgcttacaac taatttactc attgctcagt 1560 ctattgtctg tgctggaatg atgatatgga attttgttaa agaaaaaaat tttgttggac 1620 aaattttggt gtttgttcta ttgtacagct ccctctatag cacctacctg tggacaggcc 1680 ttctagcaat ttctttgttt cttttgaaaa agcgagagag ggtacaaatt cctgttggaa 1740 taatcataat atctqqctqq qqaattcctq ctctccttqt tqqtqttctt ttqataactq 1800 gaaaacacaa tggagatagc attgactcag ccttctttta tggaaaagaa cagatgatca 1860 ccacagcagt caccetgtte tgcagcatee tgatagetgg catatecete atgtgcatga accagactgc ccaagcagga agctatgaag gtttcgatca gtctcagagc cacaaagtgg 1980 tggagcctgg aaatactgct tttgaggaga gtccagcacc agtaaatgaa ccagaacttt 2040

ttacaagctc tattccagaa acaagtt	get geteetgete eatgggaaat ggtgaatta	c 2100
actgcccatc aatagagcca atagcaa	aaca caagcaccag tgagcctgtg attectteg	t 2160
ttgagaaaaa caatcattgt gtgagtc	eget gtaacteeca gagetgeata ttageecag	g 2220
aagaagaaca gtatctacag agtggag	gacc agcaactgac ccgacatgtg ttgctgtgt	t 2280
tactteteat cattggeetg ttegeta	aatc tttccagttg tttatggtgg ctattcaac	c 2340
aagageetgg aagaetttat gttgagt	tac agtttttctg tgccgtgttt aactttggt	c 2400
agggatttat ttcctttgga atctttg	ggat tagataaaca tttaatcatc ctgcctttc	a 2460
aaagaagact tgaattccta tggaaca	aata aagacacagc agaaaacagg gattctcct	g 2520
tttcagagga aataaaaatg acctgtc	caac aatttateea ttateaeegt gaeetetgt	a 2580
tccgaaacat tgtcaaagaa agaaggt	gtg gtgcaaagac ttctgctgga actttctgt	g 2640
gctgtgacct ggtgagctgg ctaattg	gaag teggeettge eteegaeegt ggtgaaget	g 2700
tgatatacgg agacaggctg gtacaag	gggg gagtcatcca acatattacc aacgagtat	g 2760
aattooggga tgagtacttg ttttaca	agat ttetteaaaa gagteetgaa eagagteet	c 2820
ctgctattaa tgcaaacact ctccaac	cagg aaagatataa agaaattgag cattcatcc	c 2880
cacceteaca tteeectaag acetaaa	atta tgcagggag aaccctacat ggaatcata	t 2940
tctagccgcg tattcattag tttttag	gctg ggtgaccttg ggcaagttaa cagaggcaa	c 3000
ctctctgagc ctcagttgtc tcttctg	gtaa aatgtgaaaa gatgtgctcc caccacatg	c 3060
gcagggtctg tgattttaca tgtatgt	caaa acacatagga agctgactta ggaaaaaga	g 3120
aaaaccaaat taaagttctg ataatga	aata taatatagto atootttagt atooaaggg	g 3180
attggttcca ggactcctga agatccc	caaa atctgaggat actcaagtcc cttatataa	a 3240
atggtgtagg ccgggcatgg tggctca	acgc ctgtaatccc agtactttgg gaggccgag	t 3300
caggtggatc acctgaggtc aggagtt	caa gaccageetg gecaacatgg egaaaceee	g 3360
tctctactat aaaatacaaa aaattag	gttg ggtgtggtgg cgggtgcctg taatcccag	c 3420
tactcaggag gctgaggcag gagaatc	eget tgaatetggg aggeagaggt tgetgtgag	c 3480
cgagatcgtg ccactgcact ccagcct	gag caacagagca agactctatc tcaaaaata	a 3540
aataaaataa aataaaataa ttaataa	aaat ggtgtagtat ttgcatataa cctatgcac	a 3600
ttctcccata tagtttaatc atcttta	agat acttataatg cctaatacaa tgtaaatgc	t 3660
atgtaaatag ttgttgttat actgtat	tgt ttagggaata acaataagaa aaacagtct	g 3720
tacatgttca ctacagatgc aaccatt	gtt aageetgaet acatettttt atetgeggt	t 3780
gattgaatct atggatgtgg aacctgt	gca tatggagggt caactgtact ataaataat	a 3840
cgaatatgcc aacattatat aatcatt	get ttetgeaact gtttaetata attteaaaa	t 3900
taatatoota ttaactgtto otataaa	atta tcaaatttgg caagtgtatt actagcagg	a 3960
gatggacctt aaattatgac aacttta	atat tttttgatag catctcttga aaaagaatt	t 4020
taatgattet aataagaggt tetttt	cett tittecatit eettgacaaa tagtaetca	t 4080
ttaaaaacta gagggctagg cttagtg	gget caegeetgta ateteageae tttgggagg	c 4140
tgaggeggge agategettg aggteag	ggag ttcaagacca gcccgggcaa cgtggtgaa	a 4200
cccggtctgt actaaaaaaa aaaaaaa	aaga aaaagaaaaa gaaaaaagaa tacccaggt	g 4260
tggtagtgca tgcctgtagt cccagct	act ttggagactg aggtgggagt accccttga	g 4320

cctgggaggc	gcaggttgca	gtgaaccaag	atcacatcac	tgcacttcaa	cctgggtgac	4380
agagcaagac	cctgtctcaa	aaacaaaaa	caagcaaaaa	aaacctagag	gcactatttt	4440
tttttaaagt	ttgtcttttc	ttttctaccc	aaattactaa	tctatgccat	taaggaaagg	4500
aataagaacc	tccatatgta	ttattatctc	cacagtcctg	cagaagtaca	atctgatctt	4560
taactttcat	gctacaaata	ataatttgag	tagattaatt	tgaattttat	caacaaaatt	4620
attgccatat	gatgtatcat	ttctgtgttt	gaacaaagca	tcgtaatgca	ggataacttc	4680
tactttattc	cctgtagtta	aaaaaaaaa	aactatatag	ttcaagccaa	tatttaaaaa	4740
ttctaaacct	aggctgggca	tggtgactca	tacctgtaat	cccagcactt	tgggaggccg	4800
aggcaggtga	attgcttcag	cccaggagtt	cgagaccagc	ctggccaatg	tggtgaaacc	4860
ccatctctac	taaaaaaaaa	aaaaaaaaa	aaaattagcc	aggtgtggtg	gtgtgcacct	4920
gtaatcccag	ctacccagga	ggctgaggca	ggaaaattgc	ttgaaaccag	gaggcagagg	4980
ttgcagtgag	ctgagatcgt	gccactgcac	tccagcctga	gtgtcagagt	gagactctgt	5040
ctcagaaaaa	aaaaaaaaa	ttctaaagat	tacatttaga	atttagtctt	tttaaagtgt	5100
ccatgtataa	aaatatataa	tttttaaaat	tactaaatgt	tgccttttct	cttagtctaa	5160
tattttagct	actaaaacaa	aatataaact	ggatagctta	taaacaacat	aaacttattt	5220
ctcacagttt	tggaggctgt	gaagtccaag	attaaggcac	taacagatct	agtgtctggt	5280
aaggcaaatt	tctggctcat	agatggtacc	ttcttgctgt	gtccccacat	ggtagatggg	5340
aagaactggt	ctcattggcc	ccttataagg	acattaattc	cactcaatag	gctccaccct	5400
catgatctaa	taacctctca	aaggccctac	ctcctaatac	taacacattg	aggatgtgac	5460
ttcaacttta	catttctaca	ggcagagaag	tggggctgtg	taaattcttc	ccatcagtac	5520
ttgaatgttc	atttaacaaa	taacttatcg	agcatctagc	atgttccaga	cacaatctga	5580
acactgagca	cacaacagtt	ggaacaaata	tgattcctat	cctcatggag	cttctattct	5640
cctgtgaaaa	acagatgtta	aacatgattg	aggattaggt	ttcaacataa	gaattctagg	5700
aggacacaga	catttagacc	atagcatctt	caggtaaact	ttatcttcag	taaattaaag	5760
agatctattt	agatgacctt	tgagcatctt	aattattaga	tgtcagtgct	agtttaactt	5820
attttaaacg	tttcagatat	ttatttaatt	atactttaag	tgtctcatgt	aaaaaagtta	5880
tttataaaat	aatttatagg	gttagagtca	ttgccctttt	aatgcaacaa	ataaacagtt	5940
ttttaaaaac	ctgcatgggg	gccaggcgcg	gtggttcata	cctgcaatcc	cagcactttg	6000
ggaggtcgag	gctggcggat	cacgaggtca	ggagatcgag	accaccctga	ttaatgcggt	6060
gaaatcccgt	ctctactaaa	aatacaaaaa	attagccaga	cgtggtggtg	ggcacctata	6120
gtcccagcta	ctcgggaggc	tgaggcagga	gaatggcatg	aacccggaag	gcggagcttg	6180
cagtgaacca	agatcgcgcc	actgcactcc	agcctgggcg	acagagtgag	actccatcgc	6240
aaaaaaaaa	aaaaaaaac	ctgcatggaa	gcctagtata	tttattaata	acaaataaat	6300
tatactttag	tgtactatta	acctatacca	attttaagtt	gtgattaggg	aatggggatg	6360
ttttaagct	gaattgtctt	gctgcggaac	tttccttttt	taataagacc	atattatgac	6420
tctgaatgct	caagggtaag	tctaaggcct	cattgctgtt	accaggagat	ttttctagtt	6480
acagtaataa	agatgttaat	tcacatgcat	gcagacaact	gaaactcaag	tggagaattt	6540
			tttgcatgaa			6600
5 5-5		- 3	J J	555-		

				COILCII		
tccatgggag	accctaaaag	aaaaccctgg	atcagaatga	tctgcagttt	cagataataa	6660
aggcttttaa	gagacatttt	tagaattaaa	aatatgctaa	ttttattaaa	tgaaaatatt	6720
tgtaactgtt	aactttctca	ctgacaaagc	aagtttctca	ataaaatacc	tattttaact	6780
tgcattactg	acatcttttc	tttgagtaat	ctgaataatg	cagaagccat	catagaggtc	6840
ttttctatac	attctcaatg	ttttcttaaa	tgggtttcct	gagttctgtt	cttcatgact	6900
ctgggctctg	caaacagggt	ttcccaatta	cgcattctat	aaacactttt	atgaatgagt	6960
caatatgaca	ttgagtcctt	ttcatacatt	tcatcatttc	caatatgtag	agtgacagct	7020
agaaaaatga	taaaattttg	attaaaacct	atctctttt	cttcagcata	gtcaattgtt	7080
ttcttaactc	tcaatgagta	actccatgcc	tagcttgtgc	ttagctttca	atatttttag	7140
actaagacaa	agtgtatttg	gcattttgag	aacaacaatt	aatggtcagt	aaatttctaa	7200
agcaagaaaa	atgtgaaact	agtgttttat	atgtttgtta	cgcagcagaa	tgeggetett	7260
agtgtttgcc	ccttcatatc	tcatcatgta	aaatattaaa	ttactttagg	ccactgcaca	7320
taggtagtcc	tgtcatgagt	gatggctgga	gaaaagttca	ggatcataaa	tgttatcatc	7380
attcttcaag	aaaagatgag	attataaatt	tctgcaattg	gtatgataaa	aggttgaaat	7440
aattaatgaa	a					7451
<210> SEQ : <211> LENG : <212> TYPE : <213> ORGA! <400> SEQU:	TH: 7321 : DNA NISM: Homo :	sapiens				
ggggcctcgc	ggccggcgag	gggctgagct	gacagggccg	catcggctta	ccccacctta	60
	acgtgcctaa					120
ctgggggcgg	gagatgacgg	tggtcttctc	cctgcttggc	accctgcgag	caccagetee	180
cttctcctcg	ccactccaag	gttgcagacg	aagcagagat	ctggttggag	ttggagggtg	240
agagaaaatg	aattctaatt	tacctgcaga	gaacttaacc	attgcagtca	atatgaccaa	300
gactttgcct	acagcagtaa	cgcatggatt	taattccact	aatgacccac	cttcaatgtc	360
aattacaagg	ctttttccag	ccttactgga	atgctttggc	attgtccttt	gtggctacat	420
agcaggaagg	gccaatgtca	taacatcaac	ccaggccaaa	ggactaggaa	attttgtctc	480
cagatttgca	cttccagctt	tattattcaa	aaacatggtt	gtacttaatt	tttccaatgt	540
ggactggtcc	ttcctatata	gtatcttaat	tgccaaagct	tctgtatttt	tcattgtatg	600
tgtattaacc	ttattggttg	ccagtcctga	tagtcgattt	agcaaagctg	gactattccc	660
tatttttgct	acacaaagta	atgactttgc	attgggatac	cctatagttg	aagctttata	720
tcaaactaca	tacccagaat	atctccagta	catttatttg	gtggcaccaa	tatctcttat	780
gatgttaaac	cctatagggt	ttattttctg	tgaaatccaa	aagtggaaag	acactcaaaa	840
tgcttctcaa	aataaaataa	aaattgtggg	actcggactc	ctgcgtgtat	tacagaaccc	900
	atggtcttca					960
	gaaaattttc					1020
						1080
LLALCTTGGT	ctcacgatgg	Lgggaaaaat	aaayagactg	aayaagtcgg	calligtagt	1080

actaattett eteateacag etaaaettet ggtgetgeea ettetgtgea gagaaatggt 1140

ggaactettg gacaagggeg acagtgtggt gaaccataca agtttatcaa attatgcatt	1200
tetgtatggt gtattteetg tageaceagg agtggetate tttgeaacac aatteaacat	1260
ggaagtagaa attataacct cagggatggt gataagcaca tttgtgtctg ctcccatcat	1320
gtacgtttct gcctggttac tgacctttcc cactatggac cctaagccat tggcatatgc	1380
catecagaat gttagttttg atataagtat tgtcageetg ateteettgt etattgtetg	1440
tgctggaatg atgatatgga attttgttaa agaaaaaaat tttgttggac aaattttggt	1500
gtttgttcta ttgtacagct ccctctatag cacctacctg tggacaggcc ttctagcaat	1560
ttctttgttt cttttgaaaa agcgagagag ggtacaaatt cctgttggaa taatcataat	1620
atctggctgg ggaattcctg ctctccttgt tggtgttctt ttgataactg gaaaacacaa	1680
tggagatagc attgactcag ccttctttta tggaaaagaa cagatgatca ccacagcagt	1740
caccetgtte tgeageatee tgatagetgg catatecete atgtgeatga accagaetge	1800
ccaagcagga agctatgaag gtttcgatca gtctcagagc cacaaagtgg tggagcctgg	1860
aaatactgct tttgaggaga gtccagcacc agtaaatgaa ccagaacttt ttacaagctc	1920
tattccagaa acaagttgct gctcctgctc catgggaaat ggtgaattac actgcccatc	1980
aatagagcca atagcaaaca caagcaccag tgagcctgtg attccttcgt ttgagaaaaa	2040
caatcattgt gtgagtcgct gtaactccca gagctgcata ttagcccagg aagaagaaca	2100
gtatctacag agtggagacc agcaactgac ccgacatgtg ttgctgtgtt tacttctcat	2160
cattggcctg ttcgctaatc tttccagttg tttatggtgg ctattcaacc aagagcctgg	2220
aagactttat gttgagttac agtttttctg tgccgtgttt aactttggtc agggatttat	2280
ttcctttgga atctttggat tagataaaca tttaatcatc ctgcctttca aaagaagact	2340
tgaattoota tggaacaata aagacacago agaaaacagg gattotootg tttcagagga	2400
aataaaaatg acctgtcaac aatttatcca ttatcaccgt gacctctgta tccgaaacat	2460
tgtcaaagaa agaaggtgtg gtgcaaagac ttctgctgga actttctgtg gctgtgacct	2520
ggtgagctgg ctaattgaag teggeettge etcegacegt ggtgaagetg tgatataegg	2580
agacaggetg gtacaagggg gagteateea acatattace aacgagtatg aatteeggga	2640
tgagtacttg ttttacagat ttcttcaaaa gagtcctgaa cagagtcctc ctgctattaa	2700
tgcaaacact ctccaacagg aaagatataa agaaattgag cattcatccc caccctcaca	2760
ttcccctaag acctaaatta tgcaggggag aaccctacat ggaatcatat tctagccgcg	2820
tattcattag tttttagctg ggtgaccttg ggcaagttaa cagaggcaac ctctctgagc	2880
ctcagttgtc tcttctgtaa aatgtgaaaa gatgtgctcc caccacatgc gcagggtctg	2940
tgattttaca tgtatgtaaa acacatagga agctgactta ggaaaaagag aaaaccaaat	3000
taaagttotg ataatgaata taatatagto atootttagt atooaagggg attggttoca	3060
ggactcctga agatcccaaa atctgaggat actcaagtcc cttatataaa atggtgtagg	3120
ccgggcatgg tggctcacgc ctgtaatccc agtactttgg gaggccgagt caggtggatc	3180
acctgaggtc aggagttcaa gaccagcctg gccaacatgg cgaaaccccg tctctactat	3240
aaaatacaaa aaattagttg ggtgtggtgg cgggtgcctg taatcccagc tactcaggag	3300
getgaggeag gagaateget tgaatetggg aggeagaggt tgetgtgage egagategtg	3360
ccactgcact ccagcctgag caacagagca agactctatc tcaaaaaataa aataaaataa	3420

aataaaataa ttaataaaat ggtgtagtat ttgcatataa cctatgca	ca ttctcccata 3480
tagtttaatc atctttagat acttataatg cctaatacaa tgtaaatg	ct atgtaaatag 3540
ttgttgttat actgtattgt ttagggaata acaataagaa aaacagtc	tg tacatgttca 3600
ctacagatgc aaccattgtt aagcctgact acatcttttt atctgcgg	tt gattgaatct 3660
atggatgtgg aacctgtgca tatggagggt caactgtact ataaataa	ta cgaatatgcc 3720
aacattatat aatcattgct ttctgcaact gtttactata atttcaaa	at taatatoota 3780
ttaactgttc ctataaatta tcaaatttgg caagtgtatt actagcag	ga gatggacctt 3840
aaattatgac aactttatat tttttgatag catctcttga aaaagaat	tt taatgattct 3900
aataagaggt tettttett tttteeattt eettgacaaa tagtaete	at ttaaaaacta 3960
gagggctagg cttagtggct cacgcctgta atctcagcac tttgggag	gc tgaggcgggc 4020
agategettg aggteaggag tteaagaeea geeegggeaa egtggtga	aa cccggtctgt 4080
actaaaaaaa aaaaaaaaga aaaagaaaaa gaaaaaagaa tacccagg	tg tggtagtgca 4140
tgcctgtagt cccagctact ttggagactg aggtgggagt acccettg	ag cctgggaggc 4200
gcaggttgca gtgaaccaag atcacatcac tgcacttcaa cctgggtg	ac agagcaagac 4260
cctgtctcaa aaacaaaaaa caagcaaaaa aaacctagag gcactatt	tt tttttaaagt 4320
ttgtcttttc ttttctaccc aaattactaa tctatgccat taaggaaa	gg aataagaacc 4380
tocatatgta ttattatoto cacagtootg cagaagtaca atotgato	tt taactttcat 4440
gctacaaata ataatttgag tagattaatt tgaattttat caacaaaa	tt attgccatat 4500
gatgtatcat ttctgtgttt gaacaaagca tcgtaatgca ggataact	tc tactttattc 4560
cctgtagtta aaaaaaaaaa aactatatag ttcaagccaa tatttaaa	aa ttctaaacct 4620
aggctgggca tggtgactca tacctgtaat cccagcactt tgggaggc	cg aggcaggtga 4680
attgcttcag cccaggagtt cgagaccagc ctggccaatg tggtgaaa	cc ccatctctac 4740
taaaaaaaaa aaaaaaaaa aaaattagcc aggtgtggtg gtgtgcac	ct gtaatcccag 4800
ctacccagga ggctgaggca ggaaaattgc ttgaaaccag gaggcaga	gg ttgcagtgag 4860
ctgagategt gecaetgeae tecageetga gtgteagagt gagaetet	gt ctcagaaaaa 4920
aaaaaaaaaa ttotaaagat tacatttaga atttagtott tttaaagt	gt ccatgtataa 4980
aaatatataa tttttaaaat tactaaatgt tgccttttct cttagtct	aa tattttagct 5040
actaaaacaa aatataaact ggatagetta taaacaacat aaacttat	tt ctcacagttt 5100
tggaggctgt gaagtccaag attaaggcac taacagatct agtgtctg	gt aaggcaaatt 5160
totggotoat agatggtaco ttottgotgt gtocccacat ggtagatg	gg aagaactggt 5220
ctcattggcc ccttataagg acattaattc cactcaatag gctccacc	ct catgatctaa 5280
taacctctca aaggeeetae etectaatae taacacattg aggatgtg	ac ttcaacttta 5340
catttctaca ggcagagaag tggggctgtg taaattcttc ccatcagt	ac ttgaatgttc 5400
atttaacaaa taacttatcg agcatctagc atgttccaga cacaatct	ga acactgagca 5460
cacaacagtt ggaacaaata tgattootat cotcatggag ottotatt	ct cctgtgaaaa 5520
acagatgtta aacatgattg aggattaggt ttcaacataa gaattcta	gg aggacacaga 5580
catttagacc atagcatctt caggtaaact ttatcttcag taaattaa	ag agatctattt 5640
agatgacett tgageatett aattattaga tgteagtget agtttaae	tt attttaaacg 5700

tttcagatat ttatttaatt atactttaag tgtctcatgt aaaaaagtta tttataaaat	5760
aatttatagg gttagagtca ttgccctttt aatgcaacaa ataaacagtt ttttaaaaac	5820
ctgcatgggg gccaggcgcg gtggttcata cctgcaatcc cagcactttg ggaggtcgag	5880
gctggcggat cacgaggtca ggagatcgag accaccctga ttaatgcggt gaaatcccgt	5940
ctctactaaa aatacaaaaa attagccaga cgtggtggtg ggcacctata gtcccagcta	6000
ctcgggaggc tgaggcagga gaatggcatg aacccggaag gcggagcttg cagtgaacca	6060
agategegee actgeactee ageetgggeg acagagtgag actecatege aaaaaaaaa	6120
aaaaaaaaac ctgcatggaa gcctagtata tttattaata acaaataaat tatactttag	6180
tgtactatta acctatacca attttaagtt gtgattaggg aatggggatg tttttaagct	6240
gaattgtctt gctgcggaac tttccttttt taataagacc atattatgac tctgaatgct	6300
caagggtaag tctaaggcct cattgctgtt accaggagat ttttctagtt acagtaataa	6360
agatgttaat tcacatgcat gcagacaact gaaactcaag tggagaattt gtttgtgaac	6420
aagtcatact acttctgtta tttgcatgaa tggaatctgc aatatctttt tccatgggag	6480
accctaaaag aaaaccctgg atcagaatga tctgcagttt cagataataa aggcttttaa	6540
gagacatttt tagaattaaa aatatgctaa ttttattaaa tgaaaatatt tgtaactgtt	6600
aactttctca ctgacaaagc aagtttctca ataaaatacc tattttaact tgcattactg	6660
acatetttte tttgagtaat etgaataatg eagaageeat eatagaggte ttttetatae	6720
attotoaatg ttttottaaa tgggtttoot gagttotgtt ottoatgact otgggototg	6780
caaacagggt ttcccaatta cgcattctat aaacactttt atgaatgagt caatatgaca	6840
ttgagtcctt ttcatacatt tcatcatttc caatatgtag agtgacagct agaaaaatga	6900
taaaaattttg attaaaacct atctcttttt cttcagcata gtcaattgtt ttcttaactc	6960
tcaatgagta actccatgcc tagcttgtgc ttagctttca atatttttag actaagacaa	7020
agtgtatttg gcattttgag aacaacaatt aatggtcagt aaatttctaa agcaagaaaa	7080
atgtgaaact agtgttttat atgtttgtta cgcagcagaa tgcggctctt agtgtttgcc	7140
ccttcatatc tcatcatgta aaatattaaa ttactttagg ccactgcaca taggtagtcc	7200
tgtcatgagt gatggctgga gaaaagttca ggatcataaa tgttatcatc attcttcaag	7260
aaaagatgag attataaatt totgoaattg gtatgataaa aggttgaaat aattaatgaa	7320
a	7321
<210> SEQ ID NO 17 <211> LENGTH: 4725 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 17	
cccagctcag acactcctag ccttggggca gctgccgggc gagtcagcgg agtagcggcc	60
agcgggcgat ggagacagag agacacccga cgagaggagg cggggtgggg gaggcgggga	120
gagtgegggg geggaggetg geagggggeg etggaagetg gageggteeg tgegeteece	180
gegeeegagg gtgeaggagg etetgaageg getgetgeae egeggggeee aggeggegge	240
tggggggetg gggggegetg eegeegeege egeeggggge gtegetggee teggeeeett	300

tgttctcgcg cgctccccct cgccgcccac tcccctgctg tcgcgcggcg gcggcggtgg

eggeggegge teeteeeg	cc cgaggcagtc gggctcggcç	g ccgggggcgg gagggggcgg	420
ggggagcacg ccagccgc	cg agagtggggg gcgatggcga	a agctccgggt ggcttacgag	480
tacacggaag ccgaggac	aa gagcatccgg ctcggcttg	ttctcatcat ctccggcgtc	540
gtgtcgctct tcatcttc	gg cttctgctgg ctgagtcccq	g cgctgcagga tctgcaagcc	600
acggaggcca attgcacg	gt getgteggtg cageagateq	g gcgaggtgtt cgagtgcacc	660
ttcacctgtg gcgccgac	tg caggggcacc tcgcagtacc	c cctgcgtcca ggtctacgtg	720
aacaactctg agtccaac	tc tagggcgctg ctgcacagco	g acgagcacca gctcctgacc	780
aaccccaagt gctcctat	at ccctccctgt aagagagaaa	a atcagaagaa tttggaaagt	840
gtcatgaatt ggcaacag	ta ctggaaagat gagattggt1	cccagccatt tacttgctat	900
tttaatcaac atcaaaga	cc agatgatgtg cttctgcate	gcactcatga tgagattgtc	960
ctcctgcatt gcttcctc	tg geceetggtg acatttgtgg	g tgggegttet cattgtggte	1020
ctgaccatct gtgccaag	ag cttggcggtc aaggcggaaq	g ccatgaagaa gcgcaagttc	1080
tcttaaaggg gaaggagg	ct tgtagaaagc aaagtacaga	a agctgtactc atcggcacgc	1140
gtccacctgc ggaacctg	tg tttcctggcg caggagatg	g acagggccac gacagggctc	1200
tgagaggete atecetea	gt ggcaacagaa acaggcacaa	a ctggaagact tggaacctca	1260
aagcttgtat tccatctg	ct gtagcaatgg ctaaagggto	e aagatettag etgtatggag	1320
taactatttc agaaaacc	ct ataagaagtt cattttctt!	caaaagtaac agtatattat	1380
ttgtacagtg tagtatac	aa accattatga tttatgctad	ttaaaaatat taaaatagag	1440
tggtctgtgt tattttct	at ttcctttttt atgcttagaa	a caccagggtt taaaaaaaaa	1500
aaaaaggtga ggacatct	gg gtctcatttg cttctgctag	g gttaaacttt tacttgacaa	1560
caaggattcc tgctgaag	tc tgaaccttac tgtgtaacco	c tcagtttcca ctattaaaga	1620
gtatcttttg acgtctgc	tt ggaaaatgaa tagtatacto	g gtaactcagt ctccagtcac	1680
ctctgtgtct cttaagca	ag agattctaaa agattgggaa	a aacatateet eeaacaeetg	1740
cctttgccta accattat	tt ttcaccagat tacttcttaa	a gagagggagg tgattctgaa	1800
gaaggettet ateteaaa	aa gcactgggct tccttattca	a totgttottg ttgtttttga	1860
cggagttaaa aaagtttg	tg tgcaatacaa tatacatgat	gtgaaggaca ctcttcagct	1920
tagtgaaacg ctgttttc	at tttttttttt ttttgtagg	cagaaaaaaa caacaaaatc	1980
agttcaagca ttttttt	tc tttgtccttg ccttgatgt1	atgagtatta aaaccaggag	2040
gattgctgcc attgtgca	gt ttgcttagac aaacctggaq	g atgcaaccca gctcacatca	2100
ttgctactga tgagcttt	ct gtgcctttat caaaagttga	a ttgagaagac catatttctt	2160
tgtatctttt tataaact	ca aattccaagt atcaaatcg	aggtotoagt gaacatoaaa	2220
cctatttact acatagaa	tc aaacctttgt ttaggtgaga	a tgtacatcgt tagtggagga	2280
aaaactgaca acctaatt	tc atttgttttc ttctgatact	cttcagacat gcctctatta	2340
gaataaaggt aaactgga	at ttaaagacaa gttcccctca	a gttatttcca tggagctgta	2400
atatgtatat atggagtg	at ggtttcctga cctttagtco	c acataccaat gttttctttt	2460
ttetttttt tttttt	tt tgagatggtg tctcactctq	g ttgccaggct ggagtgcagt	2520
ggcacgatet eggeteac	ta cagtetecae etectgggt1	caagtcattc ctctgcctca	2580
gcctcccgag tagctggg	ac tacaggcacg caccaccacç	g cctggctaat ttttttgtat	2640

ttttagtaga gacggggttt	caccgtgtta gccaggatgg	tctcaatctc ctgaccttgt	2700
gatetgeeca etteacetee	caaagtgctg ggattacagg	ccaatgtttt cttaatctta	2760
gaatgtgaat aactgaaaat	catagtctgt ggaaaggtgt	tgaattgagt ataatcttct	2820
tctgtttatt tttgtgtttt	gttttttaac agatgggtat	cttgctatgt tgcccaggat	2880
ggagtgcagt agctattcac	aggtatgatc atagcacact	gcageeteaa geteetggge	2940
tcaagcgatc cccctccctc	agcctcccaa gtatctgggg	ttactggtgt gcaccaccgt	3000
gcttggctcc aataattttt	tttctaattc aaaagttaca	gtttcactgt gaaaaaggcc	3060
ttgaacacac tatttatgac	atcttttgag gcagctccag	tgccttgact tcaatcccag	3120
tttccggttg cagcatcctt	gttgtcttag caacacagtg	aactattctg aagcatagag	3180
taacacgaaa ctgggagtcc	gagaaataat catctctgca	tcacattatg ggagacgaag	3240
tctgctttat ccattttatc	tttattcagt tgtctatgat	taattgatta cagagtagta	3300
gattagaata gtgcatggat	atacatttgt gttgaaaaaa	ggggaagttg atatatatca	3360
atcttagttt tcatttatca	gtttgatatt catgcattta	cactaaacgc ttccatttat	3420
cccgaaaaag tatatgcaac	tgtattctgt aggttgattt	ttggaaaagg ggagaagcac	3480
actgaattca taaggtcaca	tgtagtctta aggtcttact	tgcttacagc caattaaatt	3540
tgaagcacct tatttatact	tgttaaaggt aaaacccaaa	agaacaagca gaggacattt	3600
taaggtcata aaaggtaaat	aagcttacct tcttaatgtt	ttcattctct ttttgtataa	3660
atcagaaaat gatctaaact	gctgtaacaa agagacccca	aaatatgatg gctcatgtaa	3720
gataatttat ttttttctca	catagcaatc cagaagtggc	ttcatttcac aaggtattca	3780
agggatatag gagtcatcta	ccttgttagt tctcttaata	cccaagggta ttgttctttc	3840
catggtcaaa gctggctcaa	gacttcctag cctgtgaaaa	aagaagaagg tggagcaagc	3900
catttccttt ttaggaaatt	acagecatea ettetgeeca	ccgtccattc atgaatactt	3960
actatatagc tatacctagc	ttcaagaaag cctgggacgt	gtctctaact agatggacat	4020
gtgccctact aaaactccag	ggaaagggtt ctattactaa	agctaaaaag aggggaatga	4080
atactagagt taaagacaaa	aatgatagca gccaatggcc	catgccgtga taatctgctg	4140
agcaggcatg atggagatcc	cttgcccagc agaaagtgtt	ccttggtgaa atcatgaatc	4200
		gccactagtt tgacctctag	4260
gaaagtettg etegteaget	tetgtggeee egtetgaaae	ttttgaggga catcgcagct	4320
tttgcagccc ctgcttgctg	gtgcagactt ttagacctag	attgccttag agactgaaaa	4380
		gtaataaaga cgtcaatgcc	4440
		tttcccttct cccttatgct	4500
		ctttggcccc agcaggaagt	4560
			4620
		ccccagcete acactetaag	
		cctgggagcc tgccctatct	4680
ccctggaaag tctcagtatg	tgagtaataa acctttttat	accca	4725

<210> SEQ ID NO 18

-continued

<211> LENGTH: 3987 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 18 cttcctggac tggggatccc ggctaaatat agctgtttct gtcttacaac acaggctcca 60 gtatataaat caggcaaatt ccccatttga gcatgaacct ctgaaaactg ccggcatctg 120 aggtttcctc caaggccctc tgaagtgcag cccataatga aggtcttggc ggcaggagtt gtgcccctgc tgttggttct gcactggaaa catggggcgg ggagccccct ccccatcacc cctgtcaacg ccacctgtgc catacgccac ccatgtcaca acaacctcat gaaccagatc aggagecaae tggcacaget caatggcagt gecaatgeee tetttattet etattacaea 360 420 qcccaqqqqq aqccqttccc caacaacctq qacaaqctat qtqqccccaa cqtqacqqac 480 ttcccgccct tccacqccaa cggcacggag aaggccaagc tggtggagct gtaccgcata qtcqtqtacc ttqqcacctc cctqqqcaac atcacccqqq accaqaaqat cctcaacccc 540 aqtqccctca qcctccacaq caaqctcaac qccaccqccq acatcctqcq aqqcctcctt 600 agcaacgtgc tgtgccgcct gtgcagcaag taccacgtgg gccatgtgga cgtgacctac 660 720 qqccctqaca cctcqqqtaa qqatqtcttc caqaaqaaqa aqctqqqctq tcaactcctq gggaagtata agcagatcat cgccgtgttg gcccaggcct tctagcagga ggtcttgaag 780 tgtgctgtga accgagggat ctcaggagtt gggtccagat gtgggggcct gtccaagggt 840 ggctggggcc cagggcatcg ctaaacccaa atgggggctg ctggcagacc ccgagggtgc 900 ctggccagtc cactccactc tgggctgggc tgtgatgaag ctgagcagag tggaaacttc 960 catagggagg gagctagaag aaggtgcccc ttcctctggg agattgtgga ctggggagcg 1020 tgggctggac ttctgcctct acttgtccct ttggcccctt gctcactttg tgcagtgaac 1080 aaactacaca agtcatctac aagagccctg accacagggt gagacagcag ggcccagggg 1140 agtggaccag cccccagcaa attatcacca tctgtgcctt tgctgcccct taggttggga 1200 cttaggtggg ccagagggc taggatccca aaggactcct tgtcccctag aagtttgatg 1260 agtggaagat agagagggc ctctgggatg gaaggctgtc ttcttttgag gatgatcaga 1320 gaacttgggc ataggaacaa tctggcagaa gtttccagaa ggaggtcact tggcattcag 1380 gctcttgggg aggcagagaa gccaccttca ggcctgggaa ggaagacact gggaggagga 1440 gaggeetgga aagetttggt aggttetteg ttetetteee egtgatette eetgeageet 1500 1560 qqqatqqcca qqqtctqatq qctqqacctq caqcaqqqqt ttqtqqaqqt qqqtaqqqca ggggcaggtt gctaagtcag gtgcagaggt tctgagggac ccaggctctt cctctgggta 1620 1680 aaggtotgta agaaggggot ggggtagoto agagtagoag otcacatotg aggcootggg aggeettgtg aggteacaca gaggtaettg agggggaetg gaggeegtet etggteecea 1740 gggcaaggga acagcagaac ttagggtcag ggtctcaggg aaccctgagc tccaagcgtg 1800 ctgtgcgtct gacctggcat gatttctatt tattatgata tcctatttat attaacttat 1860 tggtgctttc agtggccaag ttaattcccc tttccctggt ccctactcaa caaaatatga tgatggetee egacacaage geeagggeea gggettagea gggeetggte tggaagtega 1980 caatgttaca agtggaataa gccttacggg tgaagctcag agaagggtcg gatctgagag 2040

aatggggagg	cctgagtggg	agtggggggc	cttgctccac	cccccccat	cccctactgt	2100
gacttgcttt	agggtgtcag	ggtccaggct	gcaggggctg	ggccaatttg	tggagaggcc	2160
gggtgccttt	ctgtcttgat	tccagggggc	tggttcacac	tgttcttggg	cgccccagca	2220
ttgtgttgtg	aggcgcactg	ttcctggcag	atattgtgcc	ccctggagca	gtgggcaaga	2280
cagtccttgt	ggcccaccct	gtccttgttt	ctgtgtcccc	atgctgcctc	tgaaatagcg	2340
ccctggaaca	accctgcccc	tgcacccagc	atgctccgac	acagcaggga	agctcctcct	2400
gtggcccgga	cacccataga	cggtgcgggg	ggcctggctg	ggccagaccc	caggaaggtg	2460
gggtagactg	gggggatcag	ctgcccattg	ctcccaagag	gaggagaggg	aggctgcaga	2520
tgcctgggac	tcagaccagg	aagctgtggg	ccctcctgct	ccacccccat	cccactccca	2580
cccatgtctg	ggctcccagg	cagggaaccc	gatctcttcc	tttgtgctgg	ggccaggcga	2640
gtggagaaac	gccctccagt	ctgagagcag	gggagggaag	gaggcagcag	agttggggca	2700
gctgctcaga	gcagtgttct	ggcttcttct	caaaccctga	gcgggctgcc	ggcctccaag	2760
ttcctccgac	aagatgatgg	tactaattat	ggtacttttc	actcactttg	cacctttccc	2820
tgtcgctctc	taagcacttt	acctggatgg	cgcgtgggca	gtgtgcaggc	aggtcctgag	2880
gcctggggtt	ggggtggagg	gtgcggcccg	gagttgtcca	tctgtccatc	ccaacagcaa	2940
gacgaggatg	tggctgttga	gatgtgggcc	acactcaccc	ttgtccagga	tgcagggact	3000
geetteteet	teetgettea	teeggettag	cttggggctg	gctgcattcc	cccaggatgg	3060
gcttcgagaa	agacaaactt	gtctggaaac	cagagttgct	gattccaccc	ggggggcccg	3120
gctgactcgc	ccatcacctc	atctccctgt	ggacttggga	getetgtgee	aggcccacct	3180
tgcggccctg	gctctgagtc	gctctcccac	ccagcctgga	cttggcccca	tgggacccat	3240
cctcagtgct	ccctccagat	cccgtccggc	agettggegt	ccaccctgca	cagcatcact	3300
gaatcacaga	gcctttgcgt	gaaacagctc	tgccaggccg	ggagctgggt	ttctcttccc	3360
tttttatctg	ctggtgtgga	ccacacctgg	gcctggccgg	aggaagagag	agtttaccaa	3420
gagagatgtc	teegggeeet	tatttattat	ttaaacattt	ttttaaaaag	cactgctagt	3480
ttacttgtct	ctcctcccca	tegteeceat	egteeteett	gtccctgact	tggggcactt	3540
ccaccctgac	ccagccagtc	cagetetgee	ttgccggctc	tccagagtag	acatagtgtg	3600
tggggttgga	gctctggcac	ccggggaggt	agcatttccc	tgcagatggt	acagatgttc	3660
ctgccttaga	gtcatctcta	gttccccacc	tcaatcccgg	catccagcct	tcagtcccgc	3720
ccacgtgcta	gctccgtggg	cccaccgtgc	ggccttagag	gtttccctcc	ttcctttcca	3780
ctgaaaagca	catggccttg	ggtgacaaat	tcctctttga	tgaatgtacc	ctgtggggat	3840
gtttcatact	gacagattat	ttttatttat	tcaatgtcat	atttaaaata	tttattttt	3900
ataccaaatg	aatactttt	ttttaagaa	aaaaaagaga	aatgaataaa	gaatctactc	3960
ttggctggca	aaaaaaaaa	aaaaaaa				3987

<210> SEQ ID NO 19 <211> LENGTH: 3808 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 19

gtatataaat	caggcaaatt	ccccatttga	gcatgaacct	ctgaaaactg	ccggcatctg	120	
aggtttcctc	caaggccctc	tgaagtgcag	cccataatga	aggtcttggc	ggcagtacac	180	
agcccagggg	gageegttee	ccaacaacct	ggacaagcta	tgtggcccca	acgtgacgga	240	
cttcccgccc	ttccacgcca	acggcacgga	gaaggccaag	ctggtggagc	tgtaccgcat	300	
agtcgtgtac	cttggcacct	ccctgggcaa	catcacccgg	gaccagaaga	tcctcaaccc	360	
cagtgccctc	agcctccaca	gcaagctcaa	cgccaccgcc	gacatcctgc	gaggcctcct	420	
tagcaacgtg	ctgtgccgcc	tgtgcagcaa	gtaccacgtg	ggccatgtgg	acgtgaccta	480	
cggccctgac	acctcgggta	aggatgtctt	ccagaagaag	aagctgggct	gtcaactcct	540	
ggggaagtat	aagcagatca	tegeegtgtt	ggcccaggcc	ttctagcagg	aggtcttgaa	600	
gtgtgctgtg	aaccgaggga	tctcaggagt	tgggtccaga	tgtgggggcc	tgtccaaggg	660	
tggctggggc	ccagggcatc	gctaaaccca	aatgggggct	gctggcagac	cccgagggtg	720	
cctggccagt	ccactccact	ctgggctggg	ctgtgatgaa	gctgagcaga	gtggaaactt	780	
ccatagggag	ggagctagaa	gaaggtgccc	cttcctctgg	gagattgtgg	actggggagc	840	
gtgggctgga	cttctgcctc	tacttgtccc	tttggcccct	tgctcacttt	gtgcagtgaa	900	
caaactacac	aagtcatcta	caagagccct	gaccacaggg	tgagacagca	gggcccaggg	960	
gagtggacca	gcccccagca	aattatcacc	atctgtgcct	ttgctgcccc	ttaggttggg	1020	
acttaggtgg	gccagagggg	ctaggatccc	aaaggactcc	ttgtccccta	gaagtttgat	1080	
gagtggaaga	tagagagggg	cctctgggat	ggaaggetgt	cttcttttga	ggatgatcag	1140	
agaacttggg	cataggaaca	atctggcaga	agtttccaga	aggaggtcac	ttggcattca	1200	
ggctcttggg	gaggcagaga	agccaccttc	aggcctggga	aggaagacac	tgggaggagg	1260	
agaggcctgg	aaagctttgg	taggttcttc	gttctcttcc	ccgtgatctt	ccctgcagcc	1320	
tgggatggcc	agggtctgat	ggctggacct	gcagcagggg	tttgtggagg	tgggtagggc	1380	
aggggcaggt	tgctaagtca	ggtgcagagg	ttctgaggga	cccaggctct	tcctctgggt	1440	
aaaggtctgt	aagaaggggc	tggggtagct	cagagtagca	gctcacatct	gaggccctgg	1500	
gaggccttgt	gaggtcacac	agaggtactt	gagggggact	ggaggccgtc	tctggtcccc	1560	
agggcaaggg	aacagcagaa	cttagggtca	gggtctcagg	gaaccctgag	ctccaagcgt	1620	
gctgtgcgtc	tgacctggca	tgatttctat	ttattatgat	atcctattta	tattaactta	1680	
ttggtgcttt	cagtggccaa	gttaattccc	ctttccctgg	tccctactca	acaaaatatg	1740	
atgatggctc	ccgacacaag	cgccagggcc	agggcttagc	agggcctggt	ctggaagtcg	1800	
acaatgttac	aagtggaata	agccttacgg	gtgaagctca	gagaagggtc	ggatctgaga	1860	
gaatggggag	gcctgagtgg	gagtggggg	ccttgctcca	ccccccca	tcccctactg	1920	
tgacttgctt	tagggtgtca	gggtccaggc	tgcaggggct	gggccaattt	gtggagaggc	1980	
cgggtgcctt	tctgtcttga	ttccaggggg	ctggttcaca	ctgttcttgg	gcgccccagc	2040	
attgtgttgt	gaggcgcact	gttcctggca	gatattgtgc	cccctggagc	agtgggcaag	2100	
acagtccttg	tggcccaccc	tgtccttgtt	tctgtgtccc	catgctgcct	ctgaaatagc	2160	
gccctggaac	aaccctgccc	ctgcacccag	catgctccga	cacagcaggg	aagctcctcc	2220	
tgtggcccgg	acacccatag	acggtgcggg	gggcctggct	gggccagacc	ccaggaaggt	2280	
ggggtagact	ggggggatca	gctgcccatt	gctcccaaga	ggaggagagg	gaggctgcag	2340	
-	-		3	- 33			

				-0011011	iuea 		 	
atgcctggga	ctcagaccag	gaagctgtgg	gccctcctgc	tccaccccca	tcccactccc	2400		
acccatgtct	gggctcccag	gcagggaacc	cgatctcttc	ctttgtgctg	gggccaggcg	2460		
agtggagaaa	cgccctccag	tctgagagca	ggggagggaa	ggaggcagca	gagttggggc	2520		
agctgctcag	agcagtgttc	tggettette	tcaaaccctg	agegggetge	cggcctccaa	2580		
gttcctccga	caagatgatg	gtactaatta	tggtactttt	cactcacttt	gcacctttcc	2640		
ctgtcgctct	ctaagcactt	tacctggatg	gegegtggge	agtgtgcagg	caggtcctga	2700		
ggcctggggt	tggggtggag	ggtgeggeee	ggagttgtcc	atctgtccat	cccaacagca	2760		
agacgaggat	gtggctgttg	agatgtgggc	cacactcacc	cttgtccagg	atgcagggac	2820		
tgccttctcc	ttcctgcttc	atccggctta	gcttggggct	ggctgcattc	ccccaggatg	2880		
ggcttcgaga	aagacaaact	tgtctggaaa	ccagagttgc	tgattccacc	cggggggccc	2940		
ggctgactcg	cccatcacct	catctccctg	tggacttggg	agetetgtge	caggcccacc	3000		
ttgcggccct	ggctctgagt	cgctctccca	cccagcctgg	acttggcccc	atgggaccca	3060		
tectcagtge	tecetecaga	tcccgtccgg	cagcttggcg	tccaccctgc	acagcatcac	3120		
tgaatcacag	agcctttgcg	tgaaacagct	ctgccaggcc	gggagctggg	tttctcttcc	3180		
ctttttatct	gctggtgtgg	accacacctg	ggcctggccg	gaggaagaga	gagtttacca	3240		
agagagatgt	ctccgggccc	ttatttatta	tttaaacatt	tttttaaaaa	gcactgctag	3300		
tttacttgtc	tctcctcccc	atcgtcccca	tcgtcctcct	tgtccctgac	ttggggcact	3360		
tccaccctga	cccagccagt	ccagctctgc	cttgccggct	ctccagagta	gacatagtgt	3420		
gtggggttgg	agctctggca	cccggggagg	tagcatttcc	ctgcagatgg	tacagatgtt	3480		
cctgccttag	agtcatctct	agttccccac	ctcaatcccg	gcatccagcc	ttcagtcccg	3540		
cccacgtgct	agctccgtgg	gcccaccgtg	cggccttaga	ggtttccctc	cttcctttcc	3600		
actgaaaagc	acatggcctt	gggtgacaaa	ttcctctttg	atgaatgtac	cctgtgggga	3660		
tgtttcatac	tgacagatta	tttttattta	ttcaatgtca	tatttaaaat	atttatttt	3720		
tataccaaat	gaatactttt	ttttttaaga	aaaaaaagag	aaatgaataa	agaatctact	3780		
cttggctggc	aaaaaaaaaa	aaaaaaaa				3808		
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI	TH: 1668	sapiens						
<400> SEQUI	ENCE: 20							
attctcagca	cagcctttaa	ggttccaaac	atctgctaga	agaggaatgc	agatttaaac	60		
tgagtgaggt	gtggagtggg	ggaagttgat	tgggtctaga	ccaaagaact	ttgaggaact	120		
tgcccagagc	cctgcatgca	tcagacctac	agcagacatt	gcaggcctga	agaaagcacc	180		
ttttctgctg	ccatgacaac	catgcaagga	atggaacagg	ccatgccagg	ggctggccct	240		
ggtgtgcccc	agctgggaaa	catggctgtc	atacattcac	atctgtggaa	aggattgcaa	300		
gagaagttct	tgaagggaga	acccaaagtc	cttggggttg	tgcagattct	gactgccctg	360		
atgagcctta	gcatgggaat	aacaatgatg	tgtatggcat	ctaatactta	tggaagtaac	420		
cctatttccg	tgtatatcgg	gtacacaatt	tgggggtcag	taatgtttat	tatttcagga	480		
9	- 33			-				

tccttgtcaa ttgcagcagg aattagaact acaaaaggcc tggtccgagg tagtctagga

-continued	
atgaatatca ccagctctgt actggctgca tcagggatct taatcaacac atttagcttg	600
gcgttttatt cattccatca cccttactgt aactactatg gcaactcaaa taattgtcat	660
gggactatgt ccatcttaat gggtctggat ggcatggtgc tcctcttaag tgtgctggaa	720
ttctgcattg ctgtgtccct ctctgccttt ggatgtaaag tgctctgttg tacccctggt	780
ggggttgtgt taattetgee ateacattet cacatggeag aaacagcate teecacacca	840
cttaatgagg tttgaggcca ccaaaagatc aacagacaaa tgctccagaa atctatgctg	900
actgtgacac aagageetca catgagaaat taccagtate caaettegat actgatagae	960
ttgttgatat tattattata tgtaatccaa ttatgaactg tgtgtgtata gagagataat	1020
aaattcaaaa ttatgttoto atttttttoo otggaactca ataactcatt toactggoto	1080
tttatcgaga gtactagaag ttaaattaat aaataatgca tttaatgagg caacagcact	1140
tgaaagtttt tcattcatca taagaacttt atataaaggc attacattgg caaataaggt	1200
ttggaagcag aagagcaaaa aaaagatatt gttaaaatga ggcctccatg caaaacacat	1260
acttccctcc catttattta acttttttt tctcctacct atggggacca aagtgctttt	1320
teetteagga agtggagatg catggeeate teeceeteee tittteette teetgetitt	1380
ctttccccat agaaagtacc ttgaagtagc acagtccgtc cttgcatgtg cacgagctat	1440
catttgagta aaagtataca tggagtaaaa atcatattaa gcatcagatt caacttatat	1500
tttctatttc atcttcttcc tttcccttct cccaccttct actgggcata attatatctt	1560
aatcatatat ggaaatgtgc aacatatggt atttgttaaa tacgtttgtt tttattgcag	1620
agcaaaaata aatcaaatta gaagcaataa aaaaaaaaaa	1668
agcaaaaata aatcaaatta gaagcaataa aaaaaaaaa aaaaaaaa <210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	1668
<210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA	1668
<210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	60
<210 > SEQ ID NO 21 <211 > LENGTH: 1814 <212 > TYPE: DNA <213 > ORGANISM: Homo sapiens <400 > SEQUENCE: 21	
<210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac	60
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact</pre>	60 120
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg</pre>	60 120 180
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata</pre>	60 120 180 240
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa</pre>	60 120 180 240 300
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcacctttt ctgctgccat gacaaccatg caaggaatgg</pre>	60 120 180 240 300 360
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcacctttt ctgctgccat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaacatg gctgtcatac</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcaccttt ctgctgcat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaacatg gctgtcatac attcacatct gtggaaagga ttgcaagaga agttcttgaa gggagaaccc aaagtccttg</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcaccttt ctgctgccat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaacatg gctgtcatac attcacatct gtggaaagga ttgcaagaga agttcttgaa gggagaaccc aaagtccttg gggttgtgca gattctgact gccctgatga gccttagcat gggaataaca atgatgtgta</pre>	60 120 180 240 300 360 420 480
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcacctttt ctgctgccat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaaccatg gctgtcatac attcacatct gtggaaagga ttgcaagaa agttcttgaa gggagaaccc aaagtccttg gggttgtgca gattctgact gccctgatga gccttagcat gggaataaca atgatgtgta tggcatctaa tacttatgga agtaacccta tttccgtgta tatcgggtac acaatttggg</pre>	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcctttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaaagagg ggtggaacat tcctgcaaat ggtttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcaccttt ctgctgcat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaacatg gctgtcatac attcacatct gtggaaagga ttgcaagaga agttcttgaa gggagaaccc aaagtccttg gggttgtgca gattctgact gccctgatga gccttagcat gggaataaca atgatggta tggcatctaa tacttatgga agtaacccta tttccgtgta tatcgggtac acaatttggg ggtcagtaat gtttattatt tcaggatcct tgtcaattgc agcaggaatt agaactacaa</pre>	60 120 180 240 300 360 420 480 540 600
<pre><210> SEQ ID NO 21 <211> LENGTH: 1814 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 attctcagca cagcetttaa ggttccaaac atctgctaga agaggaatgc agatttaaac tgagtgaggt gtggagtggg ggaagttgat tgggtctaga ccaaagaact ttgaggaact tgcccagagc cctgcatgca tcagacctac agcagacatt gcaggcctga agaaaggtgg tcacaagagg ggtggaacat tcctgcaaat ggttcaata tatgcagatg tctcaatata ggaatgaaat tacgtctttg gaacaactta aataagtcaa atatacttgg agctttaaaa attaaaagga gagagattcg agcacctttt ctgctgcat gacaaccatg caaggaatgg aacaggccat gccaggggct ggccctggtg tgccccagct gggaaacatg gctgtcatac attcacatct gtggaaagga ttgcaagaga agttcttgaa gggaaacacc aaagtccttg gggttgtgca gattctgact gccctgatga gccttagcat gggaaacaca atgatgtgta tggcatctaa tacttatgga agtaacccta tttccgtgta tatcgggtac acaatttggg ggtcagtaat gtttattatt tcaggatcct tgtcaattgc agcaggaatt agaactacaa aaggcctggt ccgaggtagt ctaggaatga atatcaccag ctctgtactg gctgcatcag aaggcctggt ccgaggtagt ctaggaatga atatcaccag ctctgtactg gctgcatcag</pre>	60 120 180 240 300 360 420 480 540 600 660

tggtgctcct cttaagtgtg ctggaattct gcattgctgt gtccctctct gcctttggat

				-contin		
gtaaagtgct	ctgttgtacc	cctggtgggg	ttgtgttaat	tctgccatca	cattctcaca	960
tggcagaaac	agcatctccc	acaccactta	atgaggtttg	aggccaccaa	aagatcaaca	1020
gacaaatgct	ccagaaatct	atgctgactg	tgacacaaga	gcctcacatg	agaaattacc	1080
agtatccaac	ttcgatactg	atagacttgt	tgatattatt	attatatgta	atccaattat	1140
gaactgtgtg	tgtatagaga	gataataaat	tcaaaattat	gttctcattt	ttttccctgg	1200
aactcaataa	ctcatttcac	tggctcttta	tcgagagtac	tagaagttaa	attaataaat	1260
aatgcattta	atgaggcaac	agcacttgaa	agtttttcat	tcatcataag	aactttatat	1320
aaaggcatta	cattggcaaa	taaggtttgg	aagcagaaga	gcaaaaaaaa	gatattgtta	1380
aaatgaggcc	tccatgcaaa	acacatactt	ccctcccatt	tatttaactt	ttttttctc	1440
ctacctatgg	ggaccaaagt	gctttttcct	tcaggaagtg	gagatgcatg	gccatctccc	1500
cctccctttt	teetteteet	gcttttcttt	ccccatagaa	agtaccttga	agtagcacag	1560
teegteettg	catgtgcacg	agctatcatt	tgagtaaaag	tatacatgga	gtaaaaatca	1620
tattaagcat	cagattcaac	ttatattttc	tatttcatct	tetteettte	ccttctccca	1680
ccttctactg	ggcataatta	tatcttaatc	atatatggaa	atgtgcaaca	tatggtattt	1740
gttaaatacg	tttgttttta	ttgcagagca	aaaataaatc	aaattagaag	caataaaaaa	1800
aaaaaaaaa	aaaa					1814
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	TH: 1509 DNA UISM: Homo s	sapiens				
<400> SEQUE	NCE: 22					
attctcagca	cagcctttaa	ggttccaaac	atctgctaga	agaggaatgc	agatttaaac	60
tgagtgaggt	gtggagtggg	ggaagttgat	tgggtctaga	ccaaagaact	ttgaggaact	120
tgcccagagc	cctgcatgca	tcagacctac	agcagacatt	gcaggcctga	agaaagcacc	180
ttttctgctg	ccatgacaac	catgcaagga	atggaacagg	ccatgccagg	ggctggccct	240
ggtgtgcccc	agctgggaaa	catggctgtc	atacattcac	atctgtggaa	aggattgcaa	300
gagaagttct	tgaagggaga	acccaaagtc	cttggggttg	tgcagattct	gactgccctg	360
atgagcctta	gcatgggaat	aacaatgatg	tgtatggcat	ctaatactta	tggaagtaac	420
cctatttccg	tgtatatcgg		+ ~~~~~+ ~~~			
tccttgtcaa						480
	ttgcagcagg					540
	gtgtgctgga	aattagaact attctgcatt	acaaaaggcc gctgtgtccc	tgggtctgga tctctgcctt	tggcatggtg tggatgtaaa	540 600
	gtgtgctgga	aattagaact attctgcatt	acaaaaggcc gctgtgtccc	tgggtctgga	tggcatggtg tggatgtaaa	540
gtgctctgtt	gtgtgctgga gtacccctgg	aattagaact attctgcatt tggggttgtg	acaaaaggcc gctgtgtccc ttaattctgc	tgggtctgga tctctgcctt	tggcatggtg tggatgtaaa tcacatggca	540 600
gtgctctgtt	gtgtgctgga gtacccctgg ctcccacacc	aattagaact attctgcatt tggggttgtg acttaatgag	acaaaaggcc gctgtgtccc ttaattctgc gtttgaggcc	tgggtctgga tctctgcctt catcacattc	tggcatggtg tggatgtaaa tcacatggca caacagacaa	540 600 660
gtgctctgtt gaaacagcat atgctccaga	gtgtgctgga gtacccctgg ctcccacacc aatctatgct	aattagaact attctgcatt tggggttgtg acttaatgag gactgtgaca	acaaaaggcc gctgtgtccc ttaattctgc gtttgaggcc caagagcctc	tgggtctgga tctctgcctt catcacattc accaaaagat	tggcatggtg tggatgtaaa tcacatggca caacagacaa ttaccagtat	540 600 660 720
gtgctctgtt gaaacagcat atgctccaga ccaacttcga	gtgtgctgga gtacccctgg ctcccacacc aatctatgct tactgataga	aattagaact attctgcatt tggggttgtg acttaatgag gactgtgaca cttgttgata	acaaaaggcc gctgtgtccc ttaattctgc gtttgaggcc caagagcctc ttattattat	tgggtctgga tctctgcctt catcacattc accaaaagat acatgagaaa	tggcatggtg tggatgtaaa tcacatggca caacagacaa ttaccagtat attatgaact	540 600 660 720 780
gtgctctgtt gaaacagcat atgctccaga ccaacttcga gtgtgtgtat	gtgtgctgga gtacccctgg ctcccacacc aatctatgct tactgataga agagagataa	aattagaact attctgcatt tggggttgtg acttaatgag gactgtgaca cttgttgata taaattcaaa	acaaaaggcc gctgtgtccc ttaattctgc gtttgaggcc caagagcctc ttattattat attatgttct	tgggtctgga tctctgcctt catcacattc accaaaagat acatgagaaa atgtaatcca	tggcatggtg tggatgtaaa tcacatggca caacagacaa ttaccagtat attatgaact cctggaactc	540 600 660 720 780
gtgctctgtt gaaacagcat atgctccaga ccaacttcga gtgtgtgtat aataactcat	gtgtgctgga gtacccctgg ctcccacacc aatctatgct tactgataga agagagataa ttcactggct	aattagaact attctgcatt tggggttgtg acttaatgag gactgtgaca cttgttgata taaattcaaa ctttatcgag	acaaaaggcc gctgtgtccc ttaattctgc gtttgaggcc caagagcctc ttattattat attatgttct agtactagaa	tgggtctgga tctctgcctt catcacattc accaaaagat acatgagaaa atgtaatcca catttttttc	tggcatggtg tggatgtaaa tcacatggca caacagacaa ttaccagtat attatgaact cctggaactc taaataatgc	540 600 660 720 780 840

cattacattg gcaaataagg tttggaagca gaagagcaaa aaaaagatat tgttaaaatg 1080

		COIICII			
aggcetecat gcaaaacaca tactteeete	ccatttattt	aactttttt	ttctcctacc	1140	
tatggggacc aaagtgcttt ttccttcagg	aagtggagat	gcatggccat	ctcccctcc	1200	
ctttttcctt ctcctgcttt tctttcccca	tagaaagtac	cttgaagtag	cacagtccgt	1260	
ccttgcatgt gcacgagcta tcatttgagt	aaaagtatac	atggagtaaa	aatcatatta	1320	
agcatcagat tcaacttata ttttctattt	catcttcttc	ctttcccttc	tcccaccttc	1380	
tactgggcat aattatatct taatcatata	tggaaatgtg	caacatatgg	tatttgttaa	1440	
atacgtttgt ttttattgca gagcaaaaat	aaatcaaatt	agaagcaata	aaaaaaaaa	1500	
aaaaaaaa				1509	
<210> SEQ ID NO 23 <211> LENGTH: 3291 <212> TYPE: DNA <213> ORGANISM: Homo sapiens					
<400> SEQUENCE: 23					
agaatcggag agccggtggc gtcgcaggtc	gggaggacga	gcaccgagtc	gagggctcgc	60	
tegtetggge egecegagag tettaatege	gggcgcttgg	gccgccatct	tagatggcgg	120	
gagtaagagg aaaacgattg tgaggcggga	acggctttct	gctgcctttt	ttgggccccg	180	
aaaagggtca gctggccggg ctttggggcg	cgtgccctga	ggcgcggagc	gcgtttgcta	240	
cgatgcgggg gctgctcggg gctccgtccc	ctgggctggg	gacgcgccga	atgtgaccgc	300	
ctcccgctcc ctcacccgcc gcggggagga	ggagegggeg	agaagctgcc	gccgaacgac	360	
aggacgttgg ggcggcctgg ctccctcagg	tttaagaatt	gtttaagctg	catcaatgga	420	
gcacatacag ggagcttgga agacgatcag	caatggtttt	ggattcaaag	atgccgtgtt	480	
tgatggctcc agctgcatct ctcctacaat	agttcagcag	tttggctatc	agcgccgggc	540	
atcagatgat ggcaaactca cagateette	taagacaagc	aacactatcc	gtgttttctt	600	
gccgaacaag caaagaacag tggtcaatgt	gcgaaatgga	atgagettge	atgactgcct	660	
tatgaaagca ctcaaggtga ggggcctgca	accagagtgc	tgtgcagtgt	tcagacttct	720	
ccacgaacac aaaggtaaaa aagcacgctt	agattggaat	actgatgctg	cgtctttgat	780	
tggagaagaa cttcaagtag atttcctgga	tcatgttccc	ctcacaacac	acaactttgc	840	
tcggaagacg ttcctgaagc ttgccttctg	tgacatctgt	cagaaattcc	tgctcaatgg	900	
atttcgatgt cagacttgtg gctacaaatt	tcatgagcac	tgtagcacca	aagtacctac	960	
tatgtgtgtg gactggagta acatcagaca	actcttattg	tttccaaatt	ccactattgg	1020	
tgatagtgga gtcccagcac taccttcttt	gactatgcgt	cgtatgcgag	agtctgtttc	1080	
caggatgcct gttagttctc agcacagata	ttctacacct	cacgccttca	cctttaacac	1140	
ctccagtccc tcatctgaag gttccctctc	ccagaggcag	aggtcgacat	ccacacctaa	1200	
tgtccacatg gtcagcacca ccctgcctgt	ggacagcagg	atgattgagg	atgcaattcg	1260	
aagtcacage gaatcageet cacetteage				1320	
aacaggetgg teacageega aaaceeegt				1380	
tgggacccag gagaaaaaca aaattaggcc				1440	
ggaaatagaa gccagtgaag tgatgctgtc	cactcggatt	gggtcaggct	cttttggaac	1500	

tgtttataag ggtaaatggc acggagatgt tgcagtaaag atcctaaagg ttgtcgaccc 1560

aaccccagag caattccagg ccttcaggaa tgaggtggct gttctgcgca aaacacggca	1620
tgtgaacatt ctgcttttca tggggtacat gacaaaggac aacctggcaa ttgtgaccca	1680
gtggtgcgag ggcagcagcc tctacaaaca cctgcatgtc caggagacca agtttcagat	1740
gttccagcta attgacattg cccggcagac ggctcaggga atggactatt tgcatgcaaa	1800
gaacatcatc catagagaca tgaaatccaa caatatattt ctccatgaag gcttaacagt	1860
gaaaattgga gattttggtt tggcaacagt aaagtcacgc tggagtggtt ctcagcaggt	1920
tgaacaacct actggctctg tcctctggat ggccccagag gtgatccgaa tgcaggataa	1980
caacccattc agtttccagt cggatgtcta ctcctatggc atcgtattgt atgaactgat	2040
gacgggggag cttccttatt ctcacatcaa caaccgagat cagatcatct tcatggtggg	2100
ccgaggatat gcctccccag atcttagtaa gctatataag aactgcccca aagcaatgaa	2160
gaggetggta getgaetgtg tgaagaaagt aaaggaagag aggeetettt tteeceagat	2220
cctgtcttcc attgagctgc tccaacactc tctaccgaag atcaaccgga gcgcttccga	2280
gccatccttg catcgggcag cccacactga ggatatcaat gcttgcacgc tgaccacgtc	2340
cccgaggctg cctgtcttct agttgacttt gcacctgtct tcaggctgcc aggggaggag	2400
gagaagccag caggcaccac ttttctgctc cctttctcca gaggcagaac acatgttttc	2460
agagaagetg etgetaagga eettetagae tgeteacagg geettaaett eatgttgeet	2520
tettttetat eeetttggge eetgggagaa ggaageeatt tgeagtgetg gtgtgteetg	2580
ctccctcccc acattcccca tgctcaaggc ccagccttct gtagatgcgc aagtggatgt	2640
tgatggtagt acaaaaagca ggggcccagc cccagctgtt ggctacatga gtatttagag	2700
gaagtaaggt agcaggcagt ccagccctga tgtggagaca catgggattt tggaaatcag	2760
cttctggagg aatgcatgtc acaggcggga ctttcttcag agagtggtgc agcgccagac	2820
attttgcaca taaggcacca aacagcccag gactgccgag actctggccg cccgaaggag	2880
cctgctttgg tactatggaa cttttcttag gggacacgtc ctcctttcac agcttctaag	2940
gtgtccagtg cattgggatg gttttccagg caaggcactc ggccaatccg catctcagcc	3000
ctctcaggga gcagtcttcc atcatgctga attttgtctt ccaggagctg cccctatggg	3060
gcggggccgc agggccagcc ttgtttctct aacaaacaaa caaacaaaca gccttgtttc	3120
totagtoaca toatgtgtat acaaggaago caggaataca ggttttottg atgatttggg	3180
ttttaatttt gtttttattg cacctgacaa aatacagtta tctgatggtc cctcaattat	3240
gttattttaa taaaataaat taaatttagg tgtaaaaaaa aaaaaaaa	3291
<210> SEQ ID NO 24 <211> LENGTH: 2134 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 24	
ggagttgaga attagggagg aggtggtaga gtccgggtag tgagcggagg gacaggaagg	60
gtagggcaag aaagggagag gggacaggag ggaagggtgg gccaaagcgg tgagaaagga	120
gggccagcca gttgggtggg ggagagggcc gaggcccggg ggcaggagtg cagggctctg	180
aggeggggag aggagaggag agaagageeg eggggggeee ageeeggage eaggatgeee	240

gegeegegeg ceegggagea geeegggtg eeeggggage geeageeget getgeetege

ggtgcgcggg	gccctcgacg	gtggcggcgg	gcggcgggcg	cggccgtgct	gctggtggag	360	
atgctggagc	gcgccgcctt	cttcggcgtc	accgccaacc	tcgtgctgta	cctcaacagc	420	
accaacttca	actggaccgg	cgagcaggcg	acgcgcgccg	cgctggtatt	cctgggcgcc	480	
tcctacctgc	tggcgcccgt	gggcggctgg	ctggccgacg	tgtacctggg	ccgctaccgc	540	
gcggtcgcgc	tcagcctgct	gctctacctg	gccgcctcgg	gcctgctgcc	cgccaccgcc	600	
ttccccgacg	gccgcagctc	cttctgcgga	gagatgcccg	cgtcgccgct	gggacctgcc	660	
tgcccctcgg	ccggctgccc	gcgctcctcg	cccagcccct	actgcgcgcc	cgtcctctac	720	
gegggeetge	tgctactcgg	cctggccgcc	agctccgtcc	ggagcaacct	cacctccttc	780	
ggtgccgacc	aggtgatgga	teteggeege	gacgccaccc	gccgcttctt	caactggttt	840	
tactggagca	tcaacctggg	tgctgtgctg	tegetgetgg	tggtggcgtt	tattcagcag	900	
aacatcagct	teetgetggg	ctacagcatc	cctgtgggct	gtgtgggcct	ggcatttttc	960	
atcttcctct	ttgccacccc	cgtcttcatc	accaagcccc	cgatgggcag	ccaagtgtcc	1020	
tctatgctta	agctcgctct	ccaaaactgc	tgcccccagc	tgtggcaacg	acactcggcc	1080	
agagaccgtc	aatgtgcccg	cgtgctggcc	gacgagaggt	ctccccagcc	aggggcttcc	1140	
ccgcaagagg	acatcgccaa	cttccaggtg	ctggtgaaga	tettgeeegt	catggtgacc	1200	
ctggtgccct	actggatggt	ctacttccag	atgcagtcca	cctatgtcct	gcagggtctt	1260	
cacctccaca	tcccaaacat	tttcccagcc	aacccggcca	acatetetgt	ggccctgaga	1320	
gcccagggca	gcagctacac	gateceggaa	gcctggctcc	tcctggccaa	tgttgtggtg	1380	
gtgctgattc	tggtccctct	gaaggaccgc	ttgatcgacc	ctttactgct	gcggtgcaag	1440	
ctgcttccct	ctgctctgca	gaagatggcg	ctggggatgt	tctttggttt	tacctccgtc	1500	
attgtggcag	gagteetgga	gatggagcgc	ttacactaca	tccaccacaa	cgagaccgtg	1560	
teccageaga	ttggggaggt	cctgtacaac	gcggcaccac	tgtccatctg	gtggcagatc	1620	
cctcagtacc	tgctcattgg	gatcagtgag	atctttgcca	gcatcccagg	cctggagttt	1680	
gcctactcag	aggccccgcg	ctccatgcag	ggcgccatca	tgggcatctt	cttctgcctg	1740	
tegggggtgg	gctcactgtt	gggctccagc	ctagtggcac	tgctgtcctt	gcccgggggc	1800	
tggctgcact	gccccaagga	ctttgggaac	atcaacaatt	gccggatgga	cctctacttc	1860	
ttcctgctgg	ctggcattca	ggccgtcacg	gctctcctat	ttgtctggat	cgctggacgc	1920	
tatgagaggg	cgtcccaggg	cccagcctcc	cacageegtt	tcagcaggga	caggggctga	1980	
acaggcccta	ttccagcccc	cttgcttcac	tctaccggac	agacggcagc	agtcccagct	2040	
ctggtttcct	tctcggttta	ttctgttaga	atgaaatggt	tcccataaat	aaggggcatg	2100	
agcccttcct	cacgacaaaa	aaaaaaaaa	aaaa			2134	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI	TH: 3165	sapiens					
<400> SEQUI	ENCE: 25						
gcttttcctg	tagaaactag	gagggactag	ggagagtetg	caaggggaag	agtgtgtctg	60	
tgacactgcc	agcagcgcgc	agagggaggg	atgggggcgg	gtateggegt	aggggccctc	120	

ggaaagaacg gatattgctg tgacaccgcg gggacgctct gaagggacga gtgtcggtgt

ggcaccggtg	cacgctgaag	gagccggcgg	aaccgggtgg	ccatggggat	gtgggcatcg	240	
ctggacgctt	tgtgggagat	gccggccgag	aagcgtatct	tcggggccgt	gctgctcttt	300	
tcctggacag	tgtatctttg	ggagaccttc	ctagcacagc	ggcagagaag	gatatataaa	360	
acaacaactc	atgtaccacc	ggagttagga	cagatcatgg	attctgaaac	atttgagaaa	420	
tctcgactct	atcaactgga	taaaagcact	ttcagcttct	ggtcaggact	ctattcagag	480	
actgaaggca	ctcttattct	tctctttgga	ggaatacctt	atctctggag	actttctgga	540	
cggttctgtg	gttatgctgg	ctttggacca	gaatatgaga	tcactcagtc	cctggtgttt	600	
ctgctgttgg	ctacactttt	cagtgcattg	actggtttgc	catggagtct	ttataatact	660	
tttgtgatag	aagaaaaaca	tggcttcaat	caacagactt	tggggttctt	catgaaagat	720	
gcaatcaaga	aatttgttgt	gactcagtgt	attttgttgc	ctgtgtcttc	acttctactt	780	
tacattatta	aaattggggg	tgactatttt	tttatttatg	cctggctgtt	cacattagtt	840	
gtgtctctgg	ttcttgtcac	aatctatgct	gattatattg	cccctttatt	tgacaaattc	900	
acacctctgc	ctgagggaaa	gcttaaagaa	gaaattgaag	taatggcaaa	gagtattgac	960	
tttcctttga	cgaaggtgta	tgttgtggaa	ggatctaaac	gctcttccca	cagcaatgct	1020	
tatttttatg	gcttcttcaa	gaacaagcga	atagttttgt	ttgacactct	actagaagag	1080	
tactctgtac	taaacaaaga	catccaggag	gattctggca	tggaaccccg	caatgaggaa	1140	
gaagggaaca	gtgaagaaat	aaaagctaaa	gttaaaaata	agaaacaagg	atgtaaaaat	1200	
gaggaggtac	tegetgtact	aggccatgaa	ctggggcact	ggaagttggg	acatacagtc	1260	
aaaaatatca	. ttattagcca	gatgaattct	ttcctgtgtt	tttttttatt	tgctgtatta	1320	
attggtcgaa	aggagetttt	tgctgcattt	ggtttttatg	atagccaacc	cactcttatt	1380	
ggactattga	. tcatcttcca	gtttattttt	tcaccttaca	atgaggttct	ttctttttgc	1440	
ctaacagtcc	taagccgcag	atttgagttt	caagctgatg	catttgccaa	gaaacttggg	1500	
aaggctaaag	acttatattc	tgctttaatc	aaacttaaca	aagataactt	gggattccct	1560	
gtttctgact	ggttgttctc	aatgtggcat	tattctcatc	ctccactgct	agagagactt	1620	
caagctttga	. aaactatgaa	gcaacactga	gatgtccagg	atctgtgact	gaagacattt	1680	
ctgattattt	ctgtcctggc	agcatgttcc	agctcttgat	gtttttaaac	tttttttag	1740	
aagaaaaatt	aagtacagaa	aagcccagat	ttaaatacat	ttaatatgtc	attttaaaaa	1800	
tgattttaat	aattcatttc	ttaaaacact	gaatgaattt	tgaagcttaa	tgtttttaaa	1860	
ggcatagttt	tatctttgac	atctaattta	ccatcaagtt	gtaaaattat	ttggaaaaat	1920	
acagaactcg	ttttatttgt	atacttatat	ggaatctgca	tgtgaggtgt	ttgagggcat	1980	
atgtttgaaa	gagggagcat	caccacagga	atcctttctg	tgaggtggaa	acagtggtcc	2040	
tgaatcattg	tgctcacacc	taacttgaaa	tctggtctta	ctttcatgct	gttatgattt	2100	
cacctggtga	atcagtgttt	taaataagaa	aggtaatagt	tggtaaggcc	aatgttattt	2160	
aaatgaaagt	agttagaaaa	atgctctcct	attctaccaa	atttttaatt	tctttcttcc	2220	
ctttcttgct	acacagtgat	caagagtttc	tcatagtgct	ttgaagttag	aaattatgta	2280	
taggatattt	taaatcattg	agttttgtgg	ggtttttttg	tttgtttgtt	tcttttgttt	2340	
tttggaaaat	ccgtgtcttt	atctttttt	cccacgtggt	agatatgatc	ccattggagg	2400	
	cttcttctca					2460	
					5 5 5 6		

-continued	
ggccatatta aacacgtttt gctatgttaa aagtggcaga acaggaaaga cgaattaaaa	2520
ataacatttt ttaagcgaca taaggatgaa atactgatga atctctgtga cattacaggg	2580
aaaaaaatat agttttctat ctctttcaag ggcagaagag ttttcatttt tatttttgta	2640
attttatctg taagtcataa atattactta atcaggcctg attctacttt tgaaaattac	2700
agttcttgaa atgcagataa tgtttacttt gaaaacaaat gtcatgaatg atttccagtt	2760
tttaaagcta tatgtttcac tgcttcatat ctctgtccac tttctgaatg agaacttatt	2820
ttgtgcctag agctctcact cactgataat gcttattacc ttctgggcat ttattccaaa	2880
gtgggatcaa ctgtacgcct ttggtatctg accataaagt cttttgctcc gctgacattt	2940
gggtgatgtc ttcacatgga aatataataa aaataaaaat ctagtttaat actgcattat	3000
ttattttcct aaggetaaag aggageagte etatgetttt atteageate etttatetgt	3060
gacttcatgc tctgataact gcctttcctt ccttctgtgc ctttgaatac aaatttcagt	3120
tctgcaaaag tgaaacatta aacattgcca acgcaaatgt atgta	3165
<210> SEQ ID NO 26 <211> LENGTH: 353 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 26	
Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu 1 5 10 15	
His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser 20 25 30	
Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val 35 40 45	
Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe 50 55 60	
His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu 65 70 75 80	
Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val	
Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala	
Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile 115 120 125	
Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys 130 135 140	
Ser Cys Arg Met Leu Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu	
145 150 155 160	
Val Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Gly His Leu 165 170 175	
Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu 180 185 190	
Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Ile Val Ala Leu	
195 200 205	
Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala 210 215 220	

Ala Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly 225 230 240

Val	Phe	Ile	Val	Cys 245	Trp	Leu	Pro	Ala	Phe 250	Ser	Ile	Leu	Leu	Leu 255	Asp
Tyr	Ala	Сув	Pro 260	Val	His	Ser	Cys	Pro 265	Ile	Leu	Tyr	Lys	Ala 270	His	Tyr
Phe	Phe	Ala 275	Val	Ser	Thr	Leu	Asn 280	Ser	Leu	Leu	Asn	Pro 285	Val	Ile	Tyr
Thr	Trp 290	Arg	Ser	Arg	Asp	Leu 295	Arg	Arg	Glu	Val	Leu 300	Arg	Pro	Leu	Gln
305	Trp	Arg	Pro	Gly	Val 310	Gly	Val	Gln	Gly	Arg 315	Arg	Arg	Gly	Gly	Thr 320
Pro	Gly	His	His	Leu 325	Leu	Pro	Leu	Arg	Ser 330	Ser	Ser	Ser	Leu	Glu 335	Arg
Gly	Met	His	Met 340	Pro	Thr	Ser	Pro	Thr 345	Phe	Leu	Glu	Gly	Asn 350	Thr	Val
Val															
<211)> SE	NGTH	I: 52												
	> TY > OF			Homo	sap	iens	ı								
< 400)> SE	QUEN	ICE :	27											
Met 1	Val	Ser	Arg	Pro 5	Glu	Pro	Glu	Gly	Glu 10	Ala	Met	Asp	Ala	Glu 15	Leu
Ala	Val	Ala	Pro 20	Pro	Gly	Cys	Ser	His 25	Leu	Gly	Ser	Phe	30 Tàa	Val	Asp
Asn	Trp	Lув 35	Gln	Asn	Leu	Arg	Ala 40	Ile	Tyr	Gln	CAa	Phe 45	Val	Trp	Ser
Gly	Thr 50	Ala	Glu	Ala	Arg	Lуs 55	Arg	Lys	Ala	Lys	Ser 60	Cys	Ile	CAa	His
Val 65	Cys	Gly	Val	His	Leu 70	Asn	Arg	Leu	His	Ser 75	Cys	Leu	Tyr	Cys	Val 80
Phe	Phe	Gly	Cys	Phe 85	Thr	Lys	Lys	His	Ile 90	His	Glu	His	Ala	Lys 95	Ala
Lys	Arg	His	Asn 100	Leu	Ala	Ile	Asp	Leu 105	Met	Tyr	Gly	Gly	Ile 110	Tyr	Cys
Phe	Leu	Cys 115	Gln	Asp	Tyr	Ile	Tyr 120	Asp	ГЛа	Asp	Met	Glu 125	Ile	Ile	Ala
ГÀа	Glu 130	Glu	Gln	Arg	ГÀа	Ala 135	Trp	ГЛа	Met	Gln	Gly 140	Val	Gly	Glu	Lys
Phe 145	Ser	Thr	Trp	Glu	Pro 150	Thr	Lys	Arg	Glu	Leu 155	Glu	Leu	Leu	Lys	His 160
Asn	Pro	Lys	Arg	Arg 165	Lys	Ile	Thr	Ser	Asn 170	CAa	Thr	Ile	Gly	Leu 175	Arg
Gly	Leu	Ile	Asn 180	Leu	Gly	Asn	Thr	Cys 185	Phe	Met	Asn	CÀa	Ile 190	Val	Gln
Ala	Leu	Thr 195	His	Thr	Pro	Leu	Leu 200	Arg	Asp	Phe	Phe	Leu 205	Ser	Asp	Arg
His	Arg 210	CÀa	Glu	Met	Gln	Ser 215	Pro	Ser	Ser	CÀa	Leu 220	Val	CAa	Glu	Met
Ser 225	Ser	Leu	Phe	Gln	Glu 230	Phe	Tyr	Ser	Gly	His 235	Arg	Ser	Pro	His	Ile 240

Gly Tyr Glu Gln Gln Asp Ala His Glu Phe Leu Ile Ala Ala Leu Asp Val Leu His Arg His Cys Lys Gly Asp Asp Asn Gly Lys Lys Ala Asn 280 Asn Pro Asn His Cys Asn Cys Ile Ile Asp Gln Ile Phe Thr Gly Gly Leu Gln Ser Asp Val Thr Cys Gln Val Cys His Gly Val Ser Thr Thr Ile Asp Pro Phe Trp Asp Ile Ser Leu Asp Leu Pro Gly Ser Ser Thr Pro Phe Trp Pro Leu Ser Pro Gly Ser Glu Gly Asn Val Val Asn Gly 340 345 Glu Ser His Val Ser Gly Thr Thr Thr Leu Thr Asp Cys Leu Arg Arg 360 Phe Thr Arg Pro Glu His Leu Gly Ser Ser Ala Lys Ile Lys Cys Ser 375 Gly Cys His Ser Tyr Gln Glu Ser Thr Lys Gln Leu Thr Met Lys Lys 395 Leu Pro Ile Val Ala Cys Phe His Leu Lys Arg Phe Glu His Ser Ala 410 405 Lys Leu Arg Arg Lys Ile Thr Thr Tyr Val Ser Phe Pro Leu Glu Leu 420 425 Asp Met Thr Pro Phe Met Ala Ser Ser Lys Glu Ser Arg Met Asn Gly 440 Gln Tyr Gln Gln Pro Thr Asp Ser Leu Asn Asn Asp Asn Lys Tyr Ser 455 Leu Phe Ala Val Val Asn His Gln Gly Thr Leu Glu Ser Gly His Tyr Thr Ser Phe Ile Arg Gln His Lys Asp Gln Trp Phe Lys Cys Asp Asp 490 Ala Ile Ile Thr Lys Ala Ser Ile Lys Asp Val Leu Asp Ser Glu Gly Tyr Leu Leu Phe Tyr His Lys Gln Phe Leu Glu Tyr Glu <210> SEQ ID NO 28 <211> LENGTH: 308 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 28 Met Ala Ser Ser Asn Thr Val Leu Met Arg Leu Val Ala Ser Ala Tyr 10 Ser Ile Ala Gln Lys Ala Gly Met Ile Val Arg Arg Val Ile Ala Glu 25 Gly Asp Leu Gly Ile Val Glu Lys Thr Cys Ala Thr Asp Leu Gln Thr Lys Ala Asp Arg Leu Ala Gln Met Ser Ile Cys Ser Ser Leu Ala Arg Lys Phe Pro Lys Leu Thr Ile Ile Gly Glu Glu Asp Leu Pro Ser Glu

Pro Tyr Lys Leu Leu His Leu Val Trp Thr His Ala Arg His Leu Ala

250

70

65

-continued

75

Glu	Val	Asp	Gln	Glu 85	Leu	Ile	Glu	Asp	Ser 90	Gln	Trp	Glu	Glu	Ile 95	Leu
Lys	Gln	Pro	Cys 100	Pro	Ser	Gln	Tyr	Ser 105	Ala	Ile	Lys	Glu	Glu 110	Asp	Leu
Val	Val	Trp 115	Val	Asp	Pro	Leu	Asp 120	Gly	Thr	ГÀа	Glu	Tyr 125	Thr	Glu	Gly
Leu	Leu 130	Asp	Asn	Val	Thr	Val 135	Leu	Ile	Gly	Ile	Ala 140	Tyr	Glu	Gly	ГЛа
Ala 145	Ile	Ala	Gly	Val	Ile 150	Asn	Gln	Pro	Tyr	Tyr 155	Asn	Tyr	Glu	Ala	Gly 160
Pro	Asp	Ala	Val	Leu 165	Gly	Arg	Thr	Ile	Trp 170	Gly	Val	Leu	Gly	Leu 175	Gly
Ala	Phe	Gly	Phe 180	Gln	Leu	Lys	Glu	Val 185	Pro	Ala	Gly	Lys	His 190	Ile	Ile
Thr	Thr	Thr 195	Arg	Ser	His	Ser	Asn 200	Lys	Leu	Val	Thr	Asp 205	Cys	Val	Ala
Ala	Met 210	Asn	Pro	Asp	Ala	Val 215	Leu	Arg	Val	Gly	Gly 220	Ala	Gly	Asn	Lys
Ile 225	Ile	Gln	Leu	Ile	Glu 230	Gly	Lys	Ala	Ser	Ala 235	Tyr	Val	Phe	Ala	Ser 240
Pro	Gly	Cys	Lys	Lys 245	Trp	Asp	Thr	Cys	Ala 250	Pro	Glu	Val	Ile	Leu 255	His
Ala	Val	Gly	Gly 260	Lys	Leu	Thr	Asp	Ile 265	His	Gly	Asn	Val	Leu 270	Gln	Tyr
His	Lys	Asp 275	Val	Lys	His	Met	Asn 280	Ser	Ala	Gly	Val	Leu 285	Ala	Thr	Leu
Arg	Asn 290	Tyr	Asp	Tyr	Tyr	Ala 295	Ser	Arg	Val	Pro	Glu 300	Ser	Ile	Lys	Asn
Ala 305	Leu	Val	Pro												
<211 <212	0> SE L> LE 2> TY 3> OF	ENGTI (PE :	H: 48 PRT	37	sa <u>r</u>	piens	3								
< 400)> SI	EQUE1	ICE :	29											
Met 1	Pro	Gly	Pro	Arg 5	Val	Trp	Gly	Lys	Tyr 10	Leu	Trp	Arg	Ser	Pro 15	His
Ser	Lys	Gly	Cys 20	Pro	Gly	Ala	Met	Trp 25	Trp	Leu	Leu	Leu	Trp 30	Gly	Val
Leu	Gln	Ala 35	Cys	Pro	Thr	Arg	Gly 40	Ser	Val	Leu	Leu	Ala 45	Gln	Glu	Leu
Pro	Gln 50	Gln	Leu	Thr	Ser	Pro 55	Gly	Tyr	Pro	Glu	Pro 60	Tyr	Gly	Lys	Gly
Gln 65	Glu	Ser	Ser	Thr	Asp 70	Ile	Lys	Ala	Pro	Glu 75	Gly	Phe	Ala	Val	Arg 80
Leu	Val	Phe	Gln	Asp	Phe	Asp	Leu	Glu	Pro 90	Ser	Gln	Asp	Сув	Ala 95	Gly
Asp	Ser	Val	Thr 100	Ile	Ser	Phe	Val	Gly 105	Ser	Asp	Pro	Ser	Gln 110	Phe	Cys

Gly	Gln		Gly	Ser	Pro	Leu		Arg	Pro	Pro	Gly		Arg	Glu	Phe
		115		_	_	_	120					125			_
Val	Ser 130	Ser	Gly	Arg	Ser	Leu 135	Arg	Leu	Thr	Phe	Arg 140	Thr	Gln	Pro	Ser
Ser 145	Glu	Asn	Lys	Thr	Ala 150	His	Leu	His	Lys	Gly 155	Phe	Leu	Ala	Leu	Tyr 160
Gln	Thr	Val	Ala	Val 165	Asn	Tyr	Ser	Gln	Pro 170	Ile	Ser	Glu	Ala	Ser 175	Arg
Gly	Ser	Glu	Ala 180	Ile	Asn	Ala	Pro	Gly 185	Asp	Asn	Pro	Ala	Lys 190	Val	Gln
Asn	His	Суs 195	Gln	Glu	Pro	Tyr	Tyr 200	Gln	Ala	Ala	Ala	Ala 205	Gly	Ala	Leu
Thr	Cys 210	Ala	Thr	Pro	Gly	Thr 215	Trp	ГЛа	Asp	Arg	Gln 220	Asp	Gly	Glu	Glu
Val 225	Leu	Gln	CAa	Met	Pro 230	Val	CÀa	Gly	Arg	Pro 235	Val	Thr	Pro	Ile	Ala 240
Gln	Asn	Gln	Thr	Thr 245	Leu	Gly	Ser	Ser	Arg 250	Ala	Lys	Leu	Gly	Asn 255	Phe
Pro	Trp	Gln	Ala 260	Phe	Thr	Ser	Ile	His 265	Gly	Arg	Gly	Gly	Gly 270	Ala	Leu
Leu	Gly	Asp 275	Arg	Trp	Ile	Leu	Thr 280	Ala	Ala	His	Thr	Ile 285	Tyr	Pro	ГÀв
Asp	Ser 290	Val	Ser	Leu	Arg	Lys 295	Asn	Gln	Ser	Val	Asn 300	Val	Phe	Leu	Gly
His 305	Thr	Ala	Ile	Asp	Glu 310	Met	Leu	Lys	Leu	Gly 315	Asn	His	Pro	Val	His 320
Arg	Val	Val	Val	His 325	Pro	Asp	Tyr	Arg	Gln 330	Asn	Glu	Ser	His	Asn 335	Phe
Ser	Gly	Asp	Ile 340	Ala	Leu	Leu	Glu	Leu 345	Gln	His	Ser	Ile	Pro 350	Leu	Gly
Pro	Asn	Val 355	Leu	Pro	Val	CÀa	Leu 360	Pro	Asp	Asn	Glu	Thr 365	Leu	Tyr	Arg
Ser	Gly 370	Leu	Leu	Gly	Tyr	Val 375	Ser	Gly	Phe	Gly	Met 380	Glu	Met	Gly	Trp
Leu 385	Thr	Thr	Glu	Leu	390 Lys	Tyr	Ser	Arg	Leu	Pro 395	Val	Ala	Pro	Arg	Glu 400
Ala	Cha	Asn	Ala	Trp 405	Leu	Gln	Lys		Gln 410		Pro	Glu	Val	Phe 415	Ser
Asp	Asn	Met	Phe 420	CÀa	Val	Gly	Asp	Glu 425	Thr	Gln	Arg	His	Ser 430	Val	Сув
Gln	Gly	Asp 435	Ser	Gly	Ser	Val	Tyr 440	Val	Val	Trp	Asp	Asn 445	His	Ala	His
His	Trp 450	Val	Ala	Thr	Gly	Ile 455	Val	Ser	Trp	Gly	Ile 460	Gly	Cys	Gly	Glu
Gly 465	Tyr	Asp	Phe	Tyr	Thr 470	Lys	Val	Leu	Ser	Tyr 475	Val	Asp	Trp	Ile	Lys 480
Gly	Val	Met	Asn	Gly 485	ГÀа	Asn									

<210> SEQ ID NO 30 <211> LENGTH: 212 <212> TYPE: PRT

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 30
Met Lys Ala Thr Ile Ile Leu Leu Leu Leu Ala Gln Val Ser Trp Ala
Gly Pro Phe Gln Gln Arg Gly Leu Phe Asp Phe Met Leu Glu Asp Glu
                       25
Ala Ser Gly Ile Gly Pro Glu Val Pro Asp Asp Arg Asp Phe Glu Pro
Ser Leu Gly Pro Val Cys Pro Phe Arg Cys Gln Cys His Leu Arg Val
Val Gln Cys Ser Asp Leu Gly Leu Pro Pro Ser Leu Thr Glu Leu His
Leu Asp Gly Asn Lys Ile Ser Arg Val Asp Ala Ala Ser Leu Lys Gly
Leu Asn Asn Leu Ala Lys Leu Gly Leu Ser Phe Asn Ser Ile Ser Ala
                             105
Val Asp Asn Gly Ser Leu Ala Asn Thr Pro His Leu Arg Glu Leu His
                          120
Leu Asp Asn Asn Lys Leu Thr Arg Val Pro Gly Gly Leu Ala Glu His
              135
Lys Tyr Ile Gln Val Val Tyr Leu His Asn Asn Asn Ile Ser Val Val
                 150
                                     155
Gly Ser Ser Asp Phe Cys Pro Pro Gly His Asn Thr Lys Lys Ala Ser
              165
                                  170
Tyr Ser Gly Val Ser Leu Phe Ser Asn Pro Val Gln Tyr Trp Glu Ile
                              185
Gln Pro Ser Thr Phe Arg Cys Val Tyr Val Arg Ser Ala Ile Gln Leu
                          200
Gly Asn Tyr Lys
   210
<210> SEQ ID NO 31
<211> LENGTH: 75
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 31
Met Lys Ala Thr Ile Ile Leu Leu Leu Leu Ala Gln Val Ser Trp Ala
Gly Pro Phe Gln Gln Arg Gly Leu Phe Asp Phe Met Leu Glu Asp Glu
Ala Ser Gly Ile Gly Pro Glu Val Pro Asp Asp Arg Asp Phe Glu Pro
Ser Leu Gly Pro Val Cys Pro Phe Arg Cys Gln Cys His Leu Arg Val
                      55
Val Gln Cys Ser Asp Leu Gly Cys Leu Pro Ser
<210> SEQ ID NO 32
<211> LENGTH: 172
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 32
```

Gly Pro Phe Gln Gln Arg Gly Leu Phe Asp Phe Met Leu Glu Asp Glu Ala Ser Gly Ile Gly Pro Glu Val Pro Asp Asp Arg Asp Phe Glu Pro Ser Leu Gly Pro Val Cys Pro Phe Arg Cys Gln Cys His Leu Arg Val Val Gln Cys Ser Asp Leu Gly Leu Asp Lys Val Pro Lys Asp Leu Pro 65 70 75 80 Pro Asp Thr Thr Leu Leu Asp Leu Gln Asn Asn Lys Ile Thr Glu Ile Lys Asp Gly Asp Phe Lys Asn Leu Lys Asn Leu His Val Val Tyr Leu 100 105 His Asn Asn Asn Ile Ser Val Val Gly Ser Ser Asp Phe Cys Pro Pro 120 Gly His Asn Thr Lys Lys Ala Ser Tyr Ser Gly Val Ser Leu Phe Ser 135 Asn Pro Val Gln Tyr Trp Glu Ile Gln Pro Ser Thr Phe Arg Cys Val 150 Tyr Val Arg Ser Ala Ile Gln Leu Gly Asn Tyr Lys 165 <210> SEQ ID NO 33 <211> LENGTH: 250 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 33 Met Lys Ala Thr Ile Ile Leu Leu Leu Leu Ala Gln Val Ser Trp Ala Gly Pro Phe Gln Gln Arg Gly Leu Phe Asp Phe Met Leu Glu Asp Glu Ala Ser Gly Ile Gly Pro Glu Val Pro Asp Asp Arg Asp Phe Glu Pro Ser Leu Gly Pro Val Cys Pro Phe Arg Cys Gln Cys His Leu Arg Val Val Gln Cys Ser Asp Leu Glu Leu Gly Thr Asn Pro Leu Lys Ser Ser 65 70 75 80 Gly Ile Glu Asn Gly Ala Phe Gln Gly Met Lys Lys Leu Ser Tyr Ile Arg Ile Ala Asp Thr Asn Ile Thr Ser Ile Pro Gln Gly Leu Pro Pro Ser Leu Thr Glu Leu His Leu Asp Gly Asn Lys Ile Ser Arg Val Asp 120 Ala Ala Ser Leu Lys Gly Leu Asn Asn Leu Ala Lys Leu Gly Leu Ser 135 Phe Asn Ser Ile Ser Ala Val Asp Asn Gly Ser Leu Ala Asn Thr Pro His Leu Arg Glu Leu His Leu Asp Asn Asn Lys Leu Thr Arg Val Pro Gly Gly Leu Ala Glu His Lys Tyr Ile Gln Val Val Tyr Leu His Asn

Met Lys Ala Thr Ile Ile Leu Leu Leu Leu Ala Gln Val Ser Trp Ala

			180					185					190		
Asn	Asn	Ile 195	Ser	Val	Val	Gly	Ser 200	Ser	Asp	Phe	Cys	Pro 205	Pro	Gly	His
Asn	Thr 210	Lys	Lys	Ala	Ser	Tyr 215	Ser	Gly	Val	Ser	Leu 220	Phe	Ser	Asn	Pro
Val 225	Gln	Tyr	Trp	Glu	Ile 230	Gln	Pro	Ser	Thr	Phe 235	Arg	CAa	Val	Tyr	Val 240
Arg	Ser	Ala	Ile	Gln 245	Leu	Gly	Asn	Tyr	Lys 250						
<211 <212	> LE 2> TY	EQ II ENGTH (PE: RGAN)	1: 35 PRT		o sal	piens	3								
< 400)> SI	EQUE1	ICE :	34											
Met 1	Lys	Ala	Thr	Ile 5	Ile	Leu	Leu	Leu	Leu 10	Ala	Gln	Val	Ser	Trp 15	Ala
Gly	Pro	Phe	Gln 20	Gln	Arg	Gly	Leu	Phe 25	Asp	Phe	Met	Leu	Glu 30	Asp	Glu
Ala	Ser	Gly 35	Ile	Gly	Pro	Glu	Val 40	Pro	Asp	Asp	Arg	Asp 45	Phe	Glu	Pro
Ser	Leu 50	Gly	Pro	Val	Cys	Pro 55	Phe	Arg	Cys	Gln	GÀa	His	Leu	Arg	Val
Val 65	Gln	Сув	Ser	Asp	Leu 70	Gly	Leu	Asp	Lys	Val 75	Pro	Lys	Asp	Leu	Pro 80
Pro	Asp	Thr	Thr	Leu 85	Leu	Asp	Leu	Gln	Asn 90	Asn	Lys	Ile	Thr	Glu 95	Ile
Lys	Asp	Gly	Asp 100	Phe	Lys	Asn	Leu	Lys 105	Asn	Leu	His	Ala	Leu 110	Ile	Leu
Val	Asn	Asn 115	Lys	Ile	Ser	Lys	Val 120	Ser	Pro	Gly	Ala	Phe 125	Thr	Pro	Leu
Val	Lys 130	Leu	Glu	Arg	Leu	Tyr 135	Leu	Ser	ràa	Asn	Gln 140	Leu	Lys	Glu	Leu
Pro 145	Glu	ГЛа	Met	Pro	Lys 150	Thr	Leu	Gln	Glu	Leu 155	Arg	Ala	His	Glu	Asn 160
Glu	Ile	Thr	ГЛа	Val 165	Arg	ГÀа	Val	Thr	Phe 170	Asn	Gly	Leu	Asn	Gln 175	Met
Ile	Val	Ile	Glu 180	Leu	Gly	Thr	Asn	Pro 185	Leu	ГЛа	Ser	Ser	Gly 190	Ile	Glu
Asn	Gly	Ala 195	Phe	Gln	Gly	Met	Lys 200	ГÀа	Leu	Ser	Tyr	Ile 205	Arg	Ile	Ala
Asp	Thr 210	Asn	Ile	Thr	Ser	Ile 215	Pro	Gln	Gly	Leu	Pro 220	Pro	Ser	Leu	Thr
Glu 225	Leu	His	Leu	Asp	Gly 230	Asn	Lys	Ile	Ser	Arg 235	Val	Asp	Ala	Ala	Ser 240
Leu	Lys	Gly	Leu	Asn 245	Asn	Leu	Ala	Lys	Leu 250	Gly	Leu	Ser	Phe	Asn 255	Ser
Ile	Ser	Ala	Val 260	Asp	Asn	Gly	Ser	Leu 265	Ala	Asn	Thr	Pro	His 270	Leu	Arg
Glu	Leu	His 275	Leu	Asp	Asn	Asn	Lys 280	Leu	Thr	Arg	Val	Pro 285	Gly	Gly	Leu

Ala	Glu 290	His	Lys	Tyr	Ile	Gln 295	Val	Val	Tyr	Leu	His 300	Asn	Asn	Asn	Ile
Ser 305	Val	Val	Gly	Ser	Ser 310	Asp	Phe	Сув	Pro	Pro 315	Gly	His	Asn	Thr	120 320
Lys	Ala	Ser	Tyr	Ser 325	Gly	Val	Ser	Leu	Phe 330	Ser	Asn	Pro	Val	Gln 335	Tyr
Trp	Glu	Ile	Gln 340	Pro	Ser	Thr	Phe	Arg 345	Сув	Val	Tyr	Val	Arg 350	Ser	Ala
Ile	Gln	Leu 355	Gly	Asn	Tyr	Lys									
		EQ II													
<212	2 > T	ENGTI (PE : (GAN)	PRT	59 Homo	sap	piens	3								
< 400)> SI	EQUE1	ICE :	35											
Met 1	Lys	Ala	Thr	Ile 5	Ile	Leu	Leu	Leu	Leu 10	Ala	Gln	Val	Ser	Trp 15	Ala
Gly	Pro	Phe	Gln 20	Gln	Arg	Gly	Leu	Phe 25	Asp	Phe	Met	Leu	Glu 30	Asp	Glu
Ala	Ser	Gly 35	Ile	Gly	Pro	Glu	Val 40	Pro	Asp	Asp	Arg	Asp 45	Phe	Glu	Pro
Ser	Leu 50	Gly	Pro	Val	CÀa	Pro 55	Phe	Arg	Cys	Gln	Cya	His	Leu	Arg	Val
Val 65	Gln	Cys	Ser	Asp	Leu 70	Gly	Leu	Asp	Lys	Val 75	Pro	Lys	Asp	Leu	Pro 80
Pro	Asp	Thr	Thr	Leu 85	Leu	Asp	Leu	Gln	Asn 90	Asn	Lys	Ile	Thr	Glu 95	Ile
Lys	Asp	Gly	Asp 100	Phe	ГÀа	Asn	Leu	Lys 105	Asn	Leu	His	Ala	Leu 110	Ile	Leu
Val	Asn	Asn 115	Lys	Ile	Ser	Lys	Val 120	Ser	Pro	Gly	Ala	Phe 125	Thr	Pro	Leu
Val	Lys 130	Leu	Glu	Arg	Leu	Tyr 135	Leu	Ser	Lys	Asn	Gln 140	Leu	Lys	Glu	Leu
Pro 145	Glu	Lys	Met	Pro	Lys 150	Thr	Leu	Gln	Glu	Leu 155	Arg	Ala	His	Glu	Asn 160
Glu	Ile	Thr	Lys	Val 165	Arg	Lys	Val	Thr	Phe 170	Asn	Gly	Leu	Asn	Gln 175	Met
Ile	Val	Ile	Glu 180	Leu	Gly	Thr	Asn	Pro 185	Leu	ГЛа	Ser	Ser	Gly 190	Ile	Glu
Asn	Gly	Ala 195	Phe	Gln	Gly	Met	Lys 200	ГЛа	Leu	Ser	Tyr	Ile 205	Arg	Ile	Ala
Asp	Thr 210	Asn	Ile	Thr	Ser	Ile 215	Pro	Gln	Gly	Leu	Pro 220	Pro	Ser	Leu	Thr
Glu 225	Leu	His	Leu	Asp	Gly 230	Asn	Lys	Ile	Ser	Arg 235	Val	Asp	Ala	Ala	Ser 240
Leu	Lys	Gly	Leu	Asn 245	Asn	Leu	Ala	Lys	Leu 250	Gly	Leu	Ser	Phe	Asn 255	Ser
Ile	Ser	Ala	Val 260	Asp	Asn	Gly	Ser	Leu 265	Ala	Asn	Thr	Pro	His 270	Leu	Arg
Glu	Leu	His 275	Leu	Asp	Asn	Asn	Lys 280	Leu	Thr	Arg	Val	Pro 285	Gly	Gly	Leu

Ala Glu His Lys Tyr Ile Gln Val Val Tyr Leu His Asn Asn Asn Ile 295 Ser Val Val Gly Ser Ser Asp Phe Cys Pro Pro Gly His Asn Thr Lys Lys Ala Ser Tyr Ser Gly Val Ser Leu Phe Ser Asn Pro Val Gln Tyr Trp Glu Ile Gln Pro Ser Thr Phe Arg Cys Val Tyr Val Arg Ser Ala Ile Gln Leu Gly Asn Tyr Lys <210> SEQ ID NO 36 <211> LENGTH: 443 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 36 Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 10 Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gl
n Asp Ser Glu Glu 25 25 Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Pro Asp 40 Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys Leu Pro Arg Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro Pro Pro Pro Val Pro Pro Ala Gln His Pro Asn Pro Cys Pro Pro Gly 100 105 Tyr Glu Pro Asp Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 135 Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145 $\,$ 150 $\,$ 155 $\,$ 160 Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 165 $$ 170 $$ 175 Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 215 Leu Cys Arg Cys His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 230 235 Cys Ser Asp Ile Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Ile Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu

280																
290			275					280					285			
310	Ser	-	Ala	His	Gln	Cys		Glu	Ala	Gln	Thr	-	Val	Asn	Phe	His
Signatur Signatur		Gly	Tyr	Arg	Cys		Asp	Thr	Asn	Arg	_	Val	Glu	Pro	Tyr	
340 345	Gln	Val	Ser	Glu		Arg	CAa	Leu	СЛа		Ala	Ser	Asn	Pro		Сув
355	Arg	Glu	Gln		Ser	Ser	Ile	Val		Arg	Tyr	Met	Thr		Thr	Ser
Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Ass Net Val And Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 400 Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 415 Met Val Thr Met Asn Ser Leu Met 425 Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 430	Glu	Arg		Val	Pro	Ala	Asp		Phe	Gln	Ile	Gln		Thr	Ser	Val
395	Tyr		Gly	Ala	Tyr	Asn		Phe	Gln	Ile	Arg		Gly	Asn	Ser	Gln
Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Ser Val Leu Asn Ser Leu Met Asn Leu Asn Leu Tyr Pro Gln Leu Gys Arg Arg Asn Ser Val Tyr Leu Tyr Tyr Leu Leu Asn Lou Asn Lys Asn Charles As Arg Arg Asn Lau Arg Arg Asn Lau Arg Arg Asn Lus Leu Asn Lys Asn Gln Glu Gly Gly Val Cys Asn Lys Asn Charles Asn Leu Arg Arg Asn Asn Arg Arg Arg Arg Arg Asn Lys Asn Lys Asn Lys Asn Cys Ala Lys Pro Asn Lys Asn Lys Asn Cys Ala Lys Pro Asn Lys Asn Lys Asn Cys Ala Lys Pro Asn Lys Asn Lys Asn Cys Ala Lys Pro Asn Lys Asn Cys Ala Cys Cys Thr Cys	_	Asp	Phe	Tyr	Ile	_	Gln	Ile	Asn	Asn		Ser	Ala	Met	Leu	
Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 2211> LENGTH: 333	Leu	Ala	Arg	Pro		Thr	Gly	Pro	Arg		Tyr	Val	Leu	Asp		Glu
<pre></pre>	Met	Val	Thr		Asn	Ser	Leu	Met		Tyr	Arg	Ala	Ser		Val	Leu
<pre> <211> LENGTH: 333 <212> TYPE: PRT </pre> <pre> <213> ORGANISM: Homo sapiens </pre> <pre> <400> SEQUENCE: 37 Met Ala Val Arg Arg Asp Ser Val Trp Lys Tyr Cys Trp Gly Val Leu 1</pre>	Arg	Leu		Val	Phe	Val	Gly		Tyr	Thr	Phe					
Met Ala Ala Arg Inc Inc <td><211 <212</td> <td>L> LE 2> TY</td> <td>ENGTH</td> <td>H: 33</td> <td>33</td> <td>o saj</td> <td>piens</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<211 <212	L> LE 2> TY	ENGTH	H: 33	33	o saj	piens	3								
1 5 10 15 15 Met Val Leu Cys Arg Thr Ala Ile Ser Lys Ser Ile Val Leu Glu Pro 30 Arg Thr Ala Ile Ser Lys Phe Leu Pro 30 Gly Glu Pro 30 Ile Tyr Trp Asn Ser Ser Asn Ser Lys Phe Leu Pro 35 Gly Glu Gly Leu Asp Lys Phe Leu Pro 61 Gly Glu Gly Leu Asp Ile Ile Cys Pro Lys 60 Val Leu Tyr Pro Gln Ile Gly Asp Lys Leu Asp Ile Ile Cys Pro Lys 50 Asp Ser Lys Thr Val Gly Gln Tyr Glu Tyr Tyr Lys Val Tyr Met 80 Val Asp Lys Asp Gln Ala Asp Arg Cys Thr Ile Lys Lys Glu Asn Thr 80 Val Asp Lus Asp Cys Ala Lys Pro Asp Gln Asp Ile Lys Lys Glu Asn Thr 95 Pro Leu Leu Asn Cys Ala Lys Pro Asn Leu Trp Gly Leu Glu Phe Gln Lys 115 Lys Phe Gln Glu Phe Ser Pro Asn Leu Trp Gly Leu Glu Phe Gln Lys 115 Asn Lys Asp Tyr Tyr Ile Ile Ser Thr Ser Asn Gly Ser Leu Glu Gly Gly Gly 135 Leu Asp Asn Gln Glu Gly Gly Val Cys Gln Thr Arg Ala Met Lys Ile 160 Leu Met Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Thr Arg Asn 165 Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg	< 400)> SI	EQUE	ICE :	37											
11e Tyr Try Ash Ser Ser Ash Ser Lys Phe Leu Pro Gly Gln Gly Leu Val Leu Tyr Pro Gln Ile Gly Ash Lys Leu Ash Glo Ile Gly Rober Val Ash Ser Lys Thr Val Gly Gln Tyr Glu Tyr Tyr Lys Val Tyr Met Robert Ash Lys Ash Gln Ala Ash Arg Cys Thr Glu Tyr Tyr Lys Und Tyr Met Robert Ash Lys Ash Gln Ala Ash Arg Cys Thr Ile Lys Lys Glu Ash Thr Pro Leu Leu Ash Cys Ala Lys Pro Ash Gln Ash Ile Lys Phe Thr Ile Lys Phe Gln Glu Phe Ser Pro Ash Leu Trp Gly Leu Glu Phe Gln Lys Ash Lys Ash Tyr Tyr Ile Ile Ser Thr Ser Ash Gly Ser Leu Glu Gly Leu Ash Ash Glu Gly Gln Ash Val Cys Gln Thr Arg Ala Met Lys Ile Leu Met Lys Val Gly Gln Ash Ash Ser Ser Ala Gly Ser Thr Arg Ash Lys Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Ash Gly Arg Leu Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Ash Gly Arg Leu Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Ash Gly Arg Leu Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Ash Gly Arg Lys Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Ash Gly Arg Lys Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Lys Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Gly Arg Lys Ash Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Gly Arg Lys Arg Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Gly Arg Lys Arg Pro Thr Arg Arg Pro Arg		Ala	Val	Arg	_	Asp	Ser	Val	Trp	_	Tyr	Cys	Trp	Gly		Leu
Val Leu Tyr Pro Gln Ile Gly Asp Lys Leu Asp Ile Ile Cys Pro Lys Val Asp Ser Lys Thr Val Gly Gln Tyr Glu Tyr Tyr Lys Lys Val Tyr Ros Ile Lys Val Tyr Ros Ros Ile Lys Lys Lys Ros Thr Ros R	Met	Val	Leu	_	Arg	Thr	Ala	Ile		Lys	Ser	Ile	Val		Glu	Pro
55	Ile	Tyr	_	Asn	Ser	Ser	Asn		Lys	Phe	Leu	Pro	_	Gln	Gly	Leu
Fro Leu Leu Asp Tyr Tyr Ile Ile Ser Thr Ser Asp Gly Ser Leu Glu Gly Ile Lys Asp Asp Gln Gly Gly Gly Ser Ile Lys Lys Glu Asp Thr 130 Ser Leu Asp Asp Tyr Tyr Ile Ile Ser Thr Ser Asp Gly Ser Leu Glu Gly Gly Leu Asp Asp Asp Tyr Tyr Ile Ile Ser Thr Ser Asp Gly Ser Leu Glu Gly Gly Leu Asp Asp Asp Tyr Tyr Ile Ile Ser Thr Ser Asp Gly Ser Leu Glu Gly Gly Leu Asp Asp Asp Gln Glu Gly Gly Val Cys Gln Thr Arg Ala Met Lys Ile 160 Leu Met Lys Val Gly Gln Asp Asp Ala Ser Ser Ala Gly Ser Thr Arg Asp Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asp Gly Arg	Val		Tyr	Pro	Gln	Ile		Asp	Lys	Leu	Asp		Ile	Cys	Pro	Lys
95 Pro Leu Leu Asn Cys Ala Lys Pro Asn Gln Asn Ile Lys Phe Thr Ile Lys Phe Gln Gln Phe Ser Pro Asn Lys Try Ile 115 Asn Lys Asp Asn Gln Glu Glu Gly Gly Ser Try 135 Leu Asp Asn Gln Glu Gly Gly Val Cys Gln Thr Asn Gly Ser Leu Glu Phe 156 Leu Met Lys Val Gly Gln Asp Asp Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg		Asp	Ser	Lys	Thr		Gly	Gln	Tyr	Glu		Tyr	Lys	Val	Tyr	
Leu Met Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Asp Leu Glu Asp Pro Gln Arg Leu Glu Asp Arg Pro Gln Arg Clu Asp Arg Pro Glu Leu Glu Arg Clu Arg Arg Arg Pro Glu Leu Glu Arg Clu Arg Arg Arg Arg Pro Glu Leu Glu Arg Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg Pro Glu Leu Glu Ala Gly Thr Arg Arg Arg	Val	Asp	Lys	Asp		Ala	Asp	Arg	Cys		Ile	Lys	Lys	Glu		Thr
Asn Lys Asp Tyr Tyr Ile Ile Ser Thr Ser Asn Gly Ser Leu Glu Gly Gly Leu Asp Asn Glu Gly Gly Val Cys Glu Thr Arg Ala Met Lys Ile Leu Met Lys Val Gly Glu Asp Ala Gly Ser Ala Gly Ser Thr Arg Asp Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg	Pro	Leu	Leu		CÀa	Ala	ГЛа	Pro	-	Gln	Asp	Ile	Lys		Thr	Ile
130 135 140 Leu Asp Asn Gln Glu Gly Gly Val Cys Gln Thr Arg Ala Met Lys Ile 145 150 5 600 Leu Met Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Thr Arg Asn 165 170 175 Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg	Lys	Phe		Glu	Phe	Ser	Pro		Leu	Trp	Gly	Leu		Phe	Gln	Lys
145 150 155 160 Leu Met Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Thr Arg Asp Lys Asp Pro Thr Arg Pro Glu Leu Glu Ala Gly Thr Asp Gly Arg	Asn	_	Asp	Tyr	Tyr	Ile		Ser	Thr	Ser	Asn	_	Ser	Leu	Glu	Gly
165 170 175 Lys Asp Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg		Asp	Asn	Gln	Glu	_	Gly	Val	Cya	Gln		Arg	Ala	Met	ГÀа	
	Leu	Met	Lys	Val		Gln	Asp	Ala	Ser		Ala	Gly	Ser	Thr		Asn
	ГЛа	Asp	Pro		Arg	Arg	Pro	Glu		Glu	Ala	Gly	Thr		Gly	Arg

Ser Ser	Thr Th: 195	r Ser	Pro	Phe	Val 200	Lys	Pro	Asn	Pro	Gly 205	Ser	Ser	Thr
Asp Gly 210	Asn Se	r Ala	Gly	His 215	Ser	Gly	Asn	Asn	Ile 220	Leu	Gly	Ser	Glu
Val Ala 225	Leu Ph	e Ala	Gly 230	Ile	Ala	Ser	Gly	Сув 235	Ile	Ile	Phe	Ile	Val 240
Ile Ile	Ile Th	r Leu 245	Val	Val	Leu	Leu	Leu 250	Lys	Tyr	Arg	Arg	Arg 255	His
Arg Lys	His Se		Gln	His	Thr	Thr 265	Thr	Leu	Ser	Leu	Ser 270	Thr	Leu
Ala Thr	Pro Lys 275	a Arg	Ser	Gly	Asn 280	Asn	Asn	Gly	Ser	Glu 285	Pro	Ser	Asp
Ile Ile 290	Ile Pro) Leu	Arg	Thr 295	Ala	Asp	Ser	Val	Phe 300	Cys	Pro	His	Tyr
Glu Lys 305	Val Se	r Gly	Asp 310	Tyr	Gly	His	Pro	Val 315	Tyr	Ile	Val	Gln	Glu 320
Met Pro	Pro Gli	325 3	Pro	Ala	Asn	Ile	Tyr 330	Tyr	Lys	Val			
<210> SI <211> LI <212> TY <213> OF <400> SI	ENGTH: : YPE: PR' RGANISM	370 [: Hom	o saj	piens	s								
Met Asn 1	Ser Ası	ı Leu 5	Pro	Ala	Glu	Asn	Leu 10	Thr	Ile	Ala	Val	Asn 15	Met
Thr Lys	Thr Lev	ı Pro	Thr	Ala	Val	Thr 25	His	Gly	Phe	Asn	Ser 30	Thr	Asn
Asp Pro	Pro Se	r Met	Ser	Ile	Thr 40	Arg	Leu	Phe	Pro	Ala 45	Leu	Leu	Glu
Cys Phe 50	Gly Ile	e Val	Leu	Сув 55	Gly	Tyr	Ile	Ala	Gly 60	Arg	Ala	Asn	Val
Ile Thr 65	Ser Th	r Gln	Ala 70	Lys	Gly	Leu	Gly	Asn 75	Phe	Val	Ser	Arg	Phe 80
Ala Leu	Pro Ala	a Leu 85	Leu	Phe	Lys	Asn	Met 90	Val	Val	Leu	Asn	Phe 95	Ser
Asn Val	Asp Tr		Phe	Leu	Tyr	Ser 105	Ile	Leu	Ile	Ala	Lys 110	Ala	Ser
Val Phe	Phe Ile	e Val	CAa	Val	Leu 120	Thr	Leu	Leu	Val	Ala 125	Ser	Pro	Asp
Ser Arg 130	Phe Se	r Lys	Ala	Gly 135	Leu	Phe	Pro	Ile	Phe 140	Ala	Thr	Gln	Ser
Asn Asp 145	Phe Ala	a Leu	Gly 150	Tyr	Pro	Ile	Val	Glu 155	Ala	Leu	Tyr	Gln	Thr 160
Thr Tyr	Pro Gl	1 Tyr 165	Leu	Gln	Tyr	Ile	Tyr 170	Leu	Val	Ala	Pro	Ile 175	Ser
Leu Met	Met Le		Pro	Ile	Gly	Phe 185	Ile	Phe	Cys	Glu	Ile 190	Gln	ГЛа
Trp Lys	Asp Th:	r Gln	Asn	Ala	Ser 200	Gln	Asn	Lys	Ile	Lys 205	Ile	Val	Gly
Leu Gly 210	Leu Le	ı Arg	Val	Leu 215	Gln	Asn	Pro	Ile	Val 220	Phe	Met	Val	Phe

Ile 225	Gly	Ile	Ala	Phe	Asn 230	Phe	Ile	Leu	Asp	Arg 235	Lys	Val	Pro	Val	Tyr 240
Val	Glu	Asn	Phe	Leu 245	Asp	Gly	Leu	Gly	Asn 250	Ser	Phe	Ser	Gly	Ser 255	Ala
Leu	Phe	Tyr	Leu 260	Gly	Leu	Thr	Met	Val 265	Gly	Lys	Ile	ГЛа	Arg 270	Leu	Lys
Lys	Ser	Ala 275	Phe	Val	Val	Leu	Ile 280	Leu	Leu	Ile	Thr	Ala 285	Lys	Leu	Leu
Val	Leu 290	Pro	Leu	Leu	Сла	Arg 295	Glu	Met	Val	Glu	Leu 300	Leu	Asp	ГЛа	Gly
Asp 305	Ser	Val	Val	Asn	His 310	Thr	Ser	Leu	Ser	Asn 315	Tyr	Ala	Phe	Leu	Tyr 320
Gly	Val	Phe	Pro	Val 325	Ala	Pro	Gly	Val	Ala 330	Ile	Phe	Ala	Thr	Gln 335	Phe
Asn	Met	Glu	Val 340	Glu	Ile	Ile	Thr	Ser 345	Gly	Met	Val	Ile	Ser 350	Thr	Phe
Val	Ser	Ala 355	Pro	Ile	Met	Tyr	Val 360	Ser	Ala	Trp	Leu	Leu 365	Thr	Phe	Pro
Thr	Met 370	Asp	Pro	Lys	Pro	Leu 375	Ala	Tyr	Ala	Ile	Gln 380	Asn	Val	Ser	Phe
Asp 385	Ile	Ser	Ile	Val	Ser 390	Leu	Ile	Ser	Leu	Ile 395	Trp	Ser	Leu	Ala	Ile 400
Leu	Leu	Leu	Ser	Lys 405	ГÀа	Tyr	Lys	Gln	Leu 410	Pro	His	Met	Leu	Thr 415	Thr
Asn	Leu	Leu	Ile 420	Ala	Gln	Ser	Ile	Val 425	Сла	Ala	Gly	Met	Met 430	Ile	Trp
Asn	Phe	Val 435	Lys	Glu	Lys	Asn	Phe 440	Val	Gly	Gln	Ile	Leu 445	Val	Phe	Val
Leu	Leu 450	Tyr	Ser	Ser	Leu	Tyr 455	Ser	Thr	Tyr	Leu	Trp 460	Thr	Gly	Leu	Leu
Ala 465	Ile	Ser	Leu	Phe	Leu 470	Leu	Lys	Lys	Arg	Glu 475	Arg	Val	Gln	Ile	Pro 480
Val	Gly	Ile	Ile	Ile 485	Ile	Ser	Gly	Trp	Gly 490	Ile	Pro	Ala	Leu	Leu 495	Val
Gly	Val	Leu	Leu 500	Ile	Thr	Gly	Lys	His 505	Asn	Gly	Asp	Ser	Ile 510	Asp	Ser
Ala	Phe	Phe 515	Tyr	Gly	Lys	Glu	Gln 520	Met	Ile	Thr	Thr	Ala 525	Val	Thr	Leu
Phe	Сув 530	Ser	Ile	Leu	Ile	Ala 535	Gly	Ile	Ser	Leu	Met 540	CÀa	Met	Asn	Gln
Thr 545	Ala	Gln	Ala	Gly	Ser 550	Tyr	Glu	Gly	Phe	Asp 555	Gln	Ser	Gln	Ser	His 560
Lys	Val	Val	Glu	Pro 565	Gly	Asn	Thr	Ala	Phe 570	Glu	Glu	Ser	Pro	Ala 575	Pro
Val	Asn	Glu	Pro 580	Glu	Leu	Phe	Thr	Ser 585	Ser	Ile	Pro	Glu	Thr 590	Ser	Cys
Cys	Ser	Сув 595	Ser	Met	Gly	Asn	Gly 600	Glu	Leu	His	Сла	Pro 605	Ser	Ile	Glu
Pro	Ile 610	Ala	Asn	Thr	Ser	Thr 615	Ser	Glu	Pro	Val	Ile 620	Pro	Ser	Phe	Glu

Lys 625	Asn	Asn	His	Cys	Val 630	Ser	Arg	Сув	Asn	Ser 635	Gln	Ser	Сув	Ile	Leu 640
Ala	Gln	Glu	Glu	Glu 645	Gln	Tyr	Leu	Gln	Ser 650	Gly	Asp	Gln	Gln	Leu 655	Thr
Arg	His	Val	Leu 660	Leu	CAa	Leu	Leu	Leu 665	Ile	Ile	Gly	Leu	Phe 670	Ala	Asn
Leu	Ser	Ser 675	Сув	Leu	Trp	Trp	Leu 680	Phe	Asn	Gln	Glu	Pro 685	Gly	Arg	Leu
Tyr	Val 690	Glu	Leu	Gln	Phe	Phe 695	Сув	Ala	Val	Phe	Asn 700	Phe	Gly	Gln	Gly
Phe 705	Ile	Ser	Phe	Gly	Ile 710	Phe	Gly	Leu	Asp	Lys 715	His	Leu	Ile	Ile	Leu 720
Pro	Phe	Lys	Arg	Arg 725	Leu	Glu	Phe	Leu	Trp 730	Asn	Asn	Lys	Aap	Thr 735	Ala
Glu	Asn	Arg	Asp 740	Ser	Pro	Val	Ser	Glu 745	Glu	Ile	Lys	Met	Thr 750	CÀa	Gln
Gln	Phe	Ile 755	His	Tyr	His	Arg	Asp 760	Leu	Cha	Ile	Arg	Asn 765	Ile	Val	Lys
Glu	Arg 770	Arg	Cys	Gly	Ala	Lys 775	Thr	Ser	Ala	Gly	Thr 780	Phe	Cys	Gly	Cya
Asp 785	Leu	Val	Ser	Trp	Leu 790	Ile	Glu	Val	Gly	Leu 795	Ala	Ser	Asp	Arg	Gly 800
Glu	Ala	Val	Ile	Tyr 805	Gly	Asp	Arg	Leu	Val 810	Gln	Gly	Gly	Val	Ile 815	Gln
His	Ile	Thr	Asn 820	Glu	Tyr	Glu	Phe	Arg 825	Asp	Glu	Tyr	Leu	Phe 830	Tyr	Arg
Phe	Leu	Gln 835	Lys	Ser	Pro	Glu	Gln 840	Ser	Pro	Pro	Ala	Ile 845	Asn	Ala	Asn
Thr	Leu 850	Gln	Gln	Glu	Arg	Tyr 855	Lys	Glu	Ile	Glu	His 860	Ser	Ser	Pro	Pro
Ser 865	His	Ser	Pro	Lys	Thr 870										
<210)> SE	EQ II	NO NO	39											
	-> LE -> TY			70											
<213	3 > OF	RGAN1	SM:	Homo	sar	oiens	3								
< 400)> SE	EQUEN	ICE :	39											
Met 1	Asn	Ser	Asn	Leu 5	Pro	Ala	Glu	Asn	Leu 10	Thr	Ile	Ala	Val	Asn 15	Met
Thr	Lys	Thr	Leu 20	Pro	Thr	Ala	Val	Thr 25	His	Gly	Phe	Asn	Ser 30	Thr	Asn
Asp	Pro	Pro 35	Ser	Met	Ser	Ile	Thr 40	Arg	Leu	Phe	Pro	Ala 45	Leu	Leu	Glu
CÀa	Phe 50	Gly	Ile	Val	Leu	Сув 55	Gly	Tyr	Ile	Ala	Gly 60	Arg	Ala	Asn	Val
Ile 65	Thr	Ser	Thr	Gln	Ala 70	Lys	Gly	Leu	Gly	Asn 75	Phe	Val	Ser	Arg	Phe 80
Ala	Leu	Pro	Ala	Leu 85	Leu	Phe	ГЛа	Asn	Met 90	Val	Val	Leu	Asn	Phe 95	Ser
Asn	Val	Asp	Trp 100	Ser	Phe	Leu	Tyr	Ser 105	Ile	Leu	Ile	Ala	Lys 110	Ala	Ser

Val	Phe	Phe 115	Ile	Val	CÀa	Val	Leu 120	Thr	Leu	Leu	Val	Ala 125	Ser	Pro	Asp
Ser	Arg 130	Phe	Ser	Lys	Ala	Gly 135	Leu	Phe	Pro	Ile	Phe 140	Ala	Thr	Gln	Ser
Asn 145	Asp	Phe	Ala	Leu	Gly 150	Tyr	Pro	Ile	Val	Glu 155	Ala	Leu	Tyr	Gln	Thr 160
Thr	Tyr	Pro	Glu	Tyr 165	Leu	Gln	Tyr	Ile	Tyr 170	Leu	Val	Ala	Pro	Ile 175	Ser
Leu	Met	Met	Leu 180	Asn	Pro	Ile	Gly	Phe 185	Ile	Phe	Cys	Glu	Ile 190	Gln	Lys
Trp	Lys	Asp 195	Thr	Gln	Asn	Ala	Ser 200	Gln	Asn	Lys	Ile	Lys 205	Ile	Val	Gly
Leu	Gly 210	Leu	Leu	Arg	Val	Leu 215	Gln	Asn	Pro	Ile	Val 220	Phe	Met	Val	Phe
Ile 225	Gly	Ile	Ala	Phe	Asn 230	Phe	Ile	Leu	Asp	Arg 235	Lys	Val	Pro	Val	Tyr 240
Val	Glu	Asn	Phe	Leu 245	Asp	Gly	Leu	Gly	Asn 250	Ser	Phe	Ser	Gly	Ser 255	Ala
Leu	Phe	Tyr	Leu 260	Gly	Leu	Thr	Met	Val 265	Gly	Lys	Ile	ГЛа	Arg 270	Leu	Lys
ГЛа	Ser	Ala 275	Phe	Val	Val	Leu	Ile 280	Leu	Leu	Ile	Thr	Ala 285	Lys	Leu	Leu
Val	Leu 290	Pro	Leu	Leu	CAa	Arg 295	Glu	Met	Val	Glu	Leu 300	Leu	Asp	Lys	Gly
Asp 305	Ser	Val	Val	Asn	His 310	Thr	Ser	Leu	Ser	Asn 315	Tyr	Ala	Phe	Leu	Tyr 320
Gly	Val	Phe	Pro	Val 325	Ala	Pro	Gly	Val	Ala 330	Ile	Phe	Ala	Thr	Gln 335	Phe
Asn	Met	Glu	Val 340	Glu	Ile	Ile	Thr	Ser 345	Gly	Met	Val	Ile	Ser 350	Thr	Phe
Val	Ser	Ala 355	Pro	Ile	Met	Tyr	Val 360	Ser	Ala	Trp	Leu	Leu 365	Thr	Phe	Pro
Thr	Met 370	Asp	Pro	Lys	Pro	Leu 375	Ala	Tyr	Ala	Ile	Gln 380	Asn	Val	Ser	Phe
Asp 385	Ile	Ser	Ile	Val	Ser 390	Leu	Ile	Ser	Leu	Ile 395	Trp	Ser	Leu	Ala	Ile 400
Leu	Leu	Leu	Ser	Lys 405	Lys	Tyr	Lys	Gln	Leu 410	Pro	His	Met	Leu	Thr 415	Thr
Asn	Leu	Leu	Ile 420	Ala	Gln	Ser	Ile	Val 425	Cys	Ala	Gly	Met	Met 430	Ile	Trp
Asn	Phe	Val 435	Lys	Glu	ГÀв	Asn	Phe 440	Val	Gly	Gln	Ile	Leu 445	Val	Phe	Val
Leu	Leu 450	Tyr	Ser	Ser	Leu	Tyr 455	Ser	Thr	Tyr	Leu	Trp 460	Thr	Gly	Leu	Leu
Ala 465	Ile	Ser	Leu	Phe	Leu 470	Leu	Lys	Lys	Arg	Glu 475	Arg	Val	Gln	Ile	Pro 480
Val	Gly	Ile	Ile	Ile 485	Ile	Ser	Gly	Trp	Gly 490	Ile	Pro	Ala	Leu	Leu 495	Val
Gly	Val	Leu	Leu 500	Ile	Thr	Gly	Lys	His 505	Asn	Gly	Asp	Ser	Ile 510	Asp	Ser

<400> SEQUENCE: 40

Ala	Phe	Phe 515	Tyr	Gly	Lys	Glu	Gln 520	Met	Ile	Thr	Thr	Ala 525	Val	Thr	Leu
Phe	Сув 530	Ser	Ile	Leu	Ile	Ala 535	Gly	Ile	Ser	Leu	Met 540	Cys	Met	Asn	Gln
Thr 545	Ala	Gln	Ala	Gly	Ser 550	Tyr	Glu	Gly	Phe	Asp 555	Gln	Ser	Gln	Ser	His 560
Lys	Val	Val	Glu	Pro 565	Gly	Asn	Thr	Ala	Phe 570	Glu	Glu	Ser	Pro	Ala 575	Pro
Val	Asn	Glu	Pro 580	Glu	Leu	Phe	Thr	Ser 585	Ser	Ile	Pro	Glu	Thr 590	Ser	Сув
Cys	Ser	Cys 595	Ser	Met	Gly	Asn	Gly 600	Glu	Leu	His	CÀa	Pro 605	Ser	Ile	Glu
Pro	Ile 610	Ala	Asn	Thr	Ser	Thr 615	Ser	Glu	Pro	Val	Ile 620	Pro	Ser	Phe	Glu
Lys 625	Asn	Asn	His	CAa	Val 630	Ser	Arg	Cys	Asn	Ser 635	Gln	Ser	Cha	Ile	Leu 640
Ala	Gln	Glu	Glu	Glu 645	Gln	Tyr	Leu	Gln	Ser 650	Gly	Asp	Gln	Gln	Leu 655	Thr
Arg	His	Val	Leu 660	Leu	Cys	Leu	Leu	Leu 665	Ile	Ile	Gly	Leu	Phe 670	Ala	Asn
Leu	Ser	Ser 675	Сув	Leu	Trp	Trp	Leu 680	Phe	Asn	Gln	Glu	Pro 685	Gly	Arg	Leu
Tyr	Val 690	Glu	Leu	Gln	Phe	Phe 695	Cys	Ala	Val	Phe	Asn 700	Phe	Gly	Gln	Gly
Phe 705	Ile	Ser	Phe	Gly	Ile 710	Phe	Gly	Leu	Asp	Lys 715	His	Leu	Ile	Ile	Leu 720
Pro	Phe	Lys	Arg	Arg 725	Leu	Glu	Phe	Leu	Trp 730	Asn	Asn	Lys	Asp	Thr 735	Ala
Glu	Asn	Arg	Asp 740	Ser	Pro	Val	Ser	Glu 745	Glu	Ile	Lys	Met	Thr 750	Сув	Gln
Gln	Phe	Ile 755	His	Tyr	His	Arg	Asp 760	Leu	Cys	Ile	Arg	Asn 765	Ile	Val	Lys
Glu	Arg 770	Arg	Сув	Gly	Ala	Lуs 775	Thr	Ser	Ala	Gly	Thr 780	Phe	Cys	Gly	Cys
Asp 785	Leu	Val	Ser	Trp	Leu 790	Ile	Glu	Val	Gly	Leu 795	Ala	Ser	Asp	Arg	Gly 800
Glu	Ala	Val	Ile	Tyr 805	Gly	Asp	Arg	Leu	Val 810	Gln	Gly	Gly	Val	Ile 815	Gln
His	Ile	Thr	Asn 820	Glu	Tyr	Glu	Phe	Arg 825	Asp	Glu	Tyr	Leu	Phe 830	Tyr	Arg
Phe	Leu	Gln 835	Lys	Ser	Pro	Glu	Gln 840	Ser	Pro	Pro	Ala	Ile 845	Asn	Ala	Asn
Thr	Leu 850	Gln	Gln	Glu	Arg	Tyr 855	Lys	Glu	Ile	Glu	His 860	Ser	Ser	Pro	Pro
Ser 865	His	Ser	Pro	Lys	Thr 870										
<213 <213	0 > SI L > LI 2 > T:	ENGTI PE :	H: 8'	70	ו פא	pien	3								
					1	-									

Met 1	Asn	Ser	Asn	Leu 5	Pro	Ala	Glu	Asn	Leu 10	Thr	Ile	Ala	Val	Asn 15	Met
Thr	Lys	Thr	Leu 20	Pro	Thr	Ala	Val	Thr 25	His	Gly	Phe	Asn	Ser 30	Thr	Asn
Asp	Pro	Pro 35	Ser	Met	Ser	Ile	Thr 40	Arg	Leu	Phe	Pro	Ala 45	Leu	Leu	Glu
CAa	Phe 50	Gly	Ile	Val	Leu	Cys	Gly	Tyr	Ile	Ala	Gly 60	Arg	Ala	Asn	Val
Ile 65	Thr	Ser	Thr	Gln	Ala 70	Lys	Gly	Leu	Gly	Asn 75	Phe	Val	Ser	Arg	Phe 80
Ala	Leu	Pro	Ala	Leu 85	Leu	Phe	Lys	Asn	Met 90	Val	Val	Leu	Asn	Phe 95	Ser
Asn	Val	Asp	Trp 100	Ser	Phe	Leu	Tyr	Ser 105	Ile	Leu	Ile	Ala	Lys 110	Ala	Ser
Val	Phe	Phe 115	Ile	Val	CÀa	Val	Leu 120	Thr	Leu	Leu	Val	Ala 125	Ser	Pro	Asp
Ser	Arg 130	Phe	Ser	ГÀа	Ala	Gly 135	Leu	Phe	Pro	Ile	Phe 140	Ala	Thr	Gln	Ser
Asn 145	Asp	Phe	Ala	Leu	Gly 150	Tyr	Pro	Ile	Val	Glu 155	Ala	Leu	Tyr	Gln	Thr 160
Thr	Tyr	Pro	Glu	Tyr 165	Leu	Gln	Tyr	Ile	Tyr 170	Leu	Val	Ala	Pro	Ile 175	Ser
Leu	Met	Met	Leu 180	Asn	Pro	Ile	Gly	Phe 185	Ile	Phe	CÀa	Glu	Ile 190	Gln	Lys
Trp	Lys	Asp 195	Thr	Gln	Asn	Ala	Ser 200	Gln	Asn	Lys	Ile	Lув 205	Ile	Val	Gly
Leu	Gly 210	Leu	Leu	Arg	Val	Leu 215	Gln	Asn	Pro	Ile	Val 220	Phe	Met	Val	Phe
Ile 225	Gly	Ile	Ala	Phe	Asn 230	Phe	Ile	Leu	Asp	Arg 235	Lys	Val	Pro	Val	Tyr 240
Val	Glu	Asn	Phe	Leu 245	Asp	Gly	Leu	Gly	Asn 250	Ser	Phe	Ser	Gly	Ser 255	Ala
Leu	Phe	Tyr	Leu 260	Gly	Leu	Thr	Met	Val 265	Gly	Lys	Ile	Lys	Arg 270	Leu	Lys
Lys	Ser	Ala 275	Phe	Val	Val	Leu	Ile 280	Leu	Leu	Ile	Thr	Ala 285	Lys	Leu	Leu
Val	Leu 290	Pro	Leu	Leu	CAa	Arg 295	Glu	Met	Val	Glu	Leu 300	Leu	Asp	ГÀа	Gly
Asp 305	Ser	Val	Val	Asn	His 310	Thr	Ser	Leu	Ser	Asn 315	Tyr	Ala	Phe	Leu	Tyr 320
Gly	Val	Phe	Pro	Val 325	Ala	Pro	Gly	Val	Ala 330	Ile	Phe	Ala	Thr	Gln 335	Phe
Asn	Met	Glu	Val 340	Glu	Ile	Ile	Thr	Ser 345	Gly	Met	Val	Ile	Ser 350	Thr	Phe
Val	Ser	Ala 355	Pro	Ile	Met	Tyr	Val 360	Ser	Ala	Trp	Leu	Leu 365	Thr	Phe	Pro
Thr	Met 370	Asp	Pro	Lys	Pro	Leu 375	Ala	Tyr	Ala	Ile	Gln 380	Asn	Val	Ser	Phe
Asp 385	Ile	Ser	Ile	Val	Ser 390	Leu	Ile	Ser	Leu	Ile 395	Trp	Ser	Leu	Ala	Ile 400

Leu	Leu	Leu	Ser	Lys 405	Lys	Tyr	Lys	Gln	Leu 410	Pro	His	Met	Leu	Thr 415	Thr
Asn	Leu	Leu	Ile 420	Ala	Gln	Ser	Ile	Val 425	Cys	Ala	Gly	Met	Met 430	Ile	Trp
Asn	Phe	Val 435	Lys	Glu	Lys	Asn	Phe 440	Val	Gly	Gln	Ile	Leu 445	Val	Phe	Val
Leu	Leu 450	Tyr	Ser	Ser	Leu	Tyr 455	Ser	Thr	Tyr	Leu	Trp 460	Thr	Gly	Leu	Leu
Ala 465	Ile	Ser	Leu	Phe	Leu 470	Leu	Lys	Lys	Arg	Glu 475	Arg	Val	Gln	Ile	Pro 480
Val	Gly	Ile	Ile	Ile 485	Ile	Ser	Gly	Trp	Gly 490	Ile	Pro	Ala	Leu	Leu 495	Val
Gly	Val	Leu	Leu 500	Ile	Thr	Gly	Lys	His 505	Asn	Gly	Asp	Ser	Ile 510	Asp	Ser
Ala	Phe	Phe 515	Tyr	Gly	Lys	Glu	Gln 520	Met	Ile	Thr	Thr	Ala 525	Val	Thr	Leu
Phe	230 ÇAa	Ser	Ile	Leu	Ile	Ala 535	Gly	Ile	Ser	Leu	Met 540	CÀa	Met	Asn	Gln
Thr 545	Ala	Gln	Ala	Gly	Ser 550	Tyr	Glu	Gly	Phe	Asp 555	Gln	Ser	Gln	Ser	His 560
Lys	Val	Val	Glu	Pro 565	Gly	Asn	Thr	Ala	Phe 570	Glu	Glu	Ser	Pro	Ala 575	Pro
Val	Asn	Glu	Pro 580	Glu	Leu	Phe	Thr	Ser 585	Ser	Ile	Pro	Glu	Thr 590	Ser	Cys
Cya	Ser	Сув 595	Ser	Met	Gly	Asn	Gly 600	Glu	Leu	His	CAa	Pro 605	Ser	Ile	Glu
Pro	Ile 610	Ala	Asn	Thr	Ser	Thr 615	Ser	Glu	Pro	Val	Ile 620	Pro	Ser	Phe	Glu
Lys 625	Asn	Asn	His	Cys	Val 630	Ser	Arg	Cys	Asn	Ser 635	Gln	Ser	Сув	Ile	Leu 640
Ala	Gln	Glu	Glu	Glu 645	Gln	Tyr	Leu	Gln	Ser 650	Gly	Asp	Gln	Gln	Leu 655	Thr
Arg	His	Val	Leu 660	Leu	CAa	Leu	Leu	Leu 665	Ile	Ile	Gly	Leu	Phe 670	Ala	Asn
Leu	Ser	Ser 675	CÀa	Leu	Trp	Trp	Leu 680	Phe	Asn	Gln	Glu	Pro 685	Gly	Arg	Leu
Tyr	Val 690	Glu	Leu	Gln	Phe	Phe 695	CAa	Ala	Val	Phe	Asn 700	Phe	Gly	Gln	Gly
Phe 705	Ile	Ser	Phe	Gly	Ile 710	Phe	Gly	Leu	Asp	Lys 715	His	Leu	Ile	Ile	Leu 720
Pro	Phe	Lys	Arg	Arg 725	Leu	Glu	Phe	Leu	Trp 730	Asn	Asn	Lys	Asp	Thr 735	Ala
Glu	Asn	Arg	Asp 740	Ser	Pro	Val	Ser	Glu 745	Glu	Ile	Lys	Met	Thr 750	Сув	Gln
Gln	Phe	Ile 755	His	Tyr	His	Arg	Asp 760	Leu	Cys	Ile	Arg	Asn 765	Ile	Val	ГЛа
Glu	Arg 770	Arg	Cys	Gly	Ala	Lys 775	Thr	Ser	Ala	Gly	Thr 780	Phe	Cys	Gly	Cys
Asp 785	Leu	Val	Ser	Trp	Leu 790	Ile	Glu	Val	Gly	Leu 795	Ala	Ser	Asp	Arg	Gly 800
Glu	Ala	Val	Ile	Tyr	Gly	Asp	Arg	Leu	Val	Gln	Gly	Gly	Val	Ile	Gln

	805	8:	10	815
His Ile Thr Asn 820	Glu Tyr Glu	Phe Arg As 825	sp Glu Tyr	Leu Phe Tyr Arg 830
Phe Leu Gln Lys 835	Ser Pro Glu	Gln Ser P: 840	ro Pro Ala	Ile Asn Ala Asn 845
Thr Leu Gln Gln 850	Glu Arg Tyr 855	Lys Glu I	le Glu His 860	Ser Ser Pro Pro
Ser His Ser Pro 865	Lys Thr 870			
<210 > SEQ ID NO <211 > LENGTH: 8 <212 > TYPE: PRT <213 > ORGANISM:	42	ន		
<400> SEQUENCE:	41			
Met Asn Ser Asn 1	Leu Pro Ala 5	Glu Asn Le		Ala Val Asn Met 15
Thr Lys Thr Leu 20	Pro Thr Ala	Val Thr H	is Gly Phe	Asn Ser Thr Asn 30
Asp Pro Pro Ser 35	Met Ser Ile	Thr Arg Le	eu Phe Pro	Ala Leu Leu Glu 45
Cys Phe Gly Ile 50	Val Leu Cys 55	Gly Tyr I	le Ala Gly 60	Arg Ala Asn Val
Ile Thr Ser Thr 65	Gln Ala Lys 70	Gly Leu G	ly Asn Phe 75	Val Ser Arg Phe 80
Ala Leu Pro Ala	Leu Leu Phe 85	Lys Asn Me		Leu Asn Phe Ser 95
Asn Val Asp Trp		105		110
Val Phe Phe Ile 115	-	120		125
130	135		140	Ala Thr Gln Ser
Asn Asp Phe Ala 145	150		155	160
	165	1	70	Ala Pro Ile Ser 175
Leu Met Met Leu 180		185		190
195		200		Lys Ile Val Gly 205
Leu Gly Leu Leu 210	215		220	
Ile Gly Ile Ala 225	Phe Asn Phe 230	Ile Leu A	ap Arg Lya 235	Val Pro Val Tyr 240
Val Glu Asn Phe	Leu Asp Gly 245		sn Ser Phe 50	Ser Gly Ser Ala 255
Leu Phe Tyr Leu 260	Gly Leu Thr	Met Val G	ly Lys Ile	Lys Arg Leu Lys 270
Lys Ser Ala Phe 275	Val Val Leu	Ile Leu Le 280	eu Ile Thr	Ala Lys Leu Leu 285

Val	Leu 290	Pro	Leu	Leu	Cya	Arg 295	Glu	Met	Val	Glu	Leu 300	Leu	Asp	Lys	Gly
Asp 305	Ser	Val	Val	Asn	His 310	Thr	Ser	Leu	Ser	Asn 315	Tyr	Ala	Phe	Leu	Tyr 320
Gly	Val	Phe	Pro	Val 325	Ala	Pro	Gly	Val	Ala 330	Ile	Phe	Ala	Thr	Gln 335	Phe
Asn	Met	Glu	Val 340	Glu	Ile	Ile	Thr	Ser 345	Gly	Met	Val	Ile	Ser 350	Thr	Phe
Val	Ser	Ala 355	Pro	Ile	Met	Tyr	Val 360	Ser	Ala	Trp	Leu	Leu 365	Thr	Phe	Pro
Thr	Met 370	Asp	Pro	Lys	Pro	Leu 375	Ala	Tyr	Ala	Ile	Gln 380	Asn	Val	Ser	Phe
Asp 385	Ile	Ser	Ile	Val	Ser 390	Leu	Ile	Ser	Leu	Ser 395	Ile	Val	Cys	Ala	Gly 400
Met	Met	Ile	Trp	Asn 405	Phe	Val	Lys	Glu	Lys 410	Asn	Phe	Val	Gly	Gln 415	Ile
Leu	Val	Phe	Val 420	Leu	Leu	Tyr	Ser	Ser 425	Leu	Tyr	Ser	Thr	Tyr 430	Leu	Trp
Thr	Gly	Leu 435	Leu	Ala	Ile	Ser	Leu 440	Phe	Leu	Leu	Lys	Lys 445	Arg	Glu	Arg
Val	Gln 450	Ile	Pro	Val	Gly	Ile 455	Ile	Ile	Ile	Ser	Gly 460	Trp	Gly	Ile	Pro
Ala 465	Leu	Leu	Val	Gly	Val 470	Leu	Leu	Ile	Thr	Gly 475	Lys	His	Asn	Gly	Asp 480
Ser	Ile	Asp	Ser	Ala 485	Phe	Phe	Tyr	Gly	Lys 490	Glu	Gln	Met	Ile	Thr 495	Thr
Ala	Val	Thr	Leu 500	Phe	Cys	Ser	Ile	Leu 505	Ile	Ala	Gly	Ile	Ser 510	Leu	Met
Cys	Met	Asn 515	Gln	Thr	Ala	Gln	Ala 520	Gly	Ser	Tyr	Glu	Gly 525	Phe	Asp	Gln
Ser	Gln 530	Ser	His	Lys	Val	Val 535	Glu	Pro	Gly	Asn	Thr 540	Ala	Phe	Glu	Glu
Ser 545	Pro	Ala	Pro	Val	Asn 550	Glu	Pro	Glu	Leu	Phe 555	Thr	Ser	Ser	Ile	Pro 560
Glu	Thr	Ser	Сув	Cys 565	Ser	Сув	Ser	Met	Gly 570	Asn	Gly	Glu	Leu	His 575	Cys
Pro	Ser	Ile	Glu 580	Pro	Ile	Ala	Asn	Thr 585	Ser	Thr	Ser	Glu	Pro 590	Val	Ile
Pro	Ser	Phe 595	Glu	ГÀа	Asn	Asn	His 600	CÀa	Val	Ser	Arg	605 CAa	Asn	Ser	Gln
Ser	610	Ile	Leu	Ala	Gln	Glu 615	Glu	Glu	Gln	Tyr	Leu 620	Gln	Ser	Gly	Asp
Gln 625	Gln	Leu	Thr	Arg	His 630	Val	Leu	Leu	Cys	Leu 635	Leu	Leu	Ile	Ile	Gly 640
Leu	Phe	Ala	Asn	Leu 645	Ser	Ser	Сув	Leu	Trp 650	Trp	Leu	Phe	Asn	Gln 655	Glu
Pro	Gly	Arg	Leu 660	Tyr	Val	Glu	Leu	Gln 665	Phe	Phe	Cys	Ala	Val 670	Phe	Asn
Phe	Gly	Gln 675	Gly	Phe	Ile	Ser	Phe 680	Gly	Ile	Phe	Gly	Leu 685	Asp	Lys	His
Leu	Ile	Ile	Leu	Pro	Phe	Lys	Arg	Arg	Leu	Glu	Phe	Leu	Trp	Asn	Asn

695

690

-continued

700

	690					695					700				
Lys 705	Asp	Thr	Ala	Glu	Asn 710	Arg	Asp	Ser	Pro	Val 715	Ser	Glu	Glu	Ile	Lys 720
Met	Thr	Cys	Gln	Gln 725	Phe	Ile	His	Tyr	His 730	Arg	Asp	Leu	Cys	Ile 735	Arg
Asn	Ile	Val	Lys 740	Glu	Arg	Arg	Cys	Gly 745	Ala	Lys	Thr	Ser	Ala 750	Gly	Thr
Phe	Cys	Gly 755	СЛа	Asp	Leu	Val	Ser 760	Trp	Leu	Ile	Glu	Val 765	Gly	Leu	Ala
Ser	Asp 770	Arg	Gly	Glu	Ala	Val 775	Ile	Tyr	Gly	Asp	Arg 780	Leu	Val	Gln	Gly
Gly 785	Val	Ile	Gln	His	Ile 790	Thr	Asn	Glu	Tyr	Glu 795	Phe	Arg	Asp	Glu	Tyr 800
Leu	Phe	Tyr	Arg	Phe 805	Leu	Gln	Lys	Ser	Pro 810	Glu	Gln	Ser	Pro	Pro 815	Ala
Ile	Asn	Ala	Asn 820	Thr	Leu	Gln	Gln	Glu 825	Arg	Tyr	Lys	Glu	Ile 830	Glu	His
Ser	Ser	Pro 835	Pro	Ser	His	Ser	Pro 840	Lys	Thr						
< 21 (-210. CEO ID NO 42														
<21	<210> SEQ ID NO 42 <211> LENGTH: 210 <212> TYPE: PRT														
	<212> TYPE: PRT <213> ORGANISM: Homo sapiens														
< 400	<400> SEQUENCE: 42														
Met 1	Ala	Lys	Leu	Arg 5	Val	Ala	Tyr	Glu	Tyr 10	Thr	Glu	Ala	Glu	Asp 15	Lys
Ser	Ile	Arg	Leu 20	Gly	Leu	Phe	Leu	Ile 25	Ile	Ser	Gly	Val	Val 30	Ser	Leu
Phe	Ile	Phe 35	Gly	Phe	Cys	Trp	Leu 40	Ser	Pro	Ala	Leu	Gln 45	Asp	Leu	Gln
Ala	Thr 50	Glu	Ala	Asn	Cys	Thr 55	Val	Leu	Ser	Val	Gln 60	Gln	Ile	Gly	Glu
Val 65	Phe	Glu	Cys	Thr	Phe 70	Thr	Cys	Gly	Ala	Asp 75	Cys	Arg	Gly	Thr	Ser 80
Gln	Tyr	Pro	Cha	Val 85	Gln	Val	Tyr	Val	Asn 90	Asn	Ser	Glu	Ser	Asn 95	Ser
Arg	Ala		Leu 100	His	Ser	_	Glu			Leu		Thr		Pro	Lys
Cys	Ser	Tyr 115	Ile	Pro	Pro	Cys	Lys 120	Arg	Glu	Asn	Gln	Lys 125	Asn	Leu	Glu
Ser	Val 130	Met	Asn	Trp	Gln	Gln 135	Tyr	Trp	Lys	Asp	Glu 140	Ile	Gly	Ser	Gln
Pro 145	Phe	Thr	Cys	Tyr	Phe 150	Asn	Gln	His	Gln	Arg 155	Pro	Asp	Asp	Val	Leu 160
Leu	His	Arg	Thr	His 165	Asp	Glu	Ile	Val	Leu 170	Leu	His	Cya	Phe	Leu 175	Trp
Pro	Leu	Val	Thr 180	Phe	Val	Val	Gly	Val 185	Leu	Ile	Val	Val	Leu 190	Thr	Ile
Сув	Ala	Lys 195	Ser	Leu	Ala	Val	Lys 200	Ala	Glu	Ala	Met	Lys 205	Lys	Arg	Lys

Phe Ser 210

```
<210> SEQ ID NO 43
<211> LENGTH: 202
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 43
Met Lys Val Leu Ala Ala Gly Val Val Pro Leu Leu Val Leu His
Trp Lys His Gly Ala Gly Ser Pro Leu Pro Ile Thr Pro Val Asn Ala
Thr Cys Ala Ile Arg His Pro Cys His Asn Asn Leu Met Asn Gln Ile
Arg Ser Gln Leu Ala Gln Leu Asn Gly Ser Ala Asn Ala Leu Phe Ile
Leu Tyr Tyr Thr Ala Gl<br/>n Gly Glu Pro Phe Pro As<br/>n As<br/>n Leu Asp Lys \,
Leu Cys Gly Pro Asn Val Thr Asp Phe Pro Pro Phe His Ala Asn Gly
Thr Glu Lys Ala Lys Leu Val Glu Leu Tyr Arg Ile Val Val Tyr Leu
Gly Thr Ser Leu Gly Asn Ile Thr Arg Asp Gln Lys Ile Leu Asn Pro
                          120
Ser Ala Leu Ser Leu His Ser Lys Leu Asn Ala Thr Ala Asp Ile Leu
                      135
Arg Gly Leu Leu Ser Asn Val Leu Cys Arg Leu Cys Ser Lys Tyr His
                  150
                                       155
Val Gly His Val Asp Val Thr Tyr Gly Pro Asp Thr Ser Gly Lys Asp
Val Phe Gln Lys Lys Leu Gly Cys Gln Leu Leu Gly Lys Tyr Lys
                               185
Gln Ile Ile Ala Val Leu Ala Gln Ala Phe
<210> SEQ ID NO 44
<211> LENGTH: 88
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 44
Met Lys Val Leu Ala Ala Val His Ser Pro Gly Gly Ala Val Pro Gln
Gln Pro Gly Gln Ala Met Trp Pro Gln Arg Asp Gly Leu Pro Ala Leu
                              25
Pro Arg Gln Arg His Gly Glu Gly Gln Ala Gly Gly Ala Val Pro His
Ser Arg Val Pro Trp His Leu Pro Gly Gln His His Pro Gly Pro Glu
Asp Pro Gln Pro Gln Cys Pro Gln Pro Pro Gln Gln Ala Gln Arg His
Arg Arg His Pro Ala Arg Pro Pro
               85
```

<210> SEQ ID NO 45

```
<211> LENGTH: 239
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 45
Met His Gln Thr Tyr Ser Arg His Cys Arg Pro Glu Glu Ser Thr Phe
Ser Ala Ala Met Thr Thr Met Gln Gly Met Glu Gln Ala Met Pro Gly
Ala Gly Pro Gly Val Pro Gln Leu Gly Asn Met Ala Val Ile His Ser
His Leu Trp Lys Gly Leu Gln Glu Lys Phe Leu Lys Gly Glu Pro Lys
Val Leu Gly Val Val Gln Ile Leu Thr Ala Leu Met Ser Leu Ser Met
Gly Ile Thr Met Met Cys Met Ala Ser Asn Thr Tyr Gly Ser Asn Pro
Ile Ser Val Tyr Ile Gly Tyr Thr Ile Trp Gly Ser Val Met Phe Ile
                             105
Ile Ser Gly Ser Leu Ser Ile Ala Ala Gly Ile Arg Thr Thr Lys Gly
Leu Val Arg Gly Ser Leu Gly Met Asn Ile Thr Ser Ser Val Leu Ala
                      135
Ala Ser Gly Ile Leu Ile Asn Thr Phe Ser Leu Ala Phe Tyr Ser Phe
                 150
                                    155
His His Pro Tyr Cys Asn Tyr Tyr Gly Asn Ser Asn Asn Cys His Gly
                                  170
Thr Met Ser Ile Leu Met Gly Leu Asp Gly Met Val Leu Leu Leu Ser
Val Leu Glu Phe Cys Ile Ala Val Ser Leu Ser Ala Phe Gly Cys Lys
                           200
                                              205
Val Leu Cys Cys Thr Pro Gly Gly Val Val Leu Ile Leu Pro Ser His
Ser His Met Ala Glu Thr Ala Ser Pro Thr Pro Leu Asn Glu Val
<210> SEQ ID NO 46
<211> LENGTH: 220
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 46
Met Thr Thr Met Gln Gly Met Glu Gln Ala Met Pro Gly Ala Gly Pro
                                 10
Gly Val Pro Gln Leu Gly Asn Met Ala Val Ile His Ser His Leu Trp
Lys Gly Leu Gln Glu Lys Phe Leu Lys Gly Glu Pro Lys Val Leu Gly
                  40
Val Val Gln Ile Leu Thr Ala Leu Met Ser Leu Ser Met Gly Ile Thr
           55
Met Met Cys Met Ala Ser Asn Thr Tyr Gly Ser Asn Pro Ile Ser Val
                  70
                                       75
```

Tyr Ile Gly Tyr Thr Ile Trp Gly Ser Val Met Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala Ala Gly Ile Arg Thr Thr Lys Gly Leu Val Arg 105 Gly Ser Leu Gly Met Asn Ile Thr Ser Ser Val Leu Ala Ala Ser Gly 120 Ile Leu Ile Asn Thr Phe Ser Leu Ala Phe Tyr Ser Phe His His Pro Tyr Cys Asn Tyr Tyr Gly Asn Ser Asn Asn Cys His Gly Thr Met Ser Ile Leu Met Gly Leu Asp Gly Met Val Leu Leu Leu Ser Val Leu Glu Phe Cys Ile Ala Val Ser Leu Ser Ala Phe Gly Cys Lys Val Leu Cys Cys Thr Pro Gly Gly Val Val Leu Ile Leu Pro Ser His Ser His Met 200 Ala Glu Thr Ala Ser Pro Thr Pro Leu Asn Glu Val 215 <210> SEO ID NO 47 <211> LENGTH: 186 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 47 Met His Gln Thr Tyr Ser Arg His Cys Arg Pro Glu Glu Ser Thr Phe Ser Ala Ala Met Thr Thr Met Gln Gly Met Glu Gln Ala Met Pro Gly 25 Ala Gly Pro Gly Val Pro Gln Leu Gly Asn Met Ala Val Ile His Ser His Leu Trp Lys Gly Leu Gln Glu Lys Phe Leu Lys Gly Glu Pro Lys 55 Val Leu Gly Val Val Gln Ile Leu Thr Ala Leu Met Ser Leu Ser Met Gly Ile Thr Met Met Cys Met Ala Ser Asn Thr Tyr Gly Ser Asn Pro Ile Ser Val Tyr Ile Gly Tyr Thr Ile Trp Gly Ser Val Met Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala Ala Gly Ile Arg Thr Thr Lys Gly Leu Gly Leu Asp Gly Met Val Leu Leu Leu Ser Val Leu Glu Phe Cys 135 Ile Ala Val Ser Leu Ser Ala Phe Gly Cys Lys Val Leu Cys Cys Thr 150 Pro Gly Gly Val Val Leu Ile Leu Pro Ser His Ser His Met Ala Glu Thr Ala Ser Pro Thr Pro Leu Asn Glu Val 180 <210> SEQ ID NO 48 <211> LENGTH: 648 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens

< 400)> SE	EQUEN	ICE :	48											
Met 1	Glu	His	Ile	Gln 5	Gly	Ala	Trp	Lys	Thr 10	Ile	Ser	Asn	Gly	Phe 15	Gly
Phe	Lys	Asp	Ala 20	Val	Phe	Asp	Gly	Ser 25	Ser	Cys	Ile	Ser	Pro 30	Thr	Ile
Val	Gln	Gln 35	Phe	Gly	Tyr	Gln	Arg 40	Arg	Ala	Ser	Asp	Asp 45	Gly	Lys	Leu
Thr	Asp 50	Pro	Ser	Lys	Thr	Ser 55	Asn	Thr	Ile	Arg	Val 60	Phe	Leu	Pro	Asn
65 Lys	Gln	Arg	Thr	Val	Val 70	Asn	Val	Arg	Asn	Gly 75	Met	Ser	Leu	His	Asp 80
CÀa	Leu	Met	Lys	Ala 85	Leu	ГÀа	Val	Arg	Gly 90	Leu	Gln	Pro	Glu	Cys 95	Сув
Ala	Val	Phe	Arg 100	Leu	Leu	His	Glu	His 105	Tàa	Gly	rys	ГÀа	Ala 110	Arg	Leu
Asp	Trp	Asn 115	Thr	Asp	Ala	Ala	Ser 120	Leu	Ile	Gly	Glu	Glu 125	Leu	Gln	Val
Asp	Phe 130	Leu	Asp	His	Val	Pro 135	Leu	Thr	Thr	His	Asn 140	Phe	Ala	Arg	Lys
Thr 145	Phe	Leu	Lys	Leu	Ala 150	Phe	Cys	Asp	Ile	Сув 155	Gln	Lys	Phe	Leu	Leu 160
Asn	Gly	Phe	Arg	Сув 165	Gln	Thr	Cys	Gly	Tyr 170	ГÀа	Phe	His	Glu	His 175	Cys
Ser	Thr	TÀa	Val 180	Pro	Thr	Met	CAa	Val 185	Asp	Trp	Ser	Asn	Ile 190	Arg	Gln
Leu	Leu	Leu 195	Phe	Pro	Asn	Ser	Thr 200	Ile	Gly	Asp	Ser	Gly 205	Val	Pro	Ala
Leu	Pro 210	Ser	Leu	Thr	Met	Arg 215	Arg	Met	Arg	Glu	Ser 220	Val	Ser	Arg	Met
Pro 225	Val	Ser	Ser	Gln	His 230	Arg	Tyr	Ser	Thr	Pro 235	His	Ala	Phe	Thr	Phe 240
Asn	Thr	Ser	Ser	Pro 245	Ser	Ser	Glu	Gly	Ser 250	Leu	Ser	Gln	Arg	Gln 255	Arg
Ser	Thr	Ser	Thr 260	Pro	Asn	Val	His	Met 265	Val	Ser	Thr	Thr	Leu 270	Pro	Val
Asp	Ser	Arg 275	Met	Ile	Glu	Asp	Ala 280	Ile	Arg	Ser	His	Ser 285	Glu	Ser	Ala
Ser	Pro 290	Ser	Ala	Leu	Ser	Ser 295	Ser	Pro	Asn	Asn	Leu 300	Ser	Pro	Thr	Gly
Trp 305	Ser	Gln	Pro	Lys	Thr 310	Pro	Val	Pro	Ala	Gln 315	Arg	Glu	Arg	Ala	Pro 320
Val	Ser	Gly	Thr	Gln 325	Glu	Lys	Asn	Lys	Ile 330	Arg	Pro	Arg	Gly	Gln 335	Arg
Asp	Ser	Ser	Tyr 340	Tyr	Trp	Glu	Ile	Glu 345	Ala	Ser	Glu	Val	Met 350	Leu	Ser
Thr	Arg	Ile 355	Gly	Ser	Gly	Ser	Phe 360	Gly	Thr	Val	Tyr	365	Gly	Lys	Trp
His	Gly 370	Asp	Val	Ala	Val	Lys 375	Ile	Leu	Lys	Val	Val 380	Asp	Pro	Thr	Pro
Glu	Gln	Phe	Gln	Ala	Phe	Arg	Asn	Glu	Val	Ala	Val	Leu	Arg	ГХа	Thr

												con	tin	ued 	
385					390					395					400
Arg	His	Val	Asn	Ile 405	Leu	Leu	Phe	Met	Gly 410	Tyr	Met	Thr	Lys	Asp 415	Asn
Leu	Ala	Ile	Val 420	Thr	Gln	Trp	Сув	Glu 425	Gly	Ser	Ser	Leu	Tyr 430	Lys	His
Leu	His	Val 435	Gln	Glu	Thr	Lys	Phe 440	Gln	Met	Phe	Gln	Leu 445	Ile	Asp	Ile
Ala	Arg 450	Gln	Thr	Ala	Gln	Gly 455	Met	Asp	Tyr	Leu	His 460	Ala	Lys	Asn	Ile
Ile 465	His	Arg	Asp	Met	Lys 470	Ser	Asn	Asn	Ile	Phe 475	Leu	His	Glu	Gly	Leu 480
Thr	Val	Lys	Ile	Gly 485	Asp	Phe	Gly	Leu	Ala 490	Thr	Val	ГÀа	Ser	Arg 495	Trp
Ser	Gly	Ser	Gln 500	Gln	Val	Glu	Gln	Pro 505	Thr	Gly	Ser	Val	Leu 510	Trp	Met
Ala	Pro	Glu 515	Val	Ile	Arg	Met	Gln 520	Asp	Asn	Asn	Pro	Phe 525	Ser	Phe	Gln
Ser	Asp 530	Val	Tyr	Ser	Tyr	Gly 535	Ile	Val	Leu	Tyr	Glu 540	Leu	Met	Thr	Gly
Glu 545	Leu	Pro	Tyr	Ser	His 550	Ile	Asn	Asn	Arg	Asp 555	Gln	Ile	Ile	Phe	Met 560
Val	Gly	Arg	Gly	Tyr 565	Ala	Ser	Pro	Asp	Leu 570	Ser	ГÀа	Leu	Tyr	Lys 575	Asn
Cys	Pro	Lys	Ala 580	Met	Lys	Arg	Leu	Val 585	Ala	Asp	CAa	Val	Lys 590	Lys	Val
Lys	Glu	Glu 595	Arg	Pro	Leu	Phe	Pro 600	Gln	Ile	Leu	Ser	Ser 605	Ile	Glu	Leu
Leu	Gln 610	His	Ser	Leu	Pro	Lys 615	Ile	Asn	Arg	Ser	Ala 620	Ser	Glu	Pro	Ser
Leu 625	His	Arg	Ala	Ala	His 630	Thr	Glu	Asp	Ile	Asn 635	Ala	Cys	Thr	Leu	Thr 640
Thr	Ser	Pro	Arg	Leu 645	Pro	Val	Phe								
<21 <21 <21	0 > SI 1 > LI 2 > T' 3 > OI	ENGTH PE: RGANI	H: 58 PRT SM:	B1 Homo	o saj	pien	s								
	0 > SI	_			7.7 -	7	G2 -	a1	D	7	77 - 7	D	G1-	G3	7
Met 1	Pro	нта	PIO	Arg 5	нта	Arg	ыц	GΙΝ	Pro 10	arg	val	rro	чтλ	15	Arg
Gln	Pro	Leu	Leu 20	Pro	Arg	Gly	Ala	Arg 25	Gly	Pro	Arg	Arg	Trp 30	Arg	Arg
Ala	Ala	Gly 35	Ala	Ala	Val	Leu	Leu 40	Val	Glu	Met	Leu	Glu 45	Arg	Ala	Ala
Phe	Phe 50	Gly	Val	Thr	Ala	Asn 55	Leu	Val	Leu	Tyr	Leu 60	Asn	Ser	Thr	Asn
Phe	Asn	Trp	Thr	Gly	Glu 70	Gln	Ala	Thr	Arg	Ala 75	Ala	Leu	Val	Phe	Leu 80

Gly Ala Ser Tyr Leu Leu Ala Pro Val Gly Gly Trp Leu Ala Asp Val \$85\$ 90 95

Tyr	Leu	Gly	Arg 100	Tyr	Arg	Ala	Val	Ala 105	Leu	Ser	Leu	Leu	Leu 110	Tyr	Leu
Ala	Ala	Ser 115	Gly	Leu	Leu	Pro	Ala 120	Thr	Ala	Phe	Pro	Asp 125	Gly	Arg	Ser
Ser	Phe 130	СЛа	Gly	Glu	Met	Pro 135	Ala	Ser	Pro	Leu	Gly 140	Pro	Ala	СЛа	Pro
Ser 145	Ala	Gly	Сув	Pro	Arg 150	Ser	Ser	Pro	Ser	Pro 155	Tyr	CAa	Ala	Pro	Val 160
Leu	Tyr	Ala	Gly	Leu 165	Leu	Leu	Leu	Gly	Leu 170	Ala	Ala	Ser	Ser	Val 175	Arg
Ser	Asn	Leu	Thr 180	Ser	Phe	Gly	Ala	Asp 185	Gln	Val	Met	Asp	Leu 190	Gly	Arg
Asp	Ala	Thr 195	Arg	Arg	Phe	Phe	Asn 200	Trp	Phe	Tyr	Trp	Ser 205	Ile	Asn	Leu
Gly	Ala 210	Val	Leu	Ser	Leu	Leu 215	Val	Val	Ala	Phe	Ile 220	Gln	Gln	Asn	Ile
Ser 225	Phe	Leu	Leu	Gly	Tyr 230	Ser	Ile	Pro	Val	Gly 235	Cys	Val	Gly	Leu	Ala 240
Phe	Phe	Ile	Phe	Leu 245	Phe	Ala	Thr	Pro	Val 250	Phe	Ile	Thr	Lys	Pro 255	Pro
Met	Gly	Ser	Gln 260	Val	Ser	Ser	Met	Leu 265	Lys	Leu	Ala	Leu	Gln 270	Asn	Cys
Cys	Pro	Gln 275	Leu	Trp	Gln	Arg	His 280	Ser	Ala	Arg	Asp	Arg 285	Gln	Cys	Ala
Arg	Val 290	Leu	Ala	Asp	Glu	Arg 295	Ser	Pro	Gln	Pro	Gly 300	Ala	Ser	Pro	Gln
Glu 305	Asp	Ile	Ala	Asn	Phe 310	Gln	Val	Leu	Val	Lys 315	Ile	Leu	Pro	Val	Met 320
Val	Thr	Leu	Val	Pro 325	Tyr	Trp	Met	Val	Tyr 330	Phe	Gln	Met	Gln	Ser 335	Thr
Tyr	Val	Leu	Gln 340	Gly	Leu	His	Leu	His 345	Ile	Pro	Asn	Ile	Phe 350	Pro	Ala
Asn	Pro	Ala 355	Asn	Ile	Ser	Val	Ala 360	Leu	Arg	Ala	Gln	Gly 365	Ser	Ser	Tyr
Thr	Ile 370	Pro	Glu	Ala	Trp	Leu 375	Leu	Leu	Ala	Asn	Val 380	Val	Val	Val	Leu
Ile 385	Leu	Val	Pro	Leu	390 Lys	Asp	Arg	Leu	Ile	Asp 395	Pro	Leu	Leu	Leu	Arg 400
CÀa	Lys	Leu	Leu	Pro 405	Ser	Ala	Leu	Gln	Lys 410	Met	Ala	Leu	Gly	Met 415	Phe
Phe	Gly	Phe	Thr 420	Ser	Val	Ile	Val	Ala 425	Gly	Val	Leu	Glu	Met 430	Glu	Arg
Leu	His	Tyr 435	Ile	His	His	Asn	Glu 440	Thr	Val	Ser	Gln	Gln 445	Ile	Gly	Glu
Val	Leu 450	Tyr	Asn	Ala	Ala	Pro 455	Leu	Ser	Ile	Trp	Trp 460	Gln	Ile	Pro	Gln
Tyr 465	Leu	Leu	Ile	Gly	Ile 470	Ser	Glu	Ile	Phe	Ala 475	Ser	Ile	Pro	Gly	Leu 480
Glu	Phe	Ala	Tyr	Ser 485	Glu	Ala	Pro	Arg	Ser 490	Met	Gln	Gly	Ala	Ile 495	Met
Gly	Ile	Phe	Phe	CAa	Leu	Ser	Gly	Val	Gly	Ser	Leu	Leu	Gly	Ser	Ser

			500					505					510		
Leu	Val	Ala 515	Leu	Leu	Ser	Leu	Pro 520	Gly	Gly	Trp	Leu	His 525	Cys	Pro	Lys
Asp	Phe 530	Gly	Asn	Ile	Asn	Asn 535	CAa	Arg	Met	Asp	Leu 540	Tyr	Phe	Phe	Leu
Leu 545	Ala	Gly	Ile	Gln	Ala 550	Val	Thr	Ala	Leu	Leu 555	Phe	Val	Trp	Ile	Ala 560
Gly	Arg	Tyr	Glu	Arg 565	Ala	Ser	Gln	Gly	Pro 570	Ala	Ser	His	Ser	Arg 575	Phe
Ser	Arg	Asp	Arg 580	Gly											
<211 <212	0> SE L> LE 2> TY 3> OF	ENGTI PE :	H: 4' PRT	75	o sal	piens	g								
< 400)> SI	EQUEI	NCE:	50											
Met 1	Gly	Met	Trp	Ala 5	Ser	Leu	Asp	Ala	Leu 10	Trp	Glu	Met	Pro	Ala 15	Glu
ГÀа	Arg	Ile	Phe 20	Gly	Ala	Val	Leu	Leu 25	Phe	Ser	Trp	Thr	Val 30	Tyr	Leu
Trp	Glu	Thr 35	Phe	Leu	Ala	Gln	Arg 40	Gln	Arg	Arg	Ile	Tyr 45	Lys	Thr	Thr
Thr	His 50	Val	Pro	Pro	Glu	Leu 55	Gly	Gln	Ile	Met	Asp 60	Ser	Glu	Thr	Phe
Glu 65	Lys	Ser	Arg	Leu	Tyr 70	Gln	Leu	Asp	Lys	Ser 75	Thr	Phe	Ser	Phe	Trp 80
Ser	Gly	Leu	Tyr	Ser 85	Glu	Thr	Glu	Gly	Thr 90	Leu	Ile	Leu	Leu	Phe 95	Gly
Gly	Ile	Pro	Tyr 100	Leu	Trp	Arg	Leu	Ser 105	Gly	Arg	Phe	Cys	Gly 110	Tyr	Ala
Gly	Phe	Gly 115	Pro	Glu	Tyr	Glu	Ile 120	Thr	Gln	Ser	Leu	Val 125	Phe	Leu	Leu
Leu	Ala 130	Thr	Leu	Phe	Ser	Ala 135	Leu	Thr	Gly	Leu	Pro 140	Trp	Ser	Leu	Tyr
Asn 145	Thr	Phe	Val	Ile	Glu 150	Glu	Lys	His	Gly	Phe 155	Asn	Gln	Gln	Thr	Leu 160
Gly	Phe	Phe	Met	Lys 165	Asp	Ala	Ile	Lys	Lys 170	Phe	Val	Val	Thr	Gln 175	Сув
Ile	Leu	Leu	Pro 180	Val	Ser	Ser	Leu	Leu 185	Leu	Tyr	Ile	Ile	Lys 190	Ile	Gly
Gly	Asp	Tyr 195	Phe	Phe	Ile	Tyr	Ala 200	Trp	Leu	Phe	Thr	Leu 205	Val	Val	Ser
Leu	Val 210	Leu	Val	Thr	Ile	Tyr 215	Ala	Asp	Tyr	Ile	Ala 220	Pro	Leu	Phe	Asp
Lув 225	Phe	Thr	Pro	Leu	Pro 230	Glu	Gly	Lys	Leu	Lys 235	Glu	Glu	Ile	Glu	Val 240
Met	Ala	Lys	Ser	Ile 245	Asp	Phe	Pro	Leu	Thr 250	Lys	Val	Tyr	Val	Val 255	Glu
Gly	Ser	Lys	Arg 260	Ser	Ser	His	Ser	Asn 265	Ala	Tyr	Phe	Tyr	Gly 270	Phe	Phe

```
Lys Asn Lys Arg Ile Val Leu Phe Asp Thr Leu Leu Glu Glu Tyr Ser
Val Leu Asn Lys Asp Ile Gln Glu Asp Ser Gly Met Glu Pro Arg Asn
                       295
Glu Glu Glu Gly Asn Ser Glu Glu Ile Lys Ala Lys Val Lys Asn Lys
Lys Gln Gly Cys Lys Asn Glu Glu Val Leu Ala Val Leu Gly His Glu
Leu Gly His Trp Lys Leu Gly His Thr Val Lys Asn Ile Ile Ser
Gln Met Asn Ser Phe Leu Cys Phe Phe Leu Phe Ala Val Leu Ile Gly
Arg Lys Glu Leu Phe Ala Ala Phe Gly Phe Tyr Asp Ser Gln Pro Thr
Leu Ile Gly Leu Leu Ile Ile Phe Gln Phe Ile Phe Ser Pro Tyr Asn
Glu Val Leu Ser Phe Cys Leu Thr Val Leu Ser Arg Arg Phe Glu Phe
Gln Ala Asp Ala Phe Ala Lys Lys Leu Gly Lys Ala Lys Asp Leu Tyr
                              425
Ser Ala Leu Ile Lys Leu Asn Lys Asp Asn Leu Gly Phe Pro Val Ser
                          440
Asp Trp Leu Phe Ser Met Trp His Tyr Ser His Pro Pro Leu Leu Glu
Arg Leu Gln Ala Leu Lys Thr Met Lys Gln His
            470
<210> SEQ ID NO 51
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 51
ggttacctaa gggtgtggc
                                                                      19
<210> SEQ ID NO 52
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 52
gaatcgatat tgttacaac
                                                                      19
<210> SEQ ID NO 53
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 53
gcataaggct atgaagaga
                                                                      19
```

```
<210> SEQ ID NO 54
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 54
gtctatacct cctggcaga
                                                                         19
<210> SEQ ID NO 55
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 55
gccaaagacc tgtccattc
                                                                         19
<210> SEQ ID NO 56
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 56
                                                                         19
gtcccagcta ccatcaaga
<210> SEQ ID NO 57
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 57
cccggcagat ttcagaatc
                                                                         19
<210> SEQ ID NO 58
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 58
gagtctgtgg tcagcatta
                                                                         19
<210> SEQ ID NO 59
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 59
ggaacagaca aactatcga
                                                                         19
<210> SEQ ID NO 60
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 60
gttctggtca tggatctct
                                                                         19
<210> SEQ ID NO 61
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 61
cgtggagctg agagataac
<210> SEQ ID NO 62
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 62
gacttagcta gcatcaata
                                                                         19
<210> SEQ ID NO 63
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 63
ggatattgtc cattgaaat
                                                                         19
<210> SEQ ID NO 64
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 64
tgaagcaacc atgcccatc
                                                                         19
<210> SEQ ID NO 65
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 65
tgtgttgctg ctatgaacc
                                                                         19
<210> SEQ ID NO 66
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 66
```

gagetgattg aagacagte	19
<210> SEQ ID NO 67 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 67	
gtcttcttga caatgtaac	19
<pre><210> SEQ ID NO 68 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 68	
gtaccacaag gatgtgaag	19
<pre><210> SEQ ID NO 69 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 69	
gaatgagtcc cataacttt	19
<pre><210> SEQ ID NO 70 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 70	
ccgtggctgt gaactatag	19
<210> SEQ ID NO 71 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 71	
ggtctgtctg cccgataat	19
<210> SEQ ID NO 72 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 72	
ccagagtgtg aatgtgttc	19

```
<210> SEQ ID NO 73
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 73
ggtgctcagc tatgtggac
                                                                         19
<210> SEQ ID NO 74
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 74
ggttgtctac cttcataac
                                                                         19
<210> SEQ ID NO 75
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 75
                                                                         19
gaagatgagg cttctggga
<210> SEQ ID NO 76
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 76
ccaaacctgt gtcaacttc
                                                                         19
<210> SEQ ID NO 77
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 77
gagatggtca ccatgaatt
                                                                         19
<210> SEQ ID NO 78
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 78
tgatggttac cgcaagatc
                                                                         19
<210> SEQ ID NO 79
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 79
gcctatctat tggaattcc
                                                                         19
<210> SEQ ID NO 80
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 80
aataaagatc caacaagac
<210> SEQ ID NO 81
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 81
gccaaaccag accaagata
                                                                         19
<210> SEQ ID NO 82
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 82
gatcgaaagg tacctgtat
                                                                         19
<210> SEQ ID NO 83
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 83
attggcctgt tcgctaatc
                                                                         19
<210> SEQ ID NO 84
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 84
gagagaggt acaaattcc
                                                                         19
<210> SEQ ID NO 85
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 85
```

ccagagetge atattagee	19
<210> SEQ ID NO 86	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: siRNA target sequence</pre>	
1225 OTHER INTORMITTON. BIRMI CATGOD BEQUEINCE	
<400> SEQUENCE: 86	
atttgtggtg ggcgttctc	19
<210> SEQ ID NO 87	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 87	
agaagctgta ctcatcggc	19
uguugeegeu eeeueegge	19
<210> SEQ ID NO 88	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 88	
caacctcatg aaccagatc	19
-210, CEO ID NO 90	
<210> SEQ ID NO 89	
<211> LENGTH: 19	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<pre><220> FEATORE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
2257 STILL INTOKENTION. BIRMS Carget bequeine	
<400> SEQUENCE: 89	
ctcgggtaag gatgtcttc	19
<210> SEQ ID NO 90	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 90	
acaacctgga caagctatg	19
<210> SEQ ID NO 91	
<211> LENGTH: 19	
<212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<pre><2205 FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 91	
ccatcaccct tactgtaac	19

```
<210> SEQ ID NO 92
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 92
gcatggtgct cctcttaag
                                                                          19
<210> SEQ ID NO 93
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 93
gtttggcaac agtaaagtc
                                                                          19
<210> SEQ ID NO 94
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 94
                                                                          19
gaggatgcaa ttcgaagtc
<210> SEQ ID NO 95
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 95
ccgaatgcag gataacaac
                                                                          19
<210> SEQ ID NO 96
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 96
gcacgcttag attggaata
                                                                          19
<210> SEQ ID NO 97
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 97
cctgaattcc ctgctcaac
                                                                          19
<210> SEQ ID NO 98
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 98
gttccactcg gcaatgtac
                                                                         19
<210> SEQ ID NO 99
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 99
gtagccaata ccttgctct
<210> SEQ ID NO 100
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 100
ggactttggg aacatcaac
                                                                         19
<210> SEQ ID NO 101
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 101
cctcgtgctg tacctcaac
                                                                         19
<210> SEQ ID NO 102
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 102
cctctatgct taagctcgc
                                                                         19
<210> SEQ ID NO 103
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 103
gatggagcgc ttacactac
                                                                         19
<210> SEQ ID NO 104
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA target sequence
<400> SEQUENCE: 104
```

	nie inded
ggacagtete aacaatgae	19
<210> SEQ ID NO 105 <211> LENGTH: 19 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 105	
gctgttgtta accatcaag	19
<210> SEQ ID NO 106 <211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: siRNA target sequence <400> SEQUENCE: 106</pre>	
gctgaagcac aacccgaaa	19
<210> SEQ ID NO 107 <211> LENGTH: 19 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 107	
tggttgttct caatgtggc	19
<210> SEQ ID NO 108 <211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: siRNA target sequence	
<400> SEQUENCE: 108	
gactgaagge actettatt	19
<210> SEQ ID NO 109 <211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: siRNA target sequence</pre>	
<400> SEQUENCE: 109	
gccatggagt ctttataat	19
<210> SEQ ID NO 110 <211> LENGTH: 12	
<212> TYPE: RNA <213> ORGANISM: Artificial sequence	
<pre></pre> <pre><220> FEATURE: <223> OTHER INFORMATION: Loop sequence</pre>	
<pre></pre> <pre><400> SEQUENCE: 110</pre>	
guuugcuaua ac	12

```
<210> SEQ ID NO 111
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer
<400> SEQUENCE: 111
                                                                        18
accetgtget geteaceg
<210> SEQ ID NO 112
<211> LENGTH: 23
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer
<400> SEQUENCE: 112
aggictcaaa catgatcigg gic
                                                                        23
```

- 1. A method for identifying a compound useful for the treatment of fibrosis, said method comprising:
 - a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, fragments and structurally functional derivatives thereof, or with a cell expressing said polypeptide;
 - b) determining a binding affinity of the test compound to said polypeptide, or measuring expression, amount or an activity of said polypeptide;
 - c) contacting the test compound with a population of macrophage cells;
 - d) measuring a property related to differentiation of macrophages into alternatively activated macrophages; and
 - e) identifying a compound capable of reducing or inhibiting macrophage differentiation into alternatively-activated macrophages and demonstrating binding affinity to said polypeptide or reducing or inhibiting the expression, amount or an activity of said polypeptide.
 - 2. (canceled)
 - 3. (canceled)
- **4**. A method for identifying a compound useful for reducing or inhibiting differentiation of macrophages to M2 macrophages, said method comprising:
 - a) contacting a test compound with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, functional fragments and functional derivatives thereof or with a nucleic acid encoding an amino acid selected from the group consisting of SEQ ID NOs: 26-50 or a functional derivative thereof;
 - b) measuring the expression or an activity of said polypeptide:
 - c) contacting the test compound with a population of macrophage cells;
 - d) measuring a property related to differentiation of macrophages into alternatively-activated macrophages; and
 - e) identifying a compound capable of reduction or inhibition of differentiation of macrophages into M2 macrophages and inhibiting the expression or an activity of said polypeptide.
 - 5. (canceled)

- **6**. The method according to claim **4**, wherein the nucleic acid is selected from the group consisting of SEQ ID NOs: 1-25.
- 7. The method according to claim 1 or 4, which additionally comprises the step of comparing the compound to be tested to a control.
- 8. The method of claim 1 or 4, wherein said polypeptide is coupled to a detectable label.
- 9. The method according to claim 1, wherein said polypeptide sequence in steps (a) and (b) is present in an in vitro cell-free preparation.
- 10. The method according to claim 1 or 4, wherein said polypeptide sequence in steps (a) and (b) is present in a cell.
- 11. The method according to claim 10, wherein the cell naturally expresses said polypeptide.
- 12. The method according to claim 10, wherein the cell has been engineered so as to express said polypeptide.
- 13. The method of claim 10, wherein said cell is a mammalian cell.
- 14. The method of claim 13, wherein said cell is a macrophage cell.
- 15. The method of claim 1 or 4, wherein said property is the inhibition of release or expression of a marker of alternatively-activated macrophages.
- 16. The method of claim 15 wherein said property is an expression or release of a marker selected from the group consisting of CCL18, CCL13, TGF13, CCL22, CCL17, soluble fibronectin, folate receptor β , CD206, and CD163.
 - 17. (canceled)
- **18**. The method according to claim **4** wherein said cells have been triggered by a factor which induces macrophage differentiation into M2 macrophages (M2 inducing factor).
- 19. The method according to claim 4, wherein said cells have been triggered by one or more M2 inducing factors selected from the group consisting of IL4, IL10, IL13, immune complexes and lipopolysaccharides.
 - 20. (canceled)
- 21. The method of claim 1 or 4 wherein the method additionally comprises: measuring a property related to the differentiation of macrophages into classically-activated (M1) macrophages and identifying a compound that does not inhibit said differentiation.

- 22. The method of claim 21 wherein said property is the level and/or expression of a marker of the M1 macrophage phenotype, and a compound is identified which does not increase the levels of said marker.
 - 23. The method of claim 22 wherein said marker is TNF α .
- **24**. The method according to claim **1**, wherein said test compound is selected from the group consisting of an antisense polynucleotide, a ribozyme, short-hairpin RNA (shRNA), small interfering RNA (siRNA), and microRNA (miRNA).
- 25. The method according to claim 24, wherein said test compound comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-25.
 - 26. (canceled)
 - 27. (canceled)
- 28. The method of claim 24, wherein said antisense polynucleotide, said siRNA or said shRNA comprises an antisense strand of 17-25 nucleotides complementary to a sense strand, wherein said sense strand is selected from 17-25 continuous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-25.
- 29. The method according to claim 1 or 4, wherein said compound is an antibody or an antibody fragment.
- 30. A method for treatment of a fibrotic condition in a mammal comprising administering to said mammal a pharmaceutical composition comprising an antibody or a fragment thereof which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50, or comprising an agent selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA (siRNA), microRNA (miRNA) and a short-hairpin RNA (shRNA), wherein said agent comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-25.
- 31. The method according to claim 30 wherein said antibody is a monoclonal antibody.
- 32. The method according to claim 30 wherein said antibody is a single chain antibody.
 - 33. (canceled)
- **34**. The method according to claim **30**, wherein said fibrotic condition is a fibrotic condition associated with differentiation of macrophages into alternatively-activated (M2) macrophages.

- 35. The method according to claim 34, wherein said fibrotic condition is selected from idiopathic pulmonary fibrosis (IPF), cystic fibrosis, other diffuse parenchymal lung diseases of different etiologies including iatrogenic druginduced fibrosis, occupational and/or environmental induced fibrosis, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, bleomycin induced pulmonary fibrosis, chronic asthma, silicosis, asbestos induced pulmonary fibrosis, acute respiratory distress syndrome (ARDS), kidney fibrosis, tubulointerstitium fibrosis, glomerular nephritis, focal segmental glomerular sclerosis, IgA nephropathy, hypertension, Alport syndrome, gut fibrosis, liver fibrosis, cirrhosis, alcohol induced liver fibrosis, toxic/drug induced liver fibrosis, hemochromatosis, nonalcoholic steatohepatitis (NASH), biliary duct injury, primary biliary cirrhosis, infection induced liver fibrosis, viral induced liver fibrosis, autoimmune hepatitis, corneal scarring, hypertrophic scarring, Dupuytren disease, keloids, cutaneous fibrosis, cutaneous scleroderma, systemic sclerosis, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, arteriosclerosis, Wegener's granulomatosis and Peyronie's disease.
 - **36**. (canceled)
- 37. An in vitro method of reducing or inhibiting the differentiation of macrophages into alternatively-activated (M2) macrophages, said method comprising contacting a population of mammalian cells comprising macrophage cells with an inhibitor of the activity or expression of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 26-50.
- **38**. The method of claim **37** wherein said inhibitor is an antibody.
- **39**. The method of claim **37** wherein said antibody is a monoclonal antibody.
- **40**. The method of claim **37** wherein said inhibitor is selected from the group consisting of an antisense polynucleotide, a ribozyme, a small interfering RNA (siRNA), microRNA (miRNA) and a short-hairpin RNA (shRNA), wherein said inhibitor comprises a nucleic acid sequence complementary to, or engineered from, a naturally-occurring polynucleotide sequence of about 17 to about 30 contiguous nucleotides of a nucleic acid encoding said polypeptide.

* * * * *