

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2365438 C 2015/07/14

(11)(21) 2 365 438

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(86) Date de dépôt PCT/PCT Filing Date: 2000/03/28
(87) Date publication PCT/PCT Publication Date: 2000/10/12
(45) Date de délivrance/Issue Date: 2015/07/14
(85) Entrée phase nationale/National Entry: 2001/08/30
(86) N° demande PCT/PCT Application No.: DK 2000/000148
(87) N° publication PCT/PCT Publication No.: 2000/060059
(30) Priorité/Priority: 1999/03/30 (DK PA 1999 00437)

(51) Cl.Int./Int.Cl. C12N 9/28 (2006.01),
C11D 3/386 (2006.01)

(72) Inventeurs/Inventors:

ANDERSEN, CARSTEN, DK;
JORGENSEN, CHRISTEL THEA, DK;
BISGARD-FRANTZEN, HENRIK, DK;
SVENDSEN, ALLAN, DK;
KJAERULFF, SOREN, DK

(73) Propriétaire/Owner:

NOVOZYMES A/S, DK

(74) Agent: DIMOCK STRATTON LLP

(54) Titre : VARIANTES D'ALPHA AMYLASE

(54) Title: ALPHA-AMYLASE VARIANTS

(57) Abrégé/Abstract:

The invention relates to a variant of a parent Termamyl-like alpha-amylase, which variant exhibits altered properties, in particular reduced capability of cleaving a substrate close to the branching point, and improved substrate specificity and/or improved specific activity relative to the parent alpha-amylase. The variant of the parent Termamyl-like alpha-amylase, comprised an alternation at one or more positions selected from the group of W13, G48, T49, S50, Q51, A52, D53, V54, G57, G107, G108, A111, S168 and M197.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
12 October 2000 (12.10.2000)

PCT

(10) International Publication Number
WO 00/60059 A3(51) International Patent Classification⁷: C12N 9/28,
C11D 3/386DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/DK00/00148

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 28 March 2000 (28.03.2000)

(25) Filing Language: English

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

(26) Publication Language: English

(30) Priority Data:
PA 1999 00437 30 March 1999 (30.03.1999) DK(88) Date of publication of the international search report:
10 May 2001(71) Applicant: NOVO NORDISK A/S [DK/DK]; Novo Allé,
DK-2880 Bagsværd (DK).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors: ANDERSEN, Carsten; Højeloft Vænge
162, DK-3500 Værløse (DK). JØRGENSEN, Christel,
Thea; Livjærgade 41, 4.th., DK-2100 Copenhagen Ø
(DK). BISGÅRD-FRANTZEN, Henrik; Elmevænget
8B, DK-2880 Bagsværd (DK). SVENDSEN, Allan;
Bakkeledet 28, DK-3460 Birkerød (DK). KJÆRULFF,
Søren; Kongsdalsvej 47, DK-2720 Vanløse (DK).(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,

A3

WO 00/60059

(54) Title: ALPHA-AMYLASE VARIANTS

(57) Abstract: The invention relates to a variant of a parent Termamyl-like alpha-amylase, which variant exhibits altered properties, in particular reduced capability of cleaving a substrate close to the branching point, and improved substrate specificity and/or improved specific activity relative to the parent alpha-amylase. The variant of the parent Termamyl-like alpha-amylase, comprised an alteration at one or more positions selected from the group of W13, G48, T49, S50, Q51, A52, D53, V54, G57, G107, G108, A111, S168 and M197.

Alpha-AMYLASE VARIANTS

FIELD OF THE INVENTION

The present invention relates, *inter alia*, to novel variants 5 of parent Termamyl-like alpha-amylases, notably variants exhibiting altered properties, in particular altered cleavage pattern (relative to the parent) which are advantageous with respect to applications of the variants in, in particular, industrial starch processing (e.g., starch liquefaction or 10 saccharification).

BACKGROUND OF THE INVENTION

Alpha-Amylases (alpha-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) constitute a group of enzymes which catalyze hydrolysis 15 of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.

There is a very extensive body of patent and scientific literature relating to this industrially very important class of enzymes. A number of alpha-amylase such as Termamyl-like 20 alpha-amylases variants are known from, e.g., WO 90/11352, WO 95/10603, WO 95/26397, WO 96/23873, WO 96/23874 and WO 97/41213.

Among recent disclosure relating to alpha-amylases, WO 96/23874 provides three-dimensional, X-ray crystal structural data for a Termamyl-like alpha-amylase, referred to as BA2, 25 which consists of the 300 N-terminal amino acid residues of the *B. amyloliquefaciens* alpha-amylase comprising the amino acid sequence shown in SEQ ID NO: 6 herein and amino acids 301-483 of the C-terminal end of the *B. licheniformis* alpha-amylase comprising the amino acid sequence shown in SEQ ID NO: 4 herein 30 (the latter being available commercially under the tradename TermamylTM), and which is thus closely related to the industrially important *Bacillus* alpha-amylases (which in the present context are embraced within the meaning of the term "Termamyl-like alpha-amylases", and which include, *inter alia*, 35 the *B. licheniformis*, *B. amyloliquefaciens* and *B. stearothermophilus* alpha-amylases). WO 96/23874 further describes methodology for designing, on the basis of an analysis

of the structure of a parent Termamyl-like alpha-amylase, variants of the parent Termamyl-like alpha-amylase which exhibit altered properties relative to the parent.

WO 96/23874 and WO 97/41213 (Novo Nordisk) discloses 5 Termamyl-like alpha-amylase variants with an altered cleavage pattern containing mutations in the amino acid residues V54, D53, Y56, Q333, G57 and A52 of the sequence shown in SEQ ID NO: 4 herein.

10 **BRIEF DISCLOSURE OF THE INVENTION**

The present invention relates to novel alpha-amylolytic variants (mutants) of a Termamyl-like alpha-amylase, in particular variants exhibiting altered cleavage pattern (relative to the parent), which are advantageous in connection 15 with the industrial processing of starch (starch liquefaction, saccharification and the like).

The inventors have surprisingly found variants with altered properties, in particular altered cleavage pattern which have improved reduced capability of cleaving an substrate close to 20 the branching point, and further have improved substrate specificity and/or improved specific activity, in comparison to the WO 96/23874 and WO 97/41213 (Novo Nordisk) disclosed Termamyl-like alpha-amylase variants with an altered cleavage pattern containing mutations in the amino acid residues V54, 25 D53, Y56, Q333, G57 and A52 of the sequence shown in SEQ ID NO: 4 herein.

The invention further relates to DNA constructs encoding variants of the invention, to composition comprising variants of the invention, to methods for preparing variants of the 30 invention, and to the use of variants and compositions of the invention, alone or in combination with other alpha-amylolytic enzymes, in various industrial processes, e.g., starch liquefaction, and in detergent compositions, such as laundry, dish washing and hard surface cleaning compositions; ethanol 35 production, such as fuel, drinking and industrial ethanol production; desizing of textiles, fabrics or garments etc.

Nomenclature

In the present description and claims, the conventional one-letter and three-letter codes for amino acid residues are used.

For ease of reference, alpha-amylase variants of the invention 5 are described by use of the following nomenclature:

Original amino acid(s):position(s):substituted amino acid(s)

According to this nomenclature, for instance the substitution of alanine for asparagine in position 30 is shown as:

10 Ala30Asn or A30N

a deletion of alanine in the same position is shown as:

Ala30* or A30*

and insertion of an additional amino acid residue, such as lysine, is shown as:

15 *30aLys or *30aK

A deletion of a consecutive stretch of amino acid residues, such as amino acid residues 30-33, is indicated as (30-33)* or Δ (A30-N33) or delta(A30-N33).

Where a specific alpha-amylase contains a "deletion" in 20 comparison with other alpha-amylases and an insertion is made in such a position this is indicated as:

*36aAsp or *36aD

for insertion of an aspartic acid in position 36

Multiple mutations are separated by plus signs, i.e.:

25 Ala30Asp + Glu34Ser or A30N+E34S

representing mutations in positions 30 and 34 substituting alanine and glutamic acid for asparagine and serine, respectively. Multiple mutations may also be separated as follows, i.e., meaning the same as the plus sign:

30 Ala30Asp/Glu34Ser or A30N/E34S

When one or more alternative amino acid residues may be inserted in a given position it is indicated as

A30N,E or

A30N or A30E

35 Furthermore, when a position suitable for modification is identified herein without any specific modification being suggested, or A30X, it is to be understood that any amino acid

WO 00/60059

PCT/DK00/00148

4

residue may be substituted for the amino acid residue present in the position. Thus, for instance, when a modification of an alanine in position 30 is mentioned, but not specified, or specified as "X", it is to be understood that the alanine may be deleted or substituted for any other amino acid, i.e., any one of: R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows SEQ ID NO: 1 of WO95/26397;

Figure 2 shows SEQ ID NO: 2 of WO95/26397; and

Figure 3 shows the sequence of the *Bacillus* sp#707 alpha-amylase of Tsukamoto et al., Biomechanical and Biophysical Research Communications, 151 (1988), pp. 25-31.

The Termamyl-like alpha-amylase

It is well known that a number of alpha-amylases produced by *Bacillus* spp. are highly homologous on the amino acid level. For instance, the *B. licheniformis* alpha-amylase comprising the amino acid sequence shown in SEQ ID NO: 4 (commercially available as Termamyl™) has been found to be about 89% homologous with the *B. amyloliquefaciens* alpha-amylase comprising the amino acid sequence shown in SEQ ID NO: 6 and about 79% homologous with the *B. stearothermophilus* alpha-amylase comprising the amino acid sequence shown in SEQ ID NO: 8. Further homologous alpha-amylases include an alpha-amylase derived from a strain of the *Bacillus* sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the #707 alpha-amylase described by Tsukamoto et al., Biochemical and Biophysical Research Communications, 151 (1988), pp. 25-31.

4a

Still further homologous alpha-amylases include the alpha-amylase produced by the *B. licheniformis* strain described in EP 0252666 (ATCC 27811), and the alpha-amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like *B. licheniformis* alpha-amylases are Optitherm™ and Takatherm™ (available from Solvay), Maxamyl™ (available from Gist-brocades/Genencor), Spezym AA™ and Spezyme Delta AA™ (available from Genencor), and Keistase™ (available from Daiwa).

Because of the substantial homology found between these alpha-amylases, they are considered to belong to the same class of alpha-amylases, namely the class of "Termamyl-like alpha-amylases".

Accordingly, in the present context, the term "Termamyl-like alpha-amylase" is intended to indicate an alpha-amylase, which at the amino acid level exhibits a substantial homology to Termamyl™, i.e., the *B. licheniformis* alpha-amylase having the 5 amino acid sequence shown in SEQ ID NO: 4 herein. In other words, a Termamyl-like alpha-amylase is an alpha-amylase, which has the amino acid sequence shown in SEQ ID NO: 2, 4, 6, or 8 herein, and the amino acid sequence shown in SEQ ID NO: 1 or 2 of WO 95/26397 or in Tsukamoto et al., 1988, or i) which 10 displays at least 60%, preferred at least 70%, more preferred at least 75%, even more preferred at least 80%, especially at least 85%, especially preferred at least 90%, even especially more preferred at least 95% homology, more preferred at least 97%, more preferred at least 99% with at least one of said amino acid 15 sequences and/or ii) displays immunological cross-reactivity with an antibody raised against at least one of said alpha-amylases, and/or iii) is encoded by a DNA sequence which hybridises to the DNA sequences encoding the above-specified alpha-amylases which are apparent from SEQ ID NOS: 1, 3, 5 and 7 20 of the present application and SEQ ID NOS: 4 and 5 of WO 95/26397, respectively.

In connection with property i), the "homology" may be determined by use of any conventional algorithm, preferably by use of the GAP programme from the GCG package version 7.3 (June 25 1993) using default values for GAP penalties, which is a GAP creation penalty of 3.0 and GAP extension penalty of 0.1, (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711).

30 A structural alignment between Termamyl and a Termamyl-like alpha-amylase may be used to identify equivalent/corresponding positions in other Termamyl-like alpha-amylases. One method of obtaining said structural alignment is to use the Pile Up programme from the GCG package using default 35 values of gap penalties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1. Other structural alignment methods include the hydrophobic cluster analysis (Gaboriaud et al.,

(1987), FEBS LETTERS 224, pp. 149-155) and reverse threading (Huber, T ; Torda, AE, PROTEIN SCIENCE Vol. 7, No. 1 pp. 142-149 (1998). Property ii) of the alpha-amylase, i.e., the immunological cross reactivity, may be assayed using an antibody raised against, or reactive with, at least one epitope of the relevant Termamyl-like alpha-amylase. The antibody, which may either be monoclonal or polyclonal, may be produced by methods known in the art, e.g., as described by Hudson et al., Practical Immunology, Third edition (1989), Blackwell Scientific Publications. The immunological cross-reactivity may be determined using assays known in the art, examples of which are Western Blotting or radial immunodiffusion assay, e.g., as described by Hudson et al., 1989. In this respect, immunological cross-reactivity between the alpha-amylases having the amino acid sequences SEQ ID NOS: 2, 4, 6, or 8, respectively, have been found.

The oligonucleotide probe used in the characterization of the Termamyl-like alpha-amylase in accordance with property iii) above may suitably be prepared on the basis of the full or partial nucleotide or amino acid sequence of the alpha-amylase in question.

Suitable conditions for testing hybridization involve presoaking in 5xSSC and prehybridizing for 1 hour at ~40°C in a solution of 20% formamide, 5xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50mg of denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 100mM ATP for 18 hours at ~40°C, followed by three times washing of the filter in 2xSSC, 0.2% SDS at 40°C for 30 minutes (low stringency), preferred at 50°C (medium stringency), more preferably at 65°C (high stringency), even more preferably at ~75°C (very high stringency). More details about the hybridization method can be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989.

In the present context, "derived from" is intended not only to indicate an alpha-amylase produced or producible by a strain of the organism in question, but also an alpha-amylase encoded

by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate an alpha-amylase, which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has 5 the identifying characteristics of the alpha-amylase in question. The term is also intended to indicate that the parent alpha-amylase may be a variant of a naturally occurring alpha-amylase, i.e. a variant, which is the result of a modification (insertion, substitution, deletion) of one or more amino acid 10 residues of the naturally occurring alpha-amylase.

Parent hybrid alpha-amylases

The parent alpha-amylase may be a hybrid alpha-amylase, i.e., an alpha-amylase, which comprises a combination of partial 15 amino acid sequences derived from at least two alpha-amylases.

The parent hybrid alpha-amylase may be one, which on the basis of amino acid homology and/or immunological cross-reactivity and/or DNA hybridization (as defined above) can be determined to belong to the Termamyl-like alpha-amylase family. 20 In this case, the hybrid alpha-amylase is typically composed of at least one part of a Termamyl-like alpha-amylase and part(s) of one or more other alpha-amylases selected from Termamyl-like alpha-amylases or non-Termamyl-like alpha-amylases of microbial (bacterial or fungal) and/or mammalian origin.

25 Thus, the parent hybrid alpha-amylase may comprise a combination of partial amino acid sequences deriving from at least two Termamyl-like alpha-amylases, or from at least one Termamyl-like and at least one non-Termamyl-like bacterial alpha-amylase, or from at least one Termamyl-like and at least 30 one fungal alpha-amylase. The Termamyl-like alpha-amylase from which a partial amino acid sequence derives may, e.g., be any of those specific Termamyl-like alpha-amylases referred to herein.

For instance, the parent alpha-amylase may comprise a C-terminal part of an alpha-amylase derived from a strain of *B. licheniformis*, and a N-terminal part of an alpha-amylase derived 35 from a strain of *B. amyloliquefaciens* or from a strain of *B. stearothermophilus*. For instance, the parent alpha-amylase may

comprise at least 430 amino acid residues of the C-terminal part of the *B. licheniformis* alpha-amylase, and may, e.g., comprise a) an amino acid segment corresponding to the 37 N-terminal amino acid residues of the *B. amyloliquefaciens* alpha-amylase 5 having the amino acid sequence shown in SEQ ID NO: 6 and an amino acid segment corresponding to the 445 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase having the amino acid sequence shown in SEQ ID NO: 4, or b) an amino acid segment corresponding to the 68 N-terminal amino acid residues 10 of the *B. stearothermophilus* alpha-amylase having the amino acid sequence shown in SEQ ID NO: 8 and an amino acid segment corresponding to the 415 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase having the amino acid sequence shown in SEQ ID NO: 4.

15 In a preferred embodiment the parent Termamyl-like alpha-amylase is a hybrid Termamyl-like alpha-amylase identical to the *Bacillus licheniformis* alpha-amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) is replaced with the N-terminal 33 amino acid residues 20 of the mature protein of the *Bacillus amyloliquefaciens* alpha-amylase (BAN) shown in SEQ ID NO: 6. Said hybrid may further have the following mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4) referred to as LE174.

Another preferred parent hybrid alpha-amylase is LE429 shown 25 in SEQ ID NO: 2.

The non-Termamyl-like alpha-amylase may, e.g., be a fungal alpha-amylase, a mammalian or a plant alpha-amylase or a bacterial alpha-amylase (different from a Termamyl-like alpha-amylase). Specific examples of such alpha-amylases include the 30 *Aspergillus oryzae* TAKA alpha-amylase, the *A. niger* acid alpha-amylase, the *Bacillus subtilis* alpha-amylase, the porcine pancreatic alpha-amylase and a barley alpha-amylase. All of these alpha-amylases have elucidated structures, which are markedly different from the structure of a typical Termamyl-like 35 alpha-amylase as referred to herein.

The fungal alpha-amylases mentioned above, i.e., derived from *A. niger* and *A. oryzae*, are highly homologous on the amino

acid level and generally considered to belong to the same family of alpha-amylases. The fungal alpha-amylase derived from *Aspergillus oryzae* is commercially available under the tradename Fungamyl™.

5 Furthermore, when a particular variant of a Termamyl-like alpha-amylase (variant of the invention) is referred to - in a conventional manner - by reference to modification (e.g., deletion or substitution) of specific amino acid residues in the amino acid sequence of a specific Termamyl-like alpha-amylase, 10 it is to be understood that variants of another Termamyl-like alpha-amylase modified in the equivalent position(s) (as determined from the best possible amino acid sequence alignment between the respective amino acid sequences) are encompassed thereby.

15 A preferred embodiment of a variant of the invention is one derived from a *B. licheniformis* alpha-amylase (as parent Termamyl-like alpha-amylase), e.g., one of those referred to above, such as the *B. licheniformis* alpha-amylase having the amino acid sequence shown in SEQ ID NO: 4.

20

Construction of variants of the invention

25 The construction of the variant of interest may be accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant. The variant may then subsequently be recovered from the resulting culture broth. This is described in detail further below.

Altered properties

30 The following discusses the relationship between mutations, which may be present in variants of the invention, and desirable alterations in properties (relative to those of a parent Termamyl-like alpha-amylase), which may result there from.

35 In the first aspect the invention relates to a variant of a parent Termamyl-like alpha-amylase, comprising an alteration at one or more positions selected from the group of:

W13, G48, T49, S50, Q51, A52, D53, V54, G57, G107, G108, A111,

WO 00/60059

PCT/DK00/00148

10

S168, M197, wherein (a) the alteration(s) are independently

- (i) an insertion of an amino acid downstream of the amino acid which occupies the position,
- (ii) a deletion of the amino acid which occupies the position, or
- (iii) a substitution of the amino acid which occupies the position with a different amino acid,

(b) the variant has alpha-amylase activity and (c) each position corresponds to a position of the amino acid sequence of the parent Termamyl-like alpha-amylase having the amino acid sequence of SEQ ID NO: 4.

In a preferred embodiment the above variants of the invention comprise a mutation in a position corresponding to at least one of the following mutations in the amino acid sequence shown in SEQ ID NO: 4:

V54N, A52S, A52S+V54N, T49L, T49+G107A, A52S+V54N+T49L+G107A, A52S+V54N+T49L, G107A, Q51R, Q51R+A52S, A52N; or
T49F+G107A, T49V+G107A, T49D+G107A, T49Y+G107A, T49S+G107A, T49N+G107A, T49I+G107A, T49L+A52S+G107A, T49L+A52T+G107A, T49L+A52F+G107A, T49L+A52L+G107A, T49L+A52I+G107A, T49L+A52V+G107A; or
T49V, T49I, T49D, T49N, T49S, T49Y, T49F, T49W, T49M, T49E, T49Q, T49K, T49R, A52T, A52L, A52I, A52V, A52M, A52F, A52Y, A52W, V54M, G107V, G07I, G107L, G107C.

In a preferred embodiment a variant of the invention comprises at least one mutation in a position corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 4:

W13F, L, I, V, Y, A;
G48A, V, S, T, I, L;
*48aD or *48aY (i.e., insertion of D or Y);
T49X;
*49aX (i.e., insertion of any possible amino acid residue)
S50X, in particular D, Y, L, T, V, I;
Q51R, K;
A52X, in particular A52S, N, T, F, L, I, V;
D53E, Q, Y, I, N, S, T, V, L;

WO 00/60059

11

V54X, in particular V54I,N,W,Y,F,L;
G57S,A,V,L,I,F,Y,T;
G107X, in particular G107A,V,S,T,I,L,C;
G108X, in particular G108A,V,S,T,I,L;
5 A111V,I,L;
S168Y;
M197X, in particular Y,F,L,I,T,A,G.

In a preferred embodiment a variant of the invention comprises the following mutations corresponding to the following 10 mutations in the amino acid sequence shown in SEQ ID NO: 4: T49X+A52X+V54N/I/L/Y/F/W+G107A, and may further comprise G108A.

In a preferred embodiment a variant of the invention comprises at least one mutation corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 4:

15 T49L+G107A;
T49I+G107A;
T49L+G107A+V54I;
T49I+G107A+V54I;
A52S+V54N+T49L+G107A;
20 A52S+V54I+T49L+G107A;
A52S+T49L+G107A;
A52T+T49L+G107A;
A52S+V54N+T49I+G107A;
A52S+V54I+T49I+G107A;
25 A52S+T49I+G107A;
T49L+G108A;
T49I+G108A;
T49L+G108A+V54I;
T49I+G108A+V54I.

30 All of the above-mentioned variants of the invention have altered properties (meaning increased or decreased properties), in particular at least one of the following properties relative to the parent alpha-amylase: reduced ability to cleave a substrate close to the branching point, improved substrate specificity and/or improved specific activity, altered substrate binding, altered thermal stability, altered pH/activity profile, altered pH/stability profile, altered stability towards 35

oxidation, altered Ca^{2+} dependency.

5 Stability

In the context of the present invention, mutations (including amino acid substitutions and/or deletions) of importance with respect to achieving altered stability, in particular improved stability (i.e., higher or lower), at 10 especially low pH (i.e., pH 4-6) include any of the mutations listed in the in "Altered properties" section, above and the variants mentioned right below.

The following variants: Q360A,K; N102A, N326A,L, N190G, N190K; Y262A,K,E (using the BAN, i.e., SEQ ID N: 6, numbering) 15 were also tested for pH stability. A preferred parent alpha-amylase may be BA2 described above. The pH stability was determined as described in the "Materials & Methods" section.

20 Ca^{2+} stability

Altered Ca^{2+} stability means the stability of the enzyme under Ca^{2+} depletion has been improved, i.e., higher or lower stability. In the context of the present invention, mutations (including amino acid substitutions) of importance with respect 25 to achieving altered Ca^{2+} stability, in particular improved Ca^{2+} stability, i.e., higher or lower stability, at especially low pH (i.e., pH 4-6) include any of the mutations listed in the in "Altered properties" section above.

30 Specific activity

In a further aspect of the present invention, important mutations with respect to obtaining variants exhibiting altered specific activity, in particular increased or decreased specific activity, especially at temperatures from 60-100°C, preferably 35 70-95°C, especially 80-90°C, include any of the mutations listed in the in "Altered properties" section above.

The specific activity of LE174 and LE429 was determined to

16,000 NU/mg using the Phadebas® assay described in the 'Materials and Methods' section.

Altered cleavage pattern

5 In the starch liquefaction process it is desirable to use an alpha-amylase, which is capable of degrading the starch molecules into long, branched oligosaccharides, rather than an alpha-amylase, which gives rise to formation of shorter, branched oligosaccharides (like conventional Termamyl-like 10 alpha-amylases). Short, branched oligosaccharides (panose precursors) are not hydrolyzed satisfactorily by pullulanases, which are used after alpha-amylase treatment in the liquefaction process, or simultaneously with a saccharifying amyloglucosidase (glucoamylase), or before adding a saccharifying 15 amyloglucosidase (glucoamylase). Thus, in the presence of panose precursors, the product mixture present after the glucoamylase treatment contains a significant proportion of short, branched, so-called limit-dextrin, viz. the trisaccharide panose. The presence of panose lowers the saccharification yield significantly and is thus undesirable.

20 It has been reported previously (US patent 5,234,823) that, when saccharifying with glucoamylase and pullulanase, the presence of residual alpha-amylase activity arising from the liquefaction process, can lead to lower yields of glucose, 25 if the alpha-amylase is not inactivated before the saccharification stage. This inactivation can be typically carried out by adjusting the pH to below 4.7 at 95°C, before lowering the temperature to 60°C for saccharification.

30 The reason for this negative effect on glucose yield is not fully understood, but it is assumed that the liquefying alpha-amylase (for example Termamyl 120 L from *B.licheniformis*) generates "limit dextrins" (which are poor substrates for pullulanase), by hydrolysing 1,4-alpha-glucosidic linkages close to and on both sides of the 35 branching points in amylopectin. Hydrolysis of these limit dextrins by glucoamylase leads to a build up of the trisaccharide panose, which is only slowly hydrolysed by

glucoamylase.

The development of a thermostable alpha-amylase, which does not suffer from this disadvantage, would be a significant improvement, as no separate inactivation step would be required.

Thus, the aim of the present invention is to arrive at a mutant alpha-amylase having appropriately modified starch-degradation characteristics but retaining the thermostability of the parent Termamyl-like alpha-amylase.

Accordingly, the invention relates to a variant of a Termamyl-like alpha-amylase, which has an improved reduced ability to cleave a substrate close to the branching point, and further has improved substrate specificity and/or improved specific activity.

Of particular interest is a variant, which cleaves an amylopectin substrate, from the reducing end, more than one glucose unit from the branching point, preferably more than two or three glucose units from the branching point, i.e., at a further distance from the branching point than that obtained by use of a wild type *B. licheniformis* alpha-amylase.

It may be mentioned here that according to WO 96/23874, variants comprising at least one of the following mutations are expected to prevent cleavage close to the branching point:

V54L, I, F, Y, W, R, K, H, E, Q;

D53L, I, F, Y, W;

Y56W;

Q333W;

G57, all possible amino acid residues;

A52, amino acid residues larger than A, e.g., A52W, Y, L, F, I.

Mutations of particular interest in relation to obtaining variants according to the invention having an improved reduced ability to cleave a substrate close to the branching point, and further has improved substrate specificity and/or improved specific activity include mutations at the following positions in *B. licheniformis* alpha-amylase, SEQ ID NO: 4:
H156, A181, N190, A209, Q264 and I201.

It should be emphasized that not only the Termamyl-like

alpha-amylases mentioned specifically below may be used. Also other commercial Termamyl-like alpha-amylases can be used. An unexhaustive list of such alpha-amylases is the following:

5 Alpha-amylases produced by the *B. licheniformis* strain described in EP 0252666 (ATCC 27811), and the alpha-amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like *B. licheniformis* alpha-amylases are Optitherm™ and Takatherm™ (available from Solvay), Maxamyl™ (available from Gist-brocades/Genencor), Spezym AA™ Spezyme Delta AA™ (available 10 from Genencor), and Keistase™ (available from Daiwa).

All Termamyl-like alpha-amylase may suitably be used as backbone for preparing variants of the invention.

In a preferred embodiment of the invention the parent 15 Termamyl-like alpha-amylase is a hybrid alpha-amylase of SEQ ID NO: 4 and SEQ ID NO: 6. Specifically, the parent hybrid Termamyl-like alpha-amylase may be a hybrid alpha-amylase comprising the 445 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the mature alpha-amylase derived 20 from *B. amyloliquefaciens* shown in SEQ ID NO: 6, which may suitably further have the following mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4). This hybrid is referred to as LE174. The LE174 hybrid may be combined with a further mutation I201F to form a parent hybrid 25 Termamyl-like alpha-amylase having the following mutations H156Y+A181T+N190F+A209V+Q264S+I201F (using SEQ ID NO: 4 for the numbering). This hybrid variant is shown in SEQ ID NO: 2 and is used in the examples below, and is referred to as LE429.

Also, LE174 or LE429 (SEQ ID NO: 2) or *B. licheniformis* 30 alpha-amylase shown in SEQ ID NO: 4 comprising one or more of the following mutations may be used as backbone (using SEQ ID NO: 4 for the numbering of the mutations):

E119C;
S130C;
35 D124C;
R127C;

WO 00/60059

PCT/DK00/00148

16

A52all possible amino acid residues;
S85all possible amino acid residues;
N96all possible amino acid residues;
V129all possible amino acid residues;
5 A269all possible amino acid residues;
A378all possible amino acid residues;
S148all possible amino acid residues, in particular S148N;
E211all possible amino acid residues, in particular E211Q;
N188all possible amino acid residues, in particular N188S, N188P;
10 M197all possible amino acid residues, in particular M197T,
M197A, M197G, M197I, M197L, M197Y, M197F, M197I;
W138all possible amino acid residues, in particular W138Y;
D207all possible amino acid residues, in particular D207Y;
H133all possible amino acid residues, in particular H133Y;
15 H205all possible amino acid residues, in particular H205H,
H205C, H205R;
S187all possible amino acid residues, in particular S187D;
A210all possible amino acid residues, in particular A210S,
A210T;
20 H405all possible amino acid residues, in particular H405D;
K176all possible amino acid residues, in particular K176R;
F279all possible amino acid residues, in particular F279Y;
Q298all possible amino acid residues, in particular Q298H;
G299all possible amino acid residues, in particular G299R;
25 L308all possible amino acid residues, in particular L308F;
T412all possible amino acid residues, in particular T412A;

Further, *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 comprising at least one of the following mutations may be used as backbone:

30 M15all possible amino acid residues;
A33all possible amino acid residues;

When using LE429 (shown in SEQ ID NO: 2) as the backbone (i.e., as the parent Termamyl-like alpha-amylase) by combining LE174 with the mutation I201F (SEQ ID NO: 4 numbering), the 35 mutations/alterations, in particular substitutions, deletions and insertions, may according to the invention be made in one or more of the following positions to improve the reduced ability

WO 00/60059

PCT/DK00/00148

17

to cleave a substrate close to the branching point, and to improve substrate specificity and/or improved specific activity: W13, G48, T49, S50, Q51, A52, D53, V54, G57, G107, G108, A111, S168, M197 (using the SEQ ID NO: 4 numbering)

5 wherein (a) the alteration(s) are independently

(i) an insertion of an amino acid downstream of the amino acid which occupies the position,

(ii) a deletion of the amino acid which occupies the position, or

10 (iii) a substitution of the amino acid which occupies the position with a different amino acid,

(b) the variant has alpha-amylase activity and (c) each position corresponds to a position of the amino acid sequence of the parent Termamyl-like alpha-amylase having the amino acid sequence of SEQ ID NO: 4.

In a preferred embodiment a variant of the invention comprises at least one mutation in a position corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 4:

20 V54N, A52S, A52S+V54N, T49L, T49+G107A, A52S+V54N+T49L+G107A, A52S+V54N+T49L, G107A, Q51R, Q51R+A52S, A52N; or

T49F+G107A, T49V+G107A, T49D+G107A, T49Y+G107A, T49S+G107A,

T49N+G107A, T49I+G107A, T49L+A52S+G107A, T49L+A52T+G107A,

T49L+A52F+G107A, T49L+A52L+G107A, T49L+A52I+G107A,

25 T49L+A52V+G107A; or

T49V, T49I, T49D, T49N, T49S, T49Y, T49F, T49W, T49M, T49E,

T49Q, T49K, T49R, A52T, A52L, A52I, A52V, A52M, A52F, A52Y,

A52W, V54M, G107V, G07I, G107L, G107C.

In a preferred embodiment a variant of the invention 30 comprises at least one mutation in a position corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 4:

W13F, L, I, V, Y, A;

G48A, V, S, T, I, L;

35 *48aD or *48aY (i.e., insertion of D or Y);

T49X;

*49aX (i.e., insertion of any amino acid residue)

WO 00/60059

PCT/DK00/00148

18

S50X, in particular D,Y,L,T,V,I;
Q51R,K;
A52X, in particular A52S,N,T,F,L,I,V;
D53E,Q,Y,I,N,S,T,V,L;
5 V54X, in particular V54I,N,W,Y,F,L;
G57S,A,V,L,I,F,Y,T;
G107X, in particular G107A,V,S,T,I,L,C;
G108X, in particular G108A,V,S,T,I,L;
A111V,I,L;
10 S168Y;
M197X, in particular Y,F,L,I,T,A,G.

In a preferred embodiment a variant of the invention comprises at least one mutation in a position corresponding to the following mutations in the amino acid sequence shown in SEQ 15 ID NO: 4:

T49X+A52X+V54N/I/L/Y/F/W+G107A, and may further comprise G108A.

In a preferred embodiment a variant of the invention comprises at least one mutation in a position corresponding to the following mutations in the amino acid sequence shown in SEQ 20 ID NO: 4:

T49L+G107A;
T49I+G107A;
T49L+G107A+V54I;
T49I+G107A+V54I;
25 A52S+V54N+T49L+G107A;
A52S+V54I+T49L+G107A;
A52S+T49L+G107A;
A52T+T49L+G107A;
A52S+V54N+T49I+G107A;
30 A52S+V54I+T49I+G107A;
A52S+T49I+G107A;
T49L+G108A;
T49I+G108A;
T49L+G108A+V54I;
35 T49I+G108A+V54I.

General mutations in variants of the invention

It may be preferred that a variant of the invention comprises one or more modifications in addition to those outlined above. Thus, it may be advantageous that one or more proline residues present in the part of the alpha-amylase 5 variant which is modified is/are replaced with a non-proline residue which may be any of the possible, naturally occurring non-proline residues, and which preferably is an alanine, glycine, serine, threonine, valine or leucine.

Analogously, it may be preferred that one or more cysteine 10 residues present among the amino acid residues with which the parent alpha-amylase is modified is/are replaced with a non-cysteine residue such as serine, alanine, threonine, glycine, valine or leucine.

Furthermore, a variant of the invention may - either as the 15 only modification or in combination with any of the above outlined modifications - be modified so that one or more Asp and/or Glu present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO. 4 is replaced by an Asn and/or Gln, respectively. Also of interest is the 20 replacement, in the Termamyl-like alpha-amylase, of one or more of the Lys residues present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 by an Arg.

It will be understood that the present invention encompasses 25 variants incorporating two or more of the above outlined modifications.

Furthermore, it may be advantageous to introduce point-mutations in any of the variants described herein.

30 Methods for preparing alpha-amylase variants

Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of alpha-amylase-encoding DNA sequences, methods for generating mutations at specific sites within the alpha-amylase-encoding 35 sequence will be discussed.

Cloning a DNA sequence encoding an alpha-amylase

The DNA sequence encoding a parent alpha-amylase may be isolated from any cell or microorganism producing the alpha-amylase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the alpha-amylase to be studied. Then, if the amino acid sequence of the alpha-amylase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify alpha-amylase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known alpha-amylase gene could be used as a probe to identify alpha-amylase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying alpha-amylase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming alpha-amylase-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for alpha-amylase, thereby allowing clones expressing the alpha-amylase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g., the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g., in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in US 4,683,202 or R.K. Saiki

et al. (1988).

Site-directed mutagenesis

Once an alpha-amylase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded gap of DNA, bridging the alpha-amylase-encoding sequence, is created in a vector carrying the alpha-amylase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). US 4,760,025 disclose the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.

Another method for introducing mutations into alpha-amylase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Random Mutagenesis

Random mutagenesis is suitably performed either as localised or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a parent

alpha-amylase may be conveniently performed by use of any method known in the art.

In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a parent alpha-amylase, e.g., wherein the variant exhibits a reduced capability of cleaving an oligo-saccharide substrate close to the branching point, and further exhibits improved substrate specificity and/or improved specific activity relative to the parent, the method:

- 10 (a) subjecting a DNA sequence encoding the parent alpha-amylase to random mutagenesis,
- (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- (c) screening for host cells expressing an alpha-amylase variant which has an altered property (i.e., thermal 15 stability) relative to the parent alpha-amylase.

Step (a) of the above method of the invention is preferably performed using doped primers. For instance, the random mutagenesis may be performed by use of a suitable physical or 20 chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one, which induces 25 transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) ir-radiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-30 methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing 35 agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties. When the mutagenesis is performed by the use of an

oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions, which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the alpha-amylase enzyme by any published technique, using e.g., PCR, LCR or any DNA polymerase and ligase as deemed appropriate. Preferably, the doping is carried out using "constant random doping", in which the percentage of wild type and mutation in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% mutations in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program, which, *inter alia*, ensures that introduction of stop codons is avoided. When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent alpha-amylase is subjected to PCR under conditions that increase the mis-incorporation of nucleotides (Deshler 1992; Leung et al., *Technique*, Vol.1, 1989, pp. 11-15). A mutator strain of *E. coli* (Fowler et al., *Molec. Gen. Genet.*, 133, 1974, pp. 179-191), *S. cereviseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the alpha-amylase by, e.g., transforming a plasmid containing the parent glycosylase into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism. The DNA sequence to be mutagenized may be conveniently present in a genomic or cDNA library prepared from an organism expressing the parent alpha-amylase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or

otherwise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized 5 may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence. In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such 10 amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme. Subsequent to the incubation with or exposure to the 15 mutagenising agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was 20 carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*, *Bacillus brevis*, *Bacillus stearothermophilus*, *Bacillus alkalophilus*, *Bacillus 25 amyloliquefaciens*, *Bacillus coagulans*, *Bacillus circulans*, *Bacillus lautus*, *Bacillus megaterium*, *Bacillus thuringiensis*, *Streptomyces lividans* or *Streptomyces murinus*; and gram-negative bacteria such as *E. coli*. The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression 30 of the mutated DNA sequence.

Localised random mutagenesis

The random mutagenesis may be advantageously localised to a part of the parent alpha-amylase in question. This may, e.g., be 5 advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has 10 been elucidated and related to the function of the enzyme.

The localised, or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the 15 part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

20 Alternative methods of providing alpha-amylase variants

Alternative methods for providing variants of the invention include gene-shuffling method known in the art including the methods e.g., described in WO 95/22625 (from Affymax Technologies N.V.) and WO 96/00343 (from Novo Nordisk A/S).

25

Expression of alpha-amylase variants

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, 30 using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence 35 encoding an alpha-amylase variant of the invention may be any vector, which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the

host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e., a vector, which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, a 5 bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

10 In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence, which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of 15 suitable promoters for directing the transcription of the DNA sequence encoding an alpha-amylase variant of the invention, especially in a bacterial host, are the promoter of the *lac* operon of *E.coli*, the *Streptomyces coelicolor* agarase gene *dagA* promoters, the promoters of the *Bacillus licheniformis* alpha- 20 amylase gene (*amyL*), the promoters of the *Bacillus stearothermophilus* maltogenic amylase gene (*amyM*), the promoters of the *Bacillus amyloliquefaciens* alpha-amylase (*amyQ*), the promoters of the *Bacillus subtilis* *xylA* and *xylB* genes etc. For 25 transcription in a fungal host, examples of useful promoters are those derived from the gene encoding *A. oryzae* TAKA amylase, *Rhizomucor miehei* aspartic proteinase, *A. niger* neutral alpha- 30 amylase, *A. niger* acid stable alpha-amylase, *A. niger* glucoamylase, *Rhizomucor miehei* lipase, *A. oryzae* alkaline protease, *A. oryzae* triose phosphate isomerase or *A. nidulans* acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the alpha-amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

The vector may further comprise a DNA sequence enabling the

vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g., a gene the product of which complements a defect in the host cell, such as the *dal* genes from *B. subtilis* or *B. licheniformis*, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise *Aspergillus* selection markers such as *amdS*, *argB*, *niaD* and *sC*, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g., as described in WO 91/17243.

While intracellular expression may be advantageous in some respects, e.g., when using certain bacteria as host cells, it is generally preferred that the expression is extracellular. In general, the *Bacillus* alpha-amylases mentioned herein comprise a pre-region permitting secretion of the expressed protease into the culture medium. If desirable, this pre-region may be replaced by a different preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions.

The procedures used to ligate the DNA construct of the invention encoding an alpha-amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor, 1989).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of an alpha-amylase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of

the DNA constructs into the host chromosome may be performed according to conventional methods, e.g., by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.

5 The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g., a bacterial or a fungal (including yeast) cell.

10 Examples of suitable bacteria are gram-positive bacteria such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus latus*, *Bacillus brevis*, *Bacillus stearothermophilus*, *Bacillus alkalophilus*, *Bacillus amyloliquefaciens*, *Bacillus coagulans*, *Bacillus circulans*, *Bacillus laetus*, *Bacillus megaterium*, *Bacillus thuringiensis*, or *Streptomyces lividans* or *Streptomyces murinus*, or gramnegative bacteria such as *E.coli*. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known *per se*.

20 The yeast organism may favourably be selected from a species of *Saccharomyces* or *Schizosaccharomyces*, e.g., *Saccharomyces cerevisiae*. The filamentous fungus may advantageously belong to a species of *Aspergillus*, e.g., *Aspergillus oryzae* or *Aspergillus niger*. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known *per se*. A suitable procedure for transformation of *Aspergillus* host cells is described in EP 238 023.

25 In yet a further aspect, the present invention relates to a method of producing an alpha-amylase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

30 The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the alpha-amylase variant of the invention. Suitable media are available from commercial suppliers or

may be prepared according to published recipes (e.g., as described in catalogues of the American Type Culture Collection).

5 The alpha-amylase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such 10 as ion exchange chromatography, affinity chromatography, or the like.

Industrial applications

15 The alpha-amylase variants of this invention possess valuable properties allowing for a variety of industrial applications. In particular, enzyme variants of the invention are applicable as a component in washing, dishwashing and hard surface cleaning detergent compositions. Numerous variants are particularly useful in the production of sweeteners and ethanol, 20 e.g., fuel, drinking or industrial ethanol, from starch, and/or for textile desizing. Conditions for conventional starch-conversion processes, including starch liquefaction and/or saccharification processes, are described in, e.g., US 3,912,590 and in EP patent publications Nos. 252 730 and 63 909.

25

Production of sweeteners from starch:

A "traditional" process for conversion of starch to fructose syrups normally consists of three consecutive enzymatic processes, viz. a liquefaction process followed by a saccharification process and an isomerization process. During the liquefaction process, starch is degraded to dextrins by an alpha-amylase (e.g., TermamylTM) at pH values between 5.5 and 6.2 and at temperatures of 95-160°C for a period of approx. 2 hours. In order to ensure optimal enzyme stability under these conditions, 1 mM of calcium is added (40 ppm free calcium ions).

After the liquefaction process the dextrins are converted into dextrose by addition of a glucoamylase (e.g., AMGTM) and a

debranching enzyme, such as an isoamylase or a pullulanase (e.g., Promozyme™). Before this step the pH is reduced to a value below 4.5, maintaining the high temperature (above 95°C), and the liquefying alpha-amylase activity is denatured. The temperature is lowered to 60°C, and glucoamylase and debranching enzyme are added. The saccharification process proceeds for 24-72 hours.

After the saccharification process the pH is increased to a value in the range of 6-8, preferably pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, e.g., an immobilized glucoseisomerase (such as Sweetzyme™).

At least one enzymatic improvement of this process could be envisaged: Reduction of the calcium dependency of the liquefying alpha-amylase. Addition of free calcium is required to ensure adequately high stability of the alpha-amylase, but free calcium strongly inhibits the activity of the glucoseisomerase and needs to be removed, by means of an expensive unit operation, to an extent, which reduces the level of free calcium to below 3-5 ppm. Cost savings could be obtained if such an operation could be avoided and the liquefaction process could be performed without addition of free calcium ions.

To achieve that, a less calcium-dependent Termamyl-like alpha-amylase which is stable and highly active at low concentrations of free calcium (< 40 ppm) is required. Such a Termamyl-like alpha-amylase should have a pH optimum at a pH in the range of 4.5-6.5, preferably in the range of 4.5-5.5.

The invention also relates to a composition comprising a mixture of one or more variants of the invention derived from (as the parent Termamyl-like alpha-amylase) the *B. stearothermophilus* alpha-amylase having the sequence shown in SEQ ID NO: 8 and a Termamyl-like alpha-amylase derived from the *B. licheniformis* alpha-amylase having the sequence shown in SEQ ID NO: 4.

Further, the invention also relates to a composition comprising a mixture of one or more variants according the

invention derived from (as the parent Termamyl-like alpha-amylase) the *B. stearothermophilus* alpha-amylase having the sequence shown in SEQ ID NO: 8 and a hybrid alpha-amylase comprising a part of the *B. amyloliquefaciens* alpha-amylase shown in SEQ ID NO: 6 and a part of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4. The latter mentioned hybrid Termamyl-like alpha-amylase comprises the 445 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the alpha-amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 6. Said latter mentioned hybrid alpha-amylase may suitably comprise the following mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4) Preferably, said latter mentioned hybrid alpha-amylase may suitably comprise the following mutations: H156Y+A181T+N190F+A209V+Q264S+I201F (using the SEQ ID NO: 4 numbering). In the examples below said last-mentioned parent hybrid Termamyl-like alpha-amylase referred to as LE429 (shown in SEQ ID NO: 2) is used for preparing variants of the invention, which variants may be used in compositions of the invention.

An alpha-amylase variant of the invention or a composition of the invention may in an aspect of the invention be used for starch liquefaction, in detergent composition, such as laundry, dish wash compositions and hard surface cleaning, ethanol production, such as fuel, drinking and industrial ethanol production, desizing of textile, fabric and garments.

MATERIALS AND METHODS

Enzymes:

30 **LE174:** hybrid alpha-amylase variant:

LE174 is a hybrid Termamyl-like alpha-amylase being identical to the Termamyl sequence, i.e., the *Bacillus licheniformis* alpha-amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) has 35 been replaced by the N-terminal 33 residues of BAN (mature protein), i.e., the *Bacillus amyloliquefaciens* alpha-amylase shown in SEQ ID NO: 6, which further have following mutations:

H156Y+A181T+N190F+A209V+Q264S (SEQ ID NO: 4).

LE429 hybrid alpha-amylase variant:

LE429 is a hybrid Termamyl-like alpha-amylase being identical to the Termamyl sequence, i.e., the *Bacillus licheniformis* alpha-amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) has been replaced by the N-terminal 33 residues of BAN (mature protein), i.e., the *Bacillus amyloliquefaciens* alpha-amylase shown in SEQ ID NO: 6, which further have following mutations: H156Y+A181T+N190F+A209V+Q264S+I201F (SEQ ID NO: 4). LE429 is shown as SEQ ID NO: 2 and was constructed by SOE-PCR (Higuchi et al. 1988, Nucleic Acids Research 16:7351).

Dextrozyme™ E: a balanced mixture of glucoamylase (AMG) and pullulanase obtainable from selected strains of *Aspergillus niger* and *Bacillus deramificans* (available from Novo Nordisk A/S)

Fermentation and purification of alpha-amylase variants

A *B. subtilis* strain harbouring the relevant expression plasmid is streaked on an LB-agar plate with 10 micro g/ml kanamycin from -80°C stock, and grown overnight at 37°C. The colonies are transferred to 100 ml BPX media supplemented with 10 micro g/ml kanamycin in a 500 ml shaking flask.

Composition of BPX medium:

Potato starch	100	g/l
Barley flour	50	g/l
BAN 5000 SKB	0.1	g/l
Sodium caseinate	10	g/l
Soy Bean Meal	20	g/l
Na ₂ HPO ₄ , 12 H ₂ O	9	g/l
Pluronic™	0.1	g/l

The culture is shaken at 37°C at 270 rpm for 5 days.

Cells and cell debris are removed from the fermentation broth by centrifugation at 4500 rpm in 20-25 minutes. Afterwards the supernatant is filtered to obtain a completely clear

WO 00/60059

PCT/DK00/00148

solution. The filtrate is concentrated and washed on an UF-filter (10000 cut off membrane) and the buffer is changed to 20mM Acetate pH 5.5. The UF-filtrate is applied on a S-sepharoseTM F.F. and elution is carried out by step elution with 0.2M NaCl in the same buffer. The eluate is dialysed against 10mM Tris, pH 9.0 and applied on a Q-sepharose F.F. and eluted with a linear gradient from 0-0.3M NaCl over 6 column volumes. The fractions that contain the activity (measured by the Phadebas assay) are pooled, pH was adjusted to pH 7.5 and remaining color was removed by a treatment with 0.5% w/vol. active coal in 5 minutes.

Activity determination - (KNU)

One Kilo alpha-amylase Unit (1 KNU) is the amount of enzyme which breaks down 5.26 g starch (Merck, Amylum Solubile, Erg. B 6, Batch 9947275) per hour in Novo Nordisk's standard method for determination of alpha-amylase based upon the following condition:

Substrate	soluble starch
Calcium content in solvent	0.0043 M
Reaction time	7-20 minutes
Temperature	37°C
pH	5.6

Detailed description of Novo Nordisk's analytical method (AF 9) is available on request.

Assay for Alpha-Amylase Activity

Alpha-Amylase activity is determined by a method employing Phadebas® tablets as substrate. Phadebas tablets (Phadebas® Amylase Test, supplied by Pharmacia Diagnostic) contain a cross-linked insoluble blue-coloured starch polymer, which has been mixed with bovine serum albumin and a buffer substance and tabletted.

For every single measurement one tablet is suspended in a tube containing 5 ml 50 mM Britton-Robinson buffer (50 mM acetic acid, 50 mM phosphoric acid, 50 mM boric acid, 0.1 mM CaCl₂, pH adjusted to the value of interest with NaOH). The test is

performed in a water bath at the temperature of interest. The alpha-amylase to be tested is diluted in x ml of 50 mM Britton-Robinson buffer. 1 ml of this alpha-amylase solution is added to the 5 ml 50 mM Britton-Robinson buffer. The starch is hydrolysed by the alpha-amylase giving soluble blue fragments. The absorbance of the resulting blue solution, measured spectrophotometrically at 620 nm, is a function of the alpha-amylase activity.

It is important that the measured 620 nm absorbance after 10 or 15 minutes of incubation (testing time) is in the range of 0.2 to 2.0 absorbance units at 620 nm. In this absorbance range there is linearity between activity and absorbance (Lambert-Beer law). The dilution of the enzyme must therefore be adjusted to fit this criterion. Under a specified set of conditions (temp., pH, reaction time, buffer conditions) 1 mg of a given alpha-amylase will hydrolyse a certain amount of substrate and a blue colour will be produced. The colour intensity is measured at 620 nm. The measured absorbance is directly proportional to the specific activity (activity/mg of pure alpha-amylase protein) of the alpha-amylase in question under the given set of conditions.

Determining Specific Activity

The specific activity is determined using the Phadebas assay (Pharmacia) as activity/mg enzyme.

25

Measuring the pH activity profile (pH stability)

The variant is stored in 20 mM TRIS ph 7.5, 0.1 mM, CaCl₂ and tested at 30°C, 50 mM Britton-Robinson, 0.1 mM CaCl₂. The pH activity is measured at pH 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.5, 9.5, 10, and 10.5, using the Phadebas assay described above.

Determination Of AGU Activity and As AGU/mg

One Novo Amyloglucosidase Unit (AGU) is defined as the amount of enzyme, which hydrolyzes 1 micromole maltose per minute at 37°C and pH 4.3. A detailed description of the

analytical method (AEL-SM-0131) is available on request from Novo Nordisk.

The activity is determined as AGU/ml by a method modified after (AEL-SM-0131) using the Glucose GOD-Perid kit from 5 Boehringer Mannheim, 124036. Standard: AMG-standard, batch 7-1195, 195 AGU/ml.

375 microL substrate (1% maltose in 50 mM Sodium acetate, pH 4.3) is incubated 5 minutes at 37°C. 25 microL enzyme diluted in sodium acetate is added. The reaction is stopped 10 after 10 minutes by adding 100 microL 0.25 M NaOH. 20 microL is transferred to a 96 well microtitre plate and 200 microL GOD-Perid solution is added. After 30 minutes at room temperature, the absorbance is measured at 650 nm and the activity calculated in AGU/ml from the AMG-standard.

15 The specific activity in AGU/mg is then calculated from the activity (AGU/ml) divided with the protein concentration (mg/ml).

EXAMPLES

20

EXAMPLE 1

Construction of Termamyl variants in accordance with the invention

Termamyl (*B. licheniformis* alpha-amylase SEQ ID NO: 4) is 25 expressed in *B. subtilis* from a plasmid denoted pDN1528. This plasmid contains the complete gene encoding Termamyl, *amyL*, the expression of which is directed by its own promoter. Further, the plasmid contains the origin of replication, *ori*, from plasmid pUB110 and the *cat* gene from plasmid pC194 conferring 30 resistance towards chloramphenicol. pDN1528 is shown in Fig. 9 of WO 96/23874. A specific mutagenesis vector containing 35 a major part of the coding region of SEQ ID NO: 3 was prepared. The important features of this vector, denoted pJeEN1, include an origin of replication derived from the pUC plasmids, the *cat* gene conferring resistance towards chloramphenicol, and a frameshift-containing version of the *bla* gene, the wild type of which normally confers resistance towards ampicillin (amp^R

phenotype). This mutated version results in an amp^s phenotype. The plasmid pJeEN1 is shown in Fig. 10 of WO 96/23874, and the *E. coli* origin of replication, *ori*, *bla*, *cat*, the 5'-truncated version of the Termamyl amylase gene, and selected restriction sites are indicated on the plasmid.

Mutations are introduced in *amyL* by the method described by Deng and Nickoloff (1992, *Anal. Biochem.* 200, pp. 81-88) except that plasmids with the "selection primer" (primer #6616; see below) incorporated are selected based on the amp^R phenotype of transformed *E. coli* cells harboring a plasmid with a repaired *bla* gene, instead of employing the selection by restriction enzyme digestion outlined by Deng and Nickoloff. Chemicals and enzymes used for the mutagenesis were obtained from the Chameleon^Ô mutagenesis kit from Stratagene (catalogue number 200509).

After verification of the DNA sequence in variant plasmids, the truncated gene, containing the desired alteration, is subcloned into pDN1528 as a *Pst*I-*Eco*RI fragment and transformed into the protease- and amylase-depleted *Bacillus subtilis* strain SHA273 (described in WO92/11357 and WO95/10603) in order to express the variant enzyme.

The Termamyl variant V54W was constructed by the use of the following mutagenesis primer (written 5' to 3', left to right):

PG GTC GTA GGC ACC GTA GCC CCA ATC CGC TTG (SEQ ID NO: 9)

The Termamyl variant A52W + V54W was constructed by the use of the following mutagenesis primer (written 5' to 3', left to right):

PG GTC GTA GGC ACC GTA GCC CCA ATC CCA TTG GCT CG (SEQ ID NO: 10)

Primer #6616 (written 5' to 3', left to right; P denotes a 5' phosphate):

P CTG TGA CTG GTG AGT ACT CAA CCA AGT C (SEQ ID NO: 11)

The Termamyl variant V54E was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PGG TCG TAG GCA CCG TAG CCC TCA TCC GCT TG (SEQ ID NO: 12)

The Termamyl variant V54M was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PGG TCG TAG GCA CCG TAG CCC ATA TCC GCT TG (SEQ ID NO: 13)

5 The Termamyl variant V54I was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PGG TCG TAG GCA CCG TAG CCA ATA TCC GCT TG (SEQ ID NO: 14)

10 The Termamyl variants Y290E and Y290K were constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PGC AGC ATG GAA CTG CTY ATG AAG AGG CAC GTC AAA C (SEQ ID NO:15)

15 Y represents an equal mixture of C and T. The presence of a codon encoding either Glutamate or Lysine in position 290 was verified by DNA sequencing.

The Termamyl variant N190F was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

20 PCA TAG TTG CCG AAT TCA TTG GAA ACT TCC C (SEQ ID NO: 16)

The Termamyl variant N188P+N190F was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PCA TAG TTG CCG AAT TCA GGG GAA ACT TCC CAA TC (SEQ ID NO: 17)

25 The Termamyl variant H140K+H142D was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PCC GCG CCC CGG GAA ATC AAA TTT TGT CCA GGC TTT AAT TAG (SEQ ID NO: 18)

30 The Termamyl variant H156Y was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PCA AAA TGG TAC CAA TAC CAC TTA AAA TCG CTG (SEQ ID NO: 19)

35 The Termamyl variant A181T was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

PCT TCC CAA TCC CAA GTC TTC CCT TGA AAC (SEQ ID NO: 20)

The Termamyl variant A209V was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

5 PCTT AAT TTC TGC TAC GAC GTC AGG ATG GTC ATA ATC (SEQ ID NO: 21)

The Termamyl variant Q264S was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

10 PCG CCC AAG TCA TTC GAC CAG TAC TCA GCT ACC GTA AAC (SEQ ID NO: 22)

The Termamyl variant S187D was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

15 PGC CGT TTT CAT TGT CGA CTT CCC AAT CCC (SEQ ID NO: 23)

The Termamyl variant DELTA(K370-G371-D372) (i.e., deleted of amino acid residues nos. 370, 371 and 372) was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

20 PGG AAT TTC GCG CTG ACT AGT CCC GTA CAT ATC CCC (SEQ ID NO: 24)

The Termamyl variant DELTA(D372-S373-Q374) was constructed by the use of the following mutagenesis primer (written 5'-3', left to right):

25 PGG CAG GAA TTT CGC GAC CTT TCG TCC CGT ACA TAT C (SEQ ID NO: 25)

The Termamyl variants A181T and A209V were combined to A181T+A209V by digesting the A181T containing pDN1528-like plasmid (i.e., pDN1528 containing within *amyL* the mutation resulting in the A181T alteration) and the A209V-containing pDN1528-like plasmid (i.e., pDN1528 containing within *amyL* the mutation resulting in the A209V alteration) with restriction enzyme *Cla*I which cuts the pDN1528-like plasmids twice resulting in a fragment of 1116 bp and the vector-part (i.e. contains the plasmid origin of replication) of 3850 bp. The fragment containing the A209V mutation and the vector part containing the A181T mutation were purified by QIAquick gel extraction kit (purchased from QIAGEN) after separation on an

agarose gel. The fragment and the vector were ligated and transformed into the protease and amylase depleted *Bacillus subtilis* strain referred to above. Plasmid from amy+ (clearing zones on starch containing agar-plates) and chloramphenicol 5 resistant transformants were analysed for the presence of both mutations on the plasmid.

In a similar way as described above, H156Y and A209V were combined utilizing restriction endonucleases Acc65I and EcoRI, giving H156Y+A209V.

10 H156Y +A209V and A181T+A209V were combined into H156Y+ A181T+A209V by the use of restriction endonucleases Acc65I and HindIII.

15 The 35 N-terminal residues of the mature part of Termamyl variant H156Y+ A181T+A209V were substituted by the 33 N-terminal residues of the *B. amyloliquefaciens* alpha-amylase (SEQ ID NO: 4) (which in the present context is termed BAN) by a SOE-PCR approach (Higuchi et al. 1988, Nucleic Acids Research 16:7351) as follows:

20 Primer 19364 (sequence 5'-3'): CCT CAT TCT GCA GCA GCA GCC GTA AAT GGC ACG CTG (SEQ ID NO: 26)

Primer 19362: CCA GAC GGC AGT AAT ACC GAT ATC CGA TAA ATG TTC CG (SEQ ID NO: 27)

Primer 19363: CGG ATA TCG GTA TTA CTG CCG TCT GGA TTC (SEQ ID NO: 28)

25 Primer 1C: CTC GTC CCA ATC GGT TCC GTC (SEQ ID NO: 29)

30 A standard PCR, polymerase chain reaction, was carried out using the Pwo thermostable polymerase from Boehringer Mannheim according to the manufacturer's instructions and the temperature cyclus: 5 minutes at 94°C, 25 cycles of (94°C for 30 seconds, 50°C for 45 seconds, 72°C for 1 minute), 72°C for 10 minutes.

35 An approximately 130 bp fragment was amplified in a first PCR denoted PCR1 with primers 19364 and 19362 on a DNA fragment containing the gene encoding the *B. amyloliquefaciens* alpha-amylase.

An approximately 400 bp fragment was amplified in another PCR denoted PCR2 with primers 19363 and 1C on template

pDN1528.

PCR1 and PCR2 were purified from an agarose gel and used as templates in PCR3 with primers 19364 and 1C, which resulted in a fragment of approximately 520 bp. This fragment thus 5 contains one part of DNA encoding the N-terminus from BAN fused to a part of DNA encoding Termamyl from the 35th amino acid.

The 520 bp fragment was subcloned into a pDN1528-like plasmid (containing the gene encoding Termamyl variant H156Y+ A181T+A209V) by digestion with restriction endonucleases *Pst*I and *Sac*II, ligation and transformation of the *B. subtilis* strain as previously described. The DNA sequence between restriction sites *Pst*I and *Sac*II was verified by DNA sequencing in extracted plasmids from *amy*+ and chloramphenicol 10 15 resistant transformants.

The final construct containing the correct N-terminus from BAN and H156Y+ A181T+A209V was denoted BAN(1-35)+ H156Y+ A181T+A209V.

N190F was combined with BAN(1-35)+ H156Y+ A181T+A209V 20 giving BAN(1-35)+ H156Y+ A181T+N190F+A209V by carrying out mutagenesis as described above except that the sequence of *amyL* in pJeEN1 was substituted by the DNA sequence encoding Termamyl variant BAN(1-35)+ H156Y+ A181T+A209V

Q264S was combined with BAN(1-35)+ H156Y+ A181T+A209V 25 giving BAN(1-35)+ H156Y+ A181T+A209V+Q264S by carrying out mutagenesis as described above except that the sequence of *amyL* in pJeEN was substituted by the the DNA sequence encoding Termamyl variant BAN(1-35)+ H156Y+ A181T+A209V

BAN(1-35)+ H156Y+ A181T+A209V+Q264S and BAN(1-35)+ H156Y+ 30 A181T+N190F+A209V were combined into BAN(1-35)+ H156Y+ A181T+N190F+A209V+Q264S utilizing restriction endonucleases *Bsa*HI (*Bsa*HI site was introduced close to the A209V mutation) and *Pst*I.

I201F was combined with BAN(1-35)+ H156Y+ 35 A181T+N190F+A209V+Q264S giving BAN(1-35)+ H156Y+ A181T+N190F+A209V+Q264S+I201F (SEQ ID NO: 2) by carrying out mutagenesis as described above. The mutagenesis primer AM100

was used, introduced the I201F substitution and removed simultaneously a Cla I restriction site, which facilitates easy pin-pointing of mutants.

5 primer AM100:

5'GATGTATGCCGACTTCGATTATGACC 3' (SEQ ID NO: 30

EXAMPLE 2

10 **Construction of Termamyl-like alpha-amylase variants with an altered cleavage pattern according to the invention**

15 The variant of the thermostable *B. licheniformis* alpha-amylase consisting comprising the 445 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the alpha-amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 6, and further comprising the following mutations:

20 H156Y+A181T+N190F+A209V+Q264S+I201F (the construction of this variant is described in Example 1, and the amino acid sequence shown in SEQ ID NO: 2) has a reduced capability of cleaving an substrate close to the branching point.

25 In an attempt to further improve the reduced capability of cleaving an substrate close to the branching point of said alpha-amylase variant site directed mutagenesis was carried out using the Mega-primer method as described by Sarkar and Sommer, 1990 (BioTechniques 8: 404-407):

Construction of LE313: BAN/Termamyl hybrid +
H156Y+A181T+N190F+ A209V+Q264S+V54N:

30 Gene specific primer 27274 and mutagenic primer AM115 are used to amplify by PCR an approximately 440 bp DNA fragment from a pDN1528-like plasmid (harbouring the BAN(1-35)+H156Y+A181T+N190F+I201F+A209V+Q264S mutations in the gene encoding the amylase from SEQ ID NO: 4).

35 The 440 bp fragment is purified from an agarose gel and used as a Mega-primer together with primer 113711 in a second PCR carried out on the same template.

The resulting approximately 630 bp fragment is digested

with restriction enzymes EcoR V and Acc65 I and the resulting approximately 370 bp DNA fragment is purified and ligated with the pDN1528-like plasmid digested with the same enzymes. 5 Competent *Bacillus subtilis* SHA273 (amylase and protease low) cells are transformed with the ligation and Chloramphenicol resistant transformants are checked by DNA sequencing to verify the presence of the correct mutations on the plasmid.

Primer 27274:

10 5' CATAAGTTGCCGAATTCAATTGGAAACTTCCC 3' (SEQ ID NO: 31)

Primer 1B:

5' CCGATTGCTGACGCTGTTATTG 3' (SEQ ID NO: 32)

15 primer AM115:

5' GCCAAGCGGATAACGGCTACGGTGC 3' (SEQ ID NO: 33)

Construction of LE314: BAN/Termamyl hybrid + H156Y+A181T+N190F+ A209V+Q264S + A52S is carried out in a 20 similar way, except that mutagenic primer AM116 is used.

AM116:

5' GAACGAGCCAATCGGACGTGGCTACGG 3' (SEQ ID NO: 34)

25 Construction of LE315: BAN/Termamyl hybrid + H156Y+A181T+N190F+ A209V+Q264S + A52S+V54N is carried out in a similar way, except that mutagenic primer AM117 is used.

AM117:

30 5' GGAACGAGCCAATCGGATAACGGCTACGGTGC 3' (SEQ ID NO: 35)

Construction of LE316: BAN/Termamyl hybrid + H156Y+A181T+N190F+ A209V+Q264S + T49L is carried out in a similar way, except that mutagenic primer AM118 is used.

35

AM118:

5' GCATATAAGGGACTGAGCCAAGCGG 3' (SEQ ID NO: 36)

Construction LE317: BAN/Termamyl hybrid + H156Y+A181T+N190F+
 A209V+Q264S + T49L+G107A is carried our in a similar way,
 except that mutagenic primer AM118 and mutagenic primer AM119
 5 are used simultaneously.

AM119:

5' CAACCACAAAGCCGGCGCTGATGCG 3' (SEQ ID NO: 37)

10 Construction of LE318: BAN/Termamyl hybrid +
 H156Y+A181T+N190F+ A209V+Q264S + A52S+V54N+T49L+G107A is
 carried our in a similar way, except that mutagenic primer
 AM120 and mutagenic primer AM119 are used simultaneously.

15 AM120:

5' GCATATAAGGGACTGAGCCAATCGGATAACGGCTACGGTGC 3' (SEQ ID NO:
 38)

20 Construction of LE 319: BAN/Termamyl hybrid +
 H156Y+A181T+N190F+ A209V+Q264S + A52S+V54N+T49L is carried our
 in a similar way, except that mutagenic primer AM120 is used.

Construction of LE320: BAN/Termamyl hybrid +
 H156Y+A181T+N190F+ A209V+Q264S + G107A is carried our in a
 similar way, except that mutagenic primer AM119 is used.

25 Construction of LE322: BAN/Termamyl hybrid +
 H156Y+A181T+N190F+A209V+Q264S + Q51R+A52S is carried our in a
 similar way, except that mutagenic primer AM121 is used.

AM121:

5' GAACGAGCCGATCGGACGTGGGCTACGG 3' (SEQ ID NO:39)

30 Construction of LE323: BAN/Termamyl hybrid +
 H156Y+A181T+N190F+ A209V+Q264S + A52N is carried our in a
 similar way, except that mutagenic primer AM122 is used.

AM122:

5' GAACGAGCCAAACGACGTGGGCTACGG 3' (SEQ ID NO: 40)

35

EXAMPLE 3

Testing of LE429 variants (saccharification)

WO 00/60059

PCT/DK00/00148

The standard reaction conditions were:

Substrate concentration	30 % w/w
Temperature	60°C
Initial pH (at 60°C)	5.5
Enzyme dosage	
Glucoamylase	0.18 AGU/g DS
Pullulanase	0.06 PUN/g DS
Alpha-amylase	10 micro g enzyme/g DS

Dextrozyme™ E was used to provide glucoamylase and pullulanase activities

Substrates for saccharification were prepared by
 5 dissolving common corn starch in deionized water and adjusting
 the dry substance to approximately 30% w/w. The pH was
 adjusted to 5.5 (measured at 60°C), and aliquots of substrate
 corresponding to 10 g dry weight were transferred to blue cap
 glass flasks.

10 The flasks were then placed in a shaking water bath
 equilibrated at 60°C, and the enzymes added. The pH was
 readjusted to 5.5 where necessary. The samples were taken
 after 48 hours of saccharification; the pH was adjusted to
 about 3.0, and then heated in a boiling water bath for 15
 15 minutes to inactivate the enzymes. After cooling, the samples
 were treated with approximately 0.1 g mixed bed ion exchange
 resin (BIO-RAD 501 X8 (D)) for 30 minutes on a rotary mixer to
 remove salts and soluble N. After filtration, the
 carbohydrate composition was determined by HPLC. The following
 20 results were obtained:

The parent alpha-amylase for the variants is LE429.

Added	DP ₁	DP ₂	DP ₃	SPEC. ACT. (NU/mg)
Alpha-amylase				
V54N	96.1	1.75	1.18	8200
A52S	95.9	1.80	1.11	18800
A52S+V54N	96.3	1.84	1.08	10000

T49L	96.3	1.77	1.11	12300
T49L+G107A	96.4	1.87	0.72	13600
A52S+V54N+T49L+G107A	80.5	2.55	0.43	10000
A52S+V54N+T49L	95.8	1.76	0.84	8400
G107A	94.4	1.89	1.04	19600
Q51R+A52S	95.9	1.77	1.27	16500
A52N	95.5	1.89	1.56	17600
LE174 (CONTROL)	95.97	1.877	1.177	16000
	95.8	1.83	1.35	

Compared with the control, the presence of an active alpha-amylase variant of the invention during liquefaction results in decreased panose levels (DP3).

Especially the T49L+G107A variant of LE429 and the A52S+V54N+T49L variant of LE429, respectively, result in a drastically decreased panose level (DP₃). If these alpha-amylase variants are used for starch liquefaction, it will not be necessary to inactivate the enzyme before the commencement of saccharification.

Example 4

Liquefaction and saccharification of LE429 variants

The experiment in Example 3 was repeated for a number of other LE429 variants under the same conditions.

The result is shown below:

Variant/sugar profile	DP1	DP2	DP3	DP4+
T49V+G107A	95.9%	1.72%	1.27%	1.11%
20 T49Y+G107A	95.3%	1.73%	1.29%	1.65%
T49N+G107A	95.7%	1.64%	1.51%	1.18%
T49L+A52S+G107A	95.7%	1.73%	0.95%	1.67%
T49L+A52T+G107A	95.8%	1.66%	1.03%	1.48%
T49L+A52F+G107A	95.7%	1.69%	1.16%	1.42%
25 T49L+A52L+G107A	95.5%	1.70%	1.40%	1.38%
T49L+A52I+G107A	95.9%	1.72%	1.31%	1.07%
T49L+A52V+G107A	94.7%	1.69%	1.16%	2.44%

T49L+A52V+G107A+A111V	94.5%	1.75%	0.72%	2.99%
LE429	94.9%	1.71%	1.85%	1.51%

Example 5

5 The experiment in Example 3 was repeated for a number of LE429 variants, except that the liquefaction was carried out at 95°C, pH 6.0 and the saccharification at 60°C, pH 4.5, 40 ppm CaCl₂, followed by inactivation. The variant referred to below are LE429 variant. The results found are as follows:

10

Variant/sugar profile	DP4+	DP3	DP2	DP1
T49F	1.15	0.92	1.83	96.12
T49D+G107A	0.84	1.03	1.82	96.3
T49I+G107A	0.97	0.64	1.84	96.55
15 T49L+G107A	0.96	0.81	1.82	96.42
T49L+A52S+G107A	1.37	0.75	1.88	96.01
T49L+A52T+G107A	0.87	0.81	1.8	96.52
T49L+A52F+G107A	0.98	0.83	1.87	96.31
T49V+G107A	0.65	0.8	2.13	96.43
20 T49Y+G107A	0.83	0.94	1.89	96.35
LE429	1.16	1.21	1.77	95.87

REFERENCES CITED

Klein, C., et al., *Biochemistry* 1992, **31**, 8740-8746,
Mizuno, H., et al., *J. Mol. Biol.* (1993) **234**, 1282-1283,
5 Chang, C., et al., *J. Mol. Biol.* (1993) **229**, 235-238,
Larson, S.B., *J. Mol. Biol.* (1994) **235**, 1560-1584,
Lawson, C.L., *J. Mol. Biol.* (1994) **236**, 590-600,
Qian, M., et al., *J. Mol. Biol.* (1993) **231**, 785-799,
Brady, R.L., et al., *Acta Crystallogr. sect. B*, **47**, 527-535,
10 Swift, H.J., et al., *Acta Crystallogr. sect. B*, **47**, 535-544
A. Kadziola, Ph.D. Thesis: "An alpha-amylase from Barley and its
Complex with a Substrate Analogue Inhibitor Studied by X-ray
Crystallography", Department of Chemistry University of
Copenhagen 1993
15 MacGregor, E.A., *Food Hydrocolloids*, 1987, Vol.1, No. 5-6, p.
B. Diderichsen and L. Christiansen, Cloning of a maltogenic
amylase from *Bacillus stearothermophilus*, *FEMS Microbiol. letters*: 56: pp. 53-60 (1988)
Hudson et al., *Practical Immunology*, Third edition (1989),
20 Blackwell Scientific Publications,
Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd
Ed., Cold Spring Harbor, 1989
S.L. Beaucage and M.H. Caruthers, Tetrahedron Letters **22**, 1981,
pp. 1859-1869
25 Matthes et al., The EMBO J. **3**, 1984, pp. 801-805.
R.K. Saiki et al., Science **239**, 1988, pp. 487-491.
Morinaga et al., (1984, *Biotechnology* 2:646-639)
Nelson and Long, Analytical Biochemistry **180**, 1989, pp. 147-151
Hunkapiller et al., 1984, *Nature* **310**:105-111
30 R. Higuchi, B. Krummel, and R.K. Saiki (1988). A general method
of *in vitro* preparation and specific mutagenesis of DNA frag-
ments: study of protein and DNA interactions. *Nucl. Acids Res.*
16:7351-7367.
Dubnau et al., 1971, J. Mol. Biol. **56**, pp. 209-221.
35 Gryczan et al., 1978, J. Bacteriol. **134**, pp. 318-329.
S.D. Erlich, 1977, Proc. Natl. Acad. Sci. **74**, pp. 1680-1682.
Boel et al., 1990, Biochemistry **29**, pp. 6244-6249.

WO 00/60059

PCT/DK00/00148

48

Sarkar and Sommer, 1990, BioTechniques 8, pp. 404-407.

WO 00/60059

PCT/DK00/00148

1

SEQUENCE LISTING

5 <110> Novo Nordisk A/S
 10 <120>
 15 <130>
 20 <160> 40
 25 <170> PatentIn Ver. 2.1
 30 <210> 1
 35 <211> 1443
 40 <212> DNA
 45 <213> **Bacillus amyloliquefaciens**
 50 <220>
 55 <221> CDS
 60 <222> (1)..(1443)
 65 <400> 1
 70 gta aat ggc acg ctg atg cag tat ttt gaa tgg tat acg ccg aac gac 48
 75 Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp
 80 1 5 10 15
 85 ggc cag cat tgg aaa cga ttg cag aat gat gcg gaa cat tta tcg gat 96
 90 Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp
 95 20 25 30
 100 atc ggt att act gcc gtc tgg att ccc ccg gca tat aag gga acg agc 144
 105 Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Thr Ser
 110 35 40 45
 115 caa gcg gat gtg ggc tac ggt gct tac gac ctt tat gat tta ggg gag 192
 120 Gln Ala Asp Val Gly Tyr Ala Tyr Asp Leu Tyr Asp Leu Gly Glu
 125 50 55 60
 130 ttt cat caa aaa ggg acg gtt cgg aca aag tac ggc aca aaa gga gag 240
 135 Phe His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu
 140 65 70 75 80
 145 ctg caa tct gcg atc aaa agt ctt cat tcc cgc gac att aac gtt tac 288
 150 Leu Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn Val Tyr
 155 85 90 95
 160 ggg gat gtg gtc atc aac cac aaa ggc ggc gct gat gcg acc gaa gat 336
 165 Gly Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp
 170 100 105 110
 175 gta acc gcg gtt gaa gtc gat ccc gct gac cgc aac cgc gta att tca 384
 180 Val Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val Ile Ser
 185 115 120 125
 190 gga gaa cac cta att aaa gcc tgg aca cat ttt cat ttt ccg ggg cgc 432
 195 Gly Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro Gly Arg
 200 130 135 140
 205 ggc agc aca tac agc gat ttt aag tgg tat tgg tac cat ttt gac gga 480
 210 Gly Ser Thr Tyr Ser Asp Phe Lys Trp Tyr Trp Tyr His Phe Asp Gly
 215 145 150 155 160
 220 acc gat tgg gac gag tcc cga aag ctg aac cgc atc tat aag ttt caa 528
 225 Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys Phe Gln
 230 165 170 175

WO 00/60059

PCT/DK00/00148

2

ggg aag act tgg gat tgg gaa gtt tcc aat gaa ttc ggc aac tat gat	576
Gly Lys Thr Trp Asp Trp Glu Val Ser Asn Glu Phe Gly Asn Tyr Asp	
180 185 190	
5 tat ttg atg tat gcc gac ttt gat tat gac cat cct gat gtc gta gca	624
Tyr Leu Met Tyr Ala Asp Phe Asp Tyr Asp His Pro Asp Val Val Ala	
195 200 205	
10 gag att aag aga tgg ggc act tgg tat gcc aat gaa ctg caa ttg gac	672
Glu Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln Leu Asp	
210 215 220	
15 ggt ttc cgt ctt gat gtc aaa cac att aaa ttt tct ttt ttg cgg	720
Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe Leu Arg	
225 230 235 240	
20 gat tgg gtt aat cat gtc agg gaa aaa acg ggg aag gaa atg ttt acg	768
Asp Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met Phe Thr	
245 250 255	
25 gta gct gag tac tgg tcg aat gac ttg ggc gcg ctg gaa aac tat ttg	816
Val Ala Glu Tyr Trp Ser Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu	
260 265 270	
30 aac aaa aca aat ttt aat cat tca gtg ttt gac gtg ccg ctt cat tat	864
Asn Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu His Tyr	
275 280 285	
35 cag ttc cat gct gca tcg aca cag gga ggc ggc tat gat atg agg aaa	912
Gln Phe His Ala Ala Ser Thr Gln Gly Gly Tyr Asp Met Arg Lys	
290 295 300	
40 ttg ctg aac ggt acg gtc gtt tcc aag cat ccg ttg aaa tcg gtt aca	960
Leu Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser Val Thr	
305 310 315 320	
45 ttt gtc gat aac cat gat aca cag ccg ggg caa tcg ctt gag tcg act	1008
Phe Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser Thr	
325 330 335	
50 gtc caa aca tgg ttt aag ccg ctt gct tac gct ttt att ctc aca agg	1056
Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg	
340 345 350	
55 gaa tct gga tac cct cag gtt ttc tac ggg gat atg tac ggg acg aaa	1104
Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr Lys	
355 360 365	
60 gga gac tcc cag cgc gaa att cct gcc ttg aaa cac aaa att gaa ccg	1152
Gly Asp Ser Gln Arg Glu Ile Pro Ala Leu Lys His Lys Ile Glu Pro	
370 375 380	
65 atc tta aaa gcg aga aaa cag tat gcg tac gga gca cag cat gat tat	1200
Ile Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His Asp Tyr	
385 390 395 400	
70 ttc gac cac cat gac att gtc ggc tgg aca agg gaa ggc gac agc tcg	1248
Phe Asp His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp Ser Ser	
405 410 415	
75 gtt gca aat tca ggt ttg gcg gca tta ata aca gac gga ccc ggt ggg	1296
Val Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly Gly	
420 425 430	
80 gca aag cga atg tat gtc ggc cgg caa aac gcc ggt gag aca tgg cat	1344
Ala Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr Trp His	
435 440 445	

WO 00/60059

PCT/DK00/00148

3

gac att acc gga aac cgt tcg gag ccg gtc atc aat tcg gaa ggc 1392
 Asp Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser Glu Gly
 450 455 460
 5 tgg gga gag ttt cac gta aac ggc ggg tcg gtt tca att tat gtt caa 1440
 Trp Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr Val Gln
 465 470 475 480
 10 aga 1443
 Arg

 <210> 2
 15 <211> 481
 <212> PRT
 <213> *Bacillus amyloliquefaciens*

 <400> 2
 20 Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp
 1 5 10 15

 Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp
 20 25 30
 25 Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Thr Ser
 35 40 45

 Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu
 30 50 55 60

 Phe His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu
 65 70 75 80

 35 Leu Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn Val Tyr
 85 90 95

 Gly Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp
 100 105 110
 40 Val Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val Ile Ser
 115 120 125

 Gly Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro Gly Arg
 45 130 135 140

 Gly Ser Thr Tyr Ser Asp Phe Lys Trp Tyr Trp Tyr His Phe Asp Gly
 145 150 155 160

 50 Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys Phe Gln
 165 170 175

 Gly Lys Thr Trp Asp Trp Glu Val Ser Asn Glu Phe Gly Asn Tyr Asp
 180 185 190
 55 Tyr Leu Met Tyr Ala Asp Phe Asp Tyr Asp His Pro Asp Val Val Ala
 195 200 205

 Glu Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln Leu Asp
 60 210 215 220

 Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe Leu Arg
 225 230 235 240

 65 Asp Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met Phe Thr
 245 250 255

WO 00/60059

PCT/DK00/00148

4

Val Ala Glu Tyr Trp Ser Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu
 260 265 270
 Asn Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu His Tyr
 5 275 280 285
 Gln Phe His Ala Ala Ser Thr Gln Gly Gly Tyr Asp Met Arg Lys
 290 295 300
 10 Leu Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser Val Thr
 305 310 315 320
 Phe Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser Thr
 15 325 330 335
 Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg
 340 345 350
 20 Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr Lys
 355 360 365
 Gly Asp Ser Gln Arg Glu Ile Pro Ala Leu Lys His Lys Ile Glu Pro
 370 375 380
 25 Ile Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His Asp Tyr
 385 390 395 400
 Phe Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp Ser Ser
 30 405 410 415
 Val Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly Gly
 420 425 430
 35 Ala Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr Trp His
 435 440 445
 Asp Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser Glu Gly
 450 455 460
 40 Trp Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr Val Gln
 465 470 475 480
 Arg
 45
 <210> 3
 <211> 1920
 50 <212> DNA
 <213> *Bacillus licheniformis*
 <220>
 <221> CDS
 55 <222> (421)..(1872)
 <400> 3
 cggaaagattg gaagtacaaa aataagcaaa agattgtcaa tcatgtcatg agccatgcgg 60
 60 gagacggaaa aatcgcttta atgcacgata tttatgcaac gttcgccagat gctgctgaag 120
 agattattaa aaagctgaaa gcaaaaggct atcaattggc aactgtatct cagcttgaag 180
 aagtgaagaa gcagagaggg tattgaataa atgagtagaa ggcgcataatc ggcgcgttttc 240
 65 ttttggaaaga aatatataggg aaaatggtaatc ttgttaaaaa ttccggaaatat ttataacaaca 300

WO 00/60059

PCT/DK00/00148

5

tcatatgttt cacattgaaa ggggaggaga atcatgaaac aacaaaaacg gctttacgcc 360
 cgattgctga cgctgttatt tgcgctcatc ttcttgctgc ctcattctgc agcagcggcg 420
 5 gca aat ctt aat ggg acg ctg atg cag tat ttt gaa tgg tac atg ccc 468
 Ala Asn Leu Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro
 1 5 10 15
 10 aat gac ggc caa cat tgg agg cgt ttg caa aac gac tcg gca tat ttg 516
 Asn Asp Gly Gln His Trp Arg Arg Leu Gln Asn Asp Ser Ala Tyr Leu
 20 25 30
 15 gct gaa cac ggt att act gcc gtc tgg att ccc ccg gca tat aag gga 564
 Ala Glu His Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly
 35 40 45
 20 acg agc caa gcg gat gtg ggc tac ggt gct tac gac ctt tat gat tta 612
 Thr Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu
 50 55 60
 25 ggg gag ttt cat caa aaa ggg acg gtt cgg aca aag tac ggc aca aaa 660
 Gly Glu Phe His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys
 65 70 75 80
 30 gga gag ctg caa tct gcg atc aaa agt ctt cat tcc cgc gac att aac 708
 Gly Glu Leu Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn
 85 90 95
 35 gtt tac ggg gat gtg gtc atc aac cac aaa ggc ggc gct gat gcg acc 756
 Val Tyr Gly Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr
 100 105 110
 40 gaa gat gta acc gcg gtt gaa gtc gat ccc gct gac cgc aac cgc gta 804
 Glu Asp Val Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val
 115 120 125
 45 att tca gga gaa cac cta att aaa gcc tgg aca cat ttt cat ttt ccg 852
 Ile Ser Gly Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro
 130 135 140
 50 ggg cgc ggc agc aca tac agc gat ttt aaa tgg cat tgg tac cat ttt 900
 Gly Arg Gly Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe
 145 150 155 160
 55 gac gga acc gat tgg gac gag tcc cga aag ctg aac cgc atc tat aag 948
 Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys
 165 170 175
 60 ttt caa gga aag gct tgg gat tgg gaa gtt tcc aat gaa aac ggc aac 996
 Phe Gln Gly Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn
 180 185 190
 65 tat gat tat ttg atg tat gcc gac atc gat tat gac cat cct gat gtc 1044
 Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Tyr Asp His Pro Asp Val
 195 200 205
 70 gca gca gaa att aag aga tgg ggc act tgg tat gcc aat gaa ctg caa 1092
 Ala Ala Glu Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln
 210 215 220
 75 ttg gac ggt ttc cgt ctt gat gct gtc aaa cac att aaa ttt tct ttt 1140
 Leu Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe
 225 230 235 240
 80 ttg cgg gat tgg gtt aat cat gtc agg gaa aaa acg ggg aag gaa atg 1188
 Leu Arg Asp Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met
 245 250 255

WO 00/60059

PCT/DK00/00148

6

ttt acg gta gct gaa tat tgg cag aat gac ttg ggc gcg ctg gaa aac	1236
Phe Thr Val Ala Glu Tyr Trp Gln Asn Asp Leu Gly Ala Leu Glu Asn	
260 265 270	
5 tat ttg aac aaa aca aat ttt aat cat tca gtg ttt gac gtg ccg ctt	1284
Tyr Leu Asn Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu	
275 280 285	
10 cat tat cag ttc cat gct gca tcg aca cag gga ggc ggc tat gat atg	1332
His Tyr Gln Phe His Ala Ala Ser Thr Gln Gly Gly Tyr Asp Met	
290 295 300	
15 agg aaa ttg ctg aac ggt acg gtc gtt tcc aag cat ccg ttg aaa tcg	1380
Arg Lys Leu Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser	
305 310 315 320	
20 gtt aca ttt gtc gat aac cat gat aca cag ccg ggg caa tcg ctt gag	1428
Val Thr Phe Val Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu	
325 330 335	
25 tcg act gtc caa aca tgg ttt aag ccg ctt gct tac gct ttt att ctc	1476
Ser Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu	
340 345 350	
aca agg gaa tct gga tac cct cag gtt ttc tac ggg gat atg tac ggg	1524
Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly	
355 360 365	
30 acg aaa gga gac tcc cag cgc gaa att cct gcc ttg aaa cac aaa att	1572
Thr Lys Gly Asp Ser Gln Arg Glu Ile Pro Ala Leu Lys His Lys Ile	
370 375 380	
35 gaa ccg atc tta aaa gcg aga aaa cag tat gcg tac gga gca cag cat	1620
Glu Pro Ile Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His	
385 390 395 400	
40 gat tat ttc gac cac cat gac att gtc ggc tgg aca agg gaa ggc gac	1668
Asp Tyr Phe Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp	
405 410 415	
45 agc tcg gtt gca aat tca ggt ttg gcg gca tta ata aca gac gga ccc	1716
Ser Ser Val Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro	
420 425 430	
ggt ggg gca aag cga atg tat gtc ggc cgg caa aac gcc ggt gag aca	1764
Gly Gly Ala Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr	
435 440 445	
50 tgg cat gac att acc gga aac cgt tcg gag ccg gtt gtc atc aat tcg	1812
Trp His Asp Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser	
450 455 460	
55 gaa ggc tgg gga gag ttt cac gta aac ggc ggg tcg gtt tca att tat	1860
Glu Gly Trp Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr	
465 470 475 480	
60 gtt caa aga tag aagagcagag aggacggatt tcctgaagga aatccgtttt	1912
Val Gln Arg	
tttatttt	1920
65 <210> 4	
<211> 483	
<212> PRT	
<213> <i>Bacillus licheniformis</i>	

WO 00/60059

PCT/DK00/00148

7

<400> 4
 Ala Asn Leu Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro
 1 5 10 15
 5 Asn Asp Gly Gln His Trp Arg Arg Leu Gln Asn Asp Ser Ala Tyr Leu
 20 25 30
 Ala Glu His Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly
 10 35 40 45
 Thr Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu
 50 55 60
 15 Gly Glu Phe His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys
 65 70 75 80
 Gly Glu Leu Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn
 85 90 95
 20 Val Tyr Gly Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr
 100 105 110
 Glu Asp Val Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val
 25 115 120 125
 Ile Ser Gly Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro
 130 135 140
 30 Gly Arg Gly Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe
 145 150 155 160
 Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys
 165 170 175
 35 Phe Gln Gly Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn
 180 185 190
 Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Tyr Asp His Pro Asp Val
 40 195 200 205
 Ala Ala Glu Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln
 210 215 220
 45 Leu Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe
 225 230 235 240
 Leu Arg Asp Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met
 245 250 255
 50 Phe Thr Val Ala Glu Tyr Trp Gln Asn Asp Leu Gly Ala Leu Glu Asn
 260 265 270
 Tyr Leu Asn Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu
 55 275 280 285
 His Tyr Gln Phe His Ala Ala Ser Thr Gln Gly Gly Tyr Asp Met
 290 295 300
 60 Arg Lys Leu Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser
 305 310 315 320
 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu
 325 330 335
 65 Ser Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu
 340 345 350

WO 00/60059

PCT/DK00/00148

Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly
 355 360 365

5 Thr Lys Gly Asp Ser Gln Arg Glu Ile Pro Ala Leu Lys His Lys Ile
 370 375 380

Glu Pro Ile Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His
 385 390 395 400

10 Asp Tyr Phe Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp
 405 410 415

Ser Ser Val Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro
 15 420 425 430

Gly Gly Ala Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr
 435 440 445

20 Trp His Asp Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser
 450 455 460

Glu Gly Trp Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr
 465 470 475 480

25 Val Gln Arg

30 <210> 5
 <211> 2604
 <212> DNA
 <213> *Bacillus amyloliquefaciens*

35 <220>
 <221> -10_signal
 <222> (707)..(712)

40 <220>
 <221> -35_signal
 <222> (729)..(734)

45 <220>
 <221> RBS
 <222> (759)..(762)

50 <220>
 <221> sig_peptide
 <222> (770)..(862)

55 <220>
 <221> mat_peptide
 <222> (863)..(2314)

60 <220>
 <221> terminator
 <222> (2321)..(2376)

65 <220>
 <221> CDS
 <222> (863)..(2314)

<400> 5
 aagcttcaag cggtaatcg gaatgtgcatttcgat acttaggttt tcacccgcatttc 60
 attaaaggcagg cgtttttgaa ccgtgtgaca gaagctgttc gaaaccccggttt cgggcgggttt 120

WO 00/60059

PCT/DK00/00148

9

gatttaagg ggggacagta tgctgcctct tcacattaat ctcagcggaa aaagaatcat 180
 cattgctggc gggggcaatg ttgcattaag aaggctgaaa cggtgttcc ggaaggcgct 240
 5 gatattaccg tgcgtactc gagcctgcct gaaattaaaa agctggcgg a tgaaggacgc 300
 atccgctgga ttccccggag aattgaaatg aaagatctca agcccgctt tttcattatt 360
 gccgcgacaa atgaccgagg cgtgaatcag gagatagccg caaacgcttc tgaaacgcag 420
 10 ctggtaact gtgtaaacaa ggctgaacaa ggcagcgtat atatgccaa gatcatccgc 480
 aaagggcgca ttcaagtatc agtataaca a g c g g g g c a a g c a t a c a 540
 15 ctggctgaaa acattgagcc ttgtatgact gatgatttgg ctgaagaatg ggatcgattg 600
 tttgagaaaa gaagaagacc ataaaaatac cttgtctgtc atcagacagg gtattttta 660
 tgctgtccag actgtccgct gtgtaaaaaa taggaataaa ggggggttgt tattat tta 720
 20 ctgatatgt a a a t a t a a t t t g t a a g g a a a t g a g a g g g a g g a a a c a 780
 acgaaagcgg acagttcgt tcagacttgc gcttatgtgc acgctgttat ttgtcagttt 840
 25 gccgattaca a a a a c a t c a g c c g a a t g g c a c g c t g a t g c a g t a t t t g a a 892
 Val Asn Gly Thr Leu Met Gln Tyr Phe Glu
 1 5 10

tgg tat acg ccg aac gac ggc cag cat tgg aaa cga ttg cag aat gat 940
 30 Trp Tyr Thr Pro Asn Asp Gly Gln His Trp Lys Arg Leu Gln Asn Asp
 15 20 25

gcg gaa cat tta tcg gat atc gga atc act gcc gtc tgg att cct ccc 988
 Ala Glu His Leu Ser Asp Ile Gly Ile Thr Ala Val Trp Ile Pro Pro
 35 30 35 40

gca tac aaa gga ttg agc caa tcc gat aac gga tac gga cct tat gat 1036
 Ala Tyr Lys Gly Leu Ser Gln Ser Asp Asn Gly Tyr Gly Pro Tyr Asp
 45 50 55

ttg tat gat tta gga gaa ttc cag caa aaa ggg acg gtc aga acg aaa 1084
 Leu Tyr Asp Leu Gly Glu Phe Gln Gln Lys Gly Thr Val Arg Thr Lys
 60 65 70

tac ggc aca aaa tca gag ctt caa gat gcg atc ggc tca ctg cat tcc 1132
 Tyr Gly Thr Lys Ser Glu Leu Gln Asp Ala Ile Gly Ser Leu His Ser
 75 80 85 90

cog aac gtc caa gta tac gga gat gtg gtt ttg aat cat aag gct ggt 1180
 Arg Asn Val Gln Val Tyr Gly Asp Val Val Leu Asn His Lys Ala Gly
 50 95 100 105

gct gat gca aca gaa gat gta act gcc gtc gaa gtc aat ccg gcc aat 1228
 Ala Asp Ala Thr Glu Asp Val Thr Ala Val Glu Val Asn Pro Ala Asn
 55 110 115 120

aga aat cag gaa act tcg gag gaa tat caa atc aaa gcg tgg acg gat 1276
 Arg Asn Gln Glu Thr Ser Glu Glu Tyr Gln Ile Lys Ala Trp Thr Asp
 125 130 135

ttt cgt ttt ccg ggc cgt gga aac acg tac agt gat ttt aaa tgg cat 1324
 Phe Arg Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp His
 60 140 145 150

tgg tat cat ttc gac gga gcg gac tgg gat gaa tcc cgg aag atc acg 1372
 Trp Tyr His Phe Asp Gly Ala Asp Trp Asp Glu Ser Arg Lys Ile Ser
 65 155 160 165 170

WO 00/60059

PCT/DK00/00148

10

cgc atc ttt aag ttt cgt ggg gaa gga aaa gcg tgg gat tgg gaa gta 1420
 Arg Ile Phe Lys Phe Arg Gly Glu Gly Lys Ala Trp Asp Trp Glu Val
 175 180 185

5 tca agt gaa aac ggc aac tat gac tat tta atg tat gct gat gtt gac 1468
 Ser Ser Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp
 190 195 200

10 tac gac cac cct gat gtc gtg gca gag aca aaa aaa tgg ggt atc tgg 1516
 Tyr Asp His Pro Asp Val Val Ala Glu Thr Lys Lys Trp Gly Ile Trp
 205 210 215

15 tat gcg aat gaa ctg tca tta gac ggc ttc cgt att gat gcc gcc aaa 1564
 Tyr Ala Asn Glu Leu Ser Leu Asp Gly Phe Arg Ile Asp Ala Ala Lys
 220 225 230

20 cat att aaa ttt tca ttt ctg cgt gat tgg gtt cag gcg gtc aga cag 1612
 His Ile Lys Phe Ser Phe Leu Arg Asp Trp Val Gln Ala Val Arg Gln
 235 240 245 250

25 gcg acg gga aaa gaa atg ttt acg gtt gcg gag tat tgg cag aat aat 1660
 Ala Thr Gly Lys Glu Met Phe Thr Val Ala Glu Tyr Trp Gln Asn Asn
 255 260 265

30 gcc ggg aaa ctc gaa aac tac ttg aat aaa aca agc ttt aat caa tcc 1708
 Ala Gly Lys Leu Glu Asn Tyr Leu Asn Lys Thr Ser Phe Asn Gln Ser
 270 275 280

35 gtg ttt gat gtt ccg ctt cat ttc aat tta cag gcg gct tcc tca caa 1756
 Val Phe Asp Val Pro Leu His Phe Asn Leu Gln Ala Ala Ser Ser Gln
 285 290 295

40 gga ggc gga tat gat atg agg cgt ttg ctg gac ggt acc gtt gtg tcc 1804
 Gly Gly Tyr Asp Met Arg Arg Leu Leu Asp Gly Thr Val Val Ser
 300 305 310

45 agg cat ccg gaa aag gcg gtt aca ttt gtt gaa aat cat gac aca cag 1852
 Arg His Pro Glu Lys Ala Val Thr Phe Val Glu Asn His Asp Thr Gln
 315 320 325 330

50 ccg gga cag tca ttg gaa tcg aca gtc caa act tgg ttt aaa ccg ctt 1900
 Pro Gly Gln Ser Leu Glu Ser Thr Val Gln Thr Trp Phe Lys Pro Leu
 335 340 345

55 gca tac gcc ttt att ttg aca aga gaa tcc ggt tat cct cag gtg ttc 1948
 Ala Tyr Ala Phe Ile Leu Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe
 350 355 360

60 tat ggg gat atg tac ggg aca aaa ggg aca tcg cca aag gaa att ccc 1996
 Tyr Gly Asp Met Tyr Gly Thr Lys Gly Thr Ser Pro Lys Glu Ile Pro
 365 370 375

65 tca ctg aaa gat aat ata gag ccg att tta aaa gcg cgt aag gag tac 2044
 Ser Leu Lys Asp Asn Ile Glu Pro Ile Leu Lys Ala Arg Lys Glu Tyr
 380 385 390

70 gca tac ggg ccc cag cac gat tat att gac cac ccg gat gtg atc gga 2092
 Ala Tyr Gly Pro Gln His Asp Tyr Ile Asp His Pro Asp Val Ile Gly
 395 400 405 410

75 tgg acg agg gaa ggt gac agc tcc gcc gca aaa tca ggt ttg gcc gct 2140
 Trp Thr Arg Glu Gly Asp Ser Ser Ala Ala Lys Ser Gly Leu Ala Ala
 415 420 425

80 tta atc acg gac gga ccc ggc gga tca aag cgg atg tat gcc ggc ctg 2188
 Leu Ile Thr Asp Gly Pro Gly Ser Lys Arg Met Tyr Ala Gly Leu

WO 00/60059

PCT/DK00/00148

11

	430	435	440	
	aaa aat gcc ggc gag aca tgg tat gac ata acg ggc aac cgt tca gat			2236
5	Lys Asn Ala Gly Glu Thr Trp Tyr Asp Ile Thr Gly Asn Arg Ser Asp			
	445	450	455	
	act gta aaa atc gga tct gac ggc tgg gga gag ttt cat gta aac gat			2284
	Thr Val Lys Ile Gly Ser Asp Gly Trp Gly Glu Phe His Val Asn Asp			
10	460	465	470	
	ggg tcc gtc tcc att tat gtt cag aaa taa ggtaataaaa aaacacacctcc			2334
	Gly Ser Val Ser Ile Tyr Val Gln Lys			
	475	480		
15	aagctgagtg cgggtatcag cttggaggtg cgtttatttt ttcagccgta tgacaaggc			2394
	ggcatcaggt gtgacaaaata cggtatgctg gctgtcatag gtgacaaaatc cgggtttgc			2454
20	gcccgttggc ttttcacat gtctgatttt tgtataatca acaggcacgg agccggaatc			2514
	tttcgccttg gaaaaataag cggcgatcgt agctgcttcc aatatggatt gttcatcggg			2574
	atcgctgctt ttaatcacaa cgtggatcc			2604
25	<210> 6			
	<211> 483			
	<212> PRT			
	<213> <i>Bacillus amyloliquefaciens</i>			
30	<400> 6			
	Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp			
	1	5	10	15
35	Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp			
	20	25	30	
	Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser			
	35	40	45	
40	Gln Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu			
	50	55	60	
	Phe Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu			
45	65	70	75	80
	Leu Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr			
	85	90	95	
50	Gly Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp			
	100	105	110	
	Val Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser			
	115	120	125	
55	Glu Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg			
	130	135	140	
	Gly Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly			
60	145	150	155	160
	Ala Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg			
	165	170	175	
65	Gly Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn			
	180	185	190	

WO 00/60059

PCT/DK00/00148

12

Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val
 195 200 205
 Val Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser
 5 210 215 220
 Leu Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe
 225 230 235 240
 10 Leu Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met
 245 250 255
 Phe Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn
 260 265 270
 15 Tyr Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu
 275 280 285
 His Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Tyr Asp Met
 20 290 295 300
 Arg Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala
 305 310 315 320
 25 Val Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu
 325 330 335
 Ser Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu
 340 345 350
 30 Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly
 355 360 365
 Thr Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile
 35 370 375 380
 Glu Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His
 385 390 395 400
 40 Asp Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp
 405 410 415
 Ser Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro
 420 425 430
 45 Gly Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr
 435 440 445
 Trp Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser
 50 450 455 460
 Asp Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr
 465 470 475 480
 55 Val Gln Lys

60 <210> 7
 <211> 1548
 <212> DNA
 <213> *Bacillus stearothermophilus*
 <220>
 65 <221> CDS
 <222> (1)...(1548)

WO 00/60059

PCT/DK00/00148

13

<400> 7
 gcc gca ccg ttt aac ggc acc atg atg cag tat ttt gaa tgg tac ttg 48
 Ala Ala Pro Phe Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr Leu
 1 5 10 15

5 ccg gat gat ggc acg tta tgg acc aaa gtg gcc aat gaa gcc aac aac 96
 Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Glu Ala Asn Asn
 20 25 30

10 tta tcc agc ctt ggc atc acc gct ctt tgg ctg ccg ccc gct tac aaa 144
 Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr Lys
 35 40 45

15 gga aca agc cgc agc gac gta ggg tac gga gta tac gac ttg tat gac 192
 Gly Thr Ser Arg Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr Asp
 50 55 60

20 ctc ggc gaa ttc aat caa aaa ggg acc gtc cgc aca aaa tac gga aca 240
 Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr
 65 70 75 80

25 aaa gct caa tat ctt caa gcc att caa gcc gac ccc gct gga atg 288
 Lys Ala Gln Tyr Leu Gln Ala Ile Gln Ala Ala His Ala Ala Gly Met
 85 90 95

30 caa gtg tac gcc gat gtc gtg ttc gac cat aaa ggc ggc gct gac ggc 336
 Gln Val Tyr Ala Asp Val Val Phe Asp His Lys Gly Ala Asp Gly
 100 105 110

35 gaa atc tcg ggc acc tat caa atc caa gca tgg acg aaa ttt gat ttt 432
 Glu Ile Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe Asp Phe
 130 135 140

40 ccc ggg cgg ggc aac acc tac tcc agc ttt aag tgg cgc tgg tac cat 480
 Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp Tyr His
 145 150 155 160

45 ttt gac ggc gtt gat tgg gac gaa agc cga aaa ttg agc cgc att tac 528
 Phe Asp Gly Val Asp Trp Asp Glu Ser Arg Lys Leu Ser Arg Ile Tyr
 165 170 175

50 aac gga aac tat gac tac tta atg tat gcc gac ctt gat atg gat cat 624
 Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Leu Asp Met Asp His
 195 200 205

55 ccc gaa gtc gtg acc gag ctg aaa aac tgg ggg aaa tgg tat gtc aac 672
 Pro Glu Val Val Thr Glu Leu Lys Asn Trp Gly Lys Trp Tyr Val Asn
 210 215 220

60 aca acg aac att gat ggg ttc cgg ctt gat gcc gtc aag cat att aag 720
 Thr Thr Asn Ile Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys
 225 230 235 240

65 ttc agt ttt cct gat tgg ttg tcg tat gtg cgt tct cag act ggc 768
 Phe Ser Phe Phe Pro Asp Trp Leu Ser Tyr Val Arg Ser Gln Thr Gly
 245 250 255

816 aag ccg cta ttt acc gtc ggg gaa tat tgg agc tat gac atc aac aag
 Lys Pro Leu Phe Thr Val Gly Glu Tyr Trp Ser Tyr Asp Ile Asn Lys

WO 00/60059

PCT/DK00/00148

14

	260	265	270	
5	ttg cac aat tac att acg aaa aca gac gga acg atg tct ttg ttt gat Leu His Asn Tyr Ile Thr Lys Thr Asp Gly Thr Met Ser Leu Phe Asp 275 280 285			864
10	gcc ccg tta cac aac aaa ttt tat acc gct tcc aaa tca ggg ggc gca Ala Pro Leu His Asn Lys Phe Tyr Thr Ala Ser Lys Ser Gly Gly Ala 290 295 300			912
15	ttt gat atg cgc acg tta atg acc aat act ctc atg aaa gat caa ccg Phe Asp Met Arg Thr Leu Met Thr Asn Thr Leu Met Lys Asp Gln Pro 305 310 315 320			960
20	aca ttg gcc gtc acc ttc gtt gat aat cat gac acc gaa ccc ggc caa Thr Leu Ala Val Thr Phe Val Asp Asn His Asp Thr Glu Pro Gly Gln 325 330 335			1008
25	gcg ctg cag tca tgg gtc gac cca tgg ttc aaa ccg ttg gct tac gcc Ala Leu Gln Ser Trp Val Asp Pro Trp Phe Lys Pro Leu Ala Tyr Ala 340 345 350			1056
30	ttt att cta act cgg cag gaa gga tac ccg tgc gtc ttt tat ggt gac Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp 355 360 365			1104
35	tat tat ggc att cca caa tat aac att cct tcg ctg aaa agc aaa atc Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro Ser Leu Lys Ser Lys Ile 370 375 380			1152
40	gat ccg ctc ctc atc gcg cgc agg gat tat gct tac gga acg caa cat Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln His 385 390 395 400			1200
45	gat tat ctt gat cac tcc gac atc atc ggg tgg aca agg gaa ggg ggc Asp Tyr Leu Asp His Ser Asp Ile Ile Gly Trp Thr Arg Glu Gly Gly 405 410 415			1248
50	act gaa aaa cca gga tcc gga ctg gcc gca ctg atc acc gat ggg ccg Thr Glu Lys Pro Gly Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro 420 425 430			1296
55	gga gga agc aaa tgg atg tac gtt ggc aaa caa cac gct gga aaa gtg Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Gln His Ala Gly Lys Val 435 440 445			1344
60	ttc tat gac ctt acc ggc aac cgg agt gac acc gtc acc atc aac agt Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ser 450 455 460			1392
65	gat gga tgg ggg gaa ttc aaa gtc aat ggc ggt tcg gtt tcg gtt tgg Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Val Trp 465 470 475 480			1440
70	gtt cct aga aaa acg acc gtt tct acc atc gct cgg ccg atc aca acc Val Pro Arg Lys Thr Thr Val Ser Thr Ile Ala Arg Pro Ile Thr Thr 485 490 495			1488
75	cga ccg tgg act ggt gaa ttc gtc cgt tgg acc gaa cca ccg ttg gtg Arg Pro Trp Thr Gly Glu Phe Val Arg Trp Thr Glu Pro Arg Leu Val 500 505 510			1536
80	gca tgg cct tga Ala Trp Pro 515			1548

WO 00/60059

PCT/DK00/00148

15

<210> 8
<211> 515
<212> PRT
<213> **Bacillus stearothermophilus**

<400> 8
Ala Ala Pro Phe Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr Leu
1 5 10 15

10 Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Glu Ala Asn Asn
20 25 30

Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr Lys
35 40 45

15 Gly Thr Ser Arg Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr Asp
50 55 60

20 Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr
65 70 75 80

Lys Ala Gln Tyr Leu Gln Ala Ile Gln Ala Ala His Ala Ala Gly Met
 85 90 95

25 Gln Val Tyr Ala Asp Val Val Phe Asp His Lys Gly Gly Ala Asp Gly
100 105 110

Thr Glu Trp Val Asp Ala Val Glu Val Asn Pro Ser Asp Arg Asn Gln
 115 120 125

30 Glu Ile Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe Asp Phe
130 135 140

Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp Tyr His
145 150 155 160

Phe Asp Gly Val Asp Trp Asp Glu Ser Arg Lys Leu Ser Arg Ile Tyr
 165 170 175

Lys Phe Arg Gly Ile Gly Lys Ala Trp Asp Trp Glu Val Asp Thr Glu
 180 185 190

Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Leu Asp Met Asp His
195 200 205

Pro Glu Val Val Thr Glu Leu Lys Asn Trp Gly Lys Trp Tyr Val Asn
210 215 220

Phe Ser Phe Phe Pro Asp Itp Leu Ser Tyr Val Arg Ser Gin Thr Gly
245 250 255

55 Dys Pro Leu Phe Thr Val Gly Glu Tyr Ile Ser Tyr Asp Ile Asn Lys
260 265 270

Leu His Asn Tyr Ile Thr Lys Thr Asp Gly Thr Met Ser Ser Leu Phe Asp
275 280 285

66 Ala Pro Leu His Asn Lys Phe Tyr Thr Ala Ser Lys Ser Gly Gly Ala
290 295 300

Phe Asp Met Arg Thr Leu Met Thr Asn Thr Leu Met Lys Asp Gln Pro
305 310 315 320

Thr Leu Ala Val Thr Phe Val Asp Asn His Asp Thr Glu Pro Gly Gln

WO 00/60059

PCT/DK00/00148

16

	325	330	335
	Ala Leu Gln Ser Trp Val Asp Pro Trp Phe Lys Pro Leu Ala Tyr Ala		
5	340	345	350
	Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp		
	355	360	365
10	Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro Ser Leu Lys Ser Lys Ile		
	370	375	380
	Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln His		
	385	390	395
15	Asp Tyr Leu Asp His Ser Asp Ile Ile Gly Trp Thr Arg Glu Gly Gly		
	405	410	415
	Thr Glu Lys Pro Gly Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro		
	420	425	430
20	Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Gln His Ala Gly Lys Val		
	435	440	445
	Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ser		
25	450	455	460
	Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Val Trp		
	465	470	475
30	480		
	Val Pro Arg Lys Thr Thr Val Ser Thr Ile Ala Arg Pro Ile Thr Thr		
	485	490	495
	Arg Pro Trp Thr Gly Glu Phe Val Arg Trp Thr Glu Pro Arg Leu Val		
	500	505	510
35	Ala Trp Pro		
	515		
40	<210> 9		
	<211> 31		
	<212> DNA		
	<213> Artificial Sequence		
45	<220>		
	<223> Description of Artificial Sequence: Primer		
	<400> 9		
50	ggtcgttaggc accgtagccc caatccgctt g		31
	<210> 10		
	<211> 36		
55	<212> DNA		
	<213> Artificial Sequence		
60	<220>		
	<223> Description of Artificial Sequence: Primer		
	<400> 10		
	ggtcgttaggc accgtagccc caatccgatt ggctcg		36
65	<210> 11		
	<211> 28		

WO 00/60059

PCT/DK00/00148

17

```

<212> DNA
<213> Artificial Sequence

5  <220>
<223> Description of Artificial Sequence: Primer

<400> 11
ctgtgactgg tgagtactca accaagtc                                28

10
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
15
<220>
<223> Description of Artificial Sequence: Primer

<400> 12
20  ggtcgttaggc accgttagccc tcatccgctt g                                31

<210> 13
<211> 31
25  <212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer
30
<400> 13
ggtcgttaggc accgttagccc atatccgctt g                                31

35
<210> 14
<211> 31
<212> DNA
<213> Artificial Sequence

40
<220>
<223> Description of Artificial Sequence: Primer

<400> 14
45  ggtcgttaggc accgttagcca atatccgctt g                                31

<210> 15
<211> 36
<212> DNA
50  <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

55
<400> 15
gcagcatgga actgctyatg aagaggcacg tcaaac                                36

<210> 16
60  <211> 30
<212> DNA
<213> Artificial Sequence

<220>
65  <223> Description of Artificial Sequence: Primer

<400> 16

```

WO 00/60059

PCT/DK00/00148

18

	catagttgcc	gaattcattg	gaaacttccc	30																																																																																																																																																																
5	<210>	17																																																																																																																																																																		
	<211>	34																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		
10	<220>																																																																																																																																																																			
	<223>	Description of Artificial Sequence: Primer																																																																																																																																																																		
	<400>	17																																																																																																																																																																		
	catagttgcc	gaattcaggg	gaaacttccc aatc	34																																																																																																																																																																
15	<210>	18																																																																																																																																																																		
	<211>	41																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		
20	<220>																																																																																																																																																																			
	<223>	Description of Artificial Sequence: Primer																																																																																																																																																																		
	<400>	18																																																																																																																																																																		
25	ccgcgcggcg	ggaaatcaaa	ttttgtccag	41		gctttaatta	g			30	<210>	19				<211>	32				<212>	DNA				<213>	Artificial Sequence			35	<220>					<223>	Description of Artificial Sequence: Primer				<400>	19				caaaaatggta	ccaataaccac	ttaaaatcgc	32		tg				40	<210>	20				<211>	29				<212>	DNA				<213>	Artificial Sequence			45	<220>					<223>	Description of Artificial Sequence: Primer				<400>	20				cttcccaatc	ccaaagtcttc	ccttgaaac	29	50						<210>	21				<211>	36				<212>	DNA				<213>	Artificial Sequence			55	<220>					<223>	Description of Artificial Sequence: Primer			60	<400>	21				cttaatttct	gttacgacgt	caggatggtc	36		ataaatac				65	<210>	22				<211>	38				<212>	DNA				<213>	Artificial Sequence		
	gctttaatta	g																																																																																																																																																																		
30	<210>	19																																																																																																																																																																		
	<211>	32																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		
35	<220>																																																																																																																																																																			
	<223>	Description of Artificial Sequence: Primer																																																																																																																																																																		
	<400>	19																																																																																																																																																																		
	caaaaatggta	ccaataaccac	ttaaaatcgc	32		tg				40	<210>	20				<211>	29				<212>	DNA				<213>	Artificial Sequence			45	<220>					<223>	Description of Artificial Sequence: Primer				<400>	20				cttcccaatc	ccaaagtcttc	ccttgaaac	29	50						<210>	21				<211>	36				<212>	DNA				<213>	Artificial Sequence			55	<220>					<223>	Description of Artificial Sequence: Primer			60	<400>	21				cttaatttct	gttacgacgt	caggatggtc	36		ataaatac				65	<210>	22				<211>	38				<212>	DNA				<213>	Artificial Sequence																																															
	tg																																																																																																																																																																			
40	<210>	20																																																																																																																																																																		
	<211>	29																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		
45	<220>																																																																																																																																																																			
	<223>	Description of Artificial Sequence: Primer																																																																																																																																																																		
	<400>	20																																																																																																																																																																		
	cttcccaatc	ccaaagtcttc	ccttgaaac	29																																																																																																																																																																
50																																																																																																																																																																				
	<210>	21																																																																																																																																																																		
	<211>	36																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		
55	<220>																																																																																																																																																																			
	<223>	Description of Artificial Sequence: Primer																																																																																																																																																																		
60	<400>	21																																																																																																																																																																		
	cttaatttct	gttacgacgt	caggatggtc	36		ataaatac				65	<210>	22				<211>	38				<212>	DNA				<213>	Artificial Sequence																																																																																																																																									
	ataaatac																																																																																																																																																																			
65	<210>	22																																																																																																																																																																		
	<211>	38																																																																																																																																																																		
	<212>	DNA																																																																																																																																																																		
	<213>	Artificial Sequence																																																																																																																																																																		

WO 00/60059

PCT/DK00/00148

19

<220>
 <223> Description of Artificial Sequence: Primer

5 <400> 22
 cgcccaagtc attcgaccag tactcagcta ccgtaaac 38

10 <210> 23
 <211> 29
 <212> DNA
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 23
 gccgtttca ttgtcgactt cccaatccc 29

20 <210> 24
 <211> 35
 <212> DNA
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 24
 ggaatttcgc gctgactagt cccgtacata tcccc 35

35 <210> 25
 <211> 36
 <212> DNA
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 25
 ggcaggaatt tcgcgacctt tcgtcccgta catatc 36

45 <210> 26
 <211> 36
 <212> DNA
 <213> Artificial Sequence

50 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 26
 cctcattctg cagcagcagc cgtaaatggc acgctg 36

55 <210> 27
 <211> 38
 <212> DNA
 <213> Artificial Sequence

60 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 27
 ccagacggca gtaataccga tatccgataa atgttccg 38

WO 00/60059

PCT/DK00/00148

20

5 <210> 28
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 10 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 28
 cgatatcgg tattactgcc gtctggattc 30

15 <210> 29
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 20 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 29
 ctcgtcccaa tcgggtccgt c 21

25 <210> 30
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 30 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 30
 gatgtatgcc gacttcgatt atgacc 26

40 <210> 31
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 45 <400> 31
 catagttgcc gaattcattg gaaacttccc 30

50 <210> 32
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 55 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 32
 ccgattgctg acgctgttat ttgc 24

60 <210> 33
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>

WO 00/60059

PCT/DK00/00148

21

<223> Description of Artificial Sequence: Primer
 <400> 33
 gccaaggcga taacggctac ggtgc 25
 5
 <210> 34
 <211> 28
 <212> DNA
 10 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Primer
 15 <400> 34
 gaacgagcca atcggacgtg ggctacgg 28

 <210> 35
 20 <211> 32
 <212> DNA
 <213> Artificial Sequence

 <220>
 25 <223> Description of Artificial Sequence: Primer

 <400> 35
 ggaacgagcc aatcgatataa cggctacggt gc 32

 30 <210> 36
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 35 <220>
 <223> Description of Artificial Sequence: Primer

 <400> 36
 40 gcatataagg gactgagcca agcgg 25

 <210> 37
 <211> 25
 45 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Primer
 50 <400> 37
 caaccacaaa gccggcgctg atgcg 25

 55 <210> 38
 <211> 41
 <212> DNA
 <213> Artificial Sequence

 60 <220>
 <223> Description of Artificial Sequence: Primer

 <400> 38
 65 gcatataagg gactgagcca atcggatataac ggctacggtg c 41
 <210> 39

WO 00/60059

PCT/DK00/00148

22

<211> 28
<212> DNA
<213> Artificial Sequence

5 <220>
<223> Description of Artificial Sequence: Primer

<400> 39
gaacgagccg atcggacgtg ggctacgg 28

10

<210> 40
<211> 28
<212> DNA
15 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

20 <400> 40
gaacgagccca aaacgacgtg ggctacgg 28

25

CLAIMS

1. A variant of a parent alpha-amylase, wherein the parent alpha-amylase has the amino acid sequence shown in SEQ ID NO: 4;

5 wherein the variant has at least 85% identity to SEQ ID NO: 4;

wherein the variant comprises one of the following mutations using the numbering in SEQ ID NO: 4:

V54N, A52S, A52S+V54N, A52S+V54N+T49L+G107A, A52S+V54N+T49L, G107A, Q51R, Q51R+A52S, A52N; T49F+G107A, T49V+G107A, T49D+G107A, T49Y+G107A, T49S+G107A, 10 T49N+G107A, T49I+G107A, T49L+A52S+G107A, T49L+A52T+G107A, T49L+A52F+G107A, T49L+A52L+G107A, T49L+A52I+G107A, T49L+A52V+G107A; T49V, T49I, T49D, T49N, T49S, T49Y, T49F, T49W, T49M, T49E, T49Q, T49K, T49R, A52T, A52L, A52I, A52V, A52M, A52F, A52Y, A52W, V54M, G107V, G107I, G107L, and G107C;

and wherein the variant has alpha-amylase activity.

15

2. A variant of a parent alpha-amylase, wherein the parent alpha-amylase has the amino acid sequence shown in SEQ ID NO: 4;

wherein the variant has at least 85% identity to SEQ ID NO: 4;

wherein the variant comprises the following mutation using the numbering in SEQ ID NO:

20

4: T49X+A52X+V54N/I/L/Y/F/W+G107A;

and wherein the variant has alpha-amylase activity.

25

3. The variant of claims 1 or 2, further comprising the mutation G108A using the numbering in SEQ ID NO: 4.

30

4. A variant of a parent alpha-amylase, wherein the parent alpha-amylase has the amino acid sequence shown in SEQ ID NO: 4;

wherein the variant has at least 85% identity to SEQ ID NO: 4;

wherein the variant comprises one of the following mutations using the numbering in SEQ

35

ID NO: 4:

T49L+G107A;

T49I+G107A;

T49L+G107A+V54I;

T49I+G107A+V54I;
A52S+V54N+T49L+G107A;
A52S+V54I+T49L+G107A;
A52S+T49L+G107A;
5 A52T+T49L+G107A;
A52S+V54N+T49I+G107A;
A52S+V54I+T49I+G107A;
A52S+T49I+G107A;
T49L+G108A;
10 T49I+G108A;
T49L+G108A+V54I; and
T49I+G108A+V54I;
and wherein the variant has alpha-amylase activity.

15 5. A variant of a parent hybrid alpha-amylase, wherein the parent hybrid alpha-amylase comprises the 445 C-terminal amino acid residues of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the alpha-amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 6;
wherein the variant has at least 85% identity to SEQ ID NO: 4; and
20 wherein the variant comprises:
(i) one of the following mutations using the numbering in SEQ ID NO: 4:
V54N, A52S, A52S+V54N, A52S+V54N+T49L+G107A, A52S+V54N+T49L, G107A, Q51R,
Q51R+A52S, A52N; T49F+G107A, T49V+G107A, T49D+G107A, T49Y+G107A, T49S+G107A,
T49N+G107A, T49I+G107A, T49L+A52S+G107A, T49L+A52T+G107A, T49L+A52F+G107A,
25 T49L+A52L+G107A, T49L+A52I+G107A, T49L+A52V+G107A; T49V, T49I, T49D, T49N, T49S,
T49Y, T49F, T49W, T49M, T49E, T49Q, T49K, T49R, A52T, A52L, A52I, A52V, A52M, A52F,
A52Y, A52W, V54M, G107V, G107I, G107L, and G107C; or
(ii) one of the following mutations using the numbering in SEQ ID NO: 4:
T49L+G107A;
30 T49I+G107A;
T49L+G107A+V54I;
T49I+G107A+V54I;
A52S+V54N+T49L+G107A;

A52S+V54I+T49L+G107A;
A52S+T49L+G107A;
A52T+T49L+G107A;
A52S+V54N+T49I+G107A;
5 A52S+V54I+T49I+G107A;
A52S+T49I+G107A;
T49L+G108A;
T49I+G108A;
T49L+G108A+V54I; and
10 T49I+G108A+V54I;
and wherein the variant has alpha-amylase activity.

6. The variant of claim 5, wherein the variant further comprises the following mutations:
H156Y+A181T+N190F+A209V+Q264S using the numbering in SEQ ID NO: 4.

15 7. The variant of claim 5, wherein the variant further comprises the following mutations:
H156Y+A181T+N190F+A209V+Q264S+I201F using the numbering of SEQ ID NO: 4.

20 8. A DNA construct comprising a DNA sequence encoding an alpha-amylase variant
according to any one of claims 1-7.

9. A recombinant expression vector which carries a DNA construct according to claim 8.

25 10. A cell which is transformed with a DNA construct according to claim 8 or a vector according
to 9.

11. A cell of claim 10, which is a microorganism of bacterial or fungal origin.

30 12. Use of an alpha-amylase variant of any one of claims 1-7 for starch liquefaction; for
laundry, dish or hard surface cleaning; for ethanol production; or desizing of textiles, fabrics or
garments.

1/8

His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr
1 5 10 15

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ala
20 25 30

Asn Leu Lys Ser Lys Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Trp
35 40 45

Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr
50 55 60

Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly
65 70 75 80

Fig. 1

2/8

Thr Arg Asn Gln Ieu Gln Ala Ala Val Thr Ser Ieu Lys Asn Asn Gly
 85 90 95

Ile Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp
 100 105 110

Gly Thr Glu Ile Val Asn Ala Val Glu Val Asn Arg Ser Asn Arg Asn
 115 120 125

Gln Glu Thr Ser Gly Glu Tyr Ala Ile Glu Ala Trp Thr Lys Phe Asp
 130 135 140

Phe Pro Gly Arg Gly Asn Asn His Ser Ser Phe Lys Trp Arg Trp Tyr
 145 150 155 160

His Phe Asp Gly Thr Asp Trp Asp Gln Ser Arg Gln Ieu Gln Asn Lys
 165 170 175

Ile Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp
 180 185 190

Thr Glu Asn Gly Asn Tyr Asp Tyr Ieu Met Tyr Ala Asp Val Asp Met
 195 200 205

Asp His Pro Glu Val Ile His Glu Ieu Arg Asn Trp Gly Val Trp Tyr
 210 215 220

Thr Asn Thr Ieu Asn Ieu Asp Gly Phe Arg Ile Asp Ala Val Lys His
 225 230 235 240

Ile Lys Tyr Ser Phe Thr Arg Asp Trp Ieu Thr His Val Arg Asn Thr
 245 250 255

Thr Gly Lys Pro Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Ieu
 260 265 270

Gly Ala Ile Glu Asn Tyr Ieu Asn Lys Thr Ser Trp Asn His Ser Val
 275 280 285

Phe Asp Val Pro Ieu His Tyr Asn Ieu Tyr Asn Ala Ser Asn Ser Gly
 290 295 300

Gly Tyr Tyr Asp Met Arg Asn Ile Ieu Asn Gly Ser Val Val Gln Lys
 305 310 315 320

His Pro Thr His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro
 325 330 335

Gly Glu Ala Ieu Glu Ser Phe Val Gln Gln Trp Phe Lys Pro Ieu Ala
 340 345 350

Tyr Ala Ieu Val Ieu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr
 355 360 365

Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Lys Ser

Fig. 1 (cont.)

3/8

370

375

380

Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Phe Ala Tyr Gly Thr
 385 390 395 400

Gln His Asp Tyr Phe Asp His His Asp Ile Ile Gly Trp Thr Arg Glu
 405 410 415

Gly Asn Ser Ser His Pro Asn Ser Gly Ile Ala Thr Ile Met Ser Asp
 420 425 430

Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys Asn Lys Ala Gly
 435 440 445

Gln Val Trp Arg Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile
 450 455 460

Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

Val Trp Val Lys Gln
 485

Fig. 1 (cont.)

4/8

2 His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His
1 5 10 15

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ser
20 25 30

Asn Leu Arg Asn Arg Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Trp
35 40 45

3 Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr
50 55 60

Asp Leu Gly Gln Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly
65 70 75 80

4 Thr Arg Ser Gln Leu Glu Ser Ala Ile His Ala Leu Lys Asn Asn Gly
85 90 95

Fig. 2

5/8

Val Glu Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp
 100 105 110
 Ala Thr Glu Asn Val Leu Ala Val Glu Val Asp Pro Asn Asn Arg Asn
 115 120 125
 5 Glu Glu Ile Ser Gly Asp Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp
 130 135 140
 Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp Arg Trp Tyr
 145 150 155 160
 10 His Phe Asp Gly Val Asp Trp Asp Glu Ser Arg Glu Phe Glu Asn Arg
 165 170 175
 Ile Tyr Lys Phe Arg Gly Asp Gly Lys Ala Trp Asp Trp Glu Val Asp
 180 185 190
 Ser Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met
 195 200 205
 15 Asp His Pro Glu Val Val Asn Glu Leu Arg Arg Trp Gly Glu Trp Tyr
 210 215 220
 Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His
 225 230 235 240
 Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Ala
 245 250 255
 20 Thr Gly Lys Glu Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu
 260 265 270
 Gly Ala Leu Glu Asn Tyr Leu Asn Lys Thr Asn Trp Asn His Ser Val
 275 280 285
 25 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly
 290 295 300
 Gly Asn Tyr Asp Met Ala Iys Leu Leu Asp Gly Thr Val Val Glu Lys
 305 310 315 320
 His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Ser Glu Pro
 325 330 335
 30 Gly Glu Ser Leu Glu Ser Phe Val Glu Glu Trp Phe Lys Pro Leu Ala
 340 345 350
 Tyr Ala Leu Ile Leu Thr Arg Glu Glu Gly Tyr Pro Ser Val Phe Tyr
 355 360 365
 35 Gly Asp Tyr Tyr Gly Ile Pro Thr His Ser Val Pro Ala Met Lys Ala
 370 375 380
 Lys Ile Asp Pro Ile Leu Glu Ala Arg Glu Asn Phe Ala Tyr Gly Thr

Fig. 2. (cont.)

6/8

385	390	395	400
-----	-----	-----	-----

Gln His Asp Tyr Phe Asp His His Asn Ile Ile Gly Trp Thr Arg Glu
 405 410 415

Gly Asn Thr Thr His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
 420 425 430

Gly Pro Gly Gly Glu Lys Trp Met Tyr Val Gly Gln Asn Lys Ala Gly
 435 440 445

Gln Val Trp His Asp Ile Thr Gly Asn Lys Pro Gly Thr Val Thr Ile.
 450 455 460

Asn Ala Asp Gly Trp Ala Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

Ile Trp Val Lys Arg
 485

Fig. 2 (cont.)

7/8

His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr
 1 5 10 15

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Asn Ser Asp Ala Ser
 20 25 30

Asn Leu Lys Ser Lys Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Trp
 35 40 45

Lys Gly Ala Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr
 50 55 60

Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly
 65 70 75 80

Thr Arg Ser Gln Leu Gln Ala Ala Val Thr Ser Leu Lys Asn Asn Gly
 85 90 95

Ile Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp
 100 105 110

Ala Thr Glu Met Val Arg Ala Val Glu Val Asn Pro Asn Asn Arg Asn
 115 120 125

Gln Glu Val Thr Gly Glu Tyr Thr Ile Glu Ala Trp Thr Arg Phe Asp
 130 135 140

Phe Pro Gly Arg Gly Asn Thr His Ser Ser Phe Lys Trp Arg Trp Tyr
 145 150 155 160

His Phe Asp Gly Val Asp Trp Asp Gln Ser Arg Arg Leu Asn Asn Arg
 165 170 175

Ile Tyr Lys Phe Arg Gly His Gly Lys Ala Trp Asp Trp Glu Val Asp
 180 185 190

Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Met
 195 200 205

Asp His Pro Glu Val Val Asn Glu Leu Arg Asn Trp Gly Val Trp Tyr
 210 215 220

Thr Asn Thr Leu Gly Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His
 225 230 235 240

Ile Lys Tyr Ser Phe Thr Arg Asp Trp Ile Asn His Val Arg Ser Ala
 245 250 255

Thr Gly Lys Asn Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu
 260 265 270

Fig. 3

8/8

Gly Ala Ile Glu Asn Tyr Leu Gln Lys Thr Asn Trp Asn His Ser Val
 275 280 285

Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Lys Ser Gly
 290 295 300

Gly Asn Tyr Asp Met Arg Asn Ile Phe Asn Gly Thr Val Val Gln Arg
 305 310 315 320

His Pro Ser His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro
 325 330 335

Glu Glu Ala Leu Glu Ser Phe Val Glu Glu Trp Phe Lys Pro Leu Ala
 340 345 350

Tyr Ala Leu Thr Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr
 355 360 365

Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Arg Ser
 370 375 380

Lys Ile Asp Pro Ile Leu Glu Ala Arg Gln Lys Tyr Ala Tyr Gly Lys
 385 390 395 400

Gln Asn Asp Tyr Leu Asp His His Asn Ile Ile Gly Trp Thr Arg Glu
 405 410 415

Gly Asn Thr Ala His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
 420 425 430

Gly Ala Gly Gly Ser Lys Trp Met Phe Val Gly Arg Asn Lys Ala Gly
 435 440 445

Asn Val Trp Ser Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile
 450 455 460

Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

Ile Trp Val Asn Lys
 485

Fig. 3 (cont.)