发明名称
利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法

摘要
本发明涉及一种利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法，其特征在于：(1) 采用经高温煅烧后的铝型材厂工业污泥，粘土、碳酸钡，滑石为原料进行制备；(2) 采用上述工艺步骤进行制备：a. 将铝型材厂工业污泥经过高温煅烧；b. 取原料混合后，将混合后的原料与研磨介质和水投入球磨机研磨，得到浆料；c. 将浆料干燥脱水，制成粉末；d. 将粉末经过成型，制成半成品坯体；e. 将半成品坯体烘干，置于高温炉中煅烧，保温，自然冷却至室温，即可制得氧化铝耐磨瓷球。本发明用铝型材厂工业污泥取代工业氧化铝制备氧化铝耐磨瓷球，不仅大大降低了生产成本，而且有利于实现环境保护和变废为宝的双重目的。
1. 一种利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法，其特征在于：
 (1) 采用铝型材厂工业污泥、粘土、碳酸钡、滑石为原料进行制备，其原料配方为：经高温煅烧后的铝型材厂工业污泥：60～80%，粘土：10～30%，滑石粉：2～11%，碳酸钡：2～9%；
 (2) 采用下述工艺步骤进行制备：
 a. 将铝型材厂工业污泥经过 1200℃以上的高温煅烧；
 b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质 1.5～2.0 份、水 0.9～1.2 份的比例投入球磨机，研磨 15～20 小时，得到浆料；
 c. 将浆料干燥脱水，制成粉料；
 d. 将粉料经过成型，制成半成品坯体；
 e. 将半成品坯体烘干至含水率≤1%后，置于高温炉中 1370～1450℃煅烧，
 在烧成温度保温 2～4 小时后停火，自然冷却至室温，即可制得氧化铝耐磨瓷球。

2. 根据权利要求 1 所述的利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法，其特征在于：上述步骤 c 中先用 120-200 目的筛网将研磨后的浆料过滤后，再进行干燥脱水。

3. 根据权利要求 1 或 2 所述的利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法，其特征在于：上述步骤 d 中所述的成型方法采用液压成型机压制成型的方法，或采用可塑法，或采用注浆法，或采用其它常规方法。
利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法

所属技术领域

本发明涉及生态环境材料中固体废弃物的综合利用，尤其是指一种利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法。

背景技术

氧化铝耐磨瓷球具有硬度高、密度大、磨损率小、耐腐蚀等特点，广泛应用于陶瓷材料、电子材料、磁性材料以及涂料、化妆品、食品等行业的粉磨加工工程，是市场销量最大的一种研磨介质材料。常规氧化铝耐磨瓷球生产中采用工业氧化铝为原料，其成本较高，活性较低，不利于固相反应和烧结。

发明内容

本发明提供了一种利用铝型材厂工业污泥制备氧化铝耐磨瓷球的方法，它用铝型材厂工业污泥取代工业氧化铝制备氧化铝耐磨瓷球，不仅大大降低了生产成本，而且有利于实现环境保护和变废为宝的双重目的。

本发明的技术方案是这样构成的，其特征在于：

（1）采用铝型材厂工业污泥、粘土、碳酸钠、滑石为原料进行制备，其原料配方为：高温煅烧后的铝型材厂工业污泥：60～80%，粘土：10～30%，滑石粉：2～11%，碳酸钠：2～9%；

（2）采用下述工艺步骤进行制备：

a. 将铝型材厂工业污泥经过 1200℃以上的高温煅烧；

b. 其上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质 1.5～2.0 份、水 0.9～1.2 份的比例投入球磨机，研磨 15～20 小时，得到浆料；

c. 将浆料干燥脱水，制成粉尘；

d. 将粉尘经过成型，制成半成品坯体；

e. 将半成品坯体烘干至含水率≤1%后，置于高温炉中 1370～1450℃煅烧，在烧成温度保温 2～4 小时后停火，冷却至室温，即可制得氧化铝耐磨瓷球。

本发明中原料配合的主要原料是铝型材厂工业污泥，粘土是用来调节泥料的可塑性，滑石和碳酸钠是助熔剂。此外，为使组成稳定，并防止因污泥脱水产生的收缩而裂开，在上述 a 步骤中必须先将铝型材厂工业污泥经过 1200℃以
上的高温煅烧，使其原先含有的 γ-AlOOH、Al(OH)_3 转化为性能稳定的 α-
Al₂O₃。

较之现有技术而言，本发明利用铝型材厂工业污泥制备氧化铝耐磨瓷球的
方法不仅大大降低了生产成本，提高了市场竞争力，而且有利于实现环境保
护和变废为宝的双重目的。通过本发明方法制造的氧化铝耐磨瓷球，其 Al₂O₃ 的
含量在 68～82% 之间，且具有下列性能：密度 3.105～3.289g/cm³，抗折强度 117～
146MPa，吸水率 0.032～0.351%，磨损率 0.441～0.855%/h。

具体实施方式

本发明的特征在于：

(1) 采用铝型材厂工业污泥、粘土、碳酸钡、滑石为原料进行制备，其原
料配方为：经高温煅烧后的铝型材厂工业污泥：60～80%，粘土：10～30%，
滑石粉：2～11%，碳酸钡：2～9%；

(2) 采用下述工艺步骤进行制备：

a. 将铝型材厂工业污泥经过 1200℃ 以上的高温煅烧；

b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质
1.5～2.0 份、水 0.9～1.2 份的比例投入球磨机，研磨 15～20 小时，得到浆料；

c. 将浆料干燥脱水，制成粉料；

d. 将粉料经过成型，制成半成品坯体；

e. 将半成品坯体烘干至含水率 ≤1% 后，置于高温炉中 1370～1450℃ 烘烧，
在烧成温度保温 2～4 小时后停火，自然冷却至室温，即可制得氧化铝耐磨瓷球。

上述步骤 c 中先用 120-200 目的筛网将研磨后的浆料过滤后，再进行干燥脱
水。

上述步骤 d 中所述的成型方法采用液压成型机压制的方法，或采用可塑法、
或采用注浆法，或采用其它常规方法。

下面结合具体实施例对本发明内容进行具体说明。

实施例 1：

利用铝型材厂工业污泥，粘土，滑石和碳酸钡为原料制备耐磨瓷球，其原
料配方如下：1300℃煅烧后的铝型材厂工业污泥 67%，粘土 20%，碳酸钡 9%，
滑石粉 4%，烧成温度：1380℃，保温时间 3 小时。

制备步骤：a. 将铝型材厂工业污泥经过 1300℃ 的高温煅烧；

b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质
1.5 份、水 0.9 份的比例投入球磨机，研磨 20 小时，得到浆料；

c. 用 200 目的筛网将研磨后的浆料过滤后，再将浆料干燥脱水，制成含水率为 5%～7% 的粉料；

d. 将粉料经过成型，制成直径为 20～100mm 不同规格的半成品坯体；

e. 将半成品坯体在 100℃的温度下烘干至含水率≤1% 后，置于 1380℃的高温炉中煅烧，在最高烧成温度保温 3 小时，自然冷却至室温，即可制得氧化铝耐磨瓷球。

制得的耐磨瓷球中氧化铝含量约为 73%。

性能：密度 3.249g/cm³，抗折强度 123MPa，吸水率 0.059%，磨损率 0.562 %/h。

晶相：主晶相为 α-Al₂O₃，次晶相为莫来石，镁铝尖晶石。

实施例 2：

利用铝型材厂工业污泥，粘土，滑石和碳酸钠为原料制备耐磨瓷球，其原料配方如下：1200℃煅烧后的铝型材厂工业污泥 80%，粘土 10%，滑石粉 2%，碳酸钠 8%，烧成温度：1450℃，保温时间 2 小时。

制备步骤：
a. 将铝型材厂工业污泥经过 1200℃的高温煅烧；
b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质 2.0 份、水 1.2 份的比例投入球磨机，研磨 15 小时，得到浆料；
c. 用 120 目的筛网将研磨后的浆料过滤后，再将浆料干燥脱水，制成含水率为 5%～7% 的粉料；

d. 将粉料经过成型，制成直径为 20～100mm 不同规格的半成品坯体；

e. 将半成品坯体在 100℃的温度下烘干至含水率≤1% 后，置于 1450℃的高温炉中煅烧，在最高烧成温度保温 2 小时，自然冷却至室温，即可制得氧化铝耐磨瓷球。

制得的耐磨瓷球中氧化铝含量约为 82%。

性能：密度 3.271g/cm³，抗折强度 146MPa，吸水率 0.351%，磨损率 0.697 %/h。

晶相：主晶相为 α-Al₂O₃，次晶相为莫来石，镁铝尖晶石。

实施例 3：

利用铝型材厂工业污泥，粘土，滑石和碳酸钠为原料制备耐磨瓷球，其原料配方如下：1300℃煅烧后的铝型材厂工业污泥 60%，粘土 30%，滑石粉 8%，
碳酸钡 2%，烧成温度：1370℃，保温时间 2.5 小时。

制备步骤：
a. 将铝型材厂工业污泥经过 1300℃的高温煅烧；
b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质 1.8 份、水 1.0 份的比例投入球磨机，研磨 18 小时，得到浆料；
c. 用以 180 目的筛网将研磨后的浆料过滤后，再将浆料干燥脱水，制成含水率为 5%～7%的粉料；
d. 将粉料经过成型，制成直径为 20～100mm 不同规格的半成品坯体；
e. 将半成品坯体在 100℃的温度下烘干至含水率≤1%后，置于 1370℃的高温炉中煅烧，在最高烧成温度保温 2.5 小时，自然冷却至室温，即可制得氧化铝耐磨瓷球。

制得的耐磨瓷球中氧化铝含量约为 68%。

性能：密度 3.105g/cm³，抗折强度 117MPa，吸水率 0.032%，磨损率 0.624 %/h。

晶相：主晶相为 α-Al₂O₃，次晶相为莫来石，镁铝尖晶石。

实施例 4：

利用铝型材厂工业污泥，粘土，滑石和碳酸钡为原料制备耐磨瓷球，其原料配方如下：1300℃煅烧后的铝型材厂工业污泥 69%，粘土 18%，滑石粉 11%，碳酸钡 2%，烧成温度：1390℃，保温时间 3 小时。

制备步骤：
a. 将铝型材厂工业污泥经过 1300℃的高温煅烧；
b. 按上述配方取原料混合后，将混合后的原料按照混合料 1 份、研磨介质 2.0 份、水 1.2 份的比例投入球磨机，研磨 16 小时，得到浆料；
c. 用以 200 目的筛网将研磨后的浆料过滤后，再将浆料干燥脱水，制成含水率为 5%～7%的粉料；
d. 将粉料经过成型，制成直径为 20～100mm 不同规格的半成品坯体；
e. 将半成品坯体在 100℃的温度下烘干至含水率≤1%后，置于 1390℃的高温炉中煅烧，在最高烧成温度保温 3 小时，自然冷却至室温，即可制得氧化铝耐磨瓷球。

制得的耐磨瓷球中氧化铝含量约为 70%。

性能：密度 3.249g/cm³，抗折强度 128MPa，吸水率 0.078%，磨损率 0.663 %/h。

晶相：主晶相为 α-Al₂O₃，次晶相为莫来石，镁铝尖晶石。
上述实施例中所采用的高温煅烧后的铝型材厂工业污泥的化学组成（重量百分数）为：SiO₂为 3.6%，Al₂O₃为 94.11%，Fe₂O₃为 0.42%，CaO 为 0.74%，MgO 为 0.57%，K₂O 为 0.05%，Na₂O 为 0.52%；粘土化学组成为：SiO₂为 48.67 %，Al₂O₃为 35.59%，Fe₂O₃为 0.39%，TiO₂为 0.14%，CaO 为 0.22%，MgO 为 0.22%，K₂O 为 1.13%，Na₂O 为 0.01%，烧失量为 13.52%；滑石化学组成为：SiO₂为 60.44%，Al₂O₃为 1.19%，Fe₂O₃为 0.14%，CaO 为 3.10%，MgO 为 29.02%，烧失量为 5.32%；碳酸钡为工业纯原料。

此外，上述的铝型材厂工业污泥在高温煅烧前主要含有 γ-AlOOH、Al(OH)₃和无定形体结构的固体物质，粒子在 0.1～1 μm 之间，粘土粒度为 180～200 目，滑石粉粒度为 180～200 目。