A 000 N O

WO 03/014933 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 February 2003 (20.02.2003)

PCT

(10) International Publication Number

WO 03/014933 Al

(51) International Patent Classification’: GO6F 11/14,

12/00, 12/08, 12/16

(21) International Application Number: PCT/US02/24709

(22) International Filing Date: 6 August 2002 (06.08.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/923 384 8 August 2001 (08.08.2001) US
(71) Applicant: SANGATE SYSTEMS, INC. [US/US]; 144

Turnpike Road, Southborough, MA 01772 (US).

(72) Inventor: WINOKUR, Alexander; Hatisbi Street 108A,
34521 Haifa (IL).

(74) Agents: KENNARD, Wayne, M. et al.; Hale and Dorr
LLP, 60 State Street, Boston, MA 02109 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DATA BACKUP METHOD AND SYSTEM USING SNAPSHOT AND VIRTUAL TAPE

| 101
MAINFRAME HOST

t~1 02

103
DATA ACCESS CONTROLLER

1
—104

A 4

105—
SOURCE DISK

NETWORK

(57) Abstract: A method of creating
a snapshot copy of data stored on a
first direct access storage device (105)
is described. It includes the acts of
receiving information identifying a set
of data that is to be copied from the first
direct access storage device (105) and
mapping destination locations in a second
direct access storage device (109) for
each element of the set. The destination
locations are in a sequence emulating a
tape copy. The method also includes the
acts of iterating through the set of data.
For each element of the set, the method of
the present invention also includes the acts
of determining if the element has already
been copied to the second direct access
storage device (109), and, if the element
has not already been copied, then copying
the element to its mapped location in the

107

100

FILE SYSTEM
SERVER

second direct access storage device (109).
A corresponding system is also described.

—108

DESTINATION
DiSK

—109

wO 03/014933 A1 NI 00O 0O R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/014933 PCT/US02/24709

Data Backup Method and System using Snapshot and Virtual Tape

Background
1. Field of the Invention

The present invention relates to computer data management and, more
specifically, to a system and method that create a snapshot copy of data from a source

disk to a virtual tape implemented with a destination disk.
2. Discussion of Related Art

Conventionally, computer systems for processing and maintaining large amounts
of data generally include different types of mass data storage devices. Two examples of
such mass data storage devices are (1) direct access storage dévices, such as disk devices;
and (2) sequential access storage devices, such as tape devices. To improve reliability
and maintainability, data stored on a disk device is backed-up (i.e., copied) to tape
devices on regular intervals. In this fashion, if the disk device fails, the tape copy may be

used to re-create the data to the image it had at the time of the back-up.

One technique for backing up data employs “virtual tape” technique in which a
disk device is used to simulate, or emulate, a tape device. In short, this technique scans a
source disk for data to be backed up, location by location, and sequentially writes the
scanned data to the virtual tape created on a destination disk. As such, the technique
stores data on the destination disk as if the data is being stored on a physical tape. In
particular, data stored in the virtual tape disk includes tape overhead information (e.g.,
tape header and trailer labels) in addition to the data itself. The data stored in the virtual

tape is also arranged as a series of sequentially organized tape records. As data is read

BOSTON 1477918v1

10

15

20

25

WO 03/014933 PCT/US02/24709

from the source disk, this technique creates a corresponding tape record data structure
and stores that onto the virtual tape disk. Access to the data stored on the virtual tape
disk is also sequential, just as it is to real tape. An advantage of this technique is that it is
simple to copy the data stored on the virtual tape to physical tapes, and what is more, the

same backup tools used with real tapes can be used with virtual tapes too.

When the virtual tape is to be copied to a physical tape, it is possible to fit more than one
virtual tape thereto, the;‘eby using tapes more efficiently. In addition, restore operations
(i-e., copying data from the virtual tape disk back to the source device) can be completely
automated since no human intervention is required when using the virtual tape technique,
whereas a restore operation from physical tapes requires human interventions (e. g.,

locating and mounting correct tapes).

A disadvantage of the above-described technique is that it may require a long
backup window period during which the source disk cannot be used by the computer
system. That is, while data is being backed up to a tape/virtual tape, the source disk is
made inaccessible so that data copied to the destination disk is identical to the data stored
on the source disk at one instant in time, i.e., the time at which the backup began. This is

needed to maintain data coherency, as the copied data corresponds to a given instant.

Another backup technique developed for data backup that reduces the length of
the backup window is called a snapshot technique, which includes two stages in backing
up the data. During the first stage, an exact duplicate of the disk to be backed up is
created on another disk called a snapshot disk. This exact duplicate is called a snapshot
copy. This technique creates a disk image of data as it existed when the snapshot copy

was initiated, while permitting new updates to the “to be backed up” disk during the

10

15

20

25

30

WO 03/014933 PCT/US02/24709

creation of the snapshot disk. These updates do not propagate to the snapshot disk. In
the second stage, the data stored in the snapshot disk is copied to a tape device. The
backup window is shortened because the source disk may be accessed and updated as

soon as the snapshot copy operation is initiated.

To permit updates while the snapshot copy is in progress snapshot copy is created

by the following two processes:

) 1. A normal data copy process. Data is read, in the order as it is

scanned from the source disk, and copied to the snapshot disk. As part of this
process, a data structure, created to keep track of which portions of the data have
been copied, is accessed to determine whether a portion of the data to be copied,
has already been copied to the snapshot disk. The process does not copy data that
has already been copied to the snapshot disk as part of an “out-of-order data

copy,” which is described below.

. 2. Out-of-order data copy. The out-of-order data copy process takes

place when an update is requested by the computer during the normal data copy
process. More specifically, upon receiving the update request, it is determined
whether the update request is targeting a data location that has already been
copied as part of the normal data copy process. If the data has already been
copied, the update is performed and the normal data copy process resumes. If the
targeted location has not yet been copied as part of the normal data copy process,
the data at the location to be updated is first copied to the snapshot disk (out-of-
order), and once the copy has been performed the update to the data proceeds.
Subsequently, the data structure is updated to indicate that the location has been
copied. In this fashion, when the normal data copy process resumes, the normal

data copy process will not copy the “updated” data.

The above described processes permit updates to the source disk while allowing
the creation of the snapshot disk at the same time without corrupting the snapshot disk

with the updated data. However, this technique relies on direct (not sequential as in tape

-3-

10

15

20

25

WO 03/014933 PCT/US02/24709

devices) access to the disk that the snapshot copy disk resides to perform the out-of-order
update, thus the result is an exact image of the source disk, and as such has yet to be
copied to a virtual tape.

Summary

Embodiments of the present invention provide a method and system that
overcome the above-described shortcomings of the virtual tape and snapshot methods. In
particular, the method of the present invention includes, the acts of receiving
information identifying a set of data that is to be copied from the first direct access
storage device and mapping destination locations in a second direct access storage device
for each element of the set. The destination locations are in a sequence emulating a tape
copy. The method also includes the acts of iterating through the set of data. For the each
element of the sét, the method of the present invention also includes the e;cts of
determining if the element has already been copied to the second direct access storage
device, and, if the element has not already been copied, then copying the element to its
mapped location in the second direct access storage device.

The method of the present invention may also include the act of, during the
iterating act, intercepting a write command to an element that has not yet been copied. If
such a write command is intercepted, the method may also copy the element from the
first direct access storage device to its mapped location in the second direct access
storage device, then execute the write command.

The method of the present invention may retrieve the set of data stored in the first
direct access storage device using a first input-output (I/0) access protocol. The first file

access protocol may be Enterprise Systems Connection (ESCON) p}otocol.

&)}

10

15

20

25

WO 03/014933 PCT/US02/24709

The method of the present invention can store the set of data into the second
direct ‘access storage device using a second I/O access protocol (SCSI/FC). The second
file access protocol can be Open System protocol.

The method of the present invention may also include the acts of identifying the
elements of the set of data and calculating computer memory size information of each of
the elements in the first direct access storage device.

In addition, the method of the present invention can also include the act of
creating an ordered list in order to extract the size information from the first direct access
storage device. In this embodiment, each entry of the ordered list is associated with one
of the elements of the set. The method may also include the act of storing into each entry
physical block addresses of one or more memory blocks that store the element associated
with tile entry. |

The method of the present invention may also include the act of creating an
ordered list in order to extract the size information from the first direct access storage
device. In this embodiment, each entry of the ordered list is associated with one of the
elements of the set. The method may also include the act of storing into each entry
physical cylinder and head (CH) addresses of one or more tracks that store the element
associated with the entry.

The method may also include the act of creating a file system size table. In this
embodiment, each entry of the size table includes information relating to at least one of
fields, key fields and data field for one or more records on one of a plurality of tracks.
The method may also include the act of updating the file system size table each time a
format write I/O command is administered to one of the plurality of tracks.

The method may also include the act of calculating a computer memory size

required in the second direct access storage device to copy each element of the set from

-5.

10

15

20

25

WO 03/014933 PCT/US02/24709

the first direct access storage device. The method may also include the acts of creating a
bit array, each bit of the bit array associated with one of the elements of the set and
initializing each bit of the bit array to a first state, wherein the first state of each bit
designates that the element associated therewith is not yet copied.

The method may also include the act of changing the first state of one of bits in
the bit array, when the element associated with the one of bits has been copied from the
first direct access storage device to the second direct access storage device.

The present invention also includes a system of creating a snapshot copy of data
stored on a first direct access storage device. The system includes means for receiving
information identifying a set of data that is to be copied from the first direct access
storage device and means for mapping destination locations in a second direct access
storage device for each element of the set, whereir.1 the destination locations are in a
sequence emulating a tape copy. The system also includes means for iterating through
the set of data that includes means for determining if the each element of the set has
already been copied to the second direct access storage device, and means for copying the
element to its mapped location in the second direct access storage device if the element
has not already been copied.

The system of the present invention may also include means for intercepting a
write command to an element that has not yet been copied, wherein, if such a write
command is intercepted, copying the element from the first direct access storage device
to its mapped location in the second direct access storage device, then executing the write
command.

The system of the present invention may also include means for retrieving the set
of data stored in the first direct access storage device using a first file access protocol.

The first file access protocol can be Enterprise Systems Connection (ESCON) protocol.

-6-

h

10

15

20

25

WO 03/014933 PCT/US02/24709

The system of the present invention may also include means for storing the set of
data into the second direct access storage device using a second I/O access protocol. The
second file access protocol is Open System protocol.

The system of the present invention may also include means for identifying the
elements of the set of data and means for calculating computer memory size information
of each of the elements in the first direct access storage device.

The system of the present invention may also include means for creating an
ordered list in order to extract the size information from the first direct access storage
device. In this embodiment, each entry of the ordered list is associated with one of the
elements of the set. The system may also include means for storing into each entry
physical block addresses of one or more memory blocks that store the element associated
with the entry. |

The system of the present invention may also include means for creating an
ordered list in order to extract the size information from the first direct access storage
device. In this embodiment, each entry of the ordered list may be associated with one of
the elements of the set. The system may also include means for storing into each entry
physical cylinder and head (CH) addresses of one or more tracks that store the element
associated with the entry.

The system of the present invention may also include means for creating a file
system size table. In this embodiment, each entry of the size table may include
information relating to at least one of fields, key fields and data field for one or more
records on one of a plurality of tracks. The system may also include means for updating
the file system size table each time a format write I/O command is administered to one of

the plurality of tracks.

(93

10

15

20

25

WO 03/014933 PCT/US02/24709

The system of the present invention may also include means for calculating a
computer memory size required in the second direct access storage device to copy each
element of the set from the first direct access storage device.

The system of the present invention may also include means for creating a bit
array, each bit of the bit array associated with one of the elements of the set, and means
for initializing each bit of the bit array to a first state, wherein the first state of each bit
designates that the element associated therewith is not yet copied.

The system of the present invention may also include means for changing the first
state of one of bits in the bit array, when the element associated with the one of bits has
been copied from the first direct access storage device to the second direct access storage

device.

Brief Description of the Figures
The detailed description of embodiments of the present invention showing
various distinctive features may be best understood when the detailed description is read

in reference to the appended drawing in which:

FIG. 1 is a block diagram of a computer system in which embodiments of the

present invention operates;

FIGs. 1A and 1B are block diagrams of an exemplary disk devise;

FIG. 2 is a high-level flow chart diagram of processes in accordance with

embodiments of the present invention;

10

15

20

25

WO 03/014933 PCT/US02/24709

FIG. 3 is a flow chart diagram of initial processing processes when a source
disk is formatted to operate in Open System file system in accordance with embodiments

of the present invention;

FIG. 4 is a flow chart diagram of initial processing processes when the source
disk is formatted to operate in Enterprise file system with fixed block length and fixed

track format in accordance with embodiments of the present invention;

FIG. 5 is a flow chart diagram of initial processing processes when the source
disk is formatted to operate in Enterprise file system with variable track size in

accordance with embodiments of the present invention;

FIG. 6 is a flow chart diagram of processes in copying data from the source

disk to a destination disk in accordance with embodiments of the present invention; and

FIG. 7 is a block diagram illustrating the access logic platform in accordance

with preferred embodiments of the invention.

Detailed Description

Preferred embodiments of the present invention provide direct snapshot copy to
virtual tape that supports out-of-order writes. In particular, the present invention
provides sequential access for ordinary reading, writing and other use of the virtual tape
and provides direct access capability to support out-of-order writes to the correct
corresponding sequential location on the virtual tape. To provide the above-mentioned
features, preferred embodiments construct a data structure for mapping data locations in

the source disk to corresponding data locations in the virtual tape. In this fashion, if an

10

15

20

25

WO 03/014933 PCT/US02/24709

out-of-sequence write is to be performed, then the data structure may be consulted to
determine the location on the virtual tape that should receive the data from the source

disk.

Embodiments of the present invention may operate within an exemplary system
100 as illustrated in FIG. 1. System 100 includes a mainframe host 101 connected to a
data access controller 103 via a connectivity link 102. Data access controller 103, in
turn, is connected to a source disk 105 via a connectivity link 104. In the illustrated
embodiment a destination disk 109 is in communication with data access controller 103
via a file system server 108 and a network 107, such as may be found in Storage Area

Networks (SANSs).

Mainframe host 101 is preferably a mainfraine computer developed and
manufactured by International Business Machines Corporation (IBM) of Armonk, NY. It
should be noted, however, that a personal computer or a UNIX workstation can be used

instead of a mainframe computer in at least some embodiments of the present invention.

Controller 103 is configured to manage data (e.g., read from and write to
destination disk 109) via file system server 108. Connectivity link 102 is preferably an

ESCON link.

Network 107 may be implemented over a Local or Wide Area Network or the
Internet or FC SAN or Ethernet. File system server 108 can use an SCSI connectivity or

a fibre channel (FC) connectivity to manage read from and write to destination disk 109.

Source disk 105 can be configured to be accessed using a number of different
disk addressing methods. Three exemplary disk addressing methods include: (1) Open

System addressing method; (2) Enterprise addressing method based on an ECKD

- 10 -

10

15

20

25

WO 03/014933 PCT/US02/24709

architecture with fixed block length and fixed track format; and (3) Enterprise addressing
method based on an ECKD architecture with variable track size (e.g., a variable block

length scheme or a fixed block length and variable track format scheme).

A disk formatted to use the Open System addressing method is organized in fixed
blocks numbered from o to n. The block number uniquely determines the physical

location of data on such a disk.

A disk formatted to use either one of the ECKD addressing methods is addressed
in a triplet of variables (i.e., Cylinder, Head, and Block number denoted as CHB). An
exemplary disk device depicted in FIGs. 1A and 1B illustrates the relationship among the
triple of variables. In particular, a disk system may include a number of cylinders 150.

In turn, each cylinder includes a nufnber of disks 153 (e.g., fifteen) each of which is
configured to be read or written by a corresponding read-write head 155. In turn, each
disk includes a number of tracks 157. Data is written on or read from the tracks using
block numbers. Hence, a piece of data can be addressed on the disk by the tuplet

variables, CHB.

The data can be written to or read from destination disk 109 using the Open
System addressing method. However, destination disk 109 can be configured to operate

with any one of the above-described disk addressing methods.

Now turning to describe operational features of system 100, at regular intervals
(e.g., hourly, daily, monthly, etc.) a user may designate a certain set of data comprising a
number of data elements stored in source disk 105 to be backed up (e.g., copied) to

destination disk 109. For example the data elements to be backed-up may be files (e.g.,

-11 -

10

15

20

25

WO 03/014933 PCT/US02/24709

designated by their corresponding file names), or other definitions may be used as well

(e.g., disk volume identification).

In certain embodiments of the present invention, a backup copy is preferably
created in the state as the set of data was stored in source disk 105 at the point in time the
backup was initiated while allowing mainframe host 101 to update data stored in source

disk 105. '

Referring conjointly to FIGs. 1 and 2, a high-level description of the backup
procedure in accordance with embodiments of the present invention is described. First,
the physical size of each element to be copied from source disk 105 is determined 201.
Next, in destination disk 109, the physical location of each element to be copied is
determined 203. This act can also be referred as mapping. The physical iocation in
destination disk 109 is determined from the physical size information obtained from
source disk 105 and from the tape access overhead needed to emulate tape records (e.g.,
tape headers and footers for each tape file). Following the mapping, one data element is
copied at a time (or in parallel) from source disk 105 to destination disk 109 to the
physical location calculated in 203. In another embodiment, the data elements can be
copied concurrently (e.g., in parallel). As the data elements are copied, values stored in

an update status array are changed, details of which are described later.

While controller 103 is copying the data elements from source disk 105 to
destination disk 109, mainframe host 101 may send an instruction to update a data
element among the data elements that are being copied to destination disk 109.
Controller 103 intercepts this instruction. If the data element to be updated has already

been copied to destination disk 109, then controller 103 updates the data element as

~12-

10

15

20

25

WO 03/014933 PCT/US02/24709

instructed by mainframe host 101 without interrupting the copying process 205.
However, if the data element has not already been copied to destination disk 109, then
controller 103 interrupts the copying process 207. Controller 103 then determines the
location 209, in destination disk 109, of the data element to be updated, which has been
calculated in 203. The data element is then copied to that location 211 after which
controller 103 updates the element in source disk 105 as requested by mainframe host
101. In addition, the update status array is changed to reflect this out-of-order copy 212.
Controller 103 then returns from the interrupt procedure 207 and resumes the copying
procedure 205. When the copying procedure 205 reaches the location of the data element
that has been copied in 211, controller 103 does not copy the data element from source

disk 105.

This approach advantageously allows the backed-up data in destination disk 109
to be identical to the data stored in source disk 105 at the point in time when the backup
was initiated. The above processes are repeated until all of the elements designated to be
copied have been copied from source disk 105 to destination disk 109. Detailed

descriptions of the above described high-level processes are provided below.

First, source disk 105 is scanned to ascertain sizes and locations of the data
elements to be backed-up. In the embodiments that scan source disk 105, file sizes,
designated as S, and a list of blocks or tracks, designated as E, of the files to be backed
up are preferably extracted. This scanning procedure is described for each of the above-

mentioned disk addressing methods.

FIG. 3 is a flowchart illustrating the logic to determine the size of each file to be

copied when source disk 105 uses the Open System addressing method. In particular, a

-13-

10

15

20

25

WO 03/014933 PCT/US02/24709
file system directory having the files to be copied is scanned to locate the files designated
to be copied 301. Subsequently, the size S; for each file i is determined by parsing the
directory info to find the size information. An ordered list of the file’s blocks, designated
as Ej(j), is also created 303. In particular, the ordered list E;(j) contains the physical
block address of block j of file i. This information is obtained by parsing the directory
information which includes a set of pointers to the blocks of the file. The size of each

file to be copied is calculated using the ordered list Ej(j).

FIG. 4 is a flowchart illustrating the logic to determine the size of each data
element to be copied when source disk 105 uses the Enterprise file system based on the
ECKD architecture with fixed block length and fixed track format. In particular,
controller 103 identifies files to be copied 401. For each identified file, designated as i,
controller 103 first builds an ordered list corresponding to the file’s tracks, designated as
Ey(j), 403. The ordered list contains the physical address in the form of CH (Cylinder and
Header) of each track, designated as j, for each file to be copied. Controller 103 then
reads the last track of the element by reading information in the directory structure to
determine the number of blocks, designated as R, on the last track 405. Controller 103

determines the size 407, designated as S;, using the following equation:
Si=(BL+K+C)*n*(TR-1)+ (BL+ K+ C)*R

Wherein BL represents the block size of each record on the track; n represents the
number blocks per track; TR represents the number of tracks the file occupies; and K and

C represent the sizes of each record’s key and count fields, respectively.

FIG. 5 is a flowchart illustrating the logic in determining the size of each data

element to be copied when source disk 105 uses with the Enterprise addressing method

-14 -

10

15

20

25

WO 03/014933 PCT/US02/24709
based on the ECKD architecture with variable track size. Controller 103 creates and
maintains a “file system size table,” designated as Vi(j) (process 501). The file system
size table includes one entry for each track of source disk 105. In particular, for each file,
designated as i, entry j of Vi(j), contains the size of track j. In turn, Vi(j) includes the sum
of sizes of the count fields, key fields, and data fields for all records on the track by
reading information in the data directory structure. Subsequent to its creation, the file
system size table is preferably updated each time a format write I/O command is
administered to tracks 503. In certain embodiments of the present invention, these I/O
commands are intercepted by controller 103, and the file system size table is updated
accordingly. The above processes are included for the Enterprise file system based on
the ECKD architecture with variable track size because track sizes of such architecture
may differ from each other. The .entries for the tracks in the file system size table are

then used in order to determine their sizes 505.

In particular, when the file system size table is created and maintained, size;
designated as S; for file i, may be determined as illustrated in the following exemplary

pseudo code processes 507:

Scan the file system directory in order to locate files to be copied;
For each file i to be backed up, construct E; - an ordered list of file’s tracks; and

For each file i determine it’s size iS; with the following equation:

S; = ZVz(])

JeE;

Once the above process of determining the physical sizes of the files to be copied

has been completed, controller 103 determines the sizes and locations in the destination

- 15 -

WO 03/014933 PCT/US02/24709
5 disk 109 for each of files to be copied 203. It should be noted that the mapping process
is described in connection with destination disks that have been formatted to operate
using the Open System addressing method. However, embodiments of present invention
also contemplate using disks formatted to operate using other file systems (e.g., the

Enterprise addressing methods).

10 Since destination disk 109 is to emulate a tape (i.e., a virtual tape), for each file,
designated as i, the location of its first byte in the tape is determined by the following

equation:

i~1
L=) (H+T+S))

Jj=1

©wherein: H and T designate the sizes of a tape header and trailer labels, respectively; S;
15 designates the file size for file j; L; designates the byte location of the first byte of file; i,
on the virtual tape relative to the beginning of the virtual tape.

The block location of L; is then determined by the following equation:

N, =FLOOR{L,/ B}+ N,

20 wherein: N; designates the block location of L; on destination disk 109; B designates the
block size of the Open System disk block size; and Ny represent the first block of the

virtual tape on destination disk 109. FLOOR {X} is the integer of X.

-16 -

10

15

20

25

WO 03/014933 PCT/US02/24709

Subsequently, the byte offset, designated as O, of first file’s byte in block N; of

destination disk 109 is determined by the following equation:

O,=L, —(FLOOR{L,/B)*B

Now turning to describe the copying 2053, the acts of copying the data from source
disk 105 to the destination disk 109 are different depending on the addressing method of
source disk 105. In particular, when source disk 105 uses the Open System addressing
method, only the underlining block is copied to destination disk 109. When source disk
105 uses one of the Enterprise file systems, the whole track containing the block to be
updated is copied. It follows then that the order in which the underlining blocks or tracks

are copied is different depending upon which file system is used.

The copying process iterates through the set of data to be copied. For each
element in the iteration the logic needs to determine whether or not the block or track has
already been copied. Ordinarily, the element has not been copied yet, but, as described
above, in certain instances it may have been (for example, to handle a write from the host
101 during the back up procedure). More particularly, in order to perform the
interruption process 207, for each file (or block or track), designated as i, controller 103
maintains an array having on or off bit, BIT}(j), an update status array. The update status

array is specified as follows:

BIT(j) = 0 if block or track j has not been copied to destination disk 109.
BIT(j) = 1 if block or track j has been copied already to destination disk 109. It should

be noted that in an alternative embodiment the designation of ones and zeros is reversed.

-17 -

10

15

20

25

WO 03/014933 PCT/US02/24709

When the backup starts, all entries of the update status array are initialized to
zero. As the blocks or tracks are copied from source disk 105 to destination disk 109,
corresponding entries in the update status array is changed from zero to one. In addition,
as noted above in connection with 207, while the copying process is being processed
mainframe host 101 may instruct controller 103 to update an element of data. FIG. 6
illustrates the processes involved in handling such an instruction. Controller 103 first
checks the entry in the update status array that corresponds to the block or track
requested to be updated by mainframe host 101. If the entry is set to one, indicating that
the block or track already has been copied to destination disk 109, then controller 103
updates the block or track as instructed by mainframe host 101. If the entry is set to zero,
designating that the block or track has not been copied to destination disk 109, then
controller 103 copies the block or track (not 'yet updated) from source disk 105 to
destination disk 109 and, then, sets the entry in the update status array corresponding to
the just copied block or track to one (designating that the block or track has been copied).

Subsequently, the block or track is then updated in source disk 105 as instructed.

Now turning to describe how to copy the data out-of-order, let k designate a

physical address of a block to be updated, and let block & belong to block or track i then:

(a) For Open System addressing method, let £ designate the j block of file , that
1s, Ei(j) = k. Let LU\(j) designate the byte location on destination disk 109 of block j then

LU(j)=L;+B*(j—1).

(b) For the Enterprise addressing method based on the ECKD architecture with

fix block length and fix track format, let k belong to the j track of file i and let LUj(j)

- 18 -

10

15

20

25

WO 03/014933 PCT/US02/24709

designate byte location on destination disk 109 of track j then LUj(j) = L; + (BL + K + C)

k(- 1),

(c) For the Enterprise addressing method based on the ECKD architecture with
variable track size, lets k belong to the j track of file i and let LUj(j) designate byte

location on the virtual tape of track j.
j-1
LU(j)=L;+2 V()
' =1

Using the above definitions and designations, the out-of-order copying procedure

for Open System addressing method is illustrated in the following pseudo code

Processes:

Intercept update to block k.

Find entry in E such that Ey(j) = k (to speed this search an inverted list I of blocks can
be used such that for each block k IL,(k) = i the file to which block k belongs and ILy(k) = j the relative
order number of block £ in file 7).

if entry found in E then
{
if BIT(j) = O then [*previous data to be copied to virtual tape before update takes place
{
LU{j) =L+ B¥j—1)
/*calculate the block number N and the offset O of byte LU((j)
N = floor(LU;()/B) + Ng
0 = LUYj) - (floor(LUG)/B)*B
Read block k

Write block k to virtual tape at block N offset O

-19 -

10

15

20

25

30

WO 03/014933 PCT/US02/24709

BITy(j) = 1 /* mark data secured

/
}

execute update

For either one of the Enterprise addressing methods the following pseudo code

illustrates the out-of-order copying process:

Intercept update to block CHB.
Find entry in Ej(j) such that track j contains track CH (to speed this search an inverted list
IL of blocks can be used such that for each track CH IL;(CH) = i the file to which track CH belongs and
IL,(CH) =j thé relative order number of track CH in file i).
if entry found in E then
{
if BIT|(j) = O then [*previous data to be copied to virtual tape before update takes place
{
if fix block length and fix track format then
LUj)=L;+ (BL + K+ C)*n*(j—-1)
/*calculate the block number N and the offset O of byte LU(j)

Else

LU (=L + 3,0
N= ﬂoor(LUi(i;iB Y+ Ny
0 = LU(j) - (floor(LUG)/B)*B
Read track CH

Write block CH to virtual tape at block N offset O

BIT;(j) = 1 /* mark data secured

}

execute update

-20 -

10

15

20

25

WO 03/014933 PCT/US02/24709

Now turning to describe the processes taking place in destination disk 109, since
the starting location (V; O;) of each file has been determined already, files can be copied
in parallel or sequentially. For example, the outer loop (on Z) can be executed in parallel,

as illustrated in the following pseudo code processes:

or i=1 to number of files to be backed up do /*This loop can be done in parallel
{
write header H for file i starting at location (N;, O;)
for j=1 to number of blocks or tracks in E;

{

i BIT|(j) = O then /*if block or track not already copied on account of application updates

{
read block or track E(O)
write block or track E{O) to virtual tape
BITy(j) = 1

J

if more than M consecutive reads or writes executed then pause for application updates

}

write trailer T for file i

}

Certain embodiments of the invention implement the controller logic on a
platform like the one described in U.S. Pat. Apl. No. 09/605,493, entitled “I/O SYSTEM
SUPPORTING EXTENDED FUNCTIONS AND METHOD THEREFOR” which is
hereby incorporated by reference in its entirety. The platform performs the snapshot
copying to the virtualized (emulated) tape and also monitors incoming writes from the

host to see if they require the out of order writes described above.

-21 -

10

15

20

25

WO 03/014933 PCT/US02/24709

More specifically, referring to FIG. 7 and as described in the patent application
identified above, among other things, host 760 interacts with and may control and
configure the various splitters, and it may communicate with open system disk 109

according to the Open System connectivity links and protocols.

In this embodiment, mainframe host 101 may maintain its data on mainframe
storage systems using file systems like PS and VSAM. Mainframe host 101 manages its
file systems through tools like SMS, HSM, and DFDSS. Mainframe host 101 accesses
its data using ESCON connectivity 706. In the exemplary embodiment, source disk 109

is formatted to operate using one of the Enterprise data access methods.

In this exemplary embodiment, host 760, under programmatic or user control, can
define “sessions” in a splitter 700, which instruct the splitter to detect certain commands
and addresses on its links and to take specified actions in response thereto. For example,
the session may instruct the splitter to (a) detect whether a mainframe link 705 is reading
from or writing to certain addresses corresponding to storage locations being backed up
and (b) inform host 760 accordingly. In particular, when mainframe host 101 instructs an
update to a data element being backéd-up, host 760 may intercept such an instruction and

initiate an interrupt procedure as described in connection with FIG. 2.

Moreover, in at least some embodiments, host 760 can cause splitter 700 to
transmit specified channel command words (CCWs) under the ESCON protocol to a
particular connectivity link. Thus, for example, host 760 may create a CCW that would
write information to a particular storage location and cause the splitter to send that CCW

on a particular link, e.g., 706.

_922.

10

15

20

25

WO 03/014933 PCT/US02/24709

In addition host 760 is configured to directly copy data stored on destination disk

109 on to a tape mounted on a tape driver 709, (e.g., without any rearrangements of data).

As described more fully in the patent application identified above, each intelligent
splitter 700 is a multiport programmable device. The splitter can monitor the various
ports and detect the commands and addresses flowing through it. Moreover, the splitter
can retransmit IO streams received by it on one or more ports, respond to IO streams
received by it, alter the received IO stream (either in a control or data portion) and
transmit the altered stream, or invoke host 760 in response to a received IO stream. All
of the above may be the result of a specific session definition or in response to

instructions from host 760.

Under a preferfed embodiment, splitter 700 operates on I/O streams at éphysical
address level, and host 760 is responsible for implementing functionality at a logical
level. Under this arrangement, splitter 700 is configured by host 760 to take certain
actions when I/O streams fall within prescribed, physical address domains (e.g., physical
volumes, tracks, sectors, and physical blocks). This specification of a physical address
domain and associated actions to be performed is a “session definition.” Host 760 is a
separate computing entity (akin to a file server) that is programmedAto understand a
logical level of addressing abstraction (e.g., databases, file systems, logical records). It
includes logic (discussed more fully below) to map logical-level objects to a

corresponding physical address domain.

Using this embodiment, the process of determining the physical size of each
element to be copied from source disk 105 (201) can be performed by host 760, and

splitter 700. In addition, the update status array, BITi(j), can be crated and maintained by

-23 -

10

15

20

25

WO 03/014933 PCT/US02/24709

splitter 700. In another aspect, actual copying of data from source disk 105 to destination
disk 109 may be performed by splitter 700 if both disks are mainframe disks, or by
splitter and host if the destination disk is an open system disk, while the overall copying

process is controlled by host 760.

In general, it should be emphasized that the various components of embodiments
of the present invention can be implemented in hardware, software or a combination
thereof. In such embodiments, the various components and processes would be
implemented in hardware or software to perform the functions of embodiments of the
present invention. Any presently available or future developed computer software
language or hardware components can be employed in such embodiments of the present
invention. For example, at least some of the functionality mentioned above could be
implemented using Visual Basic, C, C++, or any assembly language appropriate in view
of the processor(s) being used. It could also be written in an interpretive environment

such as Java and transported to multiple destinations to various users.

The many features and advantages of embodiments of the present invention are
apparent from the detailed specification, and thus, it is intended by the appended claims
to cover all such features and advantages of the invention which fall within the true spirit
and scope of the invention. Further, since numerous modifications and variations will
readily occur to those skilled in the art, it is not desired to limit the invention to the exact
construction and operation illustrated and described, and accordingly, all suitable
modifications and equivalents may be resorted to, falling within the scope of the

invention.

-24 -

10

11

12

WO 03/014933 PCT/US02/24709

CLAIMS

What is claimed is:

1. A method of creating a virtual tape image snapshot copy of data stored on a first
direct access storage device, comprising the acts of:

(@) receiving information identifying a set of data that is to be copied from the first
direct access storage device;

(b) mapping destination locations in a second direct access storage device for each
element of the set, wherein the destination locations are in a sequence emulating a tape
copy; and

(c) iterating through the set of data and for the each element of the set:

(c-1) determining if the element has already been copied to the second
direct access storage device; and

(c-2) if the element has not already been copied, then copying the element
to its mapped location in the second direct access storage device.
2. The method of claim 1 further comprising the act of:

during the iterating act, intercepting a write command to an element that has
not yet been copied, wherein, if such a write command is intercepted, copying the element
from the first direct access storage device to its mapped location in the second direct access
storage device, then executing the write command.
3. The method of claim 1 further comprising the act of:

retrieving the set of data stored in the first direct access storage device using a first

file access protocol.

-25-

WO 03/014933 PCT/US02/24709

4. The method of claim 3 wherein the first input-output (I/O) access protocol is
Enterprise Systems Connection (ESCON) protocol.
5. The method of claim 1 further comprising the act of:

storing the set of data into the second direct access storage device using a second

input-output (I/O) access protocol (SCSI/FC).

6. The method of claim 5 wherein the second file access protocol is Open System
protocol.
7. The method of claim 1 further comprising the act of:

identifying the elements of the set of data; and

calculating computer memory size information of each of the elements in the first
direct access storage device.
8. The method of claim 7 further comprising the act of:

creating an ordered list in order to extract the size information from the first direct
access storage device, wherein each entry of the ordered list is associated with one of the
elements of the set; and

storing into each entry physical block addresses of one or more memory blocks that
store the element associated with the entry.
9. The method of claim 7 further comprising the act of:

creating an ordered list in order to extract the size information from the first direct
access storage device, wherein each entry of the ordered list is associated with one of the
elements of the set;

storing into each entry physical cylinder and head (CH) addresses of one or more

tracks that store the element associated with the entry.

-6 -

10

11

12

13

14

WO 03/014933 PCT/US02/24709

10. The method of claim 7 further comprising the acts of:

creating a file system size table, wherein each entry of the size table includes
information relating to at least one of fields, key fields and data field for one or more
records on one of a plurality of tracks; and

updating the file system size table each time a format write I/O command is

administered to one of the plurality of tracks.

~11. The method of claim 1 further comprising the act of:

calculating a computer memory size required in the second direct access storage
device to copy each element of the set from the first direct access storage device.
12. The method of claim 1 further comprising the acts of:

creating a bit array, each bit of the bit array associated with one of the elements of
the set; and

initializing each bit of the bit array to a first state, wherein the first state of each bit
designates that the element associated therewith is not yet copied.
13. The method of claim 12 further comprising the act of:

changing the first state of one of bits in the bit array, when the element associated
with the one of bits has been copied from the first direct access storage device to the
second direct access storage device.
14. The method of claim 1 further comprising:

copying data stored on the snapshot copy directly on to a tape.
15. The method of claim 1, wherein the act (c) is performed in parallel with respect to

the elements.

-27-

10

11

12

WO 03/014933 PCT/US02/24709

16. A system of creating a snapshot copy of data stored on a first direct access storage
device, comprising:

(a) means for receiving information identifying a set of data that is to be copied
from the first direct access storage device;

(b) means for mapping destination locations in a second direct access storage
device for each element of the set, wherein the destination locations are in a sequence
emulating a tape copy; and

(c) means for iterating through the set of data, comprising:

(c-1) means for determining if the each element of the set has already been
copied to the second direct access storage device; and

(c-2) means for copying the element to its mapped location in the second
direct access storage device if the element has not already been copied.
17. The system of claim 16 further comprising:

means for intercepting a write command to an element that has not yet been copied,
wherein, if such a write command is intercepted, copying the element from the first direct
access storage device to its mapped location in the second direct access storage device,
then executing the write command.

18. The system of claim 16 further comprising:

means for retrieving the set of data stored in the first direct access storage device
using a first file access protocol.

19. The system of claim 18 wherein the first file access protocol is Enterprise Systems
Connection (ESCON) protocol.

20. The system of claim 16 further comprising:

-28 -

WO 03/014933 PCT/US02/24709

means for storing the set of data into the second direct access storage device using a
second input-output (I/O) protocol.
21. The system of claim 20 wherein the second file access protocol is Open System
protocol.
22. The system of claim 16 further comprising:

means for identifying the elements of the set of data; and

means for calculating computer memory size information of each of the elements in
the first direct access storage device.
23. The system of claim 22 further comprising:

means for creating an ordered list in order to extract the size information from the
first direct access storage device, wherein each entry of the ordered list is associated with
one of the elements of the set; and

means for storing into each entry physical block addresses of one or more memory
blocks that store the element associated with the entry.
24. The system of claim 22 further comprising:

means for creating an ordered list in order to extract the size information from the
first direct access storage device, wherein each entry of the ordered list is associated with
one of the elements of the set;

means for storing into each entry physical cylinder and head (CH) addresses of one
or more tracks that store the element associated with the entry.

25. The system of claim 22 further comprising:

-29 -

WO 03/014933 PCT/US02/24709

means for creating a file system size table, wherein each entry of the size table
includes information relating to at least one of fields, key fields and data field for one or
more records on one of a plurality of tracks; and

means for updating the file system size table each time a format write I/O command
is administered to one of the plurality of tracks.
26. The system of claim 16 further comprising;

. means for calculating a computer memory size required in the second direct access
storage device to copy each element of the set from the first direct access storage device.
217. The system of claim 16 further comprising:

means for creating a bit array, each bit of the bit array associated with one of the
elements of the set; and

means for initializing each bit of the bit array to a first state, wherein the first state
of each bit designates that the element associated therewith is not yet copied.
28. The system of claim 27 further comprising:

means for changing the first state of one of bits in the bit array, when the element
associated with the one of bits has been copied from the first direct access storage device to
the second direct access storage device.
29. The system of claim 16 is further comprising:

means for copying data stored on the snapshot disk to a tape.
30. The system of claim 16, wherein the mean for iterating is further configured to

perform the iteration in parallel with respect to the elements.

-30 -

WO 03/014933

1/8

PCT/US02/24709

| _101
MAINFRAME HOST
A
102
Y *
103
DATA ACCESS CONTROLLER
A
104
Y
105— 107
SOURCE DISK NETWORK
A
y
108
FILE SYSTEM
100 SERVER
A
Yy
DESTINATION [10°
DISK

FIG. 1

WO 03/014933 PCT/US02/24709

2/8

DISK

//’ \ Ri??#WﬂTEARM

157 153

FIG. 1A

READ-WRITE
HEAD 155

a
z/

oo

|

DRIVE
MOTOR

FIG. 1B

PCT/US02/24709

WO 03/014933

gle |

AdQOO
d3d40-40-1N0
10371434 Ol
AYddY SNLVLS
d1vAddn NV 394HVYHO

¢ 9l

dNXOvE 3HL

3137dNOD OL Sd31S FHL Lvad3d

€le

SININW313
3H1 40
3NO 31vddn Ol
1dNYY31NI

!

Y

3/8

Lig ™

ASId NOILVYNILS3Q
3H1 NI NOILVOO1 SLI Ol
d31vddn 39 01 AdOD

602"

da31vadn
d49 Ol IN3aW3713 3HL 40
NOILVOOT 3HL ININY313A

AQV3IYHTY d31d0D SV AaMYVIN
SI INIW3T3 IHL SSTTINN MSIA NOILYNILS3IA
JHL OL XSId 30HNOS IHL WOYL H3aHo
NV NI JWIL V 1V INIFWIT3 INO AJOD

™G0z

a

YMS1d NOILYNILS3A
V NI d31d03 39 OL LNIW313 HOV3
40 NOILVOOT ANV 3ZIS IH.L ININYTL3A

~g02

+

MSId 304NOS YV WOYHH a3a1d0D 39
OL ININIT3 HOV3 40 3ZIS IHL ININYIL3a

L0C

PCT/US02/24709

WO 03/014933

4/8

€ Ol

d31d00 38 OL T4 V dN INVYIN LVHL
SY0071d 4O §3SSIHAAY X009 TVIISAHd IHL SAANTONI
ASIT3HL 40 AHLINT HOVZ ‘LSIT 0019 a343a40 Nv aling

—¢&€0¢€

a3ld00 39 Ol 37114 HOV3 40 3ZIS
10VHLIXd OL AHOLO3dId WILSAS 3714 IHL NVOS

—10€

W3LSAS 31714 WALSAS NIdO HOH HDNISSTO0HdIHd TVILINI

WO 03/014933 PCT/US02/24709

5/8

INITIAL PREPROCESSING FOR ECKD ARCHITECTURE WITH
FIXED BLOCK LENGTH AND FIXED TRACT FORMAT

401— SCAN THE FILE SYSTEM DIRECTORY TO
IDENTIFY FILES TO BE COPIED

403— BUILD AN ORDERED TRACK LIST, EACH ENTRY OF
THE LIST INCLUDES THE PHYSICAL CYLINDER, HEAD (CH)
ADDRESSES OF THE TRACKS THAT MAKE UP THE FILES

405—{READ THE LAST TRACK OF THE FILE TO DETERMINE
THE NUMBER BLOCKS THEREOF

407— DETERMINE THE SIZE OF FILES BASED ON THE
INFORMATION FOUND IN THE PREVIOUS STEPS

FIG. 4

WO 03/014933 PCT/US02/24709

6/8

INTITIAL PREPROCESSING FOR ECKD ARCHITECTURE WITH
VARIABLE TRACK SIZE

501 CREATE A FILE SYSTEM SIZE TABLE WITH
ONE ENTRY PER EACH TRACK

|

503 | UPDATE THE FILE SYSTEM SIZE TABLE BY
INTERCEPTING 1/O COMMANDS

SCAN THE FILE SYSTEM DIRECTORY TO EXTRACT AN

505\ ORDERED LIST OF FILE'S TRACTS

507 FOR EACH FILE, DETERMINE ITS SIZE BASED ON THE
FILE SYSTEM SIZE TABLE AND THE EXTRACTED ORDERED
LIST OF THE FILE

FIG. 5

WO 03/014933 PCT/US02/24709

7/8

CHECK AN UPDATE STATUS ARRAY
FOR THE UNIT OF DATA TO BE — 601
UPDATED IN THE SOURCE DISK

605
(
COPY THE UNIT
IS 1T OF DATA TO THE
SET OF 1 DESTINATION
DISK
YES
607
Y [

SET THE ENTRY
IN THE UPDATE
ARRAY FOR THE
COPIED UNIT OF
DATATO 1

609
Y (Y

UPDATE THE UNIT OF DATA IN THE SOURCE DISK

1

FIG. 6

PCT/US02/24709

WO 03/014933

8/8

601}
ASIA —
NOIL¥YNILS3d

60

3dvl

Msia
INILSAS
N3dO)

VARSIE

1ANNVHO 34did

SOl
MSIg ——
(sysIa
304N
Odnos anNV LINN
TOHLNOD
(@3asn 1oN) | InvHaNIVINY)
. 90Z
NODS3
G0.L
advo A
H3L111ds L
097
- 1SOH
advo
JOV4HTUNI
Od
[

—

101

1SOH
JNVHANIVIN

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/24709

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 11/14, 12/00, 12/08, 12/16.
USCL :711/111, 112, 154, 161, 162, 165.

According to International Patent Classification (IPC) or to both national classification and 1IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

uUsS. : 711/111, 112, 154, 161, 162, 165.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

seRisb$0SOFT PRESS COMPUTER DICTIONARY.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN Express, EAST, DERWENT, USPGPUB, IBMTDB, EPOABST, JPOBABST.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y,P

column 5, lines 39 et seq.;

US 6,353,878 B1 (DUNHAM) 05 March 2002; abstract; column 1,
line 60 bridging column 3, line 60; column 6, lines 56 et seq.,
column 8, lines 15 et seq.; column 15, lines 42 et seq.

US 6,393,537 B1 (KERN et al.) 21 May 2002; abstract, column 1,
line 63 bridging column 2, line 17; column 4, lines 18 et seq.;

1-30

1-30

A US 6,269,431 B1 (DUNHAM) 31 July 2001, see entire document. 1-30
A US 6,366,987 B1 (TZELNIC et al) 02 April 2002, see entire 1-30
document. '

i

I:I Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents:

YA document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) ar which is
cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means

P document published prior to the international filing date but later

than the priority date claimed

wepn

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

"y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

28 AUGUST 2002

Date of mailing of the international search report

17 SEP 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Wasllington, D.C. 20281

Facsimile No. (703) 305-3230

Authorized officer

7 .
TUAN VAN THAb 590 A et

Telephone No. (708) ~305-3812

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

