Title: STREPTOCOCCUS PNEUMONIAE CAPSULAR POLYSACCHARIDES AND CONJUGATES THEREOF

Abstract: The invention relates to isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide and processes for their preparation. The invention also relates to immunogenic conjugates comprising Streptococcus pneumoniae serotype 15B capsular polysaccharide covalently linked to a carrier protein, processes for their preparation and immunogenic compositions comprising them.

Figure 1

Ac= Acetyl
— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
Streptococcus pneumoniae capsular polysaccharides and conjugates thereof

Field of the invention

The invention relates to isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide and processes for their preparation. The invention also relates to immunogenic conjugates comprising *Streptococcus pneumoniae* serotype 15B capsular polysaccharide covalently linked to a carrier protein, processes for their preparation and immunogenic compositions and vaccines comprising them.

Background

Streptococcus pneumoniae are Gram-positive, lancet shaped cocci that are usually seen in pairs (diplococci), but also in short chains or as single cells. They grow readily on blood agar plates with glistening colonies and display alpha hemolysis unless grown anaerobically where they show beta hemolysis. The cells of most pneumococcal serotypes have a capsule which is a polysaccharide coating surrounding each cell. This capsule is a determinant of virulence in humans, as it interferes with phagocytosis by preventing antibodies from attaching to the bacterial cells. Currently there are more than 90 known pneumococcal capsular serotypes identified, with the 23 most common serotypes accounting for approximately 90% of invasive disease worldwide. As a vaccine, the pneumococcal polysaccharide coat can confer a reasonable degree of immunity to *Streptococcus pneumoniae* in individuals with developed or unimpaired immune systems, but the capsular polysaccharide conjugated to a suitable carrier protein allows for an immune response in infants and elderly who are also at most risk for pneumococcal infections.

Since the introduction of the first 7-valent pneumococcal conjugate vaccine (PCV7 or Prevnar) in 2000, invasive disease from those seven serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) has nearly disappeared. The addition of serotypes 1, 3, 5, 6A, 7F and 19A in Prevnar 13 further decreased the numbers of invasive pneumococcal disease.

However, the incidence of invasive pneumococcal diseases caused by non-vaccine serotypes such as *Streptococcus pneumoniae* serotypes 15A, 15B and 15C has recently increased (see for example Beall B. et al, Journal of Clinical Microbiology. 44(3):999-1017, 2006, or Jacobs et al, Clin Infect Dis. (2008) 47 (11): 1388-1395). None of the currently marketed pneumococcal vaccine provides an appropriate protection against serotype 15B *Streptococcus pneumoniae* in human and in particular in children less than 2 years old. Therefore, there is a need for immunogenic compositions that can be used to induce an
immune response against serotype 15B *Streptococcus pneumoniae*. It would also be an additional benefit if such immunogenic composition could be used to protect subjects against serotype 15C and/or 15A *Streptococcus pneumoniae*.

Summary of the invention

In one aspect the present disclosure provides an isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide having a molecular weight between 5kDa and 500kDa.

In a further aspect, the present disclosure provides an isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8, preferably at least 0.6 mM, acetate per mM of said *Streptococcus pneumoniae* serotype 15B capsular polysaccharide.

In a further aspect, the present disclosure provides an isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8, preferably at least 0.6 mM glycerol per mM of said *Streptococcus pneumoniae* serotype 15B capsular polysaccharide.

In a further aspect, the present disclosure provides an immunogenic conjugate comprising an isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide disclosed herein covalently linked to a carrier protein. In one aspect, said carrier protein is CRM\textsubscript{197}.

In a further aspect, the present disclosure provides an immunogenic composition comprising an immunogenic conjugate disclosed herein and a physiologically acceptable vehicle. In one aspect, said immunogenic composition further comprises at least one additional antigen. In one aspect, said immunogenic composition further comprises an adjuvant.

In a further aspect, the present disclosure provides a vaccine comprising an immunogenic composition as disclosed herein.

In a further aspect, the present disclosure provides a process for producing an isolated serotype 15B polysaccharide as disclosed herein, the process comprising the steps of:

(a) preparing a fermentation culture of *Streptococcus pneumonia* serotype 15B bacterial cells;

(b) lysing the bacterial cells in said fermentation culture;

(c) purifying *Streptococcus pneumoniae* serotype 15B capsular polysaccharide from the fermentation culture; and,

(d) sizing the purified *Streptococcus pneumoniae* serotype 15B capsular polysaccharide by high pressure homogenization.
In a further aspect, the present disclosure provides a process for producing an activated
Streptococcus pneumoniae serotype 15B capsular polysaccharide, said process comprising
the step of reacting an isolated *Streptococcus pneumoniae* serotype 15B capsular
polysaccharide as disclosed herein with an oxidizing agent. In one aspect, the present
disclosure provides an activated serotype 15B capsular polysaccharide obtained or
obtainable by the above process.

In a further aspect, the present disclosure provides a process for the preparation of an
immunogenic conjugate comprising *Streptococcus pneumoniae* serotype 15B capsular
polysaccharide covalently linked to a carrier protein, the process comprising the steps of:

(a) compounding an activated polysaccharide as disclosed herein with a carrier protein;
(b) reacting the compounded, activated polysaccharide and carrier protein with a reducing
agent to form a serotype 15B capsular polysaccharide-carrier protein conjugate. In one
aspect, the present disclosure provides an immunogenic conjugate obtained or obtainable by
the above process.

In a further aspect, the present disclosure provides a method of protecting a subject against
an infection with serotype 15B *Streptococcus pneumoniae*, the method comprising
administering to a subject an immunogenic amount of the immunogenic composition or the
vaccine disclosed herein.

In a further aspect, the present disclosure provides a method of treating or preventing a
Streptococcus pneumoniae infection, disease or condition associated with serotype 15A, 15B
and/or 15C *Streptococcus pneumoniae* in a subject, the method comprising the step of
administering a therapeutically or prophylactically effective amount of an immunogenic
composition or a vaccine disclosed herein.

Brief description of the drawings

Figure 1 - Structure of Pneumococcal Capsular polysaccharide Serotype 15B Repeat Unit

Detailed description of the invention

The present invention may be understood more readily by reference to the following detailed
description of the preferred embodiments of the invention and the Examples included herein.
Unless defined otherwise, all technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which the invention
pertains. Although any methods and materials similar or equivalent to those described
herein can be used in the practice or testing of the present invention, certain preferred
methods and materials are described herein. In describing the embodiments and claiming the invention, certain terminology will be used in accordance with the definitions set out below.

Definitions

As used herein, the "molecular weight" of a polysaccharide or of a polysaccharide-carrier protein conjugate refers to molecular weight calculated by size exclusion chromatography (SEC) combined with multiangle laser light scattering detector (MALLS).

As used herein, the term "free polysaccharide" means a serotype 15B capsular polysaccharide that is not covalently conjugated to the carrier protein, but is nevertheless present in the serotype 15B capsular polysaccharide-carrier protein conjugate composition. The free polysaccharide may be non-covalently associated with (i.e., non-covalently bound to, adsorbed to, or entrapped in or with) the polysaccharide-carrier protein conjugate.

The percentage of free polysaccharide is measured after the final purification of the serotype 15B capsular polysaccharide-carrier protein conjugate. Preferably it is measured within 4 weeks after the final purification. It is expressed as a percentage of the total polysaccharide in the sample.

As used herein, the term "serotype 15B polysaccharide" or "serotype 15B capsular polysaccharide" refers to a *Streptococcus pneumoniae* serotype 15B capsular polysaccharide.

As used herein, the term "serotype 15B glycoconjugate" or "serotype 15B conjugate" refers to an isolated serotype 15B polysaccharide covalently conjugated to a carrier protein.

As used herein, the term "degree of oxidation" (DO) refers to the number of sugar repeat units per aldehyde group generated when the isolated polysaccharide is activated with an oxidizing agent. The degree of oxidation of a polysaccharide can be determined using routine methods known to the man skilled in the art.

As used herein, the term "subject" refers to a mammal, including a human, or to a bird, fish, reptile, amphibian or any other animal. The term "subject" also includes household pets or research animals. Non-limiting examples of household pets and research animals include: dogs, cats, pigs, rabbits, rats, mice, gerbils, hamsters, guinea pigs, ferrets, monkeys, birds, snakes, lizards, fish, turtles, and frogs. The term "subject" also includes livestock animals.
Non-limiting examples of livestock animals include: alpaca, bison, camel, cattle, deer, pigs, horses, llamas, mules, donkeys, sheep, goats, rabbits, reindeer, yak, chickens, geese, and turkeys.

Isolated serotype 15B capsular polysaccharide

As shown in figure 1, the polysaccharide repeating unit of serotype 15B consists of a branched trisaccharide backbone (one N-acetylglucosamine (Glc\(_p\)N\(_{\text{Ac}}\)), one galactopyranose (Gal\(_p\)) and one glucopyranose (Glc\(_p\)) with an aGal\(_p\)-pGal\(_p\) disaccharide branch linked to the C4 hydroxyl group of Glc\(_p\)N\(_{\text{Ac}}\). The phosphoglycerol is linked to the C3 hydroxyl group of the pGal\(_p\) residue in the disaccharide branch. Serotype 15B capsular polysaccharide is O-acetylated and the total amount of O-acetylation is approximately 0.8 to 0.9 O-acetyl groups per polysaccharide repeating unit (see for example C. Jones et Al, *Carbohydrate Research*, 340 (2005) 403-409). Capsular polysaccharide from serotype 15C serotype has the identical backbone structure as serotype 15B but lacks the O-acetylation.

The isolated serotype 15B polysaccharide of the invention can be obtained by a process comprising the steps of:

(a) preparing a fermentation culture of serotype 15B *Streptococcus pneumonia* bacterial cells;

(b) lysing the bacterial cells in said fermentation culture;

(c) purifying serotype 15B polysaccharide from the fermentation culture; and,

(d) sizing the purified serotype 15B polysaccharide by high pressure homogenization.

Serotype 15B polysaccharides can be obtained directly from bacteria using isolation procedures known to one of ordinary skill in the art (see for example methods disclosed U.S. Patent App. Pub. Nos. 20060228380, 20060228381, 20070184071, 20070184072, 20070231340, and 20080102498 or WO2008118752). In addition, they can be produced using synthetic protocols.

Serotype 15B *Streptococcus pneumoniae* strains may be obtained from established culture collections (such as for example ATCC deposit strain No ATCC10354 or strain available from the Streptococcal Reference Laboratory of the Center for disease control and prevention, Atlanta, GA)) or clinical specimens.
The bacterial cells are preferably grown in a soy based medium. Following fermentation of bacterial cells that produce *Streptococcus pneumoniae* serotype 15B capsular polysaccharides, the bacterial cells are lysed to produce a cell lysate. The bacterial cells may be lysed using any lytic agent. A "lytic agent" is any agent that aids in cell wall breakdown and release of autolysin which causes cellular lysis including, for example, detergents. As used herein, the term "detergent" refers to any anionic or cationic detergent capable of inducing lysis of bacterial cells. Representative examples of such detergents for use within the methods of the present invention include deoxycholate sodium (DOC), N-lauroyl sarcosine, chenodeoxycholic acid sodium, and saponins.

In one embodiment of the present invention, the lytic agent used for lysing bacterial cells is DOC. DOC is the sodium salt of the bile acid deoxycholic acid, which is commonly derived from biological sources such as cows or oxen. DOC activates the LytA protein, which is an autolysin that is involved in cell wall growth and division in *Streptococcus pneumoniae*. The LytA protein has choline binding domains in its C-terminal portion, and mutations of the lytA gene are known to produce LytA mutants that are resistant to lysis with DOC.

In one embodiment of the present invention, the lytic agent used for lysing bacterial cells is a non-animal derived lytic agent. Non-animal derived lytic agents for use within the methods of the present invention include agents from non-animal sources with modes of action similar to that of DOC (i.e., that affect LytA function and result in lysis of *Streptococcus pneumoniae* cells). Such non-animal derived lytic agents include, but are not limited to, analogs of DOC, surfactants, detergents, and structural analogs of choline. In one embodiment, the non-animal derived lytic agent is selected from the group consisting of decanesulfonic acid, tert-octylphenoxy poly(oxyethylene)ethanols (e.g. Igepal® CA-630, CAS #: 9002-93-1, available from Sigma Aldrich, St. Louis, MO), octylphenol ethylene oxide condensates (e.g. Triton® X-100, available from Sigma Aldrich, St. Louis, MO), N-lauroyl sarcosine, N-lauroyl sarcosine sodium, lauryl iminodipropionate, sodium dodecyl sulfate, chenodeoxycholate, hyodeoxycholate, glycodeoxycholate, taurodeoxycholate, taurochenodeoxycholate, and cholate. In another embodiment, the non-animal derived lytic agent is N-lauroyl sarcosine. In another embodiment, the lytic agent is N-lauroyl sarcosine sodium.

The serotype 15B polysaccharide may then be isolated from the cell lysate using purification techniques known in the art, including the use of centrifugation, depth filtration, precipitation, ultra-filtration, treatment with activate carbon, diafiltration and/or column chromatography (See, for example, U.S. Patent App. Pub. Nos. 20060228380, 20060228381, 20070184071, 20070184072, 20070231340, and 20080102498 or WO20081 18752). The purified serotype 15B capsular polysaccharide can then be used for the preparation of immunogenic conjugates.
Preferably, in order to generate conjugates with advantageous filterability characteristics and/or yields, sizing of the polysaccharide to a lower molecular weight (MW) range is performed prior to the conjugation to a carrier protein. Advantageously, the size of the purified serotype 15B polysaccharide is reduced while preserving critical features of the structure of the polysaccharide such as for example the presence of O-acetyl groups. Preferably, the size of the purified serotype 15B polysaccharide is reduced by mechanical homogenization.

In a preferred embodiment, the size of the purified serotype 15B polysaccharide is reduced by high pressure homogenization. High pressure homogenization achieves high shear rates by pumping the process stream through a flow path with sufficiently small dimensions. The shear rate is increased by using a larger applied homogenization pressure and exposure time can be increased by recirculating the feed stream through the homogenizer.

The high pressure homogenization process is particularly appropriate for reducing the size of the purified serotype 15B polysaccharide while preserving the structural features of the polysaccharide such as the presence of O-acetyl groups.

The isolated serotype 15B capsular polysaccharide obtained by purification of serotype 15B polysaccharide from the *Streptococcus pneumoniae* lysate and optionally sizing of the purified polysaccharide can be characterized by different parameters including for example the molecular weight, the mM of glycerol per mM of said serotype 15B capsular polysaccharide or the mM of acetate per mM of said serotype 15B capsular polysaccharide.

The degree of O-acetylation of the polysaccharide can be determined by any method known in the art, for example, by proton NMR (see for example Lemercinier and Jones (1996) Carbohydrate Research 296; 83-96, Jones and Lemercinier (2002) J. Pharmaceutical and Biomedical Analysis 30; 1233-1247, WO 05/033148 or WO00/56357). Another commonly used method is described in Hestrin (1949) J. Biol. Chem. 180; 249-261. Preferably, the presence of O-acetyl groups is determined by ion-HPLC analysis.

The presence of O-acetyl in a purified, isolated or activated serotype 15B capsular polysaccharide or in a serotype 15B polysaccharide-carrier protein conjugate is expressed as the number of mM of acetate per mM of said polysaccharide or as the number of O-acetyl group per polysaccharide repeating unit.
The presence of glycerolphosphate side chains can be determined by measurement of glycerol using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) after its release by treatment of the polysaccharide with hydrofluoric acid (HF). The presence of glycerol in a purified, isolated or activated serotype 15B polysaccharide or in a serotype 15B polysaccharide-carrier protein conjugate is expressed as the number of mM of glycerol per mM of serotype 15B polysaccharide.

The isolated serotype 15B capsular polysaccharide can also be produced synthetically using methods known to the man skilled in the art.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 5 and 500kDa, 50 and 500 kDa, 50 and 450kDa, 100 and 400kDa, 100 and 350 kDa. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 100 and 350kDa. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 100 and 300kDa. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 150 and 300kDa.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.5, 0.6 or 0.7 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.7 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the presence of O-acetyl groups is determined by ion-HPLC analysis.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM glycerol per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.5, 0.6 or 0.7 mM glycerol per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide comprises at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.
polysaccharide. In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.7 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 100 and 350 kDa, preferably 150 and 350 kDa, and comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 100 and 350 kDa, preferably 150 and 350 kDa, and comprises at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide and at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide has a molecular weight between 100 and 350 kDa, preferably 150 and 350 kDa, and comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide and at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

Serotype 15B capsular polysaccharide-carrier protein conjugate

The isolated serotype 15B capsular polysaccharide may be conjugated to a carrier protein to obtain an immunogenic conjugate. The isolated polysaccharide can be conjugated to the carrier protein by methods known to the skilled person (See, for example, U.S. Patent App. Pub. Nos. 20060228380, 20070184071, 20070184072, 20070231340 or WO2011/100151).

In an embodiment, the polysaccharide may be activated with 1-cyano-4-dimethylamino pyridinium tetrafluoroborate (CDAP) to form a cyanate ester. The activated polysaccharide may be coupled directly or via a spacer (linker) group to an amino group on the carrier protein. For example, the spacer could be cystamine or cysteamine to give a thiolated polysaccharide which could be coupled to the carrier via a thioether linkage obtained after reaction with a maleimide-activated carrier protein (for example using GMBS) or a haloacetylated carrier protein (for example using iodoacetimide or N-succinimidy bromoacetate or SIAB, or SIA, or SBAP). Preferably, the cyanate ester (optionally made by CDAP chemistry) is coupled with hexane diamine or adipic acid dihydrazide (ADH) and the
amino-derivatised saccharide is conjugated to the carrier protein using carbodiimide (e.g. EDAC or EDC) chemistry via a carboxyl group on the protein carrier. Such conjugates are described for example in WO93/15760, WO 95/08348 and WO 96129094.

Other suitable techniques use carbodiimides, hydrazides, active esters, norborane, p-nitrobenzoic acid, N-hydroxysuccinimide, S--NHS, EDC, TSTU. Many are described in International Patent Application Publication No. WO 98/42721. Conjugation may involve a carbonyl linker which may be formed by reaction of a free hydroxyl group of the saccharide with CDI (See Bethell et al., 1979,1. Biol. Chern. 254:2572-4; Hearn et al., 1981, J. Chromatogr.218:509-18) followed by reaction with a protein to form a carbamate linkage. This may involve reduction of the anomeric terminus to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group, reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate and coupling the CDI carbamate intermediate with an amino group on a protein.

In a preferred embodiment, the isolated serotype 15B capsular polysaccharide is conjugated to the carrier protein by reductive amination. Reductive amination involves activation of the polysaccharide by oxidation and conjugation of the activated polysaccharide to a protein carrier by reduction.

Activation of serotype 15B capsular polysaccharide

An activated serotype 15B capsular polysaccharide is obtained by reacting an isolated serotype 15B capsular polysaccharide with an oxidizing agent. For example, said activated serotype 15B capsular polysaccharide can be obtained by a process comprising the following steps:

(a) preparing a fermentation culture of serotype 15B Streptococcus pneumonia bacterial cells;
(b) lysing the bacterial cells in said fermentation culture;
(c) purifying serotype 15B polysaccharide from the fermentation culture;
(d) sizing the purified serotype 15B polysaccharide by high pressure homogenization.
(e) reacting the sized serotype 15B polysaccharide with an oxidizing agent.

In a preferred embodiment, the concentration of isolated serotype 15B capsular polysaccharide which is reacted with an oxidizing agent is between 0.1 and 10 mg/mL, 0.5 and 5 mg/mL, 1 and 3 mg/mL, or about 2 mg/mL.
In a preferred embodiment, the oxidizing agent is periodate. The periodate oxidises vicinal hydroxyl groups to form carbonyl or aldehyde groups and causes cleavage of a C-C bond. The term ‘periodate’ includes both periodate and periodic acid. This term also includes both metaperiodate \((I_0^+)\) and orthoperiodate \((I_0^5)\). The term ‘periodate’ also includes the various salts of periodate including sodium periodate and potassium periodate. In a preferred embodiment, the oxidizing agent is sodium periodate. In a preferred embodiment the periodate used for the oxidation of serotype 15B capsular polysaccharide is metaperiodate. In a preferred embodiment the periodate used for the oxidation of serotype 15B capsular polysaccharide is sodium metaperiodate.

In a preferred embodiment, the polysaccharide is reacted with 0.01 to 10, 0.05 to 5, 0.1 to 1, 0.5 to 1, 0.7 to 0.8, 0.05 to 0.5, 0.1 to 0.3 molar equivalent of oxidizing agent. In a preferred embodiment, the polysaccharide is reacted with about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 molar equivalent of oxidizing agent.

In a preferred embodiment, the polysaccharide is reacted with about 0.15 molar equivalent of oxidizing agent. In a preferred embodiment, the polysaccharide is reacted with about 0.25 molar equivalent of oxidizing agent. In a preferred embodiment, the polysaccharide is reacted with about 0.5 molar equivalent of oxidizing agent. In a preferred embodiment, the polysaccharide is reacted with about 0.6 molar equivalent of oxidizing agent. In a preferred embodiment, the polysaccharide is reacted with about 0.7 molar equivalent of oxidizing agent.

In a preferred embodiment, the duration of the reaction is between 1 and 50, 10 and 30, 15 and 20, 15 and 17 hours or about 16 hours.

In a preferred embodiment, the temperature of the reaction is maintained between 15 and 45°C, 15 and 30°C, 20 and 25°C. In a preferred embodiment, the temperature of the reaction is maintained at about 23°C.

In a preferred embodiment, the oxidation reaction is carried out in a buffer selected from sodium phosphate, potassium phosphate, 2-(N-morpholino)ethanesulfonic acid (MES) or Bis-Tris. In a preferred embodiment, the buffer is potassium phosphate.

In a preferred embodiment, the buffer has a concentration of between 1 and 500 mM, 1 and 300mM, 50 and 200mM. In a preferred embodiment the buffer has a concentration of about 100mM.
In a preferred embodiment, the oxidation reaction is carried out at a pH between 4 and 8, 5 and 7, 5.5 and 6.5. In a preferred embodiment, the pH is about 6.

In preferred embodiment, the activated serotype 15B capsular polysaccharide is obtained by reacting 0.5 to 5 mg/mL of isolated serotype 15B capsular polysaccharide with 0.2 to 0.3 molar equivalent of periodate at a temperature between 20 and 25°C.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide is purified. The activated serotype 15B capsular polysaccharide is purified according to methods known to the man skilled in the art such as gel permeation chromatography (GPC), dialysis or ultrafiltration/diafiltration. For example, the activated capsular polysaccharide is purified by concentration and diafiltration using an ultrafiltration device.

In a preferred embodiment, the invention relates to an activated serotype 15B capsular polysaccharide obtained or obtainable by the above disclosed process.

In a preferred embodiment, the degree of oxidation of the activated serotype 15B capsular polysaccharide is between 2 and 20, 2 and 15, 2 and 10, 2 and 5, 5 and 20, 5 and 15, 5 and 10, 10 and 20, 10 and 15, 15 and 20. In a preferred embodiment the degree of oxidation of the activated serotype 15B capsular polysaccharide is between 2 and 10, 4 and 8, 4 and 6, 6 and 8, 6 and 12, 8 and 12, 9 and 11, 10 and 16, 12 and 16, 14 and 18, 16 and 20, 16 and 18, or 18 and 20.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 5 and 500kDa, 50 and 500 kDa, 50 and 450kDa, 100 and 400kDa, 100 and 350 kDa. In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 350kDa. In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 300kDa. In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 150 and 300kDa. In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 250kDa.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.5, 0.6 or 0.7 mM acetate per mM of said serotype 15B.
capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.7 mM acetate per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the presence of O-acetyl groups is determined by ion-HPLC analysis.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM glycerol per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.5, 0.6 or 0.7 mM glycerol per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide. In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.7 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 250 kDa and comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 250 kDa and comprises at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide and at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide has a molecular weight between 100 and 250 kDa and comprises at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide and at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

In an embodiment, the activated serotype 15B capsular polysaccharide is lyophilized, optionally in the presence of cryoprotectant/lyoprotectant. In an embodiment, said cryoprotectant/lyoprotectant is a saccharide. In a preferred embodiment, the saccharide is
selected from sucrose, trehalose, raffinose, stachyose, melezitose, dextran, mannitol, lactitol and palatinit. In a preferred embodiment, the saccharide is sucrose. The lyophilized activated capsular polysaccharide can then be compounded with a solution comprising the carrier protein.

In another embodiment, the activated serotype 15B capsular polysaccharide is compounded with the carrier protein and lyophilized optionally in the presence of cryoprotectant/lyoprotectant. In an embodiment, said cryoprotectant/lyoprotectant is a saccharide. In a preferred embodiment, the saccharide is selected from sucrose, trehalose, raffinose, stachyose, melezitose, dextran, mannitol, lactitol and palatinit. In a preferred embodiment, the saccharide is sucrose. The co-lyophilized polysaccharide and carrier protein can then be resuspended in solution and reacted with a reducing agent.

In an embodiment, the invention relates to a lyophilized activated serotype 15B capsular polysaccharide.

In an embodiment the invention relates to the co-lyophilized activated serotype 15B capsular polysaccharide and protein carrier. In a preferred embodiment, the protein carrier is CRM_{197}.

Conjugation of activated serotype 15B capsular polysaccharide with a carrier protein

The activated serotype 15B capsular polysaccharide can be conjugated to a carrier protein by a process comprising the step of:

(a) compounding the activated serotype 15B capsular polysaccharide with a carrier protein, and,

(b) reacting the compounded activated serotype 15B capsular polysaccharide and carrier protein with a reducing agent to form a serotype 15B capsular polysaccharide-carrier protein conjugate.

The conjugation of activated serotype 15B capsular polysaccharide with a protein carrier by reductive amination in dimethylsulfoxide (DMSO) is suitable to preserve the O-acetyl content of the polysaccharide as compared for example to reductive amination in aqueous solution where the level of O-acetylation of the polysaccharide is significantly reduced. In a preferred embodiment, step (a) and step (b) are carried out in DMSO.

In a preferred embodiment, step (a) comprises dissolving lyophilized serotype 15B capsular polysaccharide in a solution comprising a carrier protein and DMSO. In a preferred
embodiment, step (a) comprises dissolving co-lyophilized serotype 15B capsular polysaccharide and carrier protein in DMSO.

When steps (a) and (b) are carried out in aqueous solution, steps (a) and (b) are carried out in a buffer, preferably selected from PBS, MES, HEPES, Bis-tris, ADA, PIPES, MOPSO, BES, MOPS, DIPSO, MOBS, HEPPSO, POPSO, TEA, EPPS, Bicine or HEPB, at a pH between 6.0 and 8.5, 7 and 8 or 7 and 7.5. In a preferred embodiment the buffer is PBS. In a preferred embodiment the pH is about 7.3.

In a preferred embodiment, the concentration of activated serotype 15B capsular polysaccharide in step (b) is between 0.1 and 10 mg/mL, 0.5 and 5 mg/mL, 0.5 and 2 mg/mL. In a preferred embodiment, the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 mg/mL.

In a preferred embodiment the initial input ratio (weight by weight) of activated serotype 15B capsular polysaccharide to carrier protein is between 5:1 and 0.1:1, 2:1 and 0.1:1, 1:1 and 1:1, 0.1:1 and 1:1, 0.3:1 and 1:1, 0.6:1 and 1:1.

In a preferred embodiment the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 0.6:1 to 1.5:1, preferably 0.6:1 to 1:1. Such initial input ratio is particularly suitable to obtain low levels of free polysaccharide in the immunogenic conjugate.

In a preferred embodiment the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.

In an embodiment, the reducing agent is sodium cyanoborohydride, sodium triacetoxyborohydride, sodium or zinc borohydride in the presence of Bronsted or Lewis acids, amine boranes such as pyridine borane, 2-Picoline Borane, 2,6-diborane-methanol, dimethylamine-borane, t-BuMePrN-BH$_3$, benzylamine-BH$_3$ or 5-ethyl-2-methylpyridine borane (PEMB). In a preferred embodiment, the reducing agent is sodium cyanoborohydride. In a preferred embodiment, the reducing agent is sodium 2-Picoline Borane.

In a preferred embodiment, the quantity of reducing agent used in step (b) is between about 0.1 and 10 molar equivalents, 0.5 and 5 molar equivalents, 1 and 2 molar equivalents. In a
preferred embodiment, the quantity of reducing agent used in step (b) is about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 molar equivalents.

In a preferred embodiment, the duration of step (b) is between 1 and 60 hours, 10 and 50 hours, 40 and 50 hours; 42 and 46 hours. In a preferred embodiment, the duration of step (b) is about 44 hours.

In a preferred embodiment, the temperature of the reaction in step (b) is maintained between 10 and 40°C, 15 and 30°C or 20 and 26°C. In a preferred embodiment, the temperature of the reaction in step (b) is maintained at about 23°C.

In a preferred embodiment, the process for the preparation of an immunogenic conjugate comprising *Streptococcus pneumoniae* serotype 15B capsular polysaccharide covalently linked to a carrier protein further comprises a step (step (c)) of capping unreacted aldehyde (quenching) by addition of NaBH₄⁻.

In a preferred embodiment, the quantity of NaBH₄ used in step (c) is between 0.1 and 10 molar equivalents, 0.5 and 5 molar equivalent 1 and 3 molar equivalents. In a preferred embodiment, the quantity of NaBH₄ used in step (c) is about 2 molar equivalents.

In a preferred embodiment, the duration of step (c) is between 0.1 and 10 hours, 0.5 and 5 hours, 2 and 4 hours. In a preferred embodiment, the duration of step (c) is about 3 hours.

In a preferred embodiment, the temperature of the reaction in step (c) is maintained between 15 and 45°C, 15 and 30°C or 20 and 26°C. In a preferred embodiment, the temperature of the reaction in step (c) is maintained at about 23°C.

In a preferred embodiment the yield of the conjugation step (step b) is greater than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% or 90%. In a preferred embodiment the yield of the conjugation step (step b) is greater than 60%. In a preferred embodiment the yield of the conjugation step (step b) is greater than 70%. The yield is the amount of serotype 15B polysaccharide in the conjugate x100 / amount of activated polysaccharide used in the conjugation step.

In a preferred embodiment, the process for the preparation of an immunogenic conjugate comprising *Streptococcus pneumoniae* serotype 15B capsular polysaccharide covalently linked to a carrier protein comprises the steps of:
(a) preparing a fermentation culture of serotype 15B *Streptococcus pneumonia* bacterial cells;
(b) lysing the bacterial cells in said fermentation culture;
(c) purifying serotype 15B polysaccharide from the fermentation culture;
(d) sizing the purified serotype 15B polysaccharide by high pressure homogenization;
(e) reacting the sized serotype 15B polysaccharide with an oxidizing agent;
(f) compounding the activated serotype 15B polysaccharide with a carrier protein, and,
(g) reacting the compounded activated serotype 15B polysaccharide and carrier protein with a reducing agent to form a serotype 15B polysaccharide-carrier protein conjugate; and,
(h) capping unreacted aldehyde (quenching) by addition of NaBH₄.

In a preferred embodiment the yield of the conjugation step (step g) of the above process is greater than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% or 90%. In a preferred embodiment the yield of the conjugation step (step g) is greater than 60%. In a preferred embodiment the yield of the conjugation step (step g) is greater than 70%. The yield is the amount of serotype 15B polysaccharide in the conjugate x100) / amount of activated polysaccharide used in the conjugation step.

After conjugation of the serotype 15B capsular polysaccharide to the carrier protein, the polysaccharide-protein conjugate can be purified (enriched with respect to the amount of polysaccharide-protein conjugate) by a variety of techniques known to the skilled person. These techniques include dialysis, concentration/diafiltration operations, tangential flow filtration, precipitation/elution, column chromatography (DEAE or hydrophobic interaction chromatography), and depth filtration.

In a preferred embodiment the carrier protein is non-toxic and non-reactogenic and obtainable in sufficient amount and purity. Carrier proteins should be amenable to standard conjugation procedures.

In a preferred embodiment, the activated serotype 15B capsular polysaccharide is conjugated to a carrier protein which is selected in the group consisting of: DT (Diphtheria toxin), TT (tetanus toxid) or fragment C of TT, CRM₁₉₇ (a nontoxic but antigenically identical variant of diphtheria toxin) other DT point mutants, such as CRM₁₇₆, CRM₂₂₈, CRM 45 (Uchida et al J. Biol. Chem. 218; 3838-3844, 1973); CRM 9, CRM102, CRM 103 and CRM107 and other mutations described by Nicholls and Youle in Genetically Engineered Toxins, Ed: Frankel, Maecel Dekker Inc, 1992; deletion or mutation of Glu-148 to Asp, Gin or Ser and/or Ala 158 to Gly and other mutations disclosed in US 4709017 or US 4950740;
mutation of at least one or more residues Lys 516, Lys 526, Phe 530 and/or Lys 534 and other mutations disclosed in US 5917017 or US 6455673; or fragment disclosed in US 5843711, pneumococcal pneumolysin (Kuo et al (1995) Infect Immun 63; 2706-13) including ply detoxified in some fashion for example dPLY-GMBS (WO 04081515, PCT/EP2005/010258) or dPLY-formol, PhtX, including PhtA, PhtB, PhtD, PhtE (sequences of PhtA, PhtB, PhtD or PhtE are disclosed in WO 00/37105 or WO 00/39299) and fusions of Pht proteins for example PhtDE fusions, PhtBE fusions, Pht A-E (WO 01/98334, WO 03/54007, WO2009/000826), OMPC (meningococcal outer membrane protein - usually extracted from N.meningitidis serogroup B - EP0372501), PorB (from N. meningitidis), PD (Haemophilus influenza protein D - see, e.g., EP 0 594 610 B), or immunologically functional equivalents thereof, synthetic peptides (EP0378881 , EP0427347), heat shock proteins (WO 93/17712, WO 94/03208), pertussis proteins (WO 98/58668, EP0471 177), cytokines, lymphokines, growth factors or hormones (WO10 91/01146), artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen derived antigens (Falugi et al (2001) Eur J Immunol 31 ; 3816-3824) such as N19 protein (Baraldoi et al (2004) Infect Immun 72; 4884-7) pneumococcal surface protein PspA (WO 02/091998), iron uptake proteins (WO 01/72337), toxin A or B of C. difficile (WO 00/61761). In an embodiment, the activated serotype 15B capsular polysaccharide is conjugated to DT (Diphtheria toxoid). In another embodiment, the activated serotype 15B capsular polysaccharide is conjugated to TT (tetanus toxid). In another embodiment, the activated serotype 15B capsular polysaccharide is conjugated to fragment C of TT. In another embodiment, the activated serotype 15B capsular polysaccharide is conjugated to PD (Haemophilus influenza protein D - see, e.g., EP 0 594 610 B).

In a preferred embodiment, the activated serotype 15B capsular polysaccharide of the invention is conjugated to CRM₁₉₇ protein. The CRM₁₉₇ protein is a nontoxic form of diphtheria toxin but is immunologically indistinguishable from the diphtheria toxin. CRM₁₉₇ is produced by C. diphtheriae infected by the nontoxicogenic phage β₁₉₇"or" created by nitrosoguanidine mutagenesis of the toxigenic corynephage beta (Uchida, T. et al. 1971, Nature New Biology 233:8-11). CRM₁₉₇ is purified through ultrafiltration, ammonium sulfate precipitation, and ion-exchange chromatography. The CRM₁₉₇ protein has the same molecular weight as the diphtheria toxin but differs therefrom by a single base change (guanine to adenine) in the structural gene. This single base change causes an amino acid substitution glutamic acid for glycine) in the mature protein and eliminates the toxic properties of diphtheria toxin. The CRM₁₉₇ protein is a safe and effective T-cell dependent
carrier for saccharides. Further details about CRM\textsubscript{197} and production thereof can be found e.g. in US 5,614,382.

In an embodiment, the invention relate to an immunogenic conjugate comprising \textit{Streptococcus pneumoniae} serotype 15B capsular polysaccharide covalently linked to a carrier protein. In an embodiment, the invention relate to an immunogenic conjugate comprising \textit{Streptococcus pneumoniae} serotype 15B capsular polysaccharide covalently linked to a carrier protein by reductive amination. In an embodiment, the invention relate to an immunogenic conjugate comprising \textit{Streptococcus pneumoniae} serotype 15B capsular polysaccharide covalently linked to a carrier protein by reductive amination in DMSO. In a preferred embodiment, the carrier protein is CRM\textsubscript{197}. In a preferred embodiment, the polysaccharide is an isolated serotype 15B capsular polysaccharide as defined herein. In a preferred embodiment, the polysaccharide is an isolated serotype 15B capsular polysaccharide as defined herein which has been sized by high pressure homogenization.

In a preferred embodiment, the immunogenic conjugate comprises less than about 50, 45, 40, 35, 30, 25, 20 or 15\% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide. In a preferred embodiment the immunogenic conjugate comprises less than about 25\% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide. In a preferred embodiment the immunogenic conjugate comprises less than about 20\% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide. In a preferred embodiment the immunogenic conjugate comprises less than about 15\% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.

In a preferred embodiment, the immunogenic conjugate has a molecular weight between 3000 and 20000kDa; 5000 and 10000kDa; 5000 and 20000kDa; 8000 and 20000kDa; 8000 and 16000 KDa; or 10000 and 16000 KDa. The molecular weight of the immunogenic conjugate is measured by SEC-MALLS.

In a preferred embodiment, the ratio (weight by weight) of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.5 and 3. In a preferred embodiment, the ratio of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.4 and 2, 0.5 and 2, 0.5 and 1.5, 0.5 and 1, 1 and 1.5, 1 and 2. In a
preferred embodiment, the ratio of serotype 15B capsular polysaccharide to carrier protein in
the conjugate is between 0.7 and 0.9.

Size exclusion chromatography media (CL-4B) can be used to determine the relative
molecular size distribution of the conjugate. Size Exclusion Chromatography (SEC) is used in
ground fed columns to profile the molecular size distribution of conjugates. Large molecules
excluded from the pores in the media elute more quickly than small molecules. Fraction
collectors are used to collect the column eluate. The fractions are tested colorimetrically by
caccharide assay. For the determination of Kd, columns are calibrated to establish the
fraction at which molecules are fully excluded (V_o^i, (Kd=0), and the fraction representing the
maximum retention (V_i), (Kd=1). The fraction at which a specified sample attribute is
reached (V_e^i), is related to Kd by the expression, $Kd = (V_e - V_o) / (V_i - V_o)$.

In a preferred embodiment, at least 20% of the immunogenic conjugate has a Kd below or
equal to 0.3 in a CL-4B column. In a preferred embodiment, at least 30% of the immunogenic
conjugate has a Kd below or equal to 0.3 in a CL-4B column. In a preferred embodiment, at
least 40% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.
In a preferred embodiment, at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or
85% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column. In a
preferred embodiment, at least 60% of the immunogenic conjugate has a Kd below or equal
to 0.3 in a CL-4B column. In a preferred embodiment, at least 70% of the immunogenic
conjugate has a Kd below or equal to 0.3 in a CL-4B column.

In a preferred embodiment, between 40% and 90% of the serotype 15B immunogenic
conjugate has a Kd below or equal to 0.3 in a CL-4B column. In a preferred embodiment,
between 50% and 90% of the serotype 15B immunogenic conjugate has a Kd below or equal
to 0.3 in a CL-4B column. In a preferred embodiment, between 65% and 80% of the serotype
15B immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

In a preferred embodiment, the immunogenic conjugate comprises at least 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 or 0.8 mM acetate per mM serotype 15B capsular polysaccharide. In a preferred
embodiment, the immunogenic conjugate comprises at least 0.5, 0.6 or 0.7 mM acetate per
mM serotype 15B capsular polysaccharide. In a preferred embodiment, the immunogenic
conjugate comprises at least 0.6 mM acetate per mM serotype 15B capsular polysaccharide.
In a preferred embodiment, the immunogenic conjugate comprises at least 0.7 mM acetate
per mM serotype 15B capsular polysaccharide. In a preferred embodiment, the presence of
O-acetyl groups is determined by ion-HPLC analysis.
In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the isolated polysaccharide is at least 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95. In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the isolated polysaccharide is at least 0.7. In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the isolated polysaccharide is at least 0.9. In a preferred embodiment, the presence of O-acetyl groups is determined by ion-HPLC analysis.

In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the activated polysaccharide is at least 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95. In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the activated polysaccharide is at least 0.7. In a preferred embodiment, the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the activated polysaccharide is at least 0.9. In a preferred embodiment, the presence of O-acetyl groups is determined by ion-HPLC analysis.

In a preferred embodiment, the immunogenic conjugate comprises at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM glycerol per mM serotype 15B capsular polysaccharide. In a preferred embodiment, the immunogenic conjugate comprises at least 0.5, 0.6 or 0.7 mM glycerol per mM serotype 15B capsular polysaccharide. In a preferred embodiment, the immunogenic conjugate comprises at least 0.6 mM glycerol per mM serotype 15B capsular polysaccharide. In a preferred embodiment, the immunogenic conjugate comprises at least 0.7 mM glycerol per mM serotype 15B capsular polysaccharide.

The degree of conjugation is the number of lysine residues in the carrier protein that are conjugated to serotype 15B capsular polysaccharide. The evidence for lysine modification of the carrier protein, due to covalent linkages to the polysaccharides, is obtained by amino acid analysis using routine methods known to those of skill in the art. Conjugation results in a reduction in the number of lysine residues recovered, compared to the CRM197 protein starting material used to generate the conjugate materials.
In a preferred embodiment, the degree of conjugation of the immunogenic conjugate is between 2 and 15, 2 and 13, 2 and 10, 2 and 8, 2 and 6, 2 and 5, 2 and 4, 3 and 15, 3 and 10, 3 and 8, 3 and 6, 3 and 5, 3 and 4, 5 and 15, 5 an 10, 8 and 15, 8 and 12, 10 and 15 or 10 and 12. In a preferred embodiment, the degree of conjugation of the immunogenic conjugate is between 2 and 5.

Immunogenic composition

The term "immunogenic composition" relates to any pharmaceutical composition containing an antigen, *e.g.*, a microorganism or a component thereof, which composition can be used to elicit an immune response in a subject. As used herein, "immunogenic" means an ability of an antigen (or an epitope of the antigen), such as a bacterial capsular polysaccharide, or an immunogenic conjugate or immunogenic composition comprising an antigen, to elicit an immune response in a host such as a mammal, either humorally or cellulary mediated, or both.

In an embodiment, the disclosure relate to an immunogenic composition comprising an immunogenic serotype 15B capsular polysaccharide-carrier protein conjugate disclosed herein.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B *Streptococcus pneumonia*. In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B *Streptococcus pneumonia* as measured by a standard ELISA assay.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B and 15A and/or 15C *Streptococcus pneumonia*. In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B and 15A and/or 15C *Streptococcus pneumonia* as measured by a standard ELISA assay.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B and 15C *Streptococcus pneumonia*. In an embodiment, the immunogenic composition disclosed
herein, when administered to a subject, induces the formation of antibodies capable of binding to serotype 15B and 15C *Streptococcus pneumonia* as measured by a standard ELISA assay.

In the ELISA (Enzyme-linked Immunosorbent Assay) method, antibodies from the sera of vaccinated subjects are incubated with polysaccharides which have been adsorbed to a solid support. The bound antibodies are detected using enzyme-conjugated secondary detection antibodies.

In an embodiment said ELISA assay is the standardized (WHO) ELISA assay as defined by the WHO in the Training manual for Enzyme linked immunosorbent assay for the quantitation of *Streptococcus pneumoniae* serotype specific IgG (Pn PS ELISA). (accessible at http://www.vaccine.uab.edu/ELISA%20protocol.pdf; accessed on March 31\(^{st}\), 2014).

The ELISA measures type specific IgG anti-*S. pneumoniae* capsular polysaccharide (PS) antibodies present in human serum. When dilutions of human sera are added to type-specific capsular PS-coated microtiter plates, antibodies specific for that capsular PS bind to the microtiter plates. The antibodies bound to the plates are detected using a goat anti-human IgG alkaline phosphatase-labeled antibody followed by a p-nitrophenyl phosphate substrate. The optical density of the colored end product is proportional to the amount of anticapsular PS antibody present in the serum.

In an embodiment, the immunogenic composition of the invention is able to elicit IgG antibodies in human which are capable of binding *S. pneumoniae* serotypes 15B polysaccharide at a concentration of at least 0.05, 0.1, 0.2, 0.3, 0.35, 0.4 or 0.5 µg/ml as determined by ELISA assay.

In an embodiment, the immunogenic composition of the invention is able to elicit IgG antibodies in human which are capable of binding *S. pneumoniae* serotypes 15C polysaccharide at a concentration of at least 0.05, 0.1, 0.2, 0.3, 0.35, 0.4 or 0.5 µg/ml as determined by ELISA assay.

In an embodiment, the immunogenic composition of the invention is able to elicit IgG antibodies in human which are capable of binding *S. pneumoniae* serotypes 15B and 15C polysaccharide at a concentration of at least 0.05, 0.1, 0.2, 0.3, 0.35, 0.4 or 0.5 µg/ml as determined by ELISA assay.
In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of killing serotype 15B *Streptococcus pneumonia* in an opsonophagocytosis assay (OPA) as disclosed herein. In an embodiment, the immunogenic composition disclosed herein, when tested in an OPA assay as disclosed herein, has an OPA titer greater than the OPA titer obtained with an unconjugated native *Streptococcus pneumonia* serotype 15B capsular polysaccharide.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of killing serotype 15C *Streptococcus pneumonia* in an opsonophagocytosis assay as disclosed herein. In an embodiment, the immunogenic composition disclosed herein, when tested in an OPA assay as disclosed herein, has an OPA titer greater than the OPA titer obtained with an unconjugated native *Streptococcus pneumonia* serotype 15C capsular polysaccharide.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of killing serotype 15B and 15C and/or 15A *Streptococcus pneumonia* in an opsonophagocytosis assay as disclosed herein.

In an embodiment, the immunogenic composition disclosed herein, when administered to a subject, induces the formation of antibodies capable of killing serotype 15B and 15C.

The pneumococcal opsonophagocytic assay (OPA), which measures killing of *S. pneumoniae* cells by phagocytic effector cells in the presence of functional antibody and complement, is considered to be an important surrogate for evaluating the effectiveness of pneumococcal vaccines.

Opsonophagocytic assay (OPA) can be conducted by incubating together a mixture of *Streptococcus pneumoniae* cells, a heat inactivated human serum to be tested, differentiated HL-60 cells (phagocytes) and an exogenous complement source (e.g. baby rabbit complement). Opsonophagocytosis proceeds during incubation and bacterial cells that are coated with antibody and complement are killed upon opsonophagocytosis. Colony forming units (cfu) of surviving bacteria that escape from opsonophagocytosis are determined by plating the assay mixture. The OPA titer is defined as the reciprocal dilution that results in a 50% reduction in bacterial count over control wells without test serum. The OPA titer is interpolated from the two dilutions that encompass this 50% killing cut-off.

An endpoint titer of 1:8 or greater is considered a positive result in these killing type OPA.
In an embodiment, the immunogenic composition of the invention is able to elicit a titer of at least 1:8 against *S. pneumoniae* serotype 15B in at least 50% of the subjects as determined by opsonophagocytic killing assay (OPA). In an embodiment, the immunogenic composition of the invention is able to elicit a titer of at least 1:8 against *S. pneumoniae* serotype 15B in at least 60%; 70%, 80%, 90%, or at least 93% of the subjects as determined by opsonophagocytic killing assay (OPA).

In an embodiment, the immunogenic composition of the invention is able to elicit a titer of at least 1:8 against *S. pneumoniae* serotype 15C in at least 50% of the subjects as determined by opsonophagocytic killing assay (OPA). In an embodiment, the immunogenic composition of the invention is able to elicit a titer of at least 1:8 against *S. pneumoniae* serotype 15C in at least 60%; 70%, 80%, 90%, or at least 95% of the subjects as determined by opsonophagocytic killing assay (OPA).

Formulation of the immunogenic composition of the present invention can be accomplished using art-recognized methods. For instance, the immunogenic conjugates of the invention can be formulated with a physiologically acceptable vehicle to prepare the composition. Examples of such vehicles include, but are not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions.

In a preferred embodiment, the immunogenic composition may comprise at least one additional antigen. In a preferred embodiments, the immunogenic composition may comprises at least one additional *Streptococcus pneumoniae* capsular polysaccharide.

In a preferred embodiment, the immunogenic composition may comprise at least one additional *Streptococcus pneumoniae* capsular polysaccharide conjugated to a carrier protein. In a preferred embodiment, said carrier protein is CRM₁₉₇.

In certain embodiments, the immunogenic composition comprises one or more adjuvants. As defined herein, an "adjuvant" is a substance that serves to enhance the immunogenicity of an immunogenic composition of this invention. Thus, adjuvants are often given to boost the immune response and are well known to the skilled artisan. Suitable adjuvants to enhance effectiveness of the composition include, but are not limited to:

(1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.;
(2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (defined below) or bacterial cell wall components), such as, for example,
(a) MF59 (PCT Pub. No. WO 90/14837), containing 5% Squalene, 0.5%5 Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below, although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA).
(b) SAF, containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and
(c) Ribi™ adjuvant system (RAS), (Corixa, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of 3-deacetylated monophosphoryl lipid A (MPL™) described in U.S. Patent No. 4,912,094 (Corixa), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™);
(3) saponin adjuvants, such as Quil A or STIMULON™ QS-21 (Antigenics, Framingham, MA) (U.S. Patent No. 5,057,540) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes);
(4) bacterial lipopolysaccharides, synthetic lipid A analogs such as aminoalkyl glucosamine phosphate compounds (AGP), or derivatives or analogs thereof, which are available from Corixa, and which are described in U.S. Patent No. 6,113,918; one such AGP is 2-[(R)-3-Tetradecanoyloxytetradecanoylaminojethyl] 2-Deoxy-4-O-phosphono-3-0-[(R)-3-tetradecanoyloxytetradecanol]-b-D-glucopyranoside, which is also known as 529 (formerly known as RC529), which is formulated as an aqueous form or as a stable emulsion, synthetic polynucleotides such as oligonucleotides containing CpG motif(s) (U.S. Patent No. 6,207,646);
(5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-15, IL-18, etc.), interferons (e.g., gamma interferon), granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), costimulatory molecules 87-1 and 87-2, etc.;
(6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT) either in a wild-type or mutant form, for example, where the glutamic acid at amino acid position 29 is replaced by another amino acid, preferably a histidine, in accordance with published international patent application number WO 00/18434 (see also WO 02/098368 and WO 02/0983369), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129 (see, e.g., WO 93/13302 and WO 92/19265); and
(7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition.
Muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanine-2-(T-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise a CpG Oligonucleotide as adjuvant. A CpG oligonucleotide as used herein refers to an immunostimulatory CpG oligodeoxynucleotide (CpG ODN), and accordingly these terms are used interchangeably unless otherwise indicated. Immunostimulatory CpG oligodeoxynucleotides contain one or more immunostimulatory CpG motifs that are unmethylated cytosine-guanine dinucleotides, optionally within certain preferred base contexts. The methylation status of the CpG immunostimulatory motif generally refers to the cytosine residue in the dinucleotide. An immunostimulatory oligonucleotide containing at least one unmethylated CpG dinucleotide is an oligonucleotide which contains a 5' unmethylated cytosine linked by a phosphate bond to a 3' guanine, and which activates the immune system through binding to Toll-like receptor 9 (TLR-9). In another embodiment the immunostimulatory oligonucleotide may contain one or more methylated CpG dinucleotides, which will activate the immune system through TLR9 but not as strongly as if the CpG motif(s) was/were unmethylated. CpG immunostimulatory oligonucleotides may comprise one or more palindromes that in turn may encompass the CpG dinucleotide. CpG oligonucleotides have been described in a number of issued patents, published patent applications, and other publications, including U.S. Patent Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068.

In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise any of the CpG Oligonucleotide described at pages 3 lines 22 to page 12 line 36 of WO2015/125480.

Different classes of CpG immunostimulatory oligonucleotides have been identified. These are referred to as A, B, C and P class, and are described in greater detail at pages 3 lines 22 to page 12 line 36 of WO2015/125480. Methods of the invention embrace the use of these different classes of CpG immunostimulatory oligonucleotides.

In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise an A class CpG Oligonucleotide. Preferably, the "A class" CpG oligonucleotide of the invention has the following nucleic acid sequence: 5' GGGGACGACGTCGTGGGGGGG 3' (SEQ ID NO: 1). Some non-limiting examples of A-Class oligonucleotides include: 5' G*G*G_G_A_C_G_A_C_G_T_C_G_T_G_G*G*G*G*G 3' (SEQ ID NO: 2); wherein * refers to a phosphorothioate bond and _ refers to a phosphodiester bond.
In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise a B class CpG Oligonucleotide. In one embodiment, the CpG oligonucleotide for use in the present invention is a B class CpG oligonucleotide represented by at least the formula:

5' X₁X₂-CGX₃X₄ 3', wherein X₁, X₂, X₃, and X₄ are nucleotides. In one embodiment, X₂ is adenine, guanine, or thymine. In another embodiment, X₃ is cytosine, adenine, or thymine.

The B class CpG oligonucleotide sequences of the invention are those broadly described above in US patents Nos 6,194,388, 6,207,646, 6,214,806, 6,218,371, 6,239,116 and 6,339,068. Exemplary sequences include but are not limited to those disclosed in these latter applications and patents.

In an embodiment, the "B class" CpG oligonucleotide of the invention has the following nucleic acid sequence:

5' TCGTCGTTTTTTCGGTGCTTTTT 3' (SEQ ID NO: 3), or
5' TCGTCGTTTTTTCGGTGCTTTTT 3' (SEQ ID NO: 4), or
5' TCGTCGTTTTTTCGGTGCTTTTTGTCGTT 3' (SEQ ID NO: 5), or
5' TCGTCGTTTTTTCGGTGCTTTTTGTCGTT 3' (SEQ ID NO: 6), or
5' TCGTCGTTTTTTCGGTGCTTTTTTTCGA 3' (SEQ ID NO: 7).

In any of these sequences, all of the linkages may be all phosphorothioate bonds. In another embodiment, in any of these sequences, one or more of the linkages may be phosphodiester, preferably between the "C" and the "G" of the CpG motif making a semi-soft CpG oligonucleotide. In any of these sequences, an ethyl-uridine or a halogen may substitute for the 5' T; examples of halogen substitutions include but are not limited to bromo-uridine or iodo-uridine substitutions.

Some non-limiting examples of B-Class oligonucleotides include:

5' T*C*G*T*C*G*T*T*T*T*T*T*C*G*T*G*C*T*T*T*T 3' (SEQ ID NO: 8), or
5' T*C*G*T*C*G*T*T*T*T*C*G*T*G*C*T*T*T*T 3' (SEQ ID NO: 9), or
5' T*C*G*T*C*G*T*T*T*T*G*T*C*G*T*T*T*T*G*T*C*G*T*T 3' (SEQ ID NO: 10), or
5' T*C*G*T*C*G*T*T*T*C*G*T*T*T*G*T*C*G*T*T 3' (SEQ ID NO: 11), or
5' T*C*G*T*C*G*T*T*T*C*G*T*T*T*G*T*C*G*T*T 3' (SEQ ID NO: 12), or

wherein * refers to a phosphorothioate bond.

In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise a C class CpG Oligonucleotide. In an embodiment, the "C class" CpG oligonucleotides of the invention has the following nucleic acid sequence:

5' TCGCGTCGTTTCTCGGGCGCGCCG 3' (SEQ ID NO: 13), or
5' TCGTCGACGTTCGGCGCGCGCCG 3' (SEQ ID NO: 14), or
5' TCGGACGTTCGGCGCGCGCCG 3' (SEQ ID NO: 15), or
5' TCGGACGTTCGGCGCGCCG 3' (SEQ ID NO: 16), or
In any of these sequences, all of the linkages may be all phosphorothioate bonds. In another embodiment, in any of these sequences, one or more of the linkages may be phosphodiester, preferably between the "C" and the "G" of the CpG motif making a semi-soft CpG oligonucleotide.

Some non-limiting examples of C-Class oligonucleotides include:

5' T*CJ3*CJ3*T*CJ3*T'C_G*G*C*G*C*G*C*G*C*G 3' (SEQ ID NO: 26), or
5' T*CJ3*T*CJ3WC_G*T*T'C_G*G*C*G*C*G*C*G*C*G 3' (SEQ ID NO: 27), or
5' T*CJ3*GWCJ3*T'C_G*G*C*G*C*G*C*G*C*G 3' (SEQ ID NO: 28), or
5' T*CJ3*GWC_G*T*T'C_G*G*C*G*C*G*C*G 3' (SEQ ID NO: 29), or

5' T*CJ3*CJ3*T*C_G*T*T'C_G*G*C*G*C*G*C*G 3' (SEQ ID NO: 30), or
5' T*CJ3WC_G*T*T'C_G*G*C*G*C*G*C*G*C*G 3' (SEQ ID NO: 31), or
5' T*C_G*A*C_G*T*T'C_G*G*C*G*C*G*C*G 3' (SEQ ID NO: 32), or
5' T*CJ3*CJ3*T*C_G*T*T'C_G*G*C*G*C*G 3' (SEQ ID NO: 33), or
5' T*CJ3*CJ3WCJ3*T*C_G*G*C*G*C*G*C*G*C*G 3' (SEQ ID NO: 34), or

5' T*C_G*T*C*T*C*T'T*T'T*C*G*G*C*G*C*G*C*G 3' (SEQ ID NO: 35), or
5' T*C_G*T*C*T*C*T'T*T'T'C*G*G*C*G*C*G*C*G 3' (SEQ ID NO: 36), or
5' T*C_G*T*C_G*T'T'T*TWC_G*G*C*G*C*G*G*C*G*G 3' (SEQ ID NO: 37), or
5' T*C_G*T*C*G*T*T'T*T'T*C*G*G*C*G*C*G*C*G*C*G*T 3' (SEQ ID NO: 38)

wherein * refers to a phosphorothioate bond and _ refers to a phosphodiester bond.

In any of these sequences, an ethyl-uridine or a halogen may substitute for the 5' T; examples of halogen substitutions include but are not limited to bromo-uridine or iodo-uridine substitutions.

In an embodiment of the present invention, the immunogenic compositions as disclosed herein comprise a P class CpG Oligonucleotide. In an embodiment, the CpG oligonucleotide for use in the present invention is a P class CpG oligonucleotide containing a 5' TLR activation domain and at least two palindromic regions, one palindromic region being a 5' palindromic region of at least 6 nucleotides in length and connected to a 3' palindromic
region of at least 8 nucleotides in length either directly or through a spacer, wherein the oligonucleotide includes at least one YpR dinucleotide. In an embodiment, said oligonucleotide is not T*CJC3*T*CJC3WC_G*G*T*C_G*C_G*C_G*C_G*C_G*C_G*C*G (SEQ ID NO: 27). In one embodiment the a P class CpG oligonucleotide includes at least one unmethylated CpG dinucleotide. In another embodiment the TLR activation domain is TCG, TTG, TTT, TYP, TTYPR, UCG, UUGC, UUUG, TEP, or TTTT. In yet another embodiment the TLR activation domain is immediately 5′ to the 5′ palindromic region. In another embodiment the TLR activation domain is immediately 5′ to the 5′ palindromic region.

In an embodiment, the "P class" CpG oligonucleotides of the invention have the following nucleic acid sequence: 5′ TCGTCGACGATCGGCGCGCGCGCCG 3′ (SEQ ID NO: 39).

In said sequences, all of the linkages may be all phosphorothioate bonds. In another embodiment, one or more of the linkages may be phosphodiester, preferably between the "C" and the "G" of the CpG motif making a semi-soft CpG oligonucleotide. In any of these sequences, an ethyl-uridine or a halogen may substitute for the 5′ T; examples of halogen substitutions include but are not limited to bromo-uridine or iodo-uridine substitutions.

A non-limiting example of P-Class oligonucleotides include:

5′ T*CJC3*T*CJC3WC_G*A+T*C_G*C_G*C_G*C_G*C*G 3′ (SEQ ID NO: 40)

wherein * refers to a phosphorothioate bond and _ refers to a phosphodiester bond.

In one embodiment the oligonucleotide includes at least one phosphorothioate linkage. In another embodiment all internucleotide linkages of the oligonucleotide are phosphorothioate linkages. In another embodiment the oligonucleotide includes at least one phosphodiester-like linkage. In another embodiment the phosphodiester-like linkage is a phosphodiester linkage. In another embodiment a lipophilic group is conjugated to the oligonucleotide. In one embodiment the lipophilic group is cholesterol.

In an embodiment, all the internucleotide linkage of the CpG oligonucleotides disclosed herein are phosphodiester bonds ("soft" oligonucleotides, as described in the PCT application WO2007/026190). In another embodiment, CpG oligonucleotides of the invention are rendered resistant to degradation (e.g., are stabilized). A "stabilized oligonucleotide " refers to an oligonucleotide that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Nucleic acid stabilization can be accomplished via backbone modifications. Oligonucleotides having phosphorothioate linkages provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.

The immunostimulatory oligonucleotides may have a chimeric backbone, which have combinations of phosphodiester and phosphorothioate linkages. For purposes of the instant invention, a chimeric backbone refers to a partially stabilized backbone, wherein at least one internucleotide linkage is phosphodiester or phosphodiester-like, and wherein at least one other internucleotide linkage is a stabilized internucleotide linkage, wherein the at least one
phosphodiester or phosphodiester-like linkage and the at least one stabilized linkage are different. When the phosphodiester linkage is preferentially located within the CpG motif such molecules are called "semi-soft" as described in the PCT application WO2007/026190.

The size of the CpG oligonucleotide (i.e., the number of nucleotide residues along the length of the oligonucleotide) also may contribute to the stimulatory activity of the oligonucleotide. For facilitating uptake into cells, CpG oligonucleotide of the invention preferably have a minimum length of 6 nucleotide residues. Oligonucleotides of any size greater than 6 nucleotides (even many kb long) are capable of inducing an immune response if sufficient immunostimulatory motifs are present, because larger oligonucleotides are degraded inside cells. In certain embodiments, the CpG oligonucleotides are 6 to 100 nucleotides long, preferentially 8 to 30 nucleotides long. In important embodiments, nucleic acids and oligonucleotides of the invention are not plasmids or expression vectors.

In an embodiment, the CpG oligonucleotides disclosed herein comprise substitutions or modifications, such as in the bases and/or sugars as described at paragraph 134 to 147 of WO2007/026190.

In an embodiment, the CpG oligonucleotide of the present invention is chemically modified. Examples of chemical modifications are known to the skilled person and are described, for example in Uhlmann E. et al. (1990), Chem. Rev. 90:543, S. Agrawal, Ed., Humana Press, Totowa, USA 1993; Crooke, S.T. et al. (1996) Annu. Rev. Pharmacol. Toxicol. 36:107-129; and Hunziker J. et al., (1995), Mod. Synth. Methods 7:331-417. An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleoside bridge and/or at a particular β-D-ribose unit and/or at a particular natural nucleoside base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.

In some embodiments of the invention, CpG-containing nucleic acids might be simply mixed with immunogenic carriers according to methods known to those skilled in the art (see, e.g. WO03/024480).

In a particular embodiment of the present invention, any of the immunogenic composition disclosed herein comprises from 2μg to 100mg of CpG oligonucleotide, preferably from 0.1 mg to 50 mg CpG oligonucleotide, preferably from 0.2mg to 10 mg CpG oligonucleotide, preferably from 0.3 mg to 5 mg CpG oligonucleotide, even preferably from 0.5 to 2 mg CpG oligonucleotide, even preferably from 0.75 to 1.5 mg CpG oligonucleotide. In a preferred embodiment, the immunogenic composition disclosed herein comprises approximately 1mg CpG oligonucleotide.

In a preferred embodiment, the adjuvant is an aluminum-based adjuvant selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide. In one
embodiment, the immunogenic compositions described herein comprise the adjuvant aluminum phosphate.

In a preferred embodiments, the immunogenic compositions of the invention further comprise at least one of a buffer, a cryoprotectant, a salt, a divalent cation, a non-ionic detergent, an inhibitor of free radical oxidation, a diluent or a carrier.

The immunogenic composition optionally can comprise one or more physiologically acceptable buffers selected from, but not limited to Tris (trimethamine), phosphate, acetate, borate, citrate, glycine, histidine and succinate. In certain embodiments, the formulation is buffered to within a pH range of about 5.0 to about 7.0, preferably from about 5.5 to about 6.5.

The immunogenic composition optionally can comprise one or more non-ionic surfactants, including but not limited to polyoxyethylene sorbitan fatty acid esters, Polysorbate-80 (Tween 80), Polysorbate-60 (Tween 60), Polysorbate-40 (Tween 40) and Polysorbate-20 (Tween 20), polyoxyethylene alkyl ethers, including but not limited to Brij 58, Brij 35, as well as others such as Triton X-100; Triton X-114, NP40, Span 85 and the Pluronic series of non-ionic surfactants (e.g., Pluronic 121). In a preferred embodiment, the immunogenic composition comprises Polysorbate-80 or Polysorbate-40, preferably Polysorbate-80. In a preferred embodiment, the immunogenic composition comprises Polysorbate-80 at a concentration from about 0.001% to about 2% (with up to about 0.25% being preferred) or Polysorbate-40 at a concentration from about 0.001% to 1% (with up to about 0.5% being preferred).

The invention further relates to vaccines comprising the immunogenic composition of the invention.

Methods for inducing an immune response and protecting against infection

The present disclosure also includes methods of use for immunogenic compositions described herein. For example, one embodiment of the disclosure provides a method of inducing an immune response against *Streptococcus pneumoniae*, comprising administering to a subject an immunogenic amount of any of the immunogenic compositions described herein.

One embodiment of the disclosure provides a method of protecting a subject against an infection with *Streptococcus pneumoniae*, or a method of preventing infection with
Streptococcus pneumoniae, or a method of reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by Streptococcus pneumoniae, the methods comprising administering to a subject an immunogenic amount of any of the immunogenic compositions described herein.

One embodiment of the disclosure provides a method of protecting a subject against an infection with serotype 15B Streptococcus pneumoniae, or a method of preventing infection with serotype 15B Streptococcus pneumoniae, or a method of reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by serotype 15B Streptococcus pneumoniae, the methods comprising administering to a subject an immunogenic amount of any of the immunogenic compositions described herein.

One embodiment of the disclosure provides a method of protecting a subject against an infection with serotype 15C Streptococcus pneumoniae, or a method of preventing infection with serotype 15C Streptococcus pneumoniae, or a method of reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by serotype 15C Streptococcus pneumoniae, the methods comprising administering to a subject an immunogenic amount of any of the immunogenic compositions described herein.

One embodiment of the disclosure provides a method of protecting a subject against an infection with serotype 15A Streptococcus pneumoniae, or a method of preventing infection with serotype 15A Streptococcus pneumoniae, or a method of reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by serotype 15A Streptococcus pneumoniae, the methods comprising administering to a subject an immunogenic amount of any of the immunogenic compositions described herein.

One embodiment of the disclosure provides a method of treating or preventing a Streptococcus pneumoniae infection, disease or condition associated with serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) Streptococcus pneumoniae in a subject, the method comprising the step of administering a therapeutically or prophylactically effective amount of an immunogenic composition described herein to the subject. Another embodiment provides a method of treating or preventing a Streptococcus pneumoniae infection, disease or condition associated with a serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) Streptococcus pneumoniae in a subject, the method comprising generating a polyclonal or monoclonal antibody preparation from the immunogenic composition described herein, and using said antibody preparation to confer passive immunity to the subject.
In one embodiment, the disclosure relates to the use of the immunogenic conjugate or immunogenic composition disclosed herein for the manufacture of a medicament for protecting a subject against an infection with *Streptococcus pneumoniae*, and/or preventing infection with *Streptococcus pneumoniae*, and/or reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by *Streptococcus pneumoniae*, and/or protecting a subject against an infection with serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae* and/or preventing infection with serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae*, and/or reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae*.

In one embodiment, the disclosure relates to the use of the immunogenic conjugate or immunogenic composition disclosed herein for protecting a subject against an infection with *Streptococcus pneumoniae*, and/or preventing infection with *Streptococcus pneumoniae*, and/or reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by *Streptococcus pneumoniae*, and/or protecting a subject against an infection with serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae* and/or preventing infection with serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae*, and/or reducing the severity of or delaying the onset of at least one symptom associated with an infection caused by serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) *Streptococcus pneumoniae*.

An "immune response" to an immunogenic composition is the development in a subject of a humoral and/or a cell-mediated immune response to molecules present in the immunogenic composition or vaccine composition of interest. For purposes of the present disclosure, a "humoral immune response" is an antibody-mediated immune response and involves the induction and generation of antibodies that recognize and bind with some affinity for the antigen in the immunogenic composition or vaccine of the disclosure, while a "cell-mediated immune response" is one mediated by T-cells and/or other white blood cells. A "cell-mediated immune response" is elicited by the presentation of antigenic epitopes in association with Class I or Class II molecules of the major histocompatibility complex (MHC), CD1 or other non-classical MHC-like molecules. This activates antigen-specific CD4+ T helper cells or CD8+ cytotoxic T lymphocyte cells ("CTLs"). CTLs have specificity for peptide antigens that are presented in association with proteins encoded by classical or non-classical
MHCs and expressed on the surfaces of cells. CTLs help induce and promote the intracellular destruction of intracellular microbes, or the lysis of cells infected with such microbes. Another aspect of cellular immunity involves an antigen-specific response by helper T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide or other antigens in association with classical or non-classical MHC molecules on their surface. A "cell-mediated immune response" also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells. The ability of a particular antigen or composition to stimulate a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, by assaying for T-lymphocytes specific for the antigen in a sensitized subject, or by measurement of cytokine production by T cells in response to re-stimulation with antigen. Such assays are well known in the art. See, e.g., Erickson et al. (1993) J. Immunol. 151:41 89-41 99; and Doe et al. (1994) Eur. J. Immunol. 24:2369-2376.

As used herein, "treatment" (including variations thereof, e.g., "treat" or "treated") means any one or more of the following: (i) the prevention of infection or re-infection, as in a traditional vaccine, (ii) the reduction in the severity of, or, in the elimination of symptoms, and (iii) the substantial or complete elimination of the pathogen or disorder in question. Hence, treatment may be effected prophylactically (prior to infection) or therapeutically (following infection). In the present disclosure, prophylactic treatment is the preferred mode. According to a particular embodiment of the present disclosure, compositions and methods are provided that treat, including prophylactically and/or therapeutically immunize, a host animal against a serotype 15A, 15B and/or 15C (preferably 15B and/or 15C, more preferably 15B) Streptococcus pneumoniae infection. The methods of the present disclosure are useful for conferring prophylactic and/or therapeutic immunity to a subject. The methods of the present disclosure can also be practiced on subjects for biomedical research applications.

An "immunogenic amount", and "immunologically effective amount," both of which are used interchangeably herein, refers to the amount of antigen or immunogenic composition sufficient to elicit an immune response, either a cellular (T-cell) or humoral (B-cell or antibody) response, or both, as measured by standard assays known to one skilled in the art.
In a preferred embodiment, said subject is a human. In a most preferred embodiment, said subject is a newborn (i.e. under three months of age), an infant (from 3 months to one year of age) or a toddler (i.e. from one year to four years of age).

In an embodiment, the immunogenic compositions disclosed herein are for use as a vaccine.

In such embodiment, the subject to be vaccinated may be less than 1 year of age. For example, the subject to be vaccinated can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months of age. In an embodiment, the subject to be vaccinated is about 2, 4 or 6 months of age. In another embodiment, the subject to be vaccinated is less than 2 years of age. For example the subject to be vaccinated can be about 12-15 months of age. In some cases, as little as one dose of the immunogenic composition according to the invention is needed, but under some circumstances, a second, third or fourth dose may be given (see regimen section).

In an embodiment of the present invention, the subject to be vaccinated is a human adult 50 years of age or older, more preferably a human adult 55 years of age or older. In an embodiment, the subject to be vaccinated is a human adult 65 years of age or older, 70 years of age or older, 75 years of age or older or 80 years of age or older.

In an embodiment the subject to be vaccinated is an immunocompromised individual, in particular a human. An immunocompromised individual is generally defined as a person who exhibits an attenuated or reduced ability to mount a normal humoral or cellular defense to challenge by infectious agents.

In an embodiment of the present invention, the immunocompromised subject to be vaccinated suffers from a disease or condition that impairs the immune system and results in an antibody response that is insufficient to protect against or treat pneumococcal disease.

In an embodiment, said disease is a primary immunodeficiency disorder. Preferably, said primary immunodeficiency disorder is selected from the group consisting of: combined T- and B-cell immunodeficiencies, antibody deficiencies, well-defined syndromes, immune dysregulation diseases, phagocyte disorders, innate immunity deficiencies, autoinflammatory disorders, and complement deficiencies. In an embodiment, said primary immunodeficiency disorder is selected from the one disclosed on page 24 line 11 to page 25 line 19 of the PCT application WO2015/125480.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated suffers from a disease selected from the groups consisting of: HIV-infection, acquired immunodeficiency syndrome (AIDS), cancer, chronic heart or lung disorders,
congestive heart failure, diabetes mellitus, chronic liver disease, alcoholism, cirrhosis, spinal fluid leaks, cardiomyopathy, chronic bronchitis, emphysema, Chronic obstructive pulmonary disease (COPD), spleen dysfunction (such as sickle cell disease), lack of spleen function (asplenia), blood malignancy, leukemia, multiple myeloma, Hodgkin's disease, lymphoma, kidney failure, nephrotic syndrome and asthma.

In an embodiment of the present invention, the immunocompromised subject to be vaccinated suffers from malnutrition.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated is taking a drug or treatment that lowers the body's resistance to infection. In an embodiment, said drug is selected from the one disclosed on page 26 line 33 to page 26 line 40 of the PCT application WO2015/0125480.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated is a smoker.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated has a white blood cell count (leukocyte count) below 5 x 10^9 cells per liter, or below 4 x 10^9 cells per liter, or below 3 x 10^9 cells per liter, or below 2 x 10^9 cells per liter, or below 1 x 10^9 cells per liter, or below 0.5 x 10^9 cells per liter, or below 0.3 x 10^9 cells per liter, or below 0.1 x 10^9 cells per liter.

White blood cell count (leukocyte count): The number of white blood cells (WBCs) in the blood. The WBC is usually measured as part of the CBC (complete blood count). White blood cells are the infection-fighting cells in the blood and are distinct from the red (oxygen-carrying) blood cells known as erythrocytes. There are different types of white blood cells, including neutrophils (polymorphonuclear leukocytes; PMNs), band cells (slightly immature neutrophils), T-type lymphocytes (T cells), B-type lymphocytes (B cells), monocytes, eosinophils, and basophils. All the types of white blood cells are reflected in the white blood cell count. The normal range for the white blood cell count is usually between 4,300 and 10,800 cells per cubic millimeter of blood. This can also be referred to as the leukocyte count and can be expressed in international units as 4.3 - 10.8 x 10^9 cells per liter.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated suffers from neutropenia. In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated has a neutrophil count below 2 x 10^9 cells per liter, or below 1 x 10^9 cells per liter, or below 0.5 x 10^9 cells per liter, or below 0.1 x 10^9 cells per liter, or below 0.05 x 10^9 cells per liter.
A low white blood cell count or "neutropenia" is a condition characterized by abnormally low levels of neutrophils in the circulating blood. Neutrophils are a specific kind of white blood cell that help prevent and fight infections. The most common reason that cancer patients experience neutropenia is as a side effect of chemotherapy. Chemotherapy-induced neutropenia increases a patient's risk of infection and disrupts cancer treatment.

In a particular embodiment of the present invention, the immunocompromised subject to be vaccinated has a CD4+ cell count below 500/mm³, or CD4+ cell count below 300/mm³, or CD4+ cell count below 200/mm³, CD4+ cell count below 100/mm³, CD4+ cell count below 75/mm³, or CD4+ cell count below 50/mm³.

CD4 cell tests are normally reported as the number of cells in mm³. Normal CD4 counts are between 500 and 1600, and CD8 counts are between 375 and 1100. CD4 counts drop dramatically in people with HIV.

In an embodiment of the invention, any of the immunocompromised subject disclosed herein is a human male or a human female.

The amount of a conjugate in a composition is generally calculated based on total polysaccharide, conjugated and non-conjugated for that conjugate. For example, a conjugate with 20% free polysaccharide will have about 80 µg of conjugated polysaccharide and about 20 µg of non-conjugated polysaccharide in a 100 µg polysaccharide dose. The protein contribution to the conjugate is usually not considered when calculating the dose of a conjugate. Generally, each dose will comprise 0.1 to 100 µg of polysaccharide, particularly 0.1 to 10 µg, and more particularly 1 to 10 µg and more particularly 1 to 5 µg. Preferably each dose will comprise about 1.1, 2, 2.2, 3, 3.3, 4, 4.4 µg of polysaccharide.

Optimal amounts of components for a particular immunogenic composition or vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects can receive one or several booster immunizations adequately spaced.

The effectiveness of an antigen as an immunogen, can be measured either by proliferation assays, by cytolytic assays, such as chromium release assays to measure the ability of a T-cell to lyse its specific target cell, or by measuring the levels of B-cell activity by measuring the levels of circulating antibodies specific for the antigen in serum. An immune response may also be detected by measuring the serum levels of antigen specific antibody induced following administration of the antigen, and more specifically, by measuring the
ability of the antibodies so induced to enhance the opsonophagocytic ability of particular white blood cells, as described herein. The level of protection of the immune response may be measured by challenging the immunized host with the antigen that has been administered. For example, if the antigen to which an immune response is desired is a bacterium, the level of protection induced by the immunogenic amount of the antigen is measured by detecting the percent survival or the percent mortality after challenge of the animals with the bacterial cells. In one embodiment, the amount of protection may be measured by measuring at least one symptom associated with the bacterial infection, e.g., a fever associated with the infection. The amount of each of the antigens in the multi-antigen or multi-component vaccine or immunogenic compositions will vary with respect to each of the other components and can be determined by methods known to the skilled artisan. Such methods would include procedures for measuring immunogenicity and/or in vivo efficacy.

The disclosure further provides antibodies and antibody compositions which bind specifically and selectively to the capsular polysaccharides or immunogenic conjugates of the present disclosure. In some embodiments, antibodies are generated upon administration to a subject of the capsular polysaccharides or immunogenic conjugates of the present disclosure. In some embodiments, the disclosure provides purified or isolated antibodies directed against one or more of the capsular polysaccharides or immunogenic conjugates of the present disclosure. In some embodiments, the antibodies of the present disclosure are functional as measured by killing bacteria in either an animal efficacy model or via an opsonophagocytic killing assay. In some embodiments, the antibodies of the disclosure confer passive immunity to a subject. The present disclosure further provides polynucleotide molecules encoding an antibody or antibody fragment of the disclosure, and a cell, cell line (such as hybridoma cells or other engineered cell lines for recombinant production of antibodies) or a transgenic animal that produces an antibody or antibody composition of the disclosure, using techniques well-known to those of skill in the art.

Examples

Example 1: Preparation of isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide

1.1 Fermentation and Purification

Serotype 15B capsular polysaccharides can be obtained directly from bacteria using isolation procedures known to one of ordinary skill in the art (see for example methods disclosed U.S. Patent App. Pub. Nos. 20060228380, 20060228381, 20070184071, 20070184072,
20070231340, and 20080102498 or WO2008118752). The serotype 15B Streptococcus pneumonia were grown in a seed bottle and then transferred to a seed fermentor. Once the targeted optical density was reached, the cells were transferred to a production fermentor. The fermentation was broth was inactivated by the addition of N-lauroyl sarcosine and purified by ultrafiltration and diafiltration.

The purified Streptococcus pneumoniae serotype 15B polysaccharide was then sized by high pressure homogenization using a PANDA 2K homogenizer (GEA Niro Soavi) to produce the isolated Streptococcus pneumoniae serotype 15B polysaccharide.

Preferably, the isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide obtained by the above process comprises at least 0.6 mM acetate per mM of serotype 15B capsular polysaccharide and has a molecular weight between 50kDa and 500kDa, preferably 150 to 350kDa.

1.2 Oxidation of Isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide

Polysaccharide oxidation was carried out in 100 mM potassium phosphate buffer (pH 6.0 ± 0.2) by sequential addition of calculated amount of 500 mM potassium phosphate buffer (pH 6.0) and WFI to give final polysaccharide concentration of 2.0 g/L. If required, the reaction pH was adjusted to pH 6.0, approximately. After pH adjustment, the reaction temperature was adjusted to 23 ± 2 °C. Oxidation was initiated by the addition of approximately 0.25 molar equivalents of sodium periodate. The oxidation reaction was performed at 23 ± 2 °C during 16 hrs, approximately.

Concentration and diafiltration of the activated polysaccharide was carried out using 10K MWCO ultrafiltration cassettes. Diafiltration was performed against 20-fold diavolumes of WFI. The purified activated polysaccharide was then stored at 5 ± 3°C. The purified activated saccharide was characterized inter alia by (i) saccharide concentration by colorimetric assay; (ii) aldehyde concentration by colorimetric assay; (iii) Degree of Oxidation (iv) Molecular Weight by SEC-MALLS and (v) presence of O-acetyl and glycerol.

SEC-MALLS is used for the determination of the molecular weight of polysaccharides and polysaccharide-protein conjugates. SEC is used to separate the polysaccharides by hydrodynamic volume. Refractive index (RI) and multi-angle laser light scattering (MALLS) detectors are used for the determination of the molecular weight. When light interacts with matter, it scatters and the amount of scattered light is related to the concentration, the square
of the dn/dc (the specific refractive index increments), and the molar mass of the matter. The molecular weight measurement is calculated based on the readings from the scattered light signal from the MALLS detector and the concentration signal from the RI detector.

The degree of oxidation (DO = moles of sugar repeat unit / moles of aldehyde) of the activated polysaccharide was determined as follows:
The moles of sugar repeat unit is determined by various colorimetric methods, example by using Anthrone method. By the Anthrone method, the polysaccharide is first broken down to monosaccharides by the action of sulfuric acid and heat. The Anthrone reagent reacts with the hexoses to form a yellow-green colored complex whose absorbance is read spectrophotometrically at 625nm. Within the range of the assay, the absorbance is directly proportional to the amount of hexose present.
The moles of aldehyde also is determined simultaneously, using MBTH colorimetric method. The MBTH assay involves the formation of an azine compound by reacting aldehyde groups (from a given sample) with a 3-methyl-2-benzothiazolone hydrazone (MBTH assay reagent). The excess 3-methyl-2-benzothiazolone hydrazone oxidizes to form a reactive cation. The reactive cation and the azine react to form a blue chromophore. The formed chromophore is then read spectroscopically at 650 nm.

Preferably, the activated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide obtained by the above process comprises at least 0.6 mM acetate per mM of serotype 15B capsular polysaccharide and has a molecular weight between 50kDa and 500kDa, preferably 100 to 250kDa.

1.3 Conjugation of activated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide with CRM₁₉₇
The conjugation process consists of the following steps:
a) Compounding with sucrose excipient and lyophilization
b) Reconstitution of the lyophilized activated polysaccharide and CRM₁₉₇
c) Conjugation of activated polysaccharide to CRM₁₉₇ and capping
d) Purification of the conjugate

a) Compounding with Sucrose excipient, and Lyophilization

The activated polysaccharide was compounded with sucrose to a ratio of 25 grams of sucrose per gram of activated polysaccharide. The bottle of compounded mixture was then lyophilized. Following lyophilization, bottles containing lyophilized activated polysaccharide
were stored at -20 ± 5°C. Calculated amount of CRM₁₉₇ protein was shell-frozen and lyophilized separately. Lyophilized CRM₁₉₇ was stored at -20 ± 5°C.

b) Reconstitution of Lyophilized Activated Polysaccharide and CRM₁₉₇ Protein

Lyophilized activated polysaccharide was reconstituted in anhydrous dimethyl sulfoxide (DMSO). Upon complete dissolution of polysaccharide, an equal amount of anhydrous DMSO was added to lyophilized CRM₁₉₇ for reconstitution.

c) Conjugation and Capping

Reconstituted activated polysaccharide was combined with reconstituted CRM₁₉₇ in the reaction vessel (input ratio: 0.8:1), followed by mixing thoroughly to obtain a clear solution before initiating the conjugation with sodium cyanoborohydride. The final polysaccharide concentration in reaction solution is approximately 1 g/L. Conjugation was initiated by adding 1.0 - 1.5 MEq of sodium cyanoborohydride to the reaction mixture and was incubated at 23 ± 2°C for 40-48 hrs. Conjugation reaction was terminated by adding 2 MEq of sodium borohydride (NaBH₄) to cap unreacted aldehydes. This capping reaction continued at 23 ± 2°C for 3 ± 1 hrs.

d) Purification of the conjugate

The conjugate solution was diluted 1:10 with chilled 5 mM succinate-0.9% saline (pH 6.0) in preparation for purification by tangential flow filtration using 100-300K MWCO membranes. The diluted conjugate solution was passed through a 5 μm filter and diafiltration was performed using 5 mM succinate-0.9% saline (pH 6.0) as the medium. After the diafiltration was completed, the conjugate retentate was transferred through a 0.22 μm filter.

The conjugate was diluted further with 5 mM succinate / 0.9% saline (pH 6), to a target saccharide concentration of approximately 0.5 mg/mL. Final 0.22 μm filtration step was completed to obtain the immunogenic conjugate.

Preferably, the conjugate obtained by the above process comprises at least 0.6 mM acetate per mM of serotype 15B capsular polysaccharide, has a molecular weight between 3000 and 20000kDa and has a degree of conjugation between 2 and 6.

Example 2: Characterization of immunogenic conjugate comprising Streptococcus pneumoniae serotype 15B capsular polysaccharide covalently linked to a CRM₁₉₇
Conjugate 1 was prepared by the process disclosed in example 1. Conjugates 2 and 3 were prepared by a similar process using different amount of oxidizing agent. Conjugate 4 was prepared by a similar process except that the purified serotype 15B capsular polysaccharide was not sized and was activated to a lower DO (higher oxidation level) and the conjugation was performed in aqueous medium. Conjugate 5 was prepared by a similar process except that the purified serotype 15B capsular polysaccharide was sized by chemical hydrolysis and the conjugation was performed in aqueous medium. Conjugates 6 and 7 were prepared by a similar process except that the purified serotype 15B capsular polysaccharide was not sized. The obtained conjugates were characterized and the results are summarized in Table 1.

Table 1: *Streptococcus pneumoniae* serotype 15B capsular polysaccharide-CRM₁₉₇ conjugates

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharide</td>
<td>Sized</td>
<td>Sized</td>
<td>Sized</td>
<td>Native</td>
<td>Hydrolyzed</td>
<td>Native</td>
<td>Native</td>
</tr>
<tr>
<td>O-Acetylation; Polysaccharide (μmol acetate/μmol poly)</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>1.01</td>
<td>0.66</td>
<td>0.76</td>
<td>NA</td>
</tr>
<tr>
<td>Solvent medium</td>
<td>DMSO</td>
<td>DMSO</td>
<td>DMSO</td>
<td>Aqueous</td>
<td>Aqueous</td>
<td>DMSO</td>
<td>DMSO</td>
</tr>
<tr>
<td>Activated Polysaccharide DO</td>
<td>11.4</td>
<td>5.8</td>
<td>9.7</td>
<td>4.8</td>
<td>8.8</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Activated Polysaccharide MW</td>
<td>196KDa</td>
<td>218KDa</td>
<td>235KDa</td>
<td>435 KDa</td>
<td>270KDa</td>
<td>431KDa</td>
<td>460KDa</td>
</tr>
<tr>
<td>Yield (%)</td>
<td>87.2</td>
<td>64</td>
<td>63.7</td>
<td>96.2</td>
<td>78.8</td>
<td>24.2</td>
<td>26.2</td>
</tr>
<tr>
<td>Saccharide Protein Ratio</td>
<td>0.68</td>
<td>0.65</td>
<td>0.71</td>
<td>1.22</td>
<td>1.29</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Free Saccharide (%)</td>
<td>< 5</td>
<td>< 5</td>
<td>6.1</td>
<td>18.1</td>
<td>14.2</td>
<td>8.8</td>
<td>18</td>
</tr>
<tr>
<td>Conjugate MW, SEC-MALLS</td>
<td>6190KDa</td>
<td>7090KDa</td>
<td>7937KDa</td>
<td>1766KDa</td>
<td>1029KDa</td>
<td>6293KDa</td>
<td>4466KDa</td>
</tr>
<tr>
<td>O-Acetylation, Conjugate (μmol acetate/μmol poly)</td>
<td>0.68</td>
<td>0.7</td>
<td>0.68</td>
<td>0.61</td>
<td>0.44</td>
<td>0.85</td>
<td>NA</td>
</tr>
<tr>
<td>< 0.3 Kd (%), SEC</td>
<td>NA</td>
<td>73</td>
<td>NA</td>
<td>NA</td>
<td>62</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Degree of Conj (AAA); Modified Lys</td>
<td>3.7</td>
<td>3.9</td>
<td>4.1</td>
<td>NA</td>
<td>3.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>% O-Acetyl Retained in Conjugate</td>
<td>99%</td>
<td>100%</td>
<td>99.5%</td>
<td>60%</td>
<td>67%</td>
<td>100%</td>
<td>NA</td>
</tr>
</tbody>
</table>

The percentage of free polysaccharide is measured by a procedure utilizing aluminium hydroxide gel to bind protein and covalently bound saccharide for removal by centrifugation. Samples are mixed with phosphate buffered aluminium hydroxide gel and centrifuged. Bound saccharide is pelleted with the gel and free saccharide remains in the supernatant. The resulting supernatant and controls samples are quantitated by appropriate colorimetric
assays to determine the percentage of free saccharide and to confirm sufficient removal of protein and recovery of saccharide.

For the Amino Acid analysis the polysaccharide-protein sample is first hydrolyzed into its individual components as free amino acids, using 6N hydrochloric acid (HCl) hydrolysis under vacuum and heat (160° C for 15 minutes). After hydrolysis, the samples are analyzed using Amino Acid Analyzer. The individual amino acids are separated through ion exchange chromatography using a step gradient of sodium citrate buffer with temperature and flow rate changes. After separation, the amount of each amino acid residual is quantitatively determined using a postcolumn ninhydrin coupling detection system. In this system, the ninhydrin is mixed with the column eluate in the postcolumn reactor system and the mixture passed into the photometer. The reaction of ninhydrin with eluted amino acids yields a purple compound that absorbs maximally at 570 nm. This absorbance is a linear response (function) of the amount of α-amino groups present and this reaction provides quantitative colorimetric assay for all organic compounds with α-amino groups. In the reaction with imino acids such as proline and hydroxyproline, which do not have free amino group, a bright yellow compound is generated and monitored at 440 nm. The peak areas for each amino acid are calculated using both 570 and 440 nm wavelength outputs.

The yield is calculated as follows: (amount of polysaccharide in the conjugate x100) / amount of activated polysaccharide.

Conjugates (4 and 5) generated using in aqueous medium demonstrated significant loss in O-acetyl levels. Conjugates generated in DMSO solvent, using native polysaccharide without MW sizing (6 and 7) did not demonstrate loss in O-acetyl levels. However, the conjugate yields were very poor in addition to poor filterability characteristics. Conjugates generated in DMSO using polysaccharides that were sized by high pressure homogenization (1, 2 and 3) had high yield and better filterability characteristics with significant preservation of O-acetyl levels. These conjugates also had very low levels of free polysaccharides.

Example 3: Opsonophagocytic activity (OPA) assay

The immunogenicity of the conjugates of the invention can be assessed using the opsonophagocytic assay (OPA) described below.
Groups of 30 6-7 week old female Swiss Webster mice were immunized with 0.001 µg, 0.01 µg, or 0.1 µg of test conjugates via the subcutaneous route on week 0. The mice were boosted with the same dose of conjugate on week 3 and then bled at week 4. Serotype-specific OPAs were performed on week 4 sera samples.

OPAs are used to measure functional antibodies in murine sera specific for S. pneumoniae serotype 15B. Test serum is set up in assay reactions that measure the ability of capsular polysaccharide specific immunoglobulin to opsonize bacteria, trigger complement deposition, thereby facilitating phagocytosis and killing of bacteria by phagocytes. The OPA titer is defined as the reciprocal dilution that results in a 50% reduction in bacterial count over control wells without test serum. The OPA titer is interpolated from the two dilutions that encompass this 50% killing cut-off.

OPA procedures were based on methods described in Hu et al., Clin Diagn Lab Immunol 2005;12(February (2)):287-95 with the following modifications. Test serum was serially diluted 2.5-fold and added to microtiter assay plates. Live serotype 15B target bacteria were added to the wells and the plates were shaken at 37°C for 30 minutes. Differentiated HL-60 cells (phagocytes) and baby rabbit serum (3- to 4-week old, Pel-Freez®, 6.25% final concentration) were added to the wells, and the plates were shaken at 37°C for 45 minutes.

To terminate the reaction, 80 µL of 0.9% NaCl was added to all wells, mixed, and a 10µL aliquot were transferred to the wells of Multiscreen HTS HV filter plates (Millipore®) containing 200 µL of water. Liquid was filtered through the plates under vacuum, and 150 µL of HySoy medium was added to each well and filtered through. The filter plates were then incubated at 37°C, 5% CO₂ overnight and were then fixed with Destain Solution (Bio-Rad).

The plates were then stained with Coomassie Blue and destained once. Colonies were imaged and enumerated on a Cellular Technology Limited (CTL) ImmunoSpot Analyzer®. Raw colony counts were used to plot kill curves and calculate OPA titers.

The immunogenicity of conjugates 1 and 2 has been tested according to the above mentioned assay. One additional conjugate and an unconjugated native S. pneumoniae serotype 15B capsular polysaccharide (unconjugated PS) were also tested in the same assay:

Conjugate 9 was prepared by conjugation of native (i.e not sized) serotype 15B capsular polysaccharide to CRM197, by reductive amination in aqueous solution.

The results are shown in table 2.
Table 2: OPA Titers of Animal Testing

<table>
<thead>
<tr>
<th>OPA GMT (Geometric Mean antibody Titer) (95% CI)</th>
<th>0.001 µg</th>
<th>0.01 µg</th>
<th>0.1 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugate 1</td>
<td>485 (413, 569)</td>
<td>804 (565, 1145)</td>
<td>1563 (1048, 2330)</td>
</tr>
<tr>
<td>Conjugate 2</td>
<td>556 (438, 707)</td>
<td>871 (609, 1247)</td>
<td>1672 (1054, 2651)</td>
</tr>
<tr>
<td>Conjugate 9</td>
<td>395 (329, 475)</td>
<td>856 (627, 1168)</td>
<td>1802 (1108, 2930)</td>
</tr>
<tr>
<td>Unconjugated PS</td>
<td>-</td>
<td>-</td>
<td>698 (466, 1045)</td>
</tr>
</tbody>
</table>

As shown in the above table, conjugates 1 and 2, when administered to mice, generate antibodies capable of opsonizing serotype 15B S. pneumoniae, triggering complement deposition, thereby facilitating phagocytosis and killing of bacteria by phagocytes. In addition, despite their lower molecular weight, they also exhibited similar level of immunogenicity as compared to conjugate 9 which has not been sized.

Example 4: Cross-functional OPA responses between serotype 15B and serotype 15C

Pneumococcal serogroup 15 includes four structurally-related serotypes: 15A, 15B, 15C, and 15F. Serotypes 15B and 15C are undistinguishable by genetic typing techniques and have similar capsular polysaccharide (PS) composition, except that the 15B-PS is the O-acetylated variant of 15C-PS. To understand whether anti-capsular PS antibodies for serotype 15B are functionally cross-reacting with serotype 15C, 10 rabbits were immunized with PCV16v and PCV20v vaccines both containing an immunogenic conjugate comprising Streptococcus pneumoniae serotype 15B capsular polysaccharide covalently linked to CRM$_{197}$ as disclosed herein as part of their formulation. Sera from pre- and post-vaccination were tested in OPA assays against serotypes 15B and 15C target pneumococcal strains. Of the 10 rabbits from each group, 100% had OPA response to serotype 15B following immunization with a serotype 15B conjugate. Of these same samples, 100% had OPA response to serotype 15C as well (Table 1 and Table 2). Low OPA titers were observed in prevaccination sera in 15C OPA. However, over 10-fold GMT OPA titer increase with post vaccination sera compared to pre vaccination demonstrated that the immunogenic conjugates of the invention induces the formation of antibodies capable of killing serotype 15B and 15C Streptococcus pneumonia in an OPA.

PCV16v is a 16-valent conjugates composition comprising glycoconjugates from S. pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 15B, 18C, 19A, 19F, 22F, 23F and 33F (16vPnC) all individually conjugated to CRM$_{197}$.
PCV20v is a 20 valent conjugates composition comprising glycoconjugates from *S. pneumoniae* serotypes 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 12F, 14, 15B, 18C, 19A, 19F, 22F, 23F and 33F (20vPnC) all individually conjugated to CRM\(_{97}\).

Table 1. OPA Titers Against serotypes 15B and 15C strains in Rabbit Sera Pre and Post vaccination with PCV16v

<table>
<thead>
<tr>
<th>Animal</th>
<th>15B OPA</th>
<th>15C OPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wk0</td>
<td>wk4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4129</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1645</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1131</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3199</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2664</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4589</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>3601</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1838</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1334</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1108</td>
</tr>
<tr>
<td>GMT</td>
<td>4</td>
<td>2222</td>
</tr>
</tbody>
</table>

Table 2. OPA Titers Against serotypes 15B and 15C strains in Rabbit Sera Pre and Post vaccination with PCV20v

<table>
<thead>
<tr>
<th>Animal</th>
<th>15B OPA</th>
<th>15C OPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wk0</td>
<td>wk4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3784</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>862</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3056</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1948</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2360</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1594</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4943</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2419</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1245</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>616</td>
</tr>
<tr>
<td>GMT</td>
<td>4</td>
<td>1917</td>
</tr>
</tbody>
</table>

* Titer cannot be determined due to bad killing curves
Claims

1. An isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM acetate per mM of said serotype 15B capsular polysaccharide.

2. The isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide having a molecular weight between 5kDa and 500kDa.

3. The polysaccharide according to claim 2 having a molecular weight between 100kDa and 350kDa.

4. The isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM glycerol per mM of said serotype 15B capsular polysaccharide.

5. The polysaccharide according to any one of claims 1 to 4 comprising at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide.

6. The polysaccharide according to any one of claims 1 to 5 comprising at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

7. An immunogenic conjugate comprising an isolated *Streptococcus pneumoniae* serotype 15B capsular polysaccharide according to any one of claims 1 to 6 covalently linked to a carrier protein.

8. The immunogenic conjugate according to claim 7 where the carrier protein is CRM197.

9. The immunogenic conjugate according to claim 7 or 8 where the immunogenic conjugate comprises less than about 50, 45, 40, 35, 30, 25, 20 or 15% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.

10. The immunogenic conjugate according to any one of claims 7 to 9 where the immunogenic conjugate comprises less than about 40% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.
11. The immunogenic conjugate according to any one of claims 7 to 10 where the immunogenic conjugate comprises less than about 20% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.

12. The immunogenic conjugate according to any one of claims 7 to 11 where the immunogenic conjugate has a molecular weight between: 3000 and 20000kDa; 8000 and 20000kDa; 8000 and 16000 KDa; or 10000 and 16000 KDa.

13. The immunogenic conjugate according to any one of claims 7 to 12 where the immunogenic conjugate has a molecular weight between 10000 and 16000 KDa.

14. The immunogenic conjugate according to any one of claims 7 to 13 where the ratio of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.4 and 2.

15. The immunogenic conjugate according to any one of claims 7 to 13 where the ratio of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.7 and 0.9.

16. The immunogenic conjugate according to any one of claims 7 to 15, wherein at least 40% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

17. The immunogenic conjugate according to any one of claims 7 to 15, wherein at least 50% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

18. The immunogenic conjugate according to any one of claims 7 to 15, wherein at least 60% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

19. The immunogenic conjugate according to any one of claims 7 to 17 wherein the degree of conjugation is between: 2 and 15; 2 and 13; 2 and 10; 2 and 8; 2 and 6; 2 and 5; 2 and 4; 3 and 15; 3 and 13; 3 and 10; 3 and 8; 3 and 6; 3 and 5; 3 and 4; 5 and 15; 5 and 10; 8 and 15; 8 and 12; 10 and 15; or 10 and 12.

20. The immunogenic conjugate according to any one of claims 7 to 17 wherein the degree of conjugation is between 2 and 6.
21. The immunogenic conjugate according to any one of claims 7 to 17 wherein the degree of conjugation is between 3 and 5.

22. An immunogenic composition comprising an immunogenic conjugate according to any one of claims 7 to 21 and a physiologically acceptable vehicle.

23. The immunogenic composition according to claim 22 further comprising at least one additional antigen.

24. The immunogenic composition according to claim 22 or 23 further comprising an adjuvant.

25. The immunogenic composition according to claim 24 where the adjuvant is aluminium phosphate.

26. A vaccine comprising an immunogenic composition according to any one of claims 22 to 25.

27. A process for producing a polysaccharide according to any one of claims 1 to 6, said process comprising the steps of:
(a) preparing a fermentation culture of serotype 15B Streptococcus pneumonia bacterial cells;
(b) lysing the bacterial cells in said fermentation culture;
(c) purifying Streptococcus pneumoniae serotype 15B capsular polysaccharide from the fermentation culture;
(d) sizing the purified Streptococcus pneumoniae serotype 15B capsular polysaccharide by high pressure homogenization.

28. A process for producing an activated Streptococcus pneumoniae serotype 15B capsular polysaccharide, said process comprising the step of reacting the isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide of any one of claims 1 to 6 with an oxidizing agent.

29. The process according to claim 28 where said process comprises the step of reacting said isolated Streptococcus pneumoniae serotype 15B capsular polysaccharide with 0.1 to 0.3 molar equivalent of sodium periodate during 15 to 20 hours at a temperature between 20 and 25°C.
30. An activated serotype 15B capsular polysaccharide obtained or obtainable by the process of claim 28 or 29.

31. An activated serotype 15B capsular polysaccharide having a molecular weight between about 5 and 500 kDa, about 50 and 450 kDa, about 100 and 400 kDa, about 100 and 350 kDa, about 100 and 300 kDa.

32. The activated polysaccharide according to claim 31 comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM acetate per mM of said serotype 15B capsular polysaccharide.

33. The activated polysaccharide according to claim 31 comprising at least 0.6 mM acetate per mM of said serotype 15B capsular polysaccharide.

34. The activated polysaccharide according to any one of claims 31 to 33 comprising at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8 mM glycerol per mM of said serotype 15B capsular polysaccharide.

35. The activated polysaccharide according to any one of claims 31 to 34 comprising at least 0.6 mM glycerol per mM of said serotype 15B capsular polysaccharide.

36. The activated polysaccharide according to any one of claims 31 to 35, characterized by a degree of oxidation between 2 and 20, 2 and 15, 2 and 10, 2 and 5, 5 and 20, 5 and 15, 5 and 10, 10 and 20, 10 and 15, or 15 and 20.

37. The activated polysaccharide according to any one of claims 31 to 36, characterized by a degree of oxidation between 5 and 15.

38. The activated polysaccharide according to any one of claims 31 to 36, characterized by a degree of oxidation between 10 and 20.

39. The activated polysaccharide according to any one of claims 31 to 36, characterized by a degree of oxidation between 15 and 20.

40. The activated polysaccharide according to any one of claims 31 to 36, characterized by a degree of oxidation between 10 and 15.
41. A process for the preparation of an immunogenic conjugate comprising *Streptococcus pneumoniae* serotype 15B capsular polysaccharide covalently linked to a carrier protein, the process comprising the steps of:

(a) compounding the activated polysaccharide of anyone of claims 30 to 40 with a carrier protein; and

(b) reacting the compounded, activated polysaccharide and carrier protein with a reducing agent to form a serotype 15B capsular polysaccharide-carrier protein conjugate.

42. The process according to claim 41 wherein the carrier protein is CRM₉₇.

43. The process according to claim 41 or 42 wherein step (a) and step (b) are carried out in DMSO.

44. The process according to claim 41 or 42 wherein step (a) and step (b) are carried out in aqueous solution.

45. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is between 0.1 and 10 mg/mL, 0.5 and 5 mg/mL or 0.5 and 2 mg/mL.

46. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 mg/mL.

47. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 0.5 mg/mL.

48. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 1 mg/mL.

49. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 1.5 mg/mL.

50. The process according to any one of claims 41 to 44 wherein the concentration of activated serotype 15B capsular polysaccharide in step (b) is about 2 mg/mL.
51. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is between 5:1 and 0.1:1, 2:1 and 0.1:1, 2:1 and 1:1, 1.5:1 and 1:1, 0.1:1 and 1:1, 0.3:1 and 1:1, 0.6:1 and 1:1, or 0.6:1 and 1.5:1.

52. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.

53. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 0.6:1.

54. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 0.8:1.

55. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 1:1.

56. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 1.5:1.

57. The process according to any one of claims 41 to 50 wherein the initial input ratio of activated serotype 15B capsular polysaccharide to carrier protein is about 2:1.

58. The process according to any one of claims 41 to 57 wherein in step (b), the activated polysaccharide is reacted with between about 1 and 2 molar equivalent of sodium cyanoborohydride during about 40 to 50 hours at a temperature between about 20 to 26°C.

59. The process according to anyone of claims 41 to 58 wherein said process comprises the additional following step:
 (c) capping unreacted aldehyde by addition of NaBH₄.

60. The process according to anyone of claims 41 to 59 wherein said process further comprises the step of formulating the conjugate in a multivalent vaccine.

61. The process according to any one of claims 41 to 60 wherein the yield of the conjugation step (b) is greater than 50%.
62. The process according to any one of claims 41 to 60 wherein the yield of the conjugation step (b) is greater than 60%.

63. An immunogenic conjugate obtained or obtainable by the process of any one of claims 41 to 62.

64. The immunogenic conjugate according to claim 63 where the immunogenic conjugate comprises less than about 40% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.

65. The immunogenic conjugate according to any one of claims 63 to 64 where the immunogenic conjugate comprises less than about 20% of free serotype 15B capsular polysaccharide compared to the total amount of serotype 15B capsular polysaccharide.

66. The immunogenic conjugate according to any one of claims 63 to 65 where the immunogenic conjugate has a molecular weight between: 3000 and 20000kDa; 5000 and 10000kDa; 5000 and 20000kDa; 8000 and 20000kDa; 8000 and 16000 KDa; or 10000 and 16000 KDa.

67. The immunogenic conjugate according to any one of claims 61 to 66 where the ratio of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.4 and 2.

68. The immunogenic conjugate according to any one of claims 61 to 65 where the ratio of serotype 15B capsular polysaccharide to carrier protein in the conjugate is between 0.7 and 0.9.

69. The immunogenic conjugate according to any one of claims 61 to 68, wherein at least 40% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

70. The immunogenic conjugate according to any one of claims 61 to 68, wherein at least 60% of the immunogenic conjugate has a Kd below or equal to 0.3 in a CL-4B column.

71. The immunogenic conjugate according to any one of claims 61 to 70 wherein the degree of conjugation is between: 2 and 15; 2 and 13; 2 and 10; 2 and 8; 2 and 6; 2 and 5, 2 and 4; 3 and 15; 3 and 13; 3 and 10; 3 and 8; 3 and 6; 3 and 5; 3 and 4; 5 and 15; 5 an 10; 8 and 15; 8 and 12; 10 and 15; or 10 and 12.
72. The immunogenic conjugate according to any one of claims 61 to 70 wherein the degree of conjugation is between 2 and 6.

73. The immunogenic conjugate according to any one of claims 61 to 72 wherein the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the activated polysaccharide is at least 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95, preferably at least 0.7 or at least 0.9.

74. The immunogenic conjugate according to any one of claims 61 to 72 wherein the ratio of mM acetate per mM serotype 15B capsular polysaccharide in the immunogenic conjugate to mM acetate per mM serotype 15B capsular polysaccharide in the activated polysaccharide is at least 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95, preferably at least 0.7 or at least 0.9.

75. An immunogenic composition comprising an immunogenic conjugate according to any one of claims 61 to 74 and a physiologically acceptable vehicle.

76. A vaccine comprising an immunogenic composition according to claim 75.

77. A method of protecting a subject against an infection with serotype 15B Streptococcus pneumoniae, the method comprising administering to a subject an immunogenic amount of the immunogenic composition of any one of claims 22 to 25 or 75, or the vaccine of claim 26 or 76.

78. A method of treating or preventing a Streptococcus pneumoniae infection, disease or condition associated with serotype 15A, 15B and/or 15C Streptococcus pneumoniae in a subject, the method comprising the step of administering a therapeutically or prophylactically effective amount of an immunogenic composition according to any one of claims 22 to 25 or 75, or the vaccine of claim 26 or 76.

79. A method of treating or preventing a Streptococcus pneumoniae infection, disease or condition associated with serotype 15B and/or 15C Streptococcus pneumoniae in a subject, the method comprising the step of administering a therapeutically or prophylactically effective amount of an immunogenic composition according to any one of 22 to 25 or 75, or the vaccine of claim 26 or 76.
80. A method of treating or preventing a Streptococcus pneumoniae infection, disease or condition associated with serotype 15B Streptococcus pneumoniae in a subject, the method comprising the step of administering a therapeutically or prophylactically effective amount of an immunogenic composition according to any one of claims 22 to 25 or 75, or the vaccine of claim 26 or 76.
Figure 1

\(R = \text{Ac} \) (C6 = 55\%, C4 = 12\%, C3 = 12\%, C2 = 6\%)

\[\begin{align*}
6\gamma\text{-D-GlcP-NAc-}\beta\gamma(1 \rightarrow 3)\gamma\text{-D-GalP-}\beta\gamma(1 \rightarrow 4)\gamma\text{-D-GlcP-}\beta\gamma(1 \rightarrow 4)\gamma\text{-D-GalP-}\beta\gamma(1 \rightarrow 2)\gamma\text{-D-GalP-(3-OPO}_{3}{-R^1})\beta\gamma(1 \rightarrow 4)\gamma\text{-D-GalP-}\beta\gamma(1 \rightarrow 4)\gamma\text{-D-GlcP-}\beta\gamma(1} \]

R^1 = \text{CH}_2\text{CH}_2\text{OH}_2

C_{37}H_{61}NNaO_{31}P, \text{ MW}=1069.8

\text{Ac= Acetyl}