US 20100268623A1

a2y Patent Application Publication o) Pub. No.: US 2010/0268623 A1

a9 United States

Barth et al.

43) Pub. Date: Oct. 21, 2010

(54) PURCHASE HANDOFF IN A TRAVEL

SEARCH ENGINE
(75) Inventors: Brian E. Barth, Palo Alto, CA
(US); Stewart A. Kelly, Cupertino,
CA (US); Marcel D. Janssens, Palo
Alto, CA (US)
Correspondence Address:
FENWICK & WEST LLP
SILICON VALLEY CENTER, 801 CALIFORNIA
STREET
MOUNTAIN VIEW, CA 94041 (US)
(73) Assignee: KAYAK SOFTWARE
CORPORATION, Norwalk, CT
(US)
(21) Appl. No.: 12/819,997
(22) Filed: Jun. 21, 2010
Related U.S. Application Data
(60) Continuation of application No. 11/091,852, filed on

Mar. 28, 2005, now Pat. No. 7,774,331, which is a
division of application No. 09/815,836, filed on Mar.
22, 2001, now abandoned.

CLIENT SPACE

HOME COMPUTER

(60) Provisional application No. 60/191,346, filed on Mar.
22, 2000.
Publication Classification
(51) Imnt.ClL
G060 30/00 (2006.01)
GO6F 17/30 (2006.01)
(52) US.CLoeeee 705/27;707/769; 707/E17.014
(57) ABSTRACT

A method and apparatus are provided for a dynamic informa-
tion connection engine. User actions are detected on at least
one client system. In response, a determination is made
whether the user is searching for supported information.
When the user is searching for supported information, infor-
mation is extracted electronically from third party web sites,
direct supplier connections, and intermediate databases.
Potential information suppliers are automatically selected in
response to the detected user search. Queries are formulated
from the user search and transferred to each selected supplier
over a network coupling. The queries include a request for
information. Responses are received from the suppliers, and
the responses are used to generate a result list for the user. The
result list includes information and query status information.
Further, an electronic link may be provided to a web site of
each supplier from which the information was derived.

SERVER SPACE

102

;
WORK STATION J

SERVER

PDA .
. y ,
PRODUCT JUPPLIERS
AND INFORMATIONAL
e WEB SITES

106

¢ sor | g0t
ma& $3LI5 83m
, TWHOLLYWAOM Oy ;
$e3TT44NS 1ONG0OU

US 2010/0268623 Al

d3L04WOT IHOH

TivA3gl

Oct. 21,2010 Sheet1 of 13

viva

AL

AVHEY N5I0 # T3

CEIEL)

mmwmmx%

y
T0V4S HAANES ToVaS TNGT

Patent Application Publication

US 2010/0268623 Al

Oct. 21,2010 Sheet 2 of 13

Patent Application Publication

EEI LY

80

Z

oz
$34IS a3M

TYNOUYHAOHN gy » 3416 gam

$¥Nd4NS 100G0Ud 1404 ONIddOHS

N) 4 Y,

\ iz

/ o1z

mwww

i

Patent Application Publication Oct. 21,2010 Sheet 3 of 13 US 2010/0268623 A1

300

=z

—
BET: §§T§&i§ USER ACTIONS | —

DETERMINING IF USER IS SEaRcHiNG | 204

FOR INFORMATION

EXTRACTING INFORMATION | 306
FROM USER ACTIONS]

308
SELECTING SUPPLIERS 1

TRANSFERRING QUERIES TO |
SELECTED SUPPLIERS |

312
PRESENTING RESULTS TO USER 1

US 2010/0268623 Al

Oct. 21,2010 Sheet 4 of 13

Patent Application Publication

$35¥av1Ya
HIAUIS

Bi%i8

obed |
banioduey |

saseyoind 103 Aspel gom Bupmbes saips
goim Jajddns yum suvgossuns) Siojdops yoiges
4o papues Bujpmauns s19efge segsuey

2 %n oo w0n a0 a0 o

| e EOJISS AdBi g Anisy o

siapineic @R obusymie I

L »! m S5 qom
u <
;
§

§
I SIB M0k Josn gum mm%ﬁ%v,

"no RRs nre sm o8 oo one Dre nee BEn 000 o KX N ERD

B s oy . S

i
H
§
§
f
f
M Biop jsod oo
|
w &mm » w] h@ ;m: mmhmﬁm@&
i
£ . ain joonbal sen GiEpIpUBD
jeseid g j9E | e A L
m $99100 Bjujies)) Jsennel mwwx ipias e 3 ey moy 1804
: sm sssssssssssss < wojshs oguoms
H olfS 51 By donsES PN paapeig/m shungess ~
! BUG 40} SEUEPY UG BITJRD , P
: IS Gigeg gery . Pl W 1504
i
BB Fh e o o e o o e e e e e p
ajpais 1o job m kit £
joslge f
40043 ain ke 3
plos gin ogupses) sserbe: e o e el RS W0 10
f oo o m e e FEIMES OIS ﬂ//.ua
ISR 20b
o wmi Anjond ook

US 2010/0268623 Al

Oct. 21,2010 Sheet S of 13

Patent Application Publication

DI

UBHOBIRE BAESES, L.\
Gumoyeg sysenbey//
issmnig Jasn |/

SHINNSHOD 404 %_\m
$3LIS 83M AIQIADAA 5

5| S3AAQA 0L 30V ANILIN

JAVITHIAYIS L
304

S8
FSR0HIUVA
~y ¥ivg BiBp |
eis Hpuad

Sui}]
eseyoind sigepes
sog spenbat .

Isjuing wdeg o oy
BugeeaRang 36 1§04
dary 9} syt
365 {5oh08]

5 03N 3301A0¥d 30
ISVAVIVO ALMVAQHIL |F
b05

/<
| lepeg g

A

) TR ED
< i8jaisg jopder) o Jsenba
au5h SiBBIPUNS 30 1504

< jojuisg
Bupusieg-peet o 1504

.A i8jusg 0I5 O 1504

|

i

i
8
e
R

oo N .mvwmwm.mm

WL INO 1Y FAUIY
SiN3ID 40 138

§3Lis \
s | NG L
LIN¥ILN SSOUOY ~

m SHOLLDINNOD WOIS0T | 005

Patent Application Publication Oct. 21,2010 Sheet 6 of 13 US 2010/0268623 A1

FIG. 6A

CONTENTS OF: "
600 602 : 604
§ ~BAR SUBWINDOW MAIN BROWSER WiNDOW —
suser hrowses
bar subwindow %
aot yet displayed gnrelated raquast from browsar
2 ' '
o s o usar navigetes e / Third-Pariy
to thirdparty Yiage Travel
fravel senroh/ s Felumed Wah Site
ageney sits Sorvar
| idroductory é@__g
@ 8§
606 browsr user am:az _? ges K2
Coplist Servlet netfles BHO requsst “fa :
sandidale e & sdbelle Hinerary Y
. Dﬁﬁ? W gashorm
request i soarch
: ST
blank
¥ serees W rghurn "segrch]
N . ?za progresy”
3&;‘ gsg g@ﬁf@h 3? ?ggg
=34 rosulls returned ngmg
3 inerementally, ' played
-+ disgplay updated A 4
> for each
ssar doss ' rasulle pags J gﬁ;?j ol
rasulis ~ ratumed Soned
time gsms » gser salacts 4 “raserve”
wille sontained in bar ‘
user « hient navigates : W"“E“’?” Sappliar
svaluaies usse’s browser pags ree Wab Sie
T returned
\}m -3Y puzchaser
P yags displayed
A 4

Patent Application Publication Oct. 21,2010 Sheet 7 of 13 US 2010/0268623 A1

CONTENTS OF:
600 402 e —— 600
é,.x ™ BAR SUBWINDOW MAIN BROWSER WiNDOW —
bar contoute First Purchace Supplier
do a0t nesd Page Dlspleyed Web Siis
is change
during uger
yurchase s ggor finighes
wffirst poga,
sslects noxt
sssemd :
purchaes Page. west r&g’s |
: : pages 618
Nth purchase | psturmed
ouesr mokes 7908 fingl user
finsl approvel approval
Copllot Serdlet ,-i@é of purchase wquast
“buy tracking” v >
informetion o .] naw pags
rsived Cliont detests thet TeCHy page
and stored for ‘ recelpt URL matehef displayed
futurs Involee fist. Extracts confirmation
gensration infa & POST's to samver
egzer navigates
mals window to
oW WQM rag. Web
1 Sorvee
Hote: no vielbls
change in bar a8 \@gﬁg@_ﬁn
8 recult of buy tracking returmed
@ M m

& "

US 2010/0268623 Al

Oct. 21,2010 Sheet 8 of 13

Patent Application Publication

EW &@mgm

suigishs inpunw 29

dryaag

4] eA08

29 ‘Aujerqen

FINY Sﬁm@

JerplAlpY 9 SUIBY JoAlas wWniel

Jaglieny,
fussungy

L Y T a—— }

\\\\a\\\\\\ W\mma% @%& 6

ey jpusals) _

UGjss2E Mou oy
140) SHUSY JeAles

sepnol SHA mgﬁ 1

swouspy <

“§ojh0s RINEIBGPEOT ﬂ
BAJSS [jE J0 ijoe, SH90YD mmwwwmw@gm [T wgi\x

sueyeis seaies mv |
sus Aus of painad

pousIe! Sinses

o

ol
NEYEY

484
‘gpdwnda 303 ‘ed swsy

_dap0s op0eds wnges

SUTBBLYSED BYS Jeales

poo] IBjloumios

sugionsunly SPUAIRIep SHde
HHHEE, w 0D QBBUSHIOs" # oIS,
€ TI50d

u%%@mgu mopdgd % AINYILINE

pre—

S04

618 tonies

004

US 2010/0268623 Al

Oct. 21,2010 Sheet 9 of 13

Patent Application Publication

2 bid

? ainfum w |

ousisibel josn

{siog 30 48] ..

g anl—"

{30Hg & W11

ysfae voysyesy |
uB epuisy

seouBisY)
intjdiz Joulsi

t

polgo sy N/
! Buipmou; oBed gam Jepdpe By e
[joamos am sejsaon domne.) i
1 o sieg T
o spoguod oo/

oH ¢ R

2 000 a0 o o9 oou GO0 o U0 00U UY 0O UUG GOV GUR GUD XY

QX% R KR KRR KRR KKX KRR SnS A Ane Ay i o

passHuRISY] oum
YO SO0

$a0UHIY}

Nrn Ann nr s SRR AR RS ARE ENE 66D Do S 0r W 0w ey oe

%@%ﬁ&
_ doelye veynisian ./
e B0

(S MR AAS AR AN G M 00 o AAD AR AAN AN SOC GO0 GO0 OO0 DOD 300 M KU v W 0 X 0 N UV AAS AR A e

HuiBuRap ST YO SIIGY eAsUY

«
018 <
Aysibey

SMUPUIM

Y] JuBys yo suoy ppe

peigr 159 passgenisty.
oTe agh uaii /e
S a5 8 S0 OB ssisies
a5 Aniton Jesn
T tﬁ% AOpUYs J8SROIY 4
e el Uy Aypien dosn - 4 Sevumgst e{go m
i

] A i
| b8 |
i H
: 0 sanyaUR) sijoRtsE duule % (UM 114 w
H . o
Tmmmmmmmmmmmmmmmmmm e e Buiibiues o% g

=

008

wey ness pefudap suo) Jos0Y BAIOSR), Sioejes Josh (2)

o b WL 195 Ty vo obed gem sessavon sesn (1)

HI5M0¥E 938 ,
iosn o) shod Andspa—"

US 2010/0268623 Al

j paunges obod

ssjdeps o es Agpuibye sepecy sephiou .

108D 38}

3¢ sebed wnge:

(o]

o

S

= mmﬁawww “obnd oseyoind, iu) Bontal 1Gng 0 135

3 s asmosg of fosues opeBiasu, spusse) | josues Jesmoig/a

= | 195%03q ¥ SIS ‘sjpusioies ‘iejddns 1oefge soq

- \ T pRI0R]SS J6) SEPIOOD SIOBYNRe \ T -

= P N S M M

] /g - () 3o pee - sosm |

b~ / O ? w e o M

~ 958 B POIOS Sopj00y e n w sopio0s g oy

L L sapns pus SRIe) pugs - w

o i
§

SSes B8 -
TR TR T L — _ | M%m aw,_ M@%N& .
g 1350 sijnses yones Eww 1 R soly pastsd sinsel e f
=) s peenicl Bupelyy yoiees jsod ope i &gga afnd
2 A L synsos Jaipddns onoros o &
e i | . " M 06
o \ < DT uadepo R M oS 9o
£ L > 1504 sesbar ajuppues T e — seideps m e
E \. % CHEm I L
AW o W3LEAS SIS0 P ELE ELY
- Py Y 4
m .
< 006
[~™

US 2010/0268623 Al

Oct. 21,2010 Sheet 11 of 13

Patent Application Publication

ey e O .
of sjoalge owos pimmiy joslas | STBLE SIIG SGUNBAB 55 Sue)f LIRjel .

sy / ?

= wis) yosbes ieg 5139 e

ML
%
M
o honsna a4l Y2IBEB190, w
‘ papasy Iraofbssep 40 i 3 d M
o0} pejmiep — 1 55 spoaiyg ejpors " joed mw&@ @m& g%@ m
sousysy) Jasige W.. g, m
N " NPY. S petlingel spnses
sijuses piib o} .. ~F 0000 P
QOG0 o seyddns o) sisonbal
sissnbas By < ook oo sog | i } 848
§
havispy sesn ‘Jagy Manpyjeael) & jb s4ed pasimfieideps !
“hangsiy sayjddns . o5 |
siapddns oL 3o ounsdfseqy qusesarg | Busssond dogs - |
o) prjiviep A spelge ey !
> ™ (.0, pousnies) |
o 2040 € > e
‘858t 1yl yoslae hionly jonna) job w . 3,1, 40,0, Bl
i
3 € law opuppe &@m m
qi§ iosipioe |
07 . "l ogupsesyy ' ssanbos Jasa
jueses T | Sicpipussfa ey ey 1504
ol
SIS)T welge mupmg menber | L _ . ain ,méwmmm <
< SRR s OIS Jiid07 Aﬁw..
SOSEGRIBG JoAST wmmma\ Aingony 2601 000!

Patent Application Publication Oct. 21,2010 Sheet 12 of 13 US 2010/0268623 A1

1100

(((((((N
‘ TN 1104

%@%gge

" Deta ﬁmiyg

unrestricied |
%ﬁ§g§ﬁ§ﬁ§ read acgege Aéﬁﬁ@f feom]
historicsl N Third-Party

servicedefined date-output AP

fransection date

U S «ggﬁé
4 output interfase module Y

digesisd dete,
produced by snalysls
e Y - adapter and feas Fram
™ digestd data] %ys ‘ any corfidential/
formulated to < gnd/or autometis e s%mgf persongl Information
Third Pasly \._thoeking present In origlngl

R RRRRRIRRRRRR &Q ?ﬁ%gg@

Estween the row sulpat
of the snslyels adapler and
seading on digested dots,
the eriginal detehase owner
performs whatever chacke
§18 pecessary o ensurs
digested data doss nut
eontain eneryplod/"hlddes”
pelvate information from
priglual detabace

US 2010/0268623 Al

Oct. 21,2010 Sheet 13 0of 13

Patent Application Publication

sww@mgmmﬂfxwaauufssssm aaaaa pa— ,:::., Nm » ML

§
;
Jonpgsues :
589} yomm M
Buyyeiues jsafiy : ssouesajasd pus
pajrpdn Aeopoued ; Agjinsyens uo o Buppaoid
f

$0Z1

BEIDELL

)
$AAG 1989 /

9} Ados/

SeHS Hemes o) -
SnoYsiBN 8i8(
Woy uojosIULD

Y8 g papdeg

G G R O R RS VR AR RO A R R AR G R R ARR RRA RRA WP

§

l

g §

s WY Biop 708t L LN M
jBopolsyy wisishs ‘ sjpljsun wiep Jeyddns !
wey speat idere sanjdape High GIBOIBNUIDS 0f w
4 3 “ !
— sishipus ajep ‘ seydepe yupas i

spddns . [foioeds “

M

f

P A e e 0o 0o o KR o R WS A e 0o 0o o 0 o

B

B0zl

US 2010/0268623 Al

PURCHASE HANDOFF IN A TRAVEL
SEARCH ENGINE

RELATED APPLICATIONS

[0001] This application is a divisional of U.S. application
Ser. No. 09/815,836, filed Mar. 22, 2001, which claims the
benefit of U.S. Provisional Application Ser. No. 60/191,346,
filed Mar. 22, 2000, each of which is incorporated herein by
reference.

BACKGROUND
[0002] 1. Field of the Invention
[0003] The present invention relates to systems used to find

and present information from multiple sources, and more
particularly, to systems that find information on the Internet
from suppliers or purchasers of goods, services, or commodi-
ties and present that information to potential purchasers or
suppliers performing comparisons.

[0004] 2. Description of Related Art

[0005] Since the conception of the Internet and extending
through the development of Hypertext Transfer Protocol
(HTTP) and the World Wide Web (web) to the present, one of
the biggest barriers to people taking full advantage of the
capabilities offered by the Internet is the difficulty in sifting
through the available information to find the desired informa-
tion. Currently, there are many different search systems avail-
able on the Internet. The broad categories of search systems
include systems that address very narrow collections of data,
systems that operate by first building a local database that
describes the contents of the searched web sites, and systems
that target a specific type of data. There are a number of ways
in which these systems differ, such as the range of informa-
tion they attempt to search, the technical mechanisms that
they use to search, the user interface they provide for speci-
fying the desired data, the user communities to whom they are
available, the way they are marketed, and the business models
that they are designed to support.

[0006] An example of search systems that address very
narrow collections of data are the “captive” search systems
that are built into/for individual web sites, and allow users of
the web site to find desired information within the specific
site. In general, there are useful implementations of these
systems available, often having user interfaces that can be
customized to reflect the contents of the site. However, these
search systems are usually not helpful in performing com-
parisons because individual web sites are typically main-
tained by individual companies, so the same search operation
does not return comparable data.

[0007] A typical search engine that purports to search the
entire web (that is to say, HI'TP servers, which is a subset of
the entire Internet) operates by first building a local database
that describes the contents of the searched web sites, and then
searches that database in response to user queries. Search
systems of this type differ primarily in the way they determine
which pages of data from which sites are to be added to the
database, and in how the database is managed and condensed,
as it is impractical in most cases to keep an entire copy of the
search range on the search system. Systems of this type typi-
cally repeat the process of gathering data from the Internet
periodically in order to update the local database so that it
accurately reflects the contents of the various web sites
searched.

Oct. 21, 2010

[0008] Search systems that target a specific type of data
operate like the systems that address very narrow collections
of data and the systems that operate by building a local data-
base in that they must gather data from the Internet before
users can make requests of the search system. However, the
data gathered is generally filtered to determine if it is the
desired type. This can either be done implicitly by the search
system operators manually creating a list of the web sites that
should be searched, or explicitly by an automated portion of
the search system. Most existing comparison shopping search
systems work in this way.

[0009] Another aspect of existing Internet search practice is
the technique of processing individual web pages using auto-
mated systems to extract desired data, where the web pages
typically include HTML source text and are intended to be
presented to a human user. To an extent, this technique is used
by the systems that operate by building a local database and
the systems that target a specific type of data because they
have to differentiate HTML formatting directives from text
content that is to be searched and from the URLs of other
referenced Internet objects that may be the target of subse-
quent database building.

[0010] However, the more detailed and specific process of
analyzing a web page for a particular piece or type of data,
often referred to as scraping, is not employed by most search
systems. There are many systems, both for searching and for
other purposes, that employ scraping. However, many scrap-
ing implementations have less-than-desirable performance
and/or search characteristics and are unsatisfactory for appli-
cations in which scraping would otherwise be a viable tech-
nique to employ.

[0011] Additionally, most existing systems that perform
scraping are very limited in the web site structures that they
support. For example, some web servers require that the
accessor, typically a user, reach a page by passing through a
series of other pages. In this type of web site, the content of a
page depends not only on its URL but also on prior history, the
page location within a framed page, page content that is
generated dynamically (such as by a client-interpreted
embedded language like JavaScript), and cookies set from the
server. Most of these sites cannot be accessed by traditional
scraping systems because the systems cannot process a
sequence of pages or fully emulate all of the browser func-
tionality required by some pages.

[0012] Consequently, there is a need for a system that effi-
ciently gathers and evaluates information from multiple elec-
tronic sources and presents relevant information to potential
buyers, sellers, or traders. This information includes, but is
not limited to, information regarding goods, services, and
commodities.

SUMMARY OF THE INVENTION

[0013] A method and apparatus are provided for a dynamic
information connection engine, wherein user actions are
detected on at least one client system. In response, a determi-
nation is made whether the user is searching for supported
information. When the user is searching for supported infor-
mation, information is extracted electronically from third
party web sites, direct supplier connections, and intermediate
databases. Potential information suppliers are automatically
selected in response to the detected user search. Queries are
formulated from the user search and transferred to each
selected supplier over a network coupling. The queries
include a request for information. Responses are received

US 2010/0268623 Al

from the suppliers, and the responses are used to generate a
result list for the user. The result list includes information and
query status information. Further, an electronic link may be
provided to a web site of each supplier from which the infor-
mation was derived.

[0014] The descriptions provided herein are exemplary and
explanatory and are intended to provide examples of the
claimed invention.

BRIEF DESCRIPTION OF THE FIGURES

[0015] The accompanying figures illustrate embodiments
of the claimed invention. In the figures:

[0016] FIG. 1 is a block diagram of transaction system
architecture of an embodiment.

[0017] FIG. 2 is a block diagram of a transaction system
process flow of an embodiment.

[0018] FIG. 3 is a flow diagram of a dynamic information
connection engine of an embodiment.

[0019] FIG. 4 is a block diagram of the server organization
of an embodiment.

[0020] FIG. 5 is a block diagram of a transaction process
flow of an embodiment.

[0021] FIGS. 6A and 6B diagram user operation and infor-
mation flow of a search system of an embodiment.

[0022] FIG. 7 is a block diagram of a load balancing
arrangement of an embodiment.

[0023] FIG. 8 shows a client system organization of an
embodiment.

[0024] FIG. 9 diagrams a flow of supplier cookies of an
embodiment.

[0025] FIG. 10 is a diagram of a Copilot Servlet organiza-
tion of an embodiment.

[0026] FIG. 11 shows a data analysis adapter configuration
of an embodiment at a data warehouse.

[0027] FIG. 12 shows a data analysis adapter configuration
of an embodiment at a server site.

DETAILED DESCRIPTION OF THE INVENTION

[0028] The method and apparatus of an embodiment gath-
ers, processes, and delivers information relevant to implicit or
explicit user queries. An embodiment of the dynamic infor-
mation connection engine, or search system, specifically
addresses, but is not limited to, systems where the user que-
ries are travel itineraries or descriptions associated with a
desired trip, and where the information includes different
travel options that fit the itinerary and which the user can
purchase. These travel options include, but are not limited to,
airline, hotel, and car rental information. This system is easy
and inexpensive to implement and maintain, and provides
lower distribution costs. Further, the system of an embodi-
ment promotes relationships with brand-loyal customers
while also increasing awareness of other available suppliers
through extensive comparison capability. Moreover, the sys-
tem supports the capture of data on consumer and competitor
behavior.

[0029] FIG. 1 is a block diagram of a transaction system
architecture 100 of an embodiment. The system architecture
100 includes one or more system servers 102 coupled among
at least one client space 104 or client device 110-116 and at
least one participating product supplier and informational
web site 106 via at least one network 108. The client devices
110-116 include, but are not limited to, computers, personal
computers, portable computing devices including hand-held

Oct. 21, 2010

computers, personal digital assistants, and cellular tele-
phones. The client devices 110-116 may host standard web
browsers as well as custom applications software. The net-
work 108 includes, but is not limited to, wired networks,
wireless networks, and combined wired and wireless net-
works. The transaction system architecture 100 accommo-
dates an optional firewall.

[0030] FIG. 2 is a block diagram of a transaction system
process flow 200 of an embodiment. A user browses the
Internet 201 using a client 202 or client computer. The user
accesses 210 a World Wide Web site 204, or web site, in order
to shop for a prospective purchase. The client software tracks
the user’s actions, reporting 212 a subset of these actions to
the system server 206, or server. The server 206 collects this
information and retains it for future use. The server 206 also
immediately analyzes the user action and, in response, makes
electronic requests 214, or shadow requests, to product and
information suppliers 208, or suppliers, to obtain relevant
data. The shadow request communicates the key elements of
the action being taken by the user. In response to the shadow
requests, the server 206 receives responses 216 from the
various product and information suppliers 208 available
online. The server 206 evaluates the responses and formulates
aresponse for the user. The response is transmitted 218 to the
client 202.

[0031] FIG. 3 is a flow diagram 300 of a dynamic informa-
tion connection method of an embodiment. User actions are
detected on at least one client system or access device 302. In
response, a determination is made whether the user is search-
ing for a supported type of information 304. When the user is
searching for product purchase information, information is
extracted from user actions 306. Potential suppliers are auto-
matically selected by a server in response to the product
information 308. Queries are formulated using the product
information and transferred to each selected supplier over a
network coupling 310. The queries include a request for prod-
uct purchase information. Responses are received from the
suppliers, and the responses are used to generate a result list
for presentation to the user 312. The result list includes prod-
uct purchase information and query status information. Fur-
ther, an electronic link is provided to a web site of each
supplier from which the product can be purchased.

[0032] FIG. 4 is a block diagram of the server organization
400 of an embodiment. Servlets including a Start Servlet 402,
a Load Balancing Servlet 404, a Copilot Servlet 406, and a
Web Relay Proxy Servlet 408, along with a factory infrastruc-
ture 410 and server databases 412 support the bulk of the
server processing, but the system is not so limited.

[0033] FIG. 5 is a block diagram of a transaction process
flow 500 of an embodiment. The system supports couplings
among numerous clients 502, third party systems 504, search-
specific interfaces 506, provider web sites 508, server sites
510, and data warehouse 512 or database sites using at least
one network 514. The network 514 includes any of a number
of networks, for example, the Internet. The system of an
embodiment includes separate client and server portions,
although this division is not a necessary part of the invention.
The different types of communication between the client 502
and server 510 are ordered top-to-bottom to match the
sequence with which these types of communication are per-
formed by any particular client 502. At any one time, there
will typically be a large number of clients 502 communicating
with each server system 510 as represented by the stack of
clients 502.

US 2010/0268623 Al

[0034] Inanembodiment, the user interacts with a client to
input the itinerary and to view the results, while the gathering
and processing of the information is performed on a central
server. Alternate embodiments could perform all of the pro-
cessing in the system with which the user directly interacts, or
the controlling decisions about what data should be gathered
and processed could be made by the central server but with the
actual gathering carried out by the client systems in order to
alter the over-all usage of network bandwidth required by the
system.

[0035] The client system of an embodiment incorporates a
standard World Wide Web (web) browser (HTTP-protocol
client). This provides a simple, standardized mechanism for
actually displaying results. The browser is also used to view
the web sites of travel suppliers when the user decides to
purchase one of the travel options presented.

[0036] As amatter of convenience, an embodiment uses the
Hypertext Transfer Protocol (HTTP) for communication
between the client and server. This protocol is well supported
by a variety of off-the-shelf software components, and is also
used by the associated web browser.

[0037] Theserver portion of the system is composed of a set
of servlets accessed by the client making GET and POST
HTTP transfer requests. A servlet is an ongoing process that
services some requests received by a web server. In an
embodiment, the servlets are written in Java, but are not so
limited.

[0038] In the interest of simplicity, only the interactions
between a single instance of a client system and a single
server are described herein. However, it is understood that in
actuality each different client proceeds through the possible
sequences of operations independently and asynchronously
of the others. In addition, an actual commercial implementa-
tion can employ several different, parallel server systems at
one or more different physical locations in order to supply the
necessary processing power and reliability.

[0039] The Start Servlet handles the initial communication
with a client that is just starting a session. Not only may the
user’s system that hosts the client be turned on and off repeat-
edly, but the actual client subsystem may not be used each
time the user starts his/her system. Therefore, the server por-
tion of the invention is capable of handling a number of
separate start/initialization cycles of each different client over
the client’s life span.

[0040] One key operation for which the Start Servlet is
responsible is the association of a client-generated user iden-
tification number (UID) with each unique client system, and
for ensuring the existence of the appropriate user-specific
entries in the server’s databases. The UIDs, as well as session
IDs (SIDs) and other identifier values used in the preferred
embodiment are 128-bit values created such that they should
be absolutely unique. They are created using the Windows
Globally Unique Identifier (GUID) mechanism, which is in
turn based on the Open Software Foundation’s (OSF’s) Uni-
versally Unique Identifier (UUID), a component of the OSF
Distributed Computing Environment (DCE).

[0041] After the client has initiated communication with
the server by making a request to the Start Servlet, the client
makes a subsequent request to the L.oad-Balancing Servlet.
The Load-Balancing Servlet determines which of the poten-
tially multiple server systems at a particular location is in the
best position to serve future requests for information coming
from the requesting client.

Oct. 21, 2010

[0042] The Copilot Servlet is responsible for the fulfillment
of' most other information requests from the client. The Copi-
lot Servlet receives requests from the client any time the web
browser with which the client is integrated is navigating to a
Uniform Resource Locator (URL), or information identifier,
which the client determines (more on the mechanism below)
may be a request for travel information. The servlet responds
to these requests in one of two ways, depending on the client’s
HTTP request.

[0043] In one situation, when the client’s request does not
contain adequate information for the server to perform a
search for purchase alternatives, the server informs the client
of'this and no additional processing takes place. Note that, in
an embodiment designed to find and present a category of
information other than travel alternatives, the type of URL/
request screening performed by the client prior to making a
request of the Copilot Servlet could use different criteria, but
the step could still be performed.

[0044] The other situation is the one in which the URL/
request does contain itinerary information with which the
server can search for and present information. In this case, the
server fulfils the request over a period of time. The server
sends back a flag indicating that more information will be
following. The HTML and JavaScript template of the page
that will be used to display the information found is also
presented. Further, the related information is presented incre-
mentally as it is found.

[0045] It is noted that while current common practice is to
identify individual blocks of data accessible on the Internet
using a URL, and an embodiment is described in terms of
using URLs, the search system is not so limited. For example,
systems which access information suppliers that are not typi-
cal web sites (e.g., which use an access protocol other than
HTTP v1.0 or v1.1) or which perform the accesses over a
network other than the Internet may not use URLs to identify
the source of a particular set of information. Similarly, in the
future new mechanisms (possibly not intended to be human-
readable like URLs) may be created to identify content avail-
able on a network. Modifications to embodiments of the
present invention used to accommodate such changes in the
underlying network technology used to connect among cli-
ents, servers, and information suppliers are implementation
details unrelated to the inventive material herein. References
to URLs in the description herein are reflective of present
implementation practice rather than of constraints on the
search system.

[0046] In an embodiment, the client is implemented as a
collection of ActiveX objects which are designed specifically
to operate with the Microsoft Internet Explorer (IE) browser
under operating systems that support the ActiveX object tech-
nology, essentially only recent releases of Microsoft Win-
dows. In this environment, it is possible for the client to
establish a very intimate connection with the web browser. It
uses this connection to obtain each URL which the browser is
requesting as the requests are made. It also uses this connec-
tion to establish a sub-window, on the left-hand side of and
within the main web browser window, which the client uses to
display its user interface and results. This sub-window is
referred to herein as a Bar.

[0047] In other embodiments, the Bar can be displayed on
any portion of the browser window or in its own window and
is, therefore, not limited to the left side. The visible, on-screen
area occupied by the Bar is filled with a browser control. A
browser control is similar to the active display area of the IE

US 2010/0268623 Al

web browser, stripped of all of the menus, toolbars, and other
user-interface objects normally present when IE is run as a
stand-alone application. The Bar makes use of this control to
display its user interface and content, and the implementation
of the client user interface is partitioned between the com-
piled software that makes up the Bar and other client ActiveX
objects and the JavaScript embedded within the HTML dis-
played in the browser control.

[0048] The client Bar can be opened either explicitly by the
user or automatically. It is opened automatically by the client
when the client has made a request of the Copilot Servlet, and
the Copilot Servlet has responded to the request with a flag
indicating that more information will be sent. The HTML that
makes up the balance of the Copilot Servlet response is then
displayed within the Bar.

[0049] Iftheuser explicitly requests that the Bar be opened,
the client generates a special URL and request for the Copilot
Servlet. This request always returns the correct HTML and
JavaScript source for the client user interface, so that the user
may directly enter itinerary information for use in performing
a travel search, rather than depending on the pages of a third-
party web site to provide the itinerary-entry user interface.
[0050] In operation, the user accesses the search system of
an embodiment using a computer hosting a client system. In
an embodiment, the client is implemented as a collection of
ActiveX objects. Users are provided access to the client by
packaging the ActiveX objects into a Dynamic Link Library
(DLL). The DLL, along with associated control files, resides
in a cabinet (CAB) file so that it can be downloaded automati-
cally from a web site. In implementations of the invention
which are not ActiveX-based and/or specific to Microsoft IE,
the DLLs can be packaged as plug-in modules for a web
browser so they can be downloaded and installed from a web
site.

[0051] The web site from which the client is downloaded
includes, but is not limited to scripting to detect the type of
browser with which the user is accessing the site, so that they
can be informed of the level of support for their browser
and/or so that they can automatically be directed to the correct
download file for their browser. The web site also includes a
user interface to collect registration information from the user
and pass it to the client for transmission to the server for
inclusion in the user’s database entry. Additionally, the web
site includes a final URL that causes the Bar to automatically
open.

[0052] Furthermore, in an embodiment, one of the ActiveX
objects that make up the client contains Automation Methods
that can be called by JavaScript software within the web pages
of'the client-installation web site. These methods can be used
by the web site to find out configuration information about the
user system that is not ordinarily available, so that it can be
used to give the user more customized information about the
client operation.

[0053] FIGS. 6A and 6B diagram user operation and infor-
mation flow 600 of a search system of an embodiment. The
information is transferred among a Bar sub-window 602 and
a browser window 604 of a client computer, at least one
component of a server system 606, at least one third party
server 608, and at least one supplier web site 610. At the
highest level, the transaction system locates and presents
information relevant to a user request. In an embodiment, user
requests include the itineraries for a potential trip, and the
information returned includes available, purchasable travel
alternatives that meet the requirements of the itinerary.

Oct. 21, 2010

[0054] In an embodiment, the general flow of processing
for each request or itinerary begins when the user enters
itinerary information through the client user interface or
through an itinerary-entry page of a web site. The itinerary
information is transferred from the client to the server. The
server reviews the itinerary information and determines the
travel-suppliers that are most likely to have relevant and avail-
able purchasable options. The server couples to the appropri-
ate systems of selected travel suppliers and makes queries
about the available travel options matching the itinerary. The
couplings to travel suppliers can be made numerous ways
including, but not limited to, requesting pages from their web
sites and extracting information from the pages returned as
shown in FIGS. 6A and 6B, and using a proprietary connec-
tion intended solely for inquiries from the search system.
When coupling through a proprietary connection, an interme-
diary can be used that also contains information about the
travel supplier’s inventory, for example a Global Distribution
System (GDS) database.

[0055] The server returns boiler-plate data display and for-
matting information to the client. As results are received from
each queried travel supplier, they are evaluated and processed
for possible transmission to the client along with search
progress status information. When all results have been
received from the queried travel suppliers, final “search com-
plete” status information is sent to the client.

[0056] The transaction system of an embodiment automati-
cally detects and interprets user requests for relevant types of
information. In contrast, most existing information search
systems require the user to explicitly provide their request to
the system, typically by entering information into a web page.
While this is also an option in the transaction system, the
transaction system is also capable of detecting other user
actions and interpreting them as implicit requests for infor-
mation.

[0057] When examining user actions to determine if a
search operation can be started, information is accumulated
from a sequence of actions up through a final trigger event.
For example, if a user has entered information on a web page,
or in a sequence of successive web pages, the triggering event
might be the activation of a submit-type control on the final
page. However, the system can use all of the entered infor-
mation to determine if the final user action (the submit)
should be used to start a search.

[0058] However, this example is neither the least nor most
complicated instance of monitoring user actions that might be
used in the system. Other examples of user actions/input that
might be used include, but are not limited to: detection of the
selection of a single control or sequence of controls that
indicate an interest in a supported type of information; entry
of'information by the user in a control or sequence of controls;
entry of information through natural-language or N-gram
techniques; selection of a pre-existing set of information as
identifying the user’s interest. It should also be noted that
while most contemporary client systems are computer sys-
tems in which the user provides input through typing and/or
pointing devices, any means of user input may be used with
the search system including, but not limited to, handwriting
recognition and voice recognition.

[0059] It is also noted that all methods for monitoring and
evaluating user input may be applied to both user actions
performed with respect to a third-party web site as well as an
interface of the client system or web page maintained by the
search system operator.

US 2010/0268623 Al

[0060] The monitoring of user activity, in an attempt to
recognize actions that indicate a desire for the type of infor-
mation that the system has been implemented to collect and
present, is accomplished hierarchically, but is not so limited.
The client is primarily responsible for monitoring user
actions. The primary mechanism for this monitoring is cap-
turing the user web browser requests for new pages, although
other mechanisms could be used to achieve the same result or
slightly different results for implementations designed to
search for other types of information. The monitoring is
accomplished through a Component Object Model (COM)
interface. This interface captures each URL, or navigate
event, that the browser is about to fetch.

[0061] The first step in determining if the user is trying to
find information about travel alternatives is to compare the
root portion of the URL with a list of strings maintained by the
client. This list is stored in the Windows registry, a system
database of configuration information, and can be updated by
the server when it is out of date.

[0062] When a URL requested by the browser matches one
of the partial URL strings stored by the client, the client
forwards it (and possibly the associated data if the user’s
browser is making a POST request) to the Copilot Servlet
portion of the server for further processing. The server deter-
mines if a particular user request is a request for travel infor-
mation and contains enough information to be considered an
“itinerary” that can be used for a search. While the simple
string comparison against the URL is adequate for the needs
of the travel-information searches, other embodiments may
use a different first-level analysis of user operations, as deter-
mined by the complexity of the information needed to per-
form the search.

[0063] The transaction system also accommodates a user
providing their request directly to the system with the entry of
itinerary information into a web page. With this entry method,
the user enters itinerary information directly into the HTML
form that is part of the client user interface. This is possible
either when the user has opened the Bar explicitly or after it
has automatically opened in response to a previous user
action/input.

[0064] In general, a session starts the first time after the
client has stated a need to contact the server, and continues
either until one ofthe systems timeout periods expires or until
the user takes an explicit action that shuts down the client. The
installation of an embodiment comprises several operations
that generally occur the first time the client starts after it has
been installed and/or the first time a new client installation
connects to the server. In particular, when first installed on a
system the client creates a GUID to serve as the client’s
permanent ID number. It is noted that the User ID (UID) is
actually specific to a particular operating system installation
rather than to an actual individual user.

[0065] The client attempts to make a connection to the
server, starting a logical “session”, only after it reaches a point
where it needs information from the server in order to con-
tinue. The two cases in which this occurs are: the user explic-
itly opens the Bar causing the client to need the HTML/
JavaScript source for the user interface to be displayed; and,
the client detects the browser attempting to load from a URL
that is a candidate for containing an itinerary, in which case
the URL (and possibly associated POST data) must be sent to
the server for further analysis.

[0066] As an optimization, the software checks for the
existence of a connection from the client system to the Inter-

Oct. 21, 2010

net or other coupled network before attempting to communi-
cate with the server. Since attempts to communicate with the
server would fail in this condition anyway, this check prevents
wasted processing and error-recovery.

[0067] The UID is not required to be strictly permanent. In
an embodiment, the UID is stored in the Windows registry (a
system database of configuration information) and therefore
subject to accidental or intentional deletion. Each time the
client starts execution, it checks for a UID in the registry, and
if one is not present it creates one. It is this portion of the client
that creates the UID after the initial installation so that instal-
lation is not actually handled as a special case. In the event
that a client UID is destroyed and the client allocates another
one, the only aspects of the system that are impacted are: the
ability to correlate user operations performed with the old
UID and those performed with the new UID; and, the ability
to retrieve the user’s previously selected/specified personal-
ization options.

[0068] In the preferred embodiment, if the user provides
personal information through the registration web page dur-
ing the installation process, the client forwards it to the Start
Servlet when it initiates contact. The server database records
keyed by the UID also contain user personal information.
This information can be manipulated by the user through the
user interface presented in the Bar.

[0069] Personal information is used to control different
aspects of the client behavior and of the server behavior
toward a particular user. For example, the personal informa-
tion controls whether a software client will be automatically
updated if a newer client version is available. It can also be
used to guide the information search performed by the server.
For example, in the preferred embodiment where searches are
performed for available airline tickets, the personal informa-
tion can contain things like suppliers the user wishes to avoid,
preferred ticket classes, senior citizen status, and other infor-
mation that results in the availability of lower-cost fares.
[0070] In coupling to the server, a client creates a session
identifier (SID). This is another 128-bit, universally-unique
identifier. The SID is transferred in all future transmissions
from the client that are part of the same session. The SID
allows the server to distinguish semi-simultaneous requests
made by different clients and between requests originating
from different browser windows on the same client.

[0071] The first exchange between the client and serverin a
session is when the client performs an HT'TP POST transac-
tion with a destination URL that specifies the Start Servlet.
This POST transaction transmits data including the UID, the
SID, the personal information provided by the user (if it has
not been previously transmitted), and the client’s current ver-
sion number.

[0072] In response to this POST, the Start Servlet returns
several pieces of information including the version number of
the latest client release, the version number of the lists of
partial-URL strings stored by the client, and those items from
the personal information associated with the transmitted UID
that affect client operation. If the version number of the latest
client release is larger (later) than the receiving client version
number and the user has elected to receive client updates, the
client undertakes downloading and installing the latest client
version in parallel with subsequent primary operations. If the
version number of the lists of partial-URL strings is larger
(later) than the receiving client version number, the client
downloads new copies of the out of date lists. These lists are
used by the client to determine which URLs are candidates for

US 2010/0268623 Al

itineraries and are to be forwarded to the server, and which
URLs indicate the completion of a purchase by the user.
[0073] The Start Servlet also performs several internal
housekeeping functions. It verifies that the supplied UID
already has a matching record in the server database, and
creates a record if it does not. It also creates a “Session Info”
object which will persist on the server for as long as the
session remains active.

[0074] FIG. 7 is a block diagram of a load balancing
arrangement 700 of an embodiment. The client system 702 is
coupled to at least one server site 704 using at least one
network coupling 706, for example via the Internet. Load
balancing is accomplished using a server site internal network
708 or backplane, but is not so limited. Alternate embodi-
ments can use numerous types of couplings among the server
components of the search system.

[0075] In order to ensure simultaneous availability to a
large number of users, the server portion of the system is
made failure-tolerant and is scaled to supply the processing
power and network bandwidth necessary to support large
numbers of simultaneous users. This is accomplished using a
number of separate, hierarchical mechanisms including, but
not limited to, DNSs, load balancers, round-robin techniques,
and redundant backup monitor systems.

[0076] The system uses a dynamic two-level form of load
balancing, but is not so limited. The first level of load balanc-
ing is accomplished through the Internet DNS service and
directs traffic to various data centers around the world. Data
centers are easily added or removed. The amount of traffic
sent to each data center can be controlled to a level of approxi-
mately 1% of the total traffic.

[0077] The second level of load balancing balances the
traffic within each data center (cluster) and uses a combina-
tion of typical load-balancing systems and system-specific
balancing methods. This technique uses information includ-
ing CPU and memory usage, network bandwidth usage, and
number of current users of the individual CPUs in performing
load balancing. A triple level of redundancy is built into the
second level load balance.

[0078] Because the HTTP protocol is used for communi-
cation between the client and server, the client uses a specific
server name to which requests are directed. For initial server
contacts (exchanges with the Start Servlet and L.oad-Balanc-
ing Servlet), a server name is constructed dynamically by the
client prior to making the first request of a session. The server
name is created by concatenating a number of string frag-
ments.

[0079] A first string fragment is a string constant represent-
ing the fixed “base” part of the server name. Any string that is
a legal Internet host name could be used. In an embodiment,
the base string is “start”.

[0080] The next string fragment is a produced by the client.
The client generates a random integer in the range 0 to 99,
inclusive. This integer is converted to a two-character string.
[0081] Another string fragment includes a string constant
representing the naming domain within which the server sys-
tems are located. In a preferred embodiment, the domain is of
the form “.somename.com”.

[0082] Assuming that the clients are implemented with a
good random number generator, if a large number of clients
are operating simultaneously, there will be a roughly equal
number that have generated each of the 100 possible different
server host names. There are several benefits to having effec-

Oct. 21, 2010

tively divided the set of active clients into a large number of
differentiable categories based on the host name which they
have constructed.

[0083] Regarding these benefits, it is important to recog-
nize the capabilities of the network of DNSs that underlie the
Internet and provide the translation between textual host
names and numerical Internet Protocol (IP) addresses. First,
even though different servers within a domain are logically
related by the common parts of their domain name, there is no
requirement that the corresponding IP addresses have any
commonality or relationship. This allows, for example, the
server identified by the host name “start00.somename.com”
to be at an entirely different physical location from the one
named “start01.somename.com”.

[0084] Furthermore, multiple different host names may
also be mapped to the same numeric IP address. This means
that an entire block of hosts names, such as “start75.som-
ename.com” through “start90.somename.com”, and there-
fore a statistically-predicable portion of the total client traffic
at any particular time, can be directed to a single server
system/location.

[0085] Moreover, it is possible to modify the DNS mapping
between host names and IP addresses. This allows the flow of
traffic from some portion of the clients to be changed from
one server to another without having to notify or directly
communicate with the clients in any way. Further, because of
the number of different host names that clients generate in an
embodiment, the change from one server site/implementation
to another can be performed gradually over time, with a
resolution of approximately 1% of the total client traffic.
[0086] Once the client has determined a server host name,
and DNS look-up has obtained the current matching IP
address, the client attempts to establish an HT'TP connection
with the server IP address. At this point, an embodiment uses
a typical load-balancing system to distribute the HTTP
requests coming into an IP address across multiple individual
server systems.

[0087] One aspect of an embodiment which is important in
making it amenable to the use of typical load balancers: client
HTTP requests made of the Start Servlet and [L.oad-Balancing
Servlet do not depend on any state stored on the server. This
is important because with simple load balancing systems,
there is no way to ensure that subsequent requests originating
from the same client are directed to the same server without
multi-processor support linking the various server systems.
Note that while the SID is included in the data sent to these
two servlets, the servlets do not make use of it for anything
other than error-checking, because of the lack of session-to-
server continuity present for these two servlets.

[0088] Only requests for the Start Servlet and [Load-Bal-
ancing Servlet use the host name that is generated by the
client and which is handled by the load-balancer. It is the
responsibility of the Load-Balancing Servlet to provide a
server host name that the client can use for all requests that
depend on server state, which are directed to the Copilot
Servlet.

[0089] Each set of server systems serviced by a typical load
balancer is also associated with one or more monitor systems.
It should be noted that this designation is logical rather than
physical, and a single computer system could serve both as a
front end server and as a monitor, as well as fulfilling other
rolls, such as the database server. Monitor systems are respon-
sible for: accepting periodically-transmitted loading statistics
from each of the front ends; determining which front end

US 2010/0268623 Al

systems have not reported statistics recently enough and
which will therefore be considered “dead”; and, maintaining
a circular list of the “not dead” front end servers, and return-
ing the next server name from the list each time a server
executing the Load-Balancing Servlet requests a server name
to return to a client.

[0090] The monitor system is not responsible for notifying
the load balancer of which servers are “alive” and “dead”.
Instead, the load balancer uses its typical mechanism, such as
making periodic checks of each server’s network responsive-
ness with “ping”.

[0091] When a client is in the process of establishing a
session it makes a new HTTP POST request to the Load-
Balancing Servlet once it has received a response from the
Start Servlet. The data sent with this request is the UID/SID
pair. The Load-Balancing Servlet services this request by
requesting the next available front-end server host name from
the monitor system. It then returns the host name plus a set of
configuration parameters to the client. The configuration
parameters include, but are not limited to: a flag instructing
the client whether to use clear (HTTP) or encrypted (HTTPS)
communication with the server for subsequent transactions;
the client timeout period for terminating a session due to user
inactivity; and, the path from which a new version ofthe client
can be downloaded by an existing client, which is used if the
“latest client” version number returned by the Start Servlet is
larger than the requesting client’s version number and the
personal information returned from the server for the current
UID allows automatic updating of the client to occur.

[0092] The search system of an embodiment uses two sepa-
rate host names that are DNS-mapped to the same front-end
server. Thus, the system maintains two separate names for
each front end server and returns the matched pair of names to
the client. This configuration helps avoid delays in system
responsiveness associated with WININET.

[0093] Within a Windows system, most HTTP requests
generated by software running on the system pass through a
standard Windows library that contains common, low-level
functions that implement large parts of HI'TP. This library is
called “WININET”. In typical web browsing, most pages
displayed actually cause a large number of discrete HTTP
requests, one for the HTML source of the page along with
additional requests for each embedded object. Because the
client user interface displayed in the bar is implemented as a
heavily-scripted web page, changes to the bar’s display gen-
erally also cause the bar’s contained browser control to gen-
erate a number of HTTP requests through WININET to the
client’s assigned front-end server.

[0094] In order to optimize network bandwidth utilization,
it is common for typical systems to start multiple HTTP
requests simultaneously. WININET is no different and is also
capable of processing several requests in parallel. However,
the details of its implementation cause it to place a cap on the
total number of requests that can be simultaneously active to
the same internet domain name. When software (IE, a
browser control, or a client) issues a larger number of requests
than this cap, WININET queues all but the first requests and
starts them sequentially as in-process requests complete. In
normal web-browsing operation, this leads to a relatively
high-performance system.

[0095] However, HTTP requests generated by the client
consist not only of fetches for elements of the client’s user
interface but also exchanges of control data (candidate search
requests, purchase requests, transactions for session opening,

Oct. 21, 2010

closing and “keep alive”, etc.). It is possible for the bar to need
to exchange control information with the server while a user-
interface update/reload is in progress. If this occurs, WINI-
NET may queue the control transactions behind the (typically
larger and much less important) UI data fetches, causing a
perceptible pause in the system’s responsiveness to the user.

[0096] A search system of an embodiment based on WINI-
NET overcomes this problem by having two separate server
names for each physical server (IP address) within a server
site. When this name pair is returned to the client by the Load
Balance Servlet, one name is subsequently used for most
URLSs used to update the HTML displayed by the bar and the
other is used exclusively for control transactions (usually
POSTs to the Copilot Servlet). Even though both logical
names evaluate to the same IP address when a DNS lookup is
performed, WININET’s cap for the maximum number of
pending transactions is implemented in terms of the logical
name only, so that it treats the two server names as entirely
independent and each has its own cap, even though they are
physically the same device. Thus, the client ensures that con-
trol transactions are never queued behind user-interface
updates.

[0097] Another benefit of establishing separate server
names forthe control and (static) data-fetching transactions is
that the server sites could be reorganized, in the event that it
provides a performance improvement, into a set of servers
that serve only static data and another set that run the servlets
but do not serve the static data. With the structure described,
such a reorganization could be performed in any combination
of'server sites at any time and completely transparently to the
client systems.

[0098] Inagroup of front end servers, provision is made for
there to be multiple monitor systems. Each front end has a list
ofall the available monitors. If the monitor at the top of the list
stops responding to the transmission of loading statistics or to
requests for front end server names from the L.oad-Balancing
Servlet, then the front end server will move on to the next
monitor system on its list. In this way, if a monitor system
fails, the associated front end servers will gradually change
over to using the next, or live backup, monitor system.

[0099] While an embodiment uses a round-robin scheme
for allocating new client sessions to the available pool of front
end servers, a more complicated algorithm can also be
employed. Each front end server sends a variety of loading
information to the monitor server approximately once per
second. This information is collected to provide statistics on
the system’s over-all operation, but could also be used as the
input to a more complicated, dynamic algorithm for deter-
mining which front end server should be assigned a particular
client session.

[0100] Forexample, an alternate means for determining the
server to which a particular new session is to be allocated
takes into account the total number of active sessions on each
server. The round-robin mechanism is modified so that it
allocates a session to a server only if that server already has
fewer or the same number of active sessions as the server with
the most active sessions.

[0101] In an embodiment, a typical Java Virtual Machine
and execution environment known as “Tomcat” is used to
execute the servlets on the server systems. As part of Tomcat’s
initialization process following the boot-up of a server sys-
tem, the server registers itself with the first monitor system on
its list that will respond.

US 2010/0268623 Al

[0102] On each front end server is a process that periodi-
cally executes, collects performance and loading data, and
transmits it to the current monitor system. This process
executes at the rate of approximately once per second so that
the transmission of performance data acts as a regular heart
beat from the front end server that can be anticipated by the
monitor system. The performance data packet transmitted by
the front end server heart beat includes information about the
server CPU usage, the current free memory of the system, and
the number of database queries that the front end has gener-
ated in the last second, but is not so limited.

[0103] It is noted that rather than having two separate serv-
lets and transactions to initiate the connection between the
client and server, an alternate implementation combines the
functions and responsibilities of the Start Servlet and the
Load-Balancing Servlet into a single servlet. This is possible
because the client does not need any of the information
returned from the Start Servlet in order to create its POST to
the Load-Balancing Servlet. This alternate embodiment,
thus, could provide an improvement in overall system perfor-
mance because only a single client POST of information
would be required and the servlet could return all of the
necessary information in one response.

[0104] The client of an embodiment maintains numerous
lists of strings that it uses to compare with the contents of
different URLs. These lists can be updated from the server.
These lists are stored in the Windows registry, although any
persistent client storage could be used as effectively.

[0105] As discussed herein, the search system automati-
cally opens the Bar on the client browser and displays infor-
mation relevant to the user’s current activity. One of the string
lists maintained by the client contains partial URLs that the
client matches against the URLs from which the user’s
browser attempts to load. When a URL matches, the client
forwards the user browser request to the server for further
checking. This hierarchy serves to reduce the amount of cli-
ent/server bandwidth that is consumed by monitoring URLs
without unnecessarily complicating the operation of the cli-
ent.

[0106] Another list of strings maintained by the client is
used as part of the mechanism for monitoring whether the
user makes purchases from the web sites of travel suppliers to
which the system directs them, referred to as “buy tracking”.
This list contains a pair of strings for each entry. The first
string in the pair is the URL of a page on the travel supplier’s
web site to which users are directed on the completion of a
purchase, typically a “receipt” page.

[0107] The second string in the pair is an extraction speci-
fier. The extraction specifier can specify the extraction of
multiple distinct portions of a receipt page, including speci-
fying a particular region/string within the receipt page that
should be extracted and transmitted back to the server. The
extraction may occur over a sequence of pages if the neces-
sary purchase identification information is found in more than
one page. This string is typically a piece of data that uniquely
identifies the purchase transaction. This can be used as proof
to the travel supplier that the purchase transaction originated
from a referral by the search system. This can also be used as
the basis for a payment arrangement between travel suppliers,
or other information suppliers, and the maintainer of the
search system.

[0108] When the client makes a request to the Copilot Serv-
let it forwards a URL from the browser along with any asso-
ciated POST data. The server response is an HTTP response

Oct. 21, 2010

packet containing either: a single string “0”, indicating that a
search cannot be performed based on the data transmitted and
that there will not be more data from this request; or, the string
“17, indicating that a search has been started based on the data
within the request. In this case where the search has been
started, the “1” is followed by the HTML and JavaScript
source for the display of search results, followed by the results
themselves.

[0109] The Copilot Servlet of an embodiment sends the
processed search results to the client as they become avail-
able, along with status about the progress of the search. The
client receives the total number of travel suppliers that are to
be searched, the number that have returned responses to the
server search requests, and the total number of data items that
have been found, processed, and sent to the client. This status
information is displayed for the user as it is received, in order
to give the user the sense that things are progressing rapidly.
This almost-immediate feedback to a search is a point of
novelty in the search system.

[0110] An area within the Bar is used to display a vertically
scrolling list that presents summaries of the search items
found. The items are placed into this list based on a user-
selected sort order. For example, the display of airline flights
for an itinerary can be sorted based on the ticket price, the
number of stops, departure time, arrival time, trip time, or
supplier. Note that the particular criteria on which the records
can be sorted is less important than the fact that the records
can be sorted based on a user-selected criteria and that the sort
is performed on the client so that the system responds quickly
to the user changing the sort selection for a progressing/
completed search.

[0111] In order to ensure that user expectations are set
correctly, and to prevent resources from being leaked, or
allocated but not recovered for reuse, the client and server
both track numerous types of time out periods.

[0112] The JavaScript that executes within the client Bar of
an embodiment starts a time-out down counter each time a
user action begins a new search. This counter is used to
control the period of time in which the search results are
considered valid, an important consideration when dealing
with travel bookings, including airline tickets. As search
results expire, any electronic links provided to the associated
supplier over which the associated travel item or component
could be reserved or purchased can be deactivated, but the
system is not so limited.

[0113] Since airline ticket pricing and availability fluctuate
rapidly, it is important to prevent the user from deciding to
purchase aticket after it becomes unavailable. To prevent this,
the JavaScript waits for a period of several minutes after the
START of'the search. After this period, it notifies the user that
the results are no longer valid and deactivates the purchasing
controls associated with each result displayed.

[0114] The time out period of an embodiment is approxi-
mately 10 minutes, but is not so limited. However, this period
must be closely related to the individual times that the travel
supplier systems will hold a reservation for purchase after
they respond to a query. Therefore, the period is likely to be
radically different in systems designed to search for different
types of information, as well as having to be updated from
time to time within an embodiment. Because the timeout is
within the JavaScript code, which is downloaded from the
server each time the Bar is opened, it can be easily changed
independently of having to create and distribute new clients.

US 2010/0268623 Al

[0115] This time-out is not needed in a system configured
to search for information that is not time sensitive. For
example, a system that searches for purchasable goods with
rapidly-varying inventory levels would presumably use a
time-out period to invalidate search results after some reason-
able period. Alternately, a system that searches for reference
information or for purchasable goods that are made-to-order
(and which therefore do not have finite inventories) would not
have to use a search-results time out. In another alternate
embodiment the same user action triggers simultaneous
searches for all available sub-categories (e.g., air, hotel, car)
of the supported type of information (e.g., travel reserva-
tions).

[0116] Separate searches can be performed by the user for
airline reservations, rental car reservations, and hotel reser-
vations. The user selects among these three sets of search
results using tab controls displayed in the Bar. The client-side
JavaScript is capable of maintaining separate sets of search
results for each category, and has a separate time-out counter
for each. It is therefore possible for the user to search for all
three types of travel reservations, and for them to switch back
and forth among the different result displays without inter-
fering with the separate expiration counts on each set of
search results.

[0117] Because sessions consume server-side resources, it
is important to ensure that they do not persist and remain open
indefinitely, as idle sessions would eventually accumulate
and clog the server systems. As such, there are three mecha-
nisms for closing sessions and allowing the associated server
resources to be freed.

[0118] In one mechanism for closing sessions, the client
may be explicitly turned off by the user closing related
instances of their web browser. When this happens, one of the
shut down operations performed by the client is to send a
POST to the Copilot Servlet informing it of the end of the
session. On receipt of this message, the servlet frees its ses-
sion-specific resources.

[0119] In another mechanism, the client monitors user
actions. Each user action performed that is related to the
client’s operation is used to reset a time out down-counter. If
the user does not perform any operations before the time out
expires, the client closes the session and notifies the server of
the fact. In an embodiment, the timeout for this period is
approximately 30 minutes, although it could be adjusted sub-
stantially without significantly compromising the system.
[0120] One other mechanism uses a server time out counter.
This counter is reset by each transmission from the client. If
the timeout period elapses, the server assumes that something
has happened to the client, such as an unanticipated loss of
power, and frees the resources associated with the current
session ID (SID).

[0121] In the unlikely event that the server times-out a
session which is still active on the client, subsequent client
transactions with the timed-out SID will still be honored so as
not to frustrate user actions. Instead of rejecting the unex-
pected SID, a new server object is allocated for the SID and,
since the occurrence of this condition could indicate an unau-
thorized attempt to access the system, the fact that it occurred
is logged.

[0122] Each item or purchasable travel reservation that is
found and reported to the user by the search system of an
embodiment is displayed along with a “reserve” user-inter-
face control or icon. When the user activates this control, the
client directs the user’s web browser to the particular page of

Oct. 21, 2010

an associated supplier web site from which the user can
complete the purchase of the selected item.

[0123] The complexity of and mechanisms for performing
this hand-off depend on how the information was originally
gathered from the supplier and on the structure and features of
the particular supplier system. There are three general catego-
ries into which the different interfaces between the system
and the suppliers can be grouped.

[0124] One system gathers information using a special-
purpose interface between the system and the supplier serv-
ers. Another system gathers information by accessing a third-
party database which contains information about the supplier.
Still other systems gather information from suppliers through
aweb site designed primarily for direct interaction with indi-
viduals using web browsers.

[0125] When a special-purpose interface is used between
the search system and the suppliers, part of the interface
design includes the creation of a mapping between the infor-
mation returned and a point (URL) within the supplier’s web
site. Thus, the majority of the burden of ensuring that the
supplier web sites can easily produce a “purchase” page for
each item that may be returned by the supplier servers over the
special-purpose interface is assumed by the supplier.

[0126] When a third-party database is used, the system
should be capable of causing the supplier web sites to gener-
ate a purchase page corresponding to the user selection. In the
simplest case, this entails creating a URL within the supplier
web sites that contains information identifying the user selec-
tion. If the supplier web sites are not structured to use URLs
that can be composed directly, then the system will have to
generate a sequence of accesses to the supplier sites on the
user’s behalf in order to reach a point at which an appropriate
purchase page is available.

[0127] This process is performed by a server component
that is designed specifically to interface with a single supplier
web site. In general, a system component that is designed to
manage the interface to a single external system will be
referred to as an adapter. The system of an embodiment uses
several different types of adapters in order to normalize dif-
ferent types of interfaces to external systems as discussed
herein. Search adapter is used herein to indicate a server
component that gathers information about a supplier’s offer-
ings. Reserve adapter is used herein to indicate adapters that
generate queries to a supplier web site in order to ensure the
existence of a purchase page corresponding to a user selec-
tion.

[0128] Itis possiblethat, inthe cases where a search adapter
interfaces with a system other than a supplier web site, that the
supplier actually does nothave a web site that can be accessed
by the user to make purchases. In this case, an alternative
means for performing the purchase if the user selects an item
returned by that supplier must be available. The preferred
arrangement is for the owner of the search system to have a
parallel and related travel-agency web site that can be used to
purchase reservations for those suppliers that cannot support
their own purchases.

[0129] The most potentially-complicated case is the one in
which information is gathered by a search adapter making
direct requests from a supplier’s web site/server which is
designed to provide a human-usable interface. It should also
be noted that many of the considerations for this case also
apply to the operation of reserve adapters, as both reserve
adapters and search adapters (that access a web site) can

US 2010/0268623 Al

generate a unique state within the supplier web server to
which the user’s web browser must be given access.

[0130] In one case, the supplier web site is designed such
that all of the information that the supplier server requires in
order to generate a purchase page is encoded within the pur-
chase page URL. When this is the case, the user’s web
browser can be directed to the correct purchase page simply
by the client instructing it to navigate to (load from) that URL.
In the system of an embodiment, the URLs for each purchase
page of this type are transferred from the server to the client
along with each search result item, so that the client can
provide the “reserve” control’s functionality completely
without further client/server interaction.

[0131] In another case, some or all of the information
required by the supplier web server to generate the desired
purchase page is stored in cookies that are set when a previous
page of the search sequence is returned by the web server. For
example, when a search adapter interfaces to a supplier web
site, it is common that, because of the supplier web site
design, the adapter has to access several pages of the supplier
web site in sequence, possibly emulating the operations of a
human user filling out a data-entry form at one or more steps
of the sequence. Along with the source for each web page
returned to the search adapter by the web site there may be
one or more cookies. Because the adapter is interacting with
the web server as if it were a web browser, it stores each
cookie returned by the web server and transmits it back with
the next request. However, since the web server depends on
the values stored in the cookies in order to generate the correct
pages, the cookies have to be transferred from the server to the
user’s browser when the “reserve” control is activated.
[0132] Inanembodiment, all of'the cookies set by all of the
web servers from which items were found are transferred to
the client along with each data item. They are stored in the
client and then, if the user selects a data item with associated
cookies, the cookies are set in the user’s browser prior to it
being navigated to the associated URL. In addition, if the
purchase page of the supplier web site is accessed using a
POST transaction instead of a GET, the client is also supplied
with a copy of the POST data created by the server for access-
ing the correct page. Thus, the client can execute the hand-off
to a supplier web site on its own, without further interaction
with the system servers.

[0133] There are some supplier web servers that are sensi-
tive to the specific client (via testing the IP address or other
mechanisms) from which they are accessed. Because of this,
it is not possible for the client web browser to access the same
supplier web pages that are searched by the adapter. To pro-
vide users access to purchase pages provided by this type of
server, the system server includes a proxy capability, referred
to as web relay. When the user selects a “reserve” control
associated with a data item returned by such a server, the
user’s browser is navigated to a special URL handled by the
system web server. The relay servers then fetch the matching
pages from the supplier sites and present them to the clients.
In order to provide a seamless navigation experience for end
users, all subsequent navigation is routed through the relay
servers because the user’s session information related to a
particular supplier is possessed by the servers rather than the
user’s client (browser).

[0134] For performance reasons, every navigation event is
not routed through system relay servers because this gener-
ates too high a volume of traffic on the servers. Therefore, the
system limits relay to only those URLs within the same sup-

Oct. 21, 2010

plier domain. But, if needed, every navigation can be routed
through the relay servers for the entire Internet.

[0135] A simple implementation of web relay/proxy could
be created in which all operations are performed by the relay
server and it operates only by identifying URLs contained in
web pages and replacing them with URLs pointing to the
relay server. However, given the complexity of modern web
pages, especially dynamically generated pages, it is very
difficult to fully anticipate where all of the URLs might
appear within the pages. For instance, some URLs will likely
be within well known HTML tags, but others can be within
quotes as part of a string inside of scripts, where the string can
be referenced later in different parts of the page.

[0136] In order to correctly handle web pages in which the
URLs identifying navigation destinations are difficult to stati-
cally detect or are created dynamically within the page, the
system of an embodiment uses both the server and the client
to detect URLs that should be rerouted through the web relay.
The client can capture all of the navigation events created by
user actions in the main browser window before the browser
actually begins to fetch data from the target URL. The client
can then modify the URL to route the navigation to the relay
server before allowing the main browser window to fetch
data. By modifying the URLs in this manner, the client also
lightens the server load and improves system performance by
requiring less extensive web page processing when the relay
server forwards pages from the supplier web site to the client.
Another important feature of this system is that without the
client side being present, the server is fully capable of routing
the navigation on its own; in this case, it becomes a conven-
tional relay server.

[0137] The system server/client web relay architecture con-
sists of server-side preprocessing of web pages served and
client-side real-time processing of navigation destination
URLs. After a user selects a specific “reserve” user-interface
control, the server will try to determine whether the client side
is prepared to route navigation events through the relay
server. If the server detects that client web relay is possible,
the server hands off the responsibility for routing navigation
through web relay to the client, and merely fetches (proxies)
requested pages. If the server does not detect that the client
can modify navigation URLs, the server scans each fetched
page and processes all of the URLs in the page (as best it can)
before serving it to the client.

[0138] The client portion of web relay relies on the web
browser forwarding navigation events to the client, and the
client’s capability of capturing these events before they actu-
ally cause data to be read from the Internet. After capturing
these events, the client redirects the browser navigation to the
system relay servers with all of the necessary data. Then the
relay servers fetch the correct pages from the supplier web
site and send them back to the client. The main advantages of
using the client to modify/redirect URLs are that the client is
theoretically able to catch all destination URLs used, regard-
less of how they are stored in a web page or when and where
they are actually generated, and that distributing the process-
ing required for redirecting URLs greatly relieves the pro-
cessing load on the relay servers.

[0139] An embodiment of the relay client is implemented
specifically for Microsoft Windows operating systems and
the IE web browser. It uses the COM ActiveX interface pro-
vided by IE to intercept and modify navigation events gener-
ated by user actions in the main browser window. In general,

US 2010/0268623 Al

any environment that provides a mechanism to capture and
modify user navigation events could be used.

[0140] All of the functionality of the relay client is realized
in an ActiveX browser helper object (BHO). The BHOs run in
the same memory context as the browser and can detect any
operation on the available windows and modules. In an imple-
mentation, the relay client functionality is integrated into the
same client BHO that contains the other portions of the client.
However, the client functionality related to web relay can also
be implemented in a separate BHO. The events that the BHO
handles for the client portion of web relay include, but are not
limited to, BeforeNavigate, NewWindow, and Document
Complete.

[0141] In the BeforeNavigate event, the client captures the
navigation events, checks whether the browser destination
URL is already rewritten to point to the relay server. If not,
and the URL does indicate the relayed supplier web site, the
client rewrites the URL, cancels the current navigation, and
initiates a new navigation event with the rewritten URL. Care
should be maintained with the cancellation method used and,
in so doing, the client maintains the original URL of the
currently displayed document so that the client can anticipate
and correct the problems.

[0142] Special care is also used with supplier web pages
that employ frames. A frame-organized display in a web
browser is accomplished using one page that contains a
frameset definition and URLs indicating the initial content for
each frame of the frame set, and the separate pages identified
by these URLs. Handling of framed displays is accomplished
by having the client ignore the BeforeNavigate event and
letting the page containing the frameset load, unmodified,
from its original URL on the supplier web site. All of the
subsequent navigation (loads) to the individual pages dis-
played in the different frames of the frameset are then pro-
cessed by the relay functions of the client BHO.

[0143] An alternate method for handling relay of the pages
that make up a frame-organized display is for the relay server
to modify the URLs, contained in the page with the frameset
definition, for the individual pages that fill the display frames.
This would ensure that, from the browser’s point of view, all
of the page components reside in the same Internet domain
(that of the relay server). This prevents the security “sand
box” restrictions imposed on JavaScript executed within the
pages by the browser’s interpreter from interfering with the
page having the same operation as it does when not relayed.
[0144] The NewWindow event has the client capturing the
1Es new window creation event. When a user clicks a link in
the displayed page that results in the creation of a new
browser window, the client creates the new window itself so
that it has full control of the new window, and will receive
subsequent events generated from that window as well. These
windows generally are invoked by JavaScript URLs (or URLs
expressed in other scripting languages supported by brows-
ers). Therefore, in many situations, the URLs of the page
intended to be displayed in the new window are not generated
correctly due to the relayed location in the address Bar.
[0145] The client handles these cases by passing the parent
page/window unmodified URL to the new browser window in
order to recover (regenerate) the original (unmodified) URL
of the new window, and subsequently issue a new navigation
from the new window. Again, special care is necessary due to
the differences in the various version of IE. For some older
versions of the IE browser, the client cannot issue a new
navigation during the event handling of BeforeNavigate for

Oct. 21, 2010

the new window. In order for the new window to be func-
tional, the client allows the first navigation event to be fetched
unmodified to avoid having the browser hang. This is done
even if the URL for the navigation is wrong. Once the new
window is open, the client can issue a new navigation with the
correct URL after the previous navigation is complete.

[0146] The DocumentComplete event involves the client
capturing this event to monitor the end of document loading
in a browser window. If the client detects that this event
occurs after the first document has loaded in a new browser
window, the client verifies whether the loaded URL is the
correct (relayed) URL or not. If the URL is incorrect, the
client uses the current location (URL) of the parent (creating)
window to reconstruct a valid, relayed URL. In an embodi-
ment, the client and server are designed not to relay URLs
used to load images and other embedded objects in the
requested web page through the relay servers. These objects
are instead loaded directly from the supplier web site. This is
purely a performance optimization, and not a requirement for
the system’s operation. However, by avoiding routing of these
objects through the relay servers, it is possible that the relay
server may not obtain all of the necessary session information
(usually stored in cookies) sent from the supplier web servers
along with one or more of these objects (and not the pages
forwarded to the client). Therefore, the client will check the
cookie store in the user browser to make sure it finds and
forwards back to the relay server all of the related session
information.

[0147] An embodiment of the web relay server is imple-
mented using Java Servlet technology like the other server
portions of the system. And, like the other servlets, the imple-
mentation of this system is not limited to any particular pro-
gramming language or even to a software implementation.
The selection of Java is to conform to the rest of the system.
Any server technology should be able to fulfill this task.
When a request comes into a web relay server, the server first
fetches the SessionInfo object (the same as used by the Copi-
lot Servlet) stored in the system based on the specific UID and
SID. This SessionInfo object contains information related to
the particular user session, including context information
generated by search adapters accessing supplier web sites.
The relay server then retrieves the information from the Ses-
sioninfo object related specifically to this request, for
instance, the cookies with the same domain as the requested
web site. Also, the relay server handles session information
sent with the request from the client, if any.

[0148] The relay server then makes a request, on behalf of
the user browser, to the supplier web site. After the server
fetches the requested page, it checks to see if this page is
originated from the same location specified in the request or
if the request was redirected to a different location. The redi-
rection can happen in three different cases, individually or in
combination: the redirected location is at a different security
level, for example, from http to https or vice versa; the redi-
rected location is at a different domain; and, the redirected
location is at the same domain but at a different path.

[0149] In the first case, the relay server has to reopen the
connection with the user browser using the correct (new)
protocol to avoid introducing a security hole in the client/
supplier communication link. In the other cases, the returned
page can have relative URLs that need to beresolved based on
the redirected location rather than the original location, so the
client responds by sending a redirection to the user browser to

US 2010/0268623 Al

make sure that all objects in the page are loaded correctly and
that the subsequent navigations from this page have correct
URLs.

[0150] For performance considerations, if any or all of the
above cases occur, the relay server caches the fetched page so
that when the client subsequently issues a new request based
on the redirection, the server can forward this page immedi-
ately without fetching the page from the supplier web server
again.

[0151] After completing these steps, the server is ready to
process the requested page. The relay server first checks
whether the client is actively modifying relayed URLs. The
relay client informs the server of its presence/activity by
turning on the relay start switch in the page requests to the
server. If the client is relaying, the server skips scanning and
modifying the URLs in the page. Otherwise, the relay server
processes the page contents received from the supplier web
server, tries to find all the URLs possible in the page source,
and modifies them so that they all point to the relay server.

[0152] While there are a number of business models sup-
ported by the system of an embodiment, and several different
revenue streams that it could provide, the system is financially
supported by payments received for each user purchase of
travel reservations that occur as the result of the system refer-
ring a user to a travel supplier web site. Therefore, the system
generates reliable records of user purchases supported with
information that the travel suppliers will acknowledge as
proof of purchases.

[0153] The portion of the system operations involved with
detecting and logging user purchases is referred to herein as
buy tracking. As discussed herein, the client stores a list of
strings, periodically updated from the server, that are used to
determine which user actions are considered user purchases.
This list contains two strings per entry. One string is the URL
of a supplier web page to which users are directed following
a successful purchase. The other string is an extraction speci-
fier containing instructions to the client as to the data that
should be extracted from the page with the URL and POSTed
to the Copilot Servlet.

[0154] Inoperation, a user purchase transaction begins with
the user being presented with a list of different travel options
that the system found from a number of suppliers. The user
selects one of the presented options with the “reserve” control
presented in the client Bar. The client navigates the web
browser to a purchase page on the selected supplier web site.
Inan embodiment, the user directly interacts with pages of the
supplier web site, sometimes providing personal and/or pay-
ment information. Upon completion of the purchase, a sup-
plier web site may deposit the user on a “receipt” page that
contains some type of purchase tracking information, such as
a confirmation number or order number, but is not so limited.

[0155] The client receives each URL that the browser
attempts to fetch from the network. These URLs are com-
pared against both of the URL lists that the client maintains.
‘When the browser has navigated to a receipt page of a supplier
web site, the page URL matches the buy-tracking list of
URLs. In response to this match, the client interprets the
extraction specifier string associated with the URL, and uses
it to extract a string from the web page content received by the
browser from the supplier web site. The extraction specifier of
an embodiment is created such that this string will contain the
confirmation number (or equivalent) for the purchase. The
client POSTs the UID/SID, the URL within the supplier web

Oct. 21, 2010

site, and the extracted string back to the server where it is
logged and used to create an invoice for the supplier.

[0156] Itisnoted that the actual URL strings maintained by
the client need not be exact/explicit URLs, but instead can be
templates or regular expressions that match a family of actual
URLs. This is convenient because some web sites incorporate
user-specific or transaction-specific information in the URL
which is not significant to identifying the pages that are
receipt pages.

[0157] A significant aspect of the system’s design is that,
even though the client is integrated with the web browser, the
system does not depend on the web browser to store state in
cookies. Note that this is different from the cookies that the
system places with the web browser on behalf of a supplier
web site. Ignoring this type of cookie, which is used only for
those particular suppliers whose web sites require it, the
system does not need to set any cookies.

[0158] Instead, the state used in system operation is stored
in a number of locations, but is not so limited. One location
where state information is stored is in the server, in the data-
structure allocated for each SID. Further, state information is
stored implicitly in the web pages (HTML and JavaScript)
displayed within the Bar. Each time the server (Copilot Serv-
let) returns content (such as user-interface information or
search results) to the client for display in the Bar, the Bar
retains that information. Thus, any information that is filled in
to the page content sent to a specific client is implicitly stored
in the client and is not required to be retained on the server.
[0159] Inoperation, the client/server system of an embodi-
ment generates a significant amount of information, about the
behavior of both users and suppliers. This information is
reliably retained so that the correct operation of the system
can be verified, the system can be further tuned/improved,
and because comprehensive data about buying and selling
habits is an asset of significant value.

[0160] At the most basic level, a significant amount of data
is logged simply by the HTTP server (httpd) processes run-
ning on each of the server systems. Because HTTP protocol is
used for the communication between the client and server, the
httpd is responsible for determining whether each incoming
request should be routed to one of the servlets, whether it is
for a static piece of data (such as a graphic used by the client
user interface displayed in the Bar), or for a page proxied from
a supplier web site through a web relay. Thus, each request
from a client passes through an individual server system httpd
and is logged, including some performance information and
the response code the server returns to the client. In addition
to the logging of transactions as they go through each server,
the Copilot Servlet also logs each request that is generated to
a supplier, and all of the responses to that request.

[0161] For the server internal couplings between the serv-
lets and the database servers, the search system uses a form of
database connection pooling for all database connections.
Opening and closing connections to a database is an expen-
sive operation. In order to improve performance, connections
are created once and inserted into a pool. When the system
requests a connection it is delivered from the pool. When the
connection is released or no longer needed by the system, it is
returned to the pool.

[0162] FIG. 8 shows a client system organization 800 of an
embodiment. The client is implemented for Microsoft Win-
dows operating systems and the Microsoft IE web browser,
using the ActiveX and Component Object Model (COM)
architectures/technologies, but is not so limited. As such,

US 2010/0268623 Al

there are many other system environments in which the client
could be implemented. The selection of the Microsoft-ori-
ented environment for the client implementation is just a
matter of economy and popularity (market-share), and does
not implicate technological issues.

[0163] As discussed herein, the client is implemented as a
set of COM objects that are packaged together in a single
Windows DLL 802 for installation and use. There are three
primary COM objects (objects that are assigned COM GUIDs
and registered in the Windows registry 810) that make up the
client: the Browser Helper Object (BHO) 804; the Bar object
806; and, the installation object 808. The division of the client
into these primary objects 804-808 and the different minor
(non-COM) objects is an artifact of restrictions imposed by
the architectures of IE, COM, and ActiveX and has nothing to
do with the underlying architecture or functions of the client.
[0164] The BHO is created to extend IE. When IE first
initializes, IE searches a known area of the Windows registry
for the GUIDs of registered BHOs. Internet Explorer creates
an instance of each BHO that it finds, which includes the
search system client BHO. When the BHO is created it
couples to different portions of IE’s COM interfaces so that it
is notified of the user actions that must be monitored to
determine if the Bar should automatically be opened.

[0165] After this initialization, the BHO monitors user
actions until IE is terminated and the BHO is destroyed.
Unless the BHO observes a match between a URL being
requested by IE and one of the entries on the URL list, no
other actions are taken.

[0166] Another task of the BHO is to manipulate the Bar
object based on feedback from requests submitted to the
server. For example, if the BHO observes a match between a
URL the IE is requesting and the URL list, it opens a new
session (if not previously accomplished) and forwards the
requested URL to the Copilot Servlet for further checking. If
the Copilot Servlet returns a “1” string, indicating that it has
started a search, the BHO creates a Bar object and opens the
Bar sub-window on the screen if it is not already visible.
Further, alternate embodiments can implement other return
codes or strings that result in other types of actions.

[0167] After this, the BHO receives a URL that references
the client’s assigned (via load balancing) front-end server.
The BHO uses the COM interface with the Bar to cause the
Bar to load from the specified URL, which gives the Copilot
Servlet the opportunity to transmit the HTML and JavaScript
that form the client user interface. Subsequently, each time a
new set of content must be sent asynchronously from the
server (e.g., not at the request of the user or the JavaScript
executing within the Bar) the BHO will again cause the Bar to
navigate to the new, server-supplied URL.

[0168] Additionally, with the help of the Bar, the BHO is
responsible for implementing the client-side session time out
counter. The BHO maintains the counter, resets it when it
detects relevant user activity (based on IE’s navigating to new
URLs at user requests), transmits the end-of-session message
to the server when the counter expires, and receives “reset
counter” messages from the Bar when the Bar detects user
activity (such as manipulating controls within the HTML user
interface displayed by the Bar) of which the BHO is not
directly informed.

[0169] As part of managing the session time out, the BHO
also periodically provides messages to the Copilot Servlet
informing it that the session is still in active use by the user.
This prevents the server from timing out the session in the

Oct. 21, 2010

case where the user is performing actions that are entirely
local to the client or that involve only a third-party or supplier
web site and which, therefore, do not cause the client to send
requests to the system server.

[0170] Like BHOs, Bar COM objects are treated as a spe-
cial type of extension by IE. A Bar object can be listed in the
Windows registry in such a way that IE automatically creates
toolbar buttons and menu entries that correspond to the Bar.
When the user selects one of these Bar-specific controls, IE
automatically loads and initializes the Bar COM object, so
that the Bar appears as a sub-window in the left hand side of
the IE window.

[0171] In an embodiment, the Bar object is capable of
detecting whether the BHO object has already been created
and initialized, or not, and of creating the BHO object if it
does not already exist. While this should not be necessary,
there are some cases where the BHO does not get created
correctly when IE starts. Therefore, the Bar’s ability to create
the BHO ensures a working system at least from the point in
time where the user explicitly attempts to open the Bar.
[0172] The Bar is responsible for the user-visible and user-
interface aspects of the client. However, there is actually very
little software involved in this aspect of the client because the
Bar object takes advantage of the browser control COM
object that IE makes available. Essentially, instead of actually
drawing and managing a user interface itself, the Bar object
takes the area of the display screen for which it is responsible
and fills it completely with a browser control. The browser
control behaves exactly like a web browser application, inter-
preting HTML, JavaScript, and all other data types supported
by the IE installation, except that the browser control takes
commands from the Bar software instead of having a user
interface for them. This structure allows the user interface of
the client to be rapidly implemented, easily modified, and
easily updated because the complete user interface is fetched
from the server on a regular basis, just like any other web page
viewed.

[0173] Just as the BHO receives notification of user events
that occur as the result of user actions in the IE main window,
the Bar object receives notification of user actions that occur
within the Bar browser control. With most of the appearance
and behavior of the user interface encapsulated in the “soft-
est” portions of the client (the server-supplied HTML and
JavaScript), the Bar object must perform only those portions
of the client operations that require access to the operating
system or an IE software interface that does not have a Java-
Script-equivalent. Primary in this category are operations in
which information or control is shared with the BHO, as there
is no object in the JavaScript object model equivalent to either
the generic, Microsoft-defined BHO interface or the BHO
interfaces that are specific to the client implementation.
[0174] FIG. 9 diagrams a flow of supplier cookies 900 of an
embodiment among suppliers 902, system servers 904, and
the client/BHO 906 and web browser 908 of user systems
910. It is noted that this flow diagram would be different for
operational cases that do not use auto-open, that require web-
relay for reserve/purchase, or that search a source other than
a supplier web site. Another key function performed by the
client Bar is the handling of several types of cookies, includ-
ing: cookies originally provided to the system server (search
adapter) by a supplier web site that was searched; cookies sent
to the client from the server along with data items that origi-
nated on the cookie-generating supplier web site; and, cook-
ies set in the browser if the user selects the “reserve” control

US 2010/0268623 Al

for a data item with associated cookies. This is a non-trivial
process because the normal behavior of a web browser is to
note the Internet domain from which a cookie was originally
sent and send the data for that cookie along with only those
HTTP requests (GET/POST/etc.) directed to the same inter-
net domain. In fact, IE will not accept cookies that are to be
sent to a different domain than the one from which they are
set. Unfortunately, when the server sets cookies by sending
them along with HT'TP responses to the browser control in the
client Bar object, the browser control associates these cookies
with the internet domain containing the search system server
and not the domain of the supplier web server that originated
the cookies. Because of this, if no other action is taken by the
client, the cookie values will not be sent along with the HTTP
request for a “purchase” page from a supplier web site.
[0175] In order to ensure that the cookie values originally
set by a supplier web server to the search server (a search
adapter executing as part of the Copilot Servlet) are sent back
to the supplier web server when the web browser attempts to
access it, the client manipulates the browser cookie storage
directly. To make this possible, when the server sends cookies
from a supplier to the client, it modifies the name of the cookie
first, so that the revised cookie name contains the original
name plus the text string identifying the supplier internet
domain.

[0176] When they are received by the browser control, the
cookies from the supplier sites are stored as if they originated
from the search system domain. When a “reserve” (purchase)
control in the client user interface is selected by the user, the
client retrieves all of the cookies stored regardless of their
original domains. The client then processes the cookie names
to remove the originating-domain information (originally
added by the search server before transfer to the client). An
alternate embodiment has the client check each cookie to
identify all cookies, based on their names, that should be set
in the browser for the selected supplier web server.

[0177] Ineither embodiment, once the client has all cookies
to be set, it processes the names to remove the domain infor-
mation, and then calls an internal IE interface to set the
cookies using the supplier web site domain as the domain to
which the cookies should be sent. It is noted that the client
does not “clean up” cookies that are stored on behalf of
supplier web sites. Instead, if the user performs several
searches, the cookies stored as the result of each later search
replace the same-named cookies from earlier searches, so that
the relevant cookie values are always current when they are
needed.

[0178] An advantage of the cookie handling methods of an
embodiment is its simplicity. By sending all of the cookies by
the supplier web sites to the client along with their corre-
sponding data items, in most cases the client can handle the
user selection of a “reserve” control entirely on its own,
without making a new request of the server. This means that
in most cases the server can, after logging, discard all infor-
mation and data structures related to a particular user search
as soon as that search is completed, without having to coor-
dinate with the client JavaScript’s time out counter. The
exception to this case is supplier web sites that are accessed
from the web browser by web relay through the system server.
For these types of sites, the server maintains supplier-specific
information in order to perform the relay and fetch pages from
the supplier web site.

[0179] An alternate embodiment of the system handles
cookies by maintaining the list of cookies that match each

Oct. 21, 2010

search result on the server. The client then makes a separate
request to the Copilot Servlet to retrieve the cookies when and
if the user activates a “reserve” control.

[0180] Another alternate embodiment stores the cookies in
the client in a different manner. For example, in the HTML
that is sent from the server containing each data item found
during searching is placed a block of JavaScript or HTML that
includes the name/value pairs for all of the cookies associated
with that data item. When the “reserve” control is activated,
the JavaScript code executing within the Bar unpacks this list
and provides it to the Bar object to be set within the browser.
This method is preferred to having the JavaScript code set the
cookies, as it avoids any difficulties with setting cookies so
that they appear to have originated from a domain other than
the one that originated the page setting the cookies.

[0181] There are numerous other objects used within the
client that are not exposed to the operating system and IE via
COM. The design of and partitioning between most of these
objects is the result of simple implementation choices and has
no bearing on the behavior of the system or client described
herein.

[0182] One internal object, however, is of significance,
although it would be unnecessary in an implementation of the
client that did not use multiple COM objects. While it is
possible for IE to create any of the COM objects that make up
the client, and it is possible for the COM objects to create each
other, it is very difficult to establish links between the COM
objects that make up the client if IE creates more than one of
them.

[0183] For example, in the most typical operating
sequence, IE starts first, it then creates the BHO, and the Bar
object is created later either by the BHO or by IE depending
onwhether it is opened automatically or explicitly by the user,
respectively. Unfortunately, IE does not provide a mechanism
by which BHO objects can find already-created Bar objects or
vice-versa. As a result, the BHO has no way of knowing if IE
has already created a Bar before the BHO needs to open it
automatically. Additionally, if for some reason the BHO is not
created automatically, the Bar has no way to determine this so
that it can create the BHO itself. Finally, with neither the BHO
nor the Bar object being able to find the other through IE, itis
difficult to establish the communication between the two
objects that is necessary for the operation of the client without
compromising the object-oriented nature of the COM archi-
tecture.

[0184] Therefore, the client uses a small and well con-
trolled work around of the typical COM communication
paths: the client contains a link object which, due to its design
and implementation, both the BHO and Bar COM objects can
find and which they use as an intermediary to communicate
with each other. The details of the link object implementation
depend both on COM and on the fact that the preferred
embodiment is implemented in C++. In C++ nomenclature,
the link object class contains a number of global methods
(which, unlike normal methods, may be called by software
that does not already have a pointer to a link object instance).
These methods are used by BHO and Bar objects to place
pointers to themselves onto lists maintained within the
(single) link object instance, and to retrieve pointers to the
other type of object (BHO pointers for a Bar, or vice versa)
from the link.

[0185] At this point it is noted that because of the way IE is
implemented and how it handles the case in which the user
opens multiple IE windows simultaneously, it is possible for

US 2010/0268623 Al

multiple client BHO and Bar objects to be created on the same
user system, and for some of them to be in the same address
space while others are in different address spaces. Due to the
implementation of the link object, there will only be one link
object in a particular process address space, regardless of how
many IE windows, BHOs or Bars IE creates within that
address space. Each instance of a client BHO or Bar object
registers itself with the single link object in an address space
and can therefore access all of the other client objects. Mul-
tiple, independent process address spaces have their own link
objects and client COM objects in them are unaware of each
other. However, since the goal of the link object is to allow the
client BHO and Bar objects associated with one IE window to
communicate with each other (and that these will always be in
the same address space), the ambiguity about the total number
of link objects on a user system is unimportant.

[0186] FIG. 10 is a diagram of a Copilot Servlet organiza-
tion 1000 of an embodiment. This organization shows the
information flow among the Copilot Servlet 1002, the factory
infrastructure 1004, the system server databases 1006, the
clients (not shown), and the supplier servers (not shown), but
is not so limited. For each search request received from a
client, the Copilot Servlet 1002 processes it by creating lists
of suppliers to search, pruning the search list, searching via
adapters, post search pruning/filtering, and presentation.
[0187] When the request is first received, the Copilot Serv-
let examines it to determine if it contains enough information
to start a search. This process is performed by aninput adapter
module that is specific to the web page in which the user
entered information, whether it was part of the client user
interface or a third-party web site. If the request does not
contain enough information or is not actually a search
request, a “0 is returned to the client and processing termi-
nates. If it does, a “1” is returned and processing continues
with the next step. Further, alternate embodiments can imple-
ment other return codes or strings that result in other types of
actions.

[0188] The Copilot Servlet determines a set of supplier
systems to search in an attempt to find items that best satisty
the received itinerary. The determination is made using infor-
mation including, but not limited to, the contents of the infor-
mation received in the request, the user’s personal informa-
tion, the user’s current selections in the client user interface (if
the Bar is open), the recent history of searches and the amount
ot bandwidth the searches have recently used on each supplier
system, and the history of prior searches of similar types by
similar users.

[0189] The Copilot Servlet acquires a set of search adapter
objects from an internal resource pool, and tasks one to search
each of the selected suppliers. Each search adapter performs
its search independently and asynchronously from the others,
so that the subsequent steps in the Copilot Servlet processing
sequence can handle incremental search results.

[0190] The server performs post-processing on the search
results received. Post-processing is used to reduce the number
of results that are presented to the user below the number of
raw results found from the various suppliers. This is done in
order to reduce the amount of data that the user has to sift
through by providing only those results that are most likely to
be selected.

[0191] This determination can be based on many criteria.
For example, in the realm of air travel fares, many carriers
quote fares much higher (3.times.or more) than their compe-
tition on some routes. Since it is very unlikely that a user

Oct. 21, 2010

would select these particular travel options in the face of the
competition, the server is best serving the needs of the user by
not cluttering the list of results with this type of item. In
addition, the server can take into account factors including,
but not limited to: the user’s explicit preferences, as indicated
by the personal information entered; the user’s implicit pri-
oritization, as indicated by the current sort-order selection in
the client Bar; the particular user’s past purchasing decisions
when presented with similar options; and, the past purchasing
decisions of aggregate groups of users presented with similar
options.

[0192] The complexity of making pruning/filtering deci-
sions on the data items found is increased by the results being
received from different suppliers at different times, and being
forwarded to the client for incremental display as quickly as
possible. In order to provide incremental results to the client,
the server applies filtering decisions to individual search
results without certain data about the results that may or may
not be subsequently received from supplier’s that have not yet
responded to the search request. There are a number of pos-
sible mechanisms that the server could employ to accomplish
this decision making.

[0193] The simplest method is to generate a numeric score
(applying the desired criteria) for each individual data item.
Items achieving a score above a certain threshold are sent on
immediately, items falling bellow a lower threshold are dis-
carded, and those between the two thresholds are retained for
further consideration. The system then adopts a target number
of results to return from any search (or possibly a different
target number for each category of search, such as the air
travel, hotel, and rental care reservation categories). Since the
number of suppliers being searched is known at the outset of
a search (although an alternate embodiment can add the abil-
ity to start new searches of different suppliers incrementally if
the initially-received results were judged inadequate), the
threshold for deciding which results should be forwarded to a
client can be adjusted up or down after each supplier’s results
are received and it can be determined whether the average
number of results per supplier so far sent to the client is above
or below the target average number of displayed results per
supplier.

[0194] In addition to implementations in which the pro-
cessing from an individual user action through the delivery of
information is performed interactively and as quickly as pos-
sible, it is possible for other embodiments of the system to
have relatively long latencies, either due to processing
requirements or intentionally introduced, between different
steps. For example, an embodiment can gather information
from very slowly-responding suppliers. In this case, a mecha-
nism could be introduced in which result information was
delivered to the user separately from their (possibly implicit)
request, such as by sending them an email instead of imme-
diately displaying the results in the client. In this case, it may
be advantageous to detect multiple user actions as triggering
search operations without requiring that one operation com-
plete or be aborted before the next is detected. Similarly,
when information delivery is delayed it may be advantageous
to accumulate all of the search results together for a single
delivery instead of delivering them incrementally. If this is
done, different methods may be used for post-search filtering
which take advantage of the fact that all results can be filtered
simultaneously when the system is in complete possession of
all of the relevant information, rather than with partial (incre-
mental) information as described herein.

US 2010/0268623 Al

[0195] There are many cases in which delays may be inten-
tionally introduced in the system’s operation. For example,
the search system could provide a “notification™ feature,
whereby a particular (possibly implicit) user query is repeat-
edly processed over a period of time, and the use provided
result information only when that information meets a par-
ticular criteria. Another possibility is that the system performs
both immediate data delivery as well as subsequent, non-
interactive delivery. For example, in an embodiment the sys-
tem could consider the final purchase of an airline ticket (as
detected by the buy tracking mechanism described herein) as
the triggering event for a new search. The system could per-
form this search repeatedly over a period of time and filter the
results using criteria based on the actual ticket purchased by
the user. The system would then asynchronously notify the
user if one of the periodic repeated searches finds a ticket that
is better than the one the user purchased. In the arena of airline
tickets, better might be constrained to be only a lower price
for exactly the same ticket as business considerations might
limit the user from exchanging the already purchased ticket
for any other alternative. However, embodiments designed to
handle different types of information might not need to be so
limited.

[0196] In cases where the search system is used to search
for information relating to purchasable items that have time-
limited availability, such as airline tickets, the system may
incorporate special features in order for delayed information
return to be helpful. For example, if the system performs a
search for a purchasable airline reservations delayed from the
triggering user action, it is possible (if not likely) that the user
will not be interacting with the client at the time results are
obtained. Because of the fleeting validity of airline reserva-
tion information, the system could use a method for immedi-
ately notifying the user so that a purchase transaction could be
completed. Such a method could include the use of a paging
system or an asynchronous message to a wireless client, but is
not so limited.

[0197] An alternative to being able to reliably notify the
user of an available (desired) purchasable item is to have
pre-authorization from the user to make the purchase on their
behalf. This would require that the user supply, either previ-
ously or as part of their (possibly implicit) search-triggering
action, payment information, a purchase authorization, and
adequate selection criteria so that the user is satisfied with
purchases that are automatically made.

[0198] Following search result processing, the individual
result items are forwarded to the client. When forwarding
results, each data item is inserted into an HTML/JavaScript
display template, combined with the cookies set by the sup-
plier web site (if any), and transmitted to the client.

[0199] The different server servlets of an embodiment are
implemented using the object-oriented Java programming
language. Given this, a key implementation detail is how the
system creates the different component objects that make up
each servlet. A “factory” system is used wherein a single,
central piece of software, the factory, is called by all other
portions of the software with requests to create new objects.
[0200] The larger components in the system are not cre-
ated/referenced in a traditional way, but rather through com-
ponent factories. The software modules using a component
never actually know which implementation of the component
is returned by a factory for their use. Rather, they always
communicate through an interface (an API definition for the
component). When the module using an object returned from

Oct. 21, 2010

a factory has to get a handle to an implementation of the
interface, they request the handle from the factory. This
allows the factory to create the component at that point, or to
retrieve it from a temporary storage place, or to retrieve it
from a database. The factory is the only system component
aware of how the object instances are created and managed,
and this can be changed without the awareness of any of the
other software components communicating with or using the
component.

[0201] Use of factories also allows the implementation of
the component to be changed without any of its users being
aware that a change has taken place. The actual class instan-
tiated by the factory is determined by a property file, and can
thus be changed without changing a single line of code. This
mechanism allows rapid prototyping of new components,
creating a so-called default implementation of the component
(an implementation that returns valid results without imple-
menting any of the real behavior of the component), and
creates a complete system almost instantly. Individual devel-
opers can then work independently to create the actual com-
ponents one by one, and replace the default components when
the real components become available. The complete system
works at any time, and can be run and tested with the newly
developed component by simply changing a property.
[0202] In order to optimize the database accesses beyond
the connection pooling mechanism described herein, an
embodiment includes a generic object caching mechanism.
The object cache caches the data obtained from database
accesses, and keeps the object instance containing it available
there for a future reference to the same data. After a certain
period of non-use of the data, it is automatically removed
from the object cache. A next access of the data will again
obtain it from the database. The object caches rely on the
principle of locality of time reference to reduce the actual
requests that need to be made to the database. By implement-
ing a generic base class that provides this functionality, it is
easy to use object caching throughout the server.

[0203] Use of a factory abstracts the implementation of
object creation from the rest of the software. In particular, this
mechanism allows different objects that implement the same
interface to be freely substituted for each other as the system
implementation evolves. The particular object implementa-
tion that is used to serve each object-creation request that the
factory receives is controlled by a server configuration data
file referred to as the properties file. Additionally, the factory
can manage caches and pools of previously-created or pre-
allocated objects, to optimize the management of memory
and/or processing effort.

[0204] The central module of the Copilot Servlet is referred
to herein as the business logic. The business logic includes a
relatively small portion of the servlet that is responsible for
sequencing the operation of the remainder of the servlet. Any
system changes necessary to accommodate coupling with
fundamentally different types of client systems are accom-
plished with the business logic. For example, a client that is a
stand-alone piece of software that is not integrated into a web
browser (as might be appropriate on a hand held processing
device), would not need to exchange information with the
server concerning whether the Bar should be automatically
opened. This type of change can be incorporated in the server
with changes in the business logic.

[0205] The sequence of object creation and use that the
business logic uses when servicing a client request includes,
but is not limited to: creating a UserInfo object based on the

US 2010/0268623 Al

UID in the request; creating a Sessioninfo object based on the
UserInfo and the SID; and, creating a TravelRequest object.
The Userlnfo object is created to hold information keyed
from the UID. The UserInfo object is initialized with data for
aparticular UID only while a session for that UID is open, but
the data it contains is not session specific. When there is not
one or more active session for a particular user (UID), the
contents of the UserInfo object is stored in the server database
until needed again.

[0206] When the UserInfo object is created by the factory,
the factory first checks a cache of previously-created Use-
rInfo objects and returns an object from the cache if present.
This minimizes both object creations and accesses to the
database, because multiple requests from the same UID are
likely to occur together. If a User Info object for the desired
UID is not present in the cache, a new User Info object is
created and the factory attempts to populate it with data from
the database.

[0207] New UID database entries are created only when the
Start Servlet (which shares much of the underlying infrastruc-
ture with the Copilot Servlet, including the User Info object
and the object factory) requests a Userlnfo object from the
factory and the desired UID is not already present in the
database. If other servlets request UserInfo objects for non-
existent UIDs, matching objects are created (or located within
the cache), but the exception is logged as being potentially
indicative of an attempt at unauthorized access to the system.
[0208] Just as the UserInfo object is created to hold UID-
specific information while processing a request, the Session-
info object holds SID-specific information. Like the UserInfo
object, Sessionlnfo objects are cached within the factory so
that multiple, rapid uses of the same SID do not require
corresponding Sessioninfo objects to be created from scratch
to serve each request.

[0209] Unlike the UserInfo object, the contents of Session-
Info objects are not stored by the server database, but the
system is not so limited. Instead, SID-specific information is
maintained as long as the session is active and then discarded
when the session terminates (except for the data logged by
transactions while the session was active, which is considered
to be different from the randomly-accessible database
records).

[0210] TravelRequest objects hold information that is spe-
cific to each unique information request that is sent from the
client. The creation of the TravelRequest object accomplishes
several critical parts of the Copilot Servlet function.

[0211] First, in the process of creating a TravelRequest
object, the source of the information in the request is identi-
fied. In general, a request can either originate from the itin-
erary-entry controls in the client user interface or in the
equivalent data entry portions of a third-party web page. In
either case, there is a source-specific input adapter module
that is used to process the content of requests that the client
creates from user interaction with supported sources.

[0212] If the source of a request is not supported (for
example, the request comes from a third-party web site that is
included in the client list of URLs that should be forwarded to
the server, but the actual browser navigation event that the
client forwarded is from or to a page of the site that does not
perform itinerary entry), or if the input adapter determines
that the request was incomplete and did not contain enough
information to start a search, then the TravelRequest object is
created with a special value indicating that it is a non-valid
request. This result causes the Copilot Servlet to respond to an

Oct. 21, 2010

incoming client request with a “0” string to inform the client
that no additional data will be coming and that the Bar should
not be automatically opened. If the Bar is already open, such
a response does not result in Bar closure.

[0213] Assuming that enough information can be extracted
from the client request to start a travel search, the TravelRe-
quest object is populated with the extracted information.
Thus, the combination of the input adapters, which extract the
information, and the TravelRequest object, which serves as a
receptacle for the information, serves to normalize the infor-
mation needed to perform a search of suppliers into a com-
mon format for use by the rest of the Copilot Servlet compo-
nents, regardless of the original source and format of the
information.

[0214] Further, normalization of travel requests includes
identifying the airports that are associated with the departure
and arrival locations identified in the request. This is an
important step because there are a number of roughly-equiva-
lent ways in which users might specify the locations in their
requests.

[0215] After the TravelRequest object is created, the busi-
ness logic processes it through one or more pre-search filter-
ing or pruning operations. Prior to these operations, the Trav-
elRequest object has information that identifies the broadest
possible set of travel suppliers that can be searched to fill the
requested itinerary. For example, in searching for available
airline reservations, the preferred embodiment builds a list of
all the airlines (suppliers) supported by search adapters for
which at least one departure and arrival airport (as there may
be more than one possible alternate at each end) are listed as
being served by the airline in the server database.

[0216] Another technique for determining whether a travel
supplier should be searched based on the origin and destina-
tion of the trip uses a data table based on the actual flights that
a supplier actually provides, and incorporating service rules
in its construction. The system of an embodiment uses such a
table, which incorporates not only actual supplier flights but
also a numeric preference value with each airport pair in the
table. The preference value is used during pruning, both by
the explicit pruning mechanism and by the per-supplier prun-
ing decisions made within search adapters, as a way to control
the likelihood that a particular supplier will be searched for a
given route, in light of other factors effecting search pruning.
[0217] Filtering and pruning are important optimizing
steps for many reasons, although the exact set of optimization
criteria are likely to be specific to a particular information
domain searched. To continue with the air travel example,
there are many idiosyncrasies in the way air travel is routed
that could result in there not actually being any flights
between two airports that are both served by the same airline.
For example, if the airports are too close together, there may
only be flights between them on commuter air carriers; larger
carriers that serve both airports may either not have flights or
have flights that are prohibitively priced. As another example,
a single airline might serve two disparate regions, and even
though one contains the arrival airport and the other contains
the departure airport, the airline does not actually have flights
between the two regions. Further, a particular supplier might
be optimized out of the list to be searched based on user
preferences and predictions made concerning the likelihood
of a relevant result being returned from the search based on
prior system experience.

[0218] Another criteria used to prune an air travel supplier
out of the list of potential search targets is the home country of

US 2010/0268623 Al

the supplier. For example, even though British Airways files
to/from many United States cities, it may only be searched if
one of origin and/or destination airports is in Britain.

[0219] There are three key system resources whose use can
be improved by intelligently optimizing (reducing) the list of
suppliers to be searched. One resource is network bandwidth
between the server and the internet backbone. Because of
practical constraints, each individual server of the system will
have a finite amount of network bandwidth that can be
employed to perform searches. By predicting which suppliers
that might be searched are most likely to return relevant (to
the particular current user) results, the amount of search
server bandwidth consumed by each search can be mini-
mized, resulting in greater system efficiency and lower cost.
[0220] Note that another, unrelated method of minimizing
bandwidth is to use proprietary search connections with as
many suppliers as possible instead of connections to human-
oriented web sites. Web sites with human-friendly user inter-
faces typically transfer a significant amount of formatting and
presentation information above and beyond the information
actually of interest to the search server, wasting a significant
fraction of the total bandwidth used to return results.

[0221] The second key resource is the network bandwidth
of the supplier server systems. Assuming a generally high
market acceptance of the system, it will be capable of gener-
ating significantly more total queries of supplier systems than
the consumers using it would be able to generate on their own
by accessing the same supplier web sites. As such, the system
should not overwhelm the bandwidth (network and process-
ing) capabilities of those supplier web servers that are
accessed by search adapters. The pre-search filtering step
gives the server the opportunity to remove a supplier from the
list of suppliers to search based on the number of searches of
that supplier that have been recently performed or are
expected in the near future.

[0222] The third resource that can be optimized by reduc-
ing the number of suppliers to be searched, thereby improving
the expected relevance of the results from each supplier, is the
real time required for the search at all. The more rapidly the
system can respond to an individual user request for informa-
tion, the more satisfied the user is likely to be. Even if there
were no bandwidth and processing limitations, the search
would complete sooner the fewer suppliers that are searched.
In addition, by searching suppliers that are more likely to
return relevant results, an implicit reduction is made in the
total number of results that will be displayed to the user. The
shorter and more concise the list the user has to review, the
more they perceive that the search occurred rapidly, even if it
actually took the same amount of real time. At the conclusion
of the filtering/pruning operations, the TravelRequest object
contains information identifying the specific set of suppliers
that the system will attempt to search with the user’s request.
[0223] The TravelQuery object manages the actual search
process. It manages class-global pools of idle processing
threads and pre-created search adapter objects. When a new
TravelQuery object is instantiated with a TravelRequest
object, it obtains one thread and one search adapter for each
supplier that the TravelRequest identifies as a search target. If
the pools do not contain enough items to execute a particular
query, more items are created. The TravelQuery assigns one
supplier to each thread/search adapter pair and starts the
search operations.

[0224] The server system performs numerous tasks in par-
allel. In order to achieve this parallelism, a large number of

Oct. 21, 2010

independent threads are created. Once the task has been com-
pleted the thread can be discarded. Since many of the tasks are
of a similar nature, the system uses a thread pool. This saves
the overhead of constant thread creation and destruction, and
makes optimal use of the thread resources. When a task needs
to be accomplished a thread is allocated from the pool and
associated with the task. The thread then executes the task
until completion after which the thread is returned to the pool.
When no thread is available in the pool a new thread is
automatically created, and returned to the pool after task
execution. In order to protect against possible errors or
memory leaks, a thread is re-cycled after it has executed a
certain number of tasks. At this point the thread is destroyed
instead of being returned to the pool. This mechanism will
also automatically maintain the pool size at an appropriate
level.

[0225] When each supplier search completes, the search
results are provided to the request’s Presentation object and
the processing thread and search adapter objects are returned
to the pools. Both pooled threads and adapters have their life
spans monitored and are destroyed after they have been used
100 times, but are not so limited. This is done as insurance
against the possibility of memory leaks or other potential
mild-impact bugs in the servlets or the server operating sys-
tem that could accumulate if the objects were allowed to
persist indefinitely.

[0226] It is possible for a user to abandon a search while it
is still in progress. This can occur due to a number of different
user actions, ranging from abruptly closing the Bar or the
entire web browser, to manipulating a client user interface
control so that the search results are no longer displayed, or
even by selecting the “reserve” control associated with an
already-received data item. When this occurs, the search
adapters are not explicitly notified. All of the Copilot Servlet
objects involved in a particular search are allowed to com-
plete the search. This prevents the connections between indi-
vidual search adapters and supplier systems from being
abruptly terminated, which might have undesirable side
effects for the suppliers.

[0227] Instead, the TravelQuery object contains a flag indi-
cating that processing should continue on the current query. If
the user abandons a search, this flag is cleared. Each time an
active search adapter reaches a point in the sequence of trans-
actions with its supplier where the supplier system is in a
stable state, the adapter checks the flag and, if it has been
cleared, stops its operations.

[0228] There is a different search adapter module (object
class) for each supplier system that is supported for searching
and for each different search procedure that may be applied to
aparticular supplier. It is important that the search adapters be
easy to create and modify as they are often customized to the
design and content of a supplier’s human-accessible web site.
When this is the case, the search system has to constantly be
monitored to ensure that changes to supplier web sites that
stop the adapters from functioning do not occur.

[0229] Within each search adapter, there may be logic that
applies supplier-specific algorithms to perform further prun-
ing, to determine if the search of the supplier is actually
appropriate for the current query. For example, there are air
travel suppliers that may not accept bookings for very near-
term flights (e.g., departing less than five days from the day of
purchase). In this example, it is the responsibility of the
individual adapter to determine if the current request is or is
not likely to produce useful results if carried out for the

US 2010/0268623 Al

adapter’s supplier. By placing the responsibility for detailed
supplier-specific decisions in the search adapters, it reduces
the need to make descriptive/predictive information available
to the higher-level pre-search pruning logic.

[0230] Another aspect of supplier-specific decision making
carried out by the individual search adapter is regulation of
the amount of bandwidth consumed by searches conducted
on the adapter’s supplier. This is accomplished through a
combination of supplier-specific code and data (such as the
desired maximum amount of bandwidth to consume from the
supplier) plus code that is part of the search adapter base class
and implements the bandwidth-tuning algorithm. In an
embodiment, the most basic algorithm is a digital phase-
locked loop (PLL). In order to allow the high-level pre-search
pruning logic to take advantage of the decisions made by
individual search adapters, each search adapter returns status
information to the TravelQuery indicating whether or not it
has started a requested search. This allows the pre-search
pruning to start additional adapters if any of its first choice of
adapters decides that performing the search is not actually
appropriate. Similarly, when the high-level pre-search prun-
ing logic requests that a search adapter start a search, it
provides a numeric preference value, indicating the degree to
which the pruning logic wants the adapter to perform the
search. Each search adapter is free to interpret the preference
value relative to supplier-specific criteria.

[0231] Itisnotonly possible, but actually desirable in some
cases to have multiple search adapters for the same supplier
installed in the search server. In general, the decision making
in different adapters for the same supplier should be comple-
mentary, so that only one of the adapters (if any) will actually
perform a search for the same request. This ensures that the
user will not be presented with multiple duplicate search
results.

[0232] Real time searching of the Internet is by nature a
very dynamic process. Updates to the search adapters have to
be made on a regular basis. In order to minimally disrupt the
system availability, a system embodiment includes a dynamic
class loader, which allows for updating the search adapter
objects while the system is running. The system itself detects
that anew version of a class has been made available, removes
all old versions ofthe class and starts using the new version of
the class from that point on. Because this embodiment is
implemented in Java, the details of this mechanism depend
significantly on the structure of the Java programming lan-
guage and execution environment, although the fundamental
structure of the system is language-independent.

[0233] Java software is compiled from source code into an
intermediate binary form (byte code), which is then inter-
preted at run time by a Java Virtual Machine (JVM). The
management of loading new byte code files for execution by
the JVM is handled, along with many other common and
system functions, by parts of the Java runtime environment
that are themselves written in Java and interpreted by the
JVM, as opposed to being hard-coded parts of the JVM itself.
For the purpose of loading new classes in a running Java
system, the important parts of the Java runtime environment
are the class loader classes and objects.

[0234] The class loader is the component of the runtime
environment that is invoked by the Java new operator when a
new object (instance ofa class) has to be dynamically created.
The default (system) class loader operates based on the name
of the class for which an instance is to be created, and uses
system configuration information and standardized conven-

Oct. 21, 2010

tions to locate and read the bytecode file that contains the
implementation of the desired class. The class loader main-
tains a cache of the contents of the bytecode files for objects
which have already been instantiated, so that multiple instan-
tiations of the same object do not all incur the performance
penalty of reading bytecode files.

[0235] In addition, the Java runtime environment makes
provisions for the creation of custom class loaders, that may
or may not be child classes of the system class loader. In
particular, there is a standardized method, newlInstance, that
is used to invoke the class loader with explicit parameters
concerning the class and bytecode files to load, rather than
relying on the implicit locating of the bytecode file imple-
mented by the system class loader. In the system of an
embodiment, the determination as to which objects are
instantiated by the system class loader and which use the
system’s special class loader is made explicitly in the source
code based on whether new or newlInstance is used to create
object instances. In addition, an embodiment uses a commer-
cial set of infrastructure libraries known as “Tomcat” in addi-
tion to the basic Java execution environment. Tomcat imple-
ments its own custom class loader on top of the Java system
class loader, and the search system’s class loader is built on
top of'the Tomecat class loader. In an embodiment, the custom
class loader is used to create instances of all of the different
types adapters, not just search adapters.

[0236] In order to support dynamic adapter updating with-
out having to restart the entire server system, it is necessary to
be able to remove the old version of an adapter from the class
loader cache, and then cause new instances of the adapter to
be instantiated from the new bytecode file. Unfortunately, the
Java system class loader does not contain a method to unload
classes. The commonly known work-around for this lack is to
destroy the entire existing class loader object and instantiate
a new one. Unfortunately, this causes the entire cache of
loaded bytecode files to be lost, which is an unacceptable
performance penalty. It is to overcome this problem that the
system of an embodiment uses its custom class loader.
[0237] Each time an adapter is to be used (fetched from the
pool), the TravelQuery object checks the time stamp of the
adapter’s bytecode file to determine if it has been updated
since the last time it was loaded. If the adapter’s bytecode has
been updated, the TravelQuery object instructs the custom
class loader to reload the class’ bytecode file. The system’s
custom class loader includes a reinstantiate method that:
removes the target class from the class loader’s bytecode
cache; instantiates a new class loader; passes the complete
existing cache to the new class loader instance; and, destroys
the old class loader instance.

[0238] At the conclusion of this operation, the new class
loader instance can be used in the normal way (via newln-
stance) to instantiate the desired adapter, which will cause the
new bytecode file to be loaded into the cache. Note that an
alternate implementation could check the time stamps of all
adapter bytecode files periodically instead of on-demand.
Such an implementation would trade off the precision of the
adapter updates versus the amount of processing consumed
by checking adapter time stamps.

[0239] Inaddition to determining when an adapter’s cached
bytecode should be updated based on the presence and time
stamps of files in the system’s adapter bytecode directory, an
embodiment of the system also uses the presence of different
types of adapter files to determine the set of options available
to the system. For example, the server maintains a copy of the

US 2010/0268623 Al

URL lists stored on the client at all times. Note that one URL
list directly corresponds to the available set of input adapters
while the other URL list corresponds to the set of buy adapt-
ers. Each time the system detects a change in the set of
available adapters, it updates its internal URL lists and the
associated revision number. Subsequently, when new client
sessions are established, the clients receive the new revision
number and therefore download the updated URL list.
[0240] The revision number for each URL list consists of
three numbers. The first two numbers come from the proper-
ties file while the third number is automatically incremented
by the server in response to detecting changes in the available
set of adapters. In a similar, internal manner, the list of sup-
pliers that is used to create the original list of candidate
suppliers to search for a request is based on the set of search
adapter objects that are currently available. Note that it is
possible for an adapter to be added or removed to the bytecode
directory as well as being replaced, and the system reflects
these changes in the available set of options as well. This is
accomplished by a server process that periodically examines
the bytecode file directory for the addition or removal of new
adapters.

[0241] As discussed herein, the server uses at least one set
of'configuration data stored in the properties file. It is possible
to implement the creation of search adapter objects based on
a list of suppliers to be searched contained in the property
files. However, a more efficient implementation is to deter-
mine the set of available adapters based on the Java bytecode
files currently located in the search adapter executables direc-
tory on the system servers.

[0242] The implementation of the search adapters particu-
larly benefits from an object-oriented programming language
and design style. In the system of an embodiment, search
adapters are created as child classes from a large search-
adapter base class that provides common behaviors, inter-
faces, and services to ease the development of individual
search adapters. In particular, the base class implements all of
the adapter interfaces to the other server components. Simi-
larly, the base class for search adapters implements a selec-
tion of primitive and/or common tool routines that specific
search adapters can use to parse and extract data from web
pages returned from requests the adapter makes to supplier
web servers.

[0243] Another function of search adapters implemented in
the base class is the detection and tracking of errors. Because
search adapters interact with other unrelated systems across
the coupled network or Internet, there is always the possibil-
ity that their operation will fail. The search system is, how-
ever, very tolerant of individual search failures because there
are so many potential travel alternatives that can be presented
from other suppliers. However, the search adapters track the
number of failures from a particular supplier. A significant
number of failures from the same supplier can be indicative of
a change in the supplier web site that will require a change in
the search adapter in order to allow it to work again. In the
preferred embodiment, there is a mechanism to cause the
detection of groups of search failures to automatically trigger
the paging of an operator.

[0244] Moreover, as the search adapters are constructed
using a common base class and implement identical inter-
faces, it is easier to use the search adapters in contexts other
than the complete search system and the Copilot Servlet. For
example, during the development of search adapters, a sepa-
rate piece of test harness software is used to task individual

Oct. 21, 2010

adapters with specific searches under the control of the devel-
oper, circumventing the rest of the intelligence in the Copilot
Servlet, which might serve to make testing of individual
adapters more difficult.

[0245] The Copilot Servlet makes on-the-fly decisions for
each set of search results provided by a search adapter regard-
ing which of the result items are appropriate to forward on for
display in the client. This decision, like the processing per-
formed on the TravelRequest object to prune the set of sup-
pliers to search, is accomplished by a series of processing
operations performed on the search results once they are
received.

[0246] The final object in the chain of the Copilot Servlet
processing for a particular client request is the Presentation
object. This object receives the different travel search results,
asynchronously, after filtering, from the TravelQuery. The
Presentation object is responsible for encapsulating the raw
search results into HTML that is appropriate to the HTML
already sent to the browser control in the client Bar.

[0247] Ingeneral, there is a single Presentation object asso-
ciated with a Sessionlnfo object. The Presentation object
retains the result data from the most recent of each different
type of data search performed by the user. In an embodiment,
this includes up to three sets of data: one each for air travel,
hotel reservations, and rental car reservations. Each time a
new TravelQuery is created/started for a user session, it is
given a pointer to the Sessionlnfo object’s Presentation
object. Because TravelQuery objects are not immediately
destroyed if the user abandons a search, it is possible for the
Presentation object to receive interleaved results from mul-
tiple TravelQuery objects simultaneously. In order to allow
the Presentation object to retain the information from the
most recent search and discard the rest, each TravelQuery
object is assigned a different search ID number, and the
Presentation object discards search results marked with any
search ID other than the most recent (of a particular type).

[0248] Regarding databases and database content, there are
a number of logically-separate databases used by the server
system. A collection of server systems shares one or more
common, redundant database systems. One set of data stored
in the server database includes copies of commercially avail-
able flight tables. This table lists all of the available commer-
cial airline flights by supported suppliers. Not only is this
table accessed directly, but it also contains the raw data from
which the short list of suppliers that service listed airports is
taken in construction of the first-order list of possible suppli-
ers to search for a particular request.

[0249] A key capability of the system of an embodiment,
because it is capable of directly accessing suppliers web sites,
is that it can find and make available to users the so-called web
specials of travel suppliers. A web special is a discounted
price on an otherwise-available ticket that is offered only to
people purchasing the ticket through the supplier’s web site.

[0250] In order to optimize the list of suppliers that should
be searched for a particular request, the system has to have
information about which suppliers are likely to have which
web specials available at any particular time. Unlike the infor-
mation on regularly scheduled flights, which is essentially
static, the set of web specials is highly fluid. Therefore, the
database contains a cache of the web specials available from
each supplier that performs this type of marketing. The cache
is periodically refreshed by a pseudo-search request gener-
ated within the server.

US 2010/0268623 Al

[0251] While the primary means of searching employed by
an embodiment is searching in direct response to a user
action, it is noted that the search system of an embodiment
also employs automatic searching performed asynchronously
to user actions. Automatic searching may be used to facilitate
any stage of the system’s operation. For example, automatic
searching may be performed to pre-fill data bases used as part
of the filtering process before and after a search adapter
operates. The results of automatic searching may also be
incorporated into the information that is returned to a user as
the result of a query. Additionally, nothing in the embodi-
ments described herein should be interpreted to limit the
search system to returning the information retrieved by search
adapters to the user. For example, the results of queries to
information suppliers could be used to filter the delivery of
other data (possibly constant data or the results of automatic
searching) to the user instead of the reverse.

[0252] As discussed herein, the UID-associated informa-
tion is stored in the database. It is updated when the user
invokes the client user-interface for editing their preference
information, and fetched into a UserInfo object each time a
new client/server session is created.

[0253] The interface between the search system and the
various supplier systems is implemented by a search adapter.
As detailed herein, there are three different categories of
interfaces between an adapter and a supplier: through the
supplier’s commercial/consumer web site, through a GDS
system, or through a custom, search system-specific inter-
face.

[0254] Inaddition to searching supplier web sites and hand-
ing off users to the purchase pages of a supplier web site, the
system is capable of performing the purchase hand-off by
providing a travel agent number, otherwise known as an ARC
number or IATA number, to the supplier. Thus, the owner of
the ARC number is able to collect a travel agency commission
on the sale.

[0255] In addition to the database that is a component of
each separate server site of the system, a data warehouse is
maintained in an embodiment. Recorded/created data is
securely forwarded from the server databases to the data
warehouse on a regular basis. The warehouse is used for both
backup and long-term storage purposes. When data is for-
warded to the warehouse, it is removed from the individual
server sites. This ensures that the vast majority of data col-
lected is not present on the servers, reducing their attractive-
ness to hackers as targets.

[0256] In addition, data processing and reduction is carried
out at the warehouse in support of several functions. First, on
a regular basis processes are executed to collect information
on client purchases into invoices for individual suppliers with
whom the service owner has a contractual relationship. Sec-
ond, the accumulated data about user purchasing, combined
with known, industry-specific trends, is used for forecasting
both technical (future server load and bandwidth require-
ments) and business (revenue) trends.

[0257] Inaddition, the logs of user activity and travel com-
ponent or airline pricing behavior accumulated by the system
during its operation form a significant resource. This resource
can be used for further exploitation and refinement of the
system as well as a business asset that can be exploited to the
degree that it can be made available to other businesses with-
out compromising the service owner’s position with suppliers
or the privacy of the individual users who have transacted
through the system.

Oct. 21, 2010

[0258] Exploitation of the database for the service owner’s
benefit can be conducted through data mining and other types
of analysis. In order to allow third-parties to make use of the
data without violating user or supplier privacy, an application
programming interface (API) and software architecture is
established that allows components, or data analysis adapters,
to be created and provided to the search system owner by third
parties who want access to the data. The advantage of this
arrangement, versus directly providing data sets to third par-
ties, is that the API can be used to restrict the types and
amounts of data that the analysis adapter can output to ensure
that privacy is maintained.

[0259] There are several ways in which this method for
providing third parties access to the system data can be incor-
porated into the system. For third parties who simply wish to
perform data mining, the analysis adapter they provide can be
run at the data warehouse, and output results provided for
transmission back to the third party. FIG. 11 shows a data
analysis adapter configuration 1100 of an embodiment at a
data warehouse. This configuration 1100 supports informa-
tion flow among at least one database 1102, at least one data
analysis adapter 1104, an output interface module 1106, and
temporary storage devices 1108 in the provision of digested
data formulated to third parties 1110. This situation provides
the analysis adapter 1104 the greatest freedom and access to
data, but also presents the most significant risk of the third
party attempting to exploit the access and circumvent the
restrictions on data output imposed by the system API.
[0260] Another significant application of third party data
analysis adapters is within the processing of individual user
travel requests. The analysis adapters 1104 support a supplier
offering dynamic and/or adaptive offers based on any of the
data to which the system has access, including the specific
user’s prior purchasing behavior and the other bookings that
the system has found from other suppliers. In this case, the
analysis adapter 1104 has to be judged by the system owner as
reliable enough to be distributed to and run on the server
systems. In addition, the data needed by the analysis adapter
1104 must be available at the different server sites.

[0261] FIG. 12 shows a data analysis adapter configuration
1200 of an embodiment ata 1 5 server site. This configuration
1200 supports data flow among Copilot Servlets 1202, sup-
plier systems 1204, supplier data analysis adapters 1206, and
data warehouses 1208 via the Internet 1210, but is not so
limited. Data is made available to server-resident analysis
adapters in one of two ways, depending on the data needs of
the adapters. First, processes can be run at the data warehouse
to produce digests of the complete database. Assuming that
the digest process provides summaries that are appropriate
for the algorithms in the analysis adapter, the digests can be
securely transferred to the server sites from the data ware-
house without jeopardizing the entire database and provide as
much benefit to third parties as would access to the full
database.

[0262] Another alternative is to establish a secure, real-time
link between the server sites and the data warehouse (possibly
creating duplicate data warehouses to provide reliability and
adequate bandwidth). This link can be used either to allow
analysis adapters running at the server sites to query the full
data set or to allow the adapters to execute within the data
warehouses but to be queried themselves by the server sites.
[0263] There is a significant business and user-experience
impact resulting from the exact point in time at which the
client Bar auto opens and presents information to the user. In

US 2010/0268623 Al

an embodiment, the client auto-open functionality essentially
provides alternate information to that which is/will be pro-
vided by the data source that the user explicitly queried.
Different perceived effects can be produced by altering the
point in the user’s primary sequence of operations at which
the auto-open is performed and the type of information that is
presented.

[0264] For example, auto-opening earlier (as soon as the
user first goes to a page in a web site that would trigger a
query-based auto open) gives the user the opportunity to use
the inventive search system instead of the web site that they
explicitly selected, but makes it appear less like a head-to-
head competition either to present results or on price or other
user-relevant criteria. Alternately, moving the point of auto-
open later in time, so that auto-open does not occur until the
user has evaluated the offers made by the site they originally
chose, and has perhaps chosen one to purchase, gives the
search system significantly more information on which to
base its search. In addition to the itinerary information origi-
nally entered by the user, the system also has access to the
travel options which the “other” web site presented and can
attempt to infer the user’s preferences and the price that
they’re willing to pay. In this case, the auto-open will appear
to the user more as a counter-offer to the choice that they have
already made than as an unbiased presentation of alternatives.

[0265] The combination of third-party data analysis adapt-
ers with an auto-open operation that occurs later in time than
the “nominal” described herein is particularly powerful. Such
an environment forms the foundation for a system in which
(potentially) multiple suppliers have access to data regarding
the specific user making a request and competing supplier
offers, all without violating the privacy of any of the parties
(via the “proxy” of the analysis adapter). This allows suppli-
ers who can craft a sufficiently sophisticated analysis adapter
the ability to make the best possible dynamic pricing and
revenue-optimization choices, taking into account not only
gross factors like seat availability but strategic considerations
regarding routes or customer-loyalty optimization.

[0266] In an embodiment, search adapters are provided to
access web pages because it is common practice for informa-
tion suppliers to make information available through web
(e.g., HT'TP) servers. However, this should not be considered
a limitation of the system. Any network-accessible informa-
tion source, whether it is intended to provide human-readable
or machine-readable information, may be used in place of a

Oct. 21, 2010

web server without altering the fundamental operation of the
search system of an embodiment.
[0267] Similarly, data from web servers is typically broken
into discrete blocks that are individually formatted for view-
ing by a user, referred to as web pages. However, this is an
artificial division grown out of the general focus on using
HTTP and HTML for a specific type of user-viewable infor-
mation presentation, and should not be considered a limita-
tion of the search system itself. One of the advantages of an
embodiment using discrete search adapters is that it is rela-
tively easy to modify the system to support different means of
gathering and extracting information. For example, an infor-
mation provider may use a system that does not return infor-
mation in discrete “page” blocks. Additionally, adapters may
process information based on the reception or monitoring of
the data stream carrying the information, rather than waiting
for the reception of complete “pages” of information before
processing.
[0268] The description herein of various embodiments of
the invention has been presented for purpose of illustration
and description. It is not intended to limit the invention to the
precise forms disclosed. Many modifications and equivalent
arrangements will be apparent.
1-62. (canceled)
63. A search method, comprising:
receiving at a search system server, a search request for an
item from a user computer;
transmitting at least one request from the search system
server to a supplier server, the at least one request created
based on the search request;
receiving at the search system server from the supplier
server, at least one response comprising at least one
query result and dynamically generated state data
indicative of a state within the supplier server associated
with the query result, wherein the state data is required
by the user computer to access a website page for the
purchase of the item associated with the query result;
and
transmitting the query result and the dynamically gener-
ated state data from the search system server to the user
computer; and
receiving at the search system server, an indication that the
item associated with the query result has been purchased
from the website page by the user computer using the
state data.

