发明名称
一种无碳铝镁质不烧砖, 配制方法及应用

摘要
本发明涉及一种无碳铝镁质不烧砖, 准备方法及应用, 其特征在于所述不烧砖包括颗粒级配电熔白刚玉砂、电熔镁砂、氧化镁微粉和氧化铝超微粉以及少量增塑剂和润滑剂。本发明提供的不烧砖应用于 300 吨精炼钢包上具有良好的保温性并使用钢包的寿命大大超过现有的铝镁砖 90-100 炉寿命。
1. 一种无碳铝镁质不烧砖，其特征在于包括不同颗粒级配电熔白刚玉砂、电熔镁砂氧化镁微粉和氧化铝超微粉，组成的质量百分比数为：
 5 ～ 3mm 电熔白刚玉砂 10 ～ 25%,
 3 ～ 1mm 电熔白刚玉砂 20 ～ 40%,
 ≤ 1mm 电熔白刚玉砂 10 ～ 25%,
 ≤ 88μm 电熔白刚玉砂 5 ～ 15%,
 ≤ 1mm 电熔镁砂 1 ～ 5%,
 ≤ 25μm 氧化镁微粉 1 ～ 5%,
 ≤ 6μm 氧化镁超微粉 3 ～ 10%,
添加剂 A 增塑剂 0.1 ～ 2%,
 B 润湿剂 0.1 ～ 2%,
外加结合剂复合型六偏磷酸钠溶液 1 ～ 5%。
2. 按权利要求 1 所述的不烧砖，其特征在于：
 (1) 所述的电熔白刚玉砂中 Al₂O₃ 质量百分含量为 98.92%；
 (2) 所述电熔镁砂中 MgO 质量百分含量为 97.83%；
 (3) 所述的氧化镁微粉中 MgO 质量百分含量为 97.18%；
 (4) 所述的氧化铝超微粉中的 Al₂O₃ 质量百分含量为 99.13%。
3. 按权利要求 1 所述的不烧砖，其特征在于组成的质量百分含量为：
 5 ～ 3mm 电熔白刚玉砂 12,
 3 ～ 1mm 电熔白刚玉砂 38,
 ≤ 1mm 电熔白刚玉砂 22,
 ≤ 88μm 电熔白刚玉砂 12,
 ≤ 1mm 电熔镁砂 4,
 ≤ 25μm 氧化镁微粉 3,
 ≤ 6μm 氧化镁超微粉 7.5,
添加剂 A 增塑剂 1,
 B 润湿剂 0.5。
4. 按权利要求 1 所述的不烧砖，其特征在于组成的质量百分含量为：
 5 ～ 3mm 电熔白刚玉砂 22,
 3 ～ 1mm 电熔白刚玉砂 30,
 ≤ 1mm 电熔白刚玉砂 22,
 ≤ 88μm 电熔白刚玉砂 8,
 ≤ 1mm 电熔镁砂 2,
 ≤ 25μm 氧化镁微粉 4,
 ≤ 6μm 氧化镁超微粉 10,
添加剂 A 增塑剂 1,
 B 润湿剂 1。
5. 按权利要求 1、3 或 4 中任一项所述的不烧砖，其特征在于：
 a) 所述的增塑剂为羟甲基纤维素钠、木质素磺酸钠、木质素磺酸钙和聚山梨酯中的一
种或任意两种；

b) 所述的湿润剂为聚丙烯酸钠、十二烷基苯磺酸钠和聚氯乙烯脂肪酸中的一种或任意两种。

6. 配制按权利要求 1、3 或 4 中任一项所述的不烧砖的方法，其特征在于步骤是：
 ①按组成配料；
 ②先按组成中电熔白刚玉砂搅拌混和，然后加入复合型六偏磷酸钠溶液结合剂，混炼
 2-3 分钟；
 ③在步骤②的加有结合剂的电熔白刚玉砂粒子料中加入湿润剂，再混炼；
 ④将氧化镁微粉和氧化铝超微粉混和并加入增塑剂，进行预混合，得到预混和细粉；
 ⑤将步骤③加有湿润剂的电熔白刚玉砂粒子料和步骤④加有增塑剂的预混合细粉，混
 炼得到混合料，出料；
 ⑥将步骤⑤出料的混合料按砖型采用相应的压砖机进行压砖成型，成型时压强为
 100 ～ 150Mpa；
 ⑦最终在 300 ～ 350℃温度下烘烤 15～20 小时。

7. 按权利要求 6 所述的方法，其特征在于：
 a) 步骤②搅拌混合时间为 2 ～ 3 分钟；
 b) 步骤③加入湿润剂后再混炼时间为 3 ～ 5 分钟；
 c) 步骤④加入增塑剂后预混合时间为 10 ～ 15 分钟；
 d) 步骤⑤的混炼时间为 8 ～ 10 分钟。

8. 按权利要求 1、3 或 4 中任一项所述的不烧砖的应用，其特征在于使用在 300 吨精湛
 钢包上。

9. 按权利要求 9 所述的应用，其特征在于低碳钢种全程 RH 精炼 30～40 分钟，超低碳钢
 种全程 RH 精炼 50～60 分钟，精炼钢水温度为 1580 ～ 1620℃，钢包寿命达到了 260 炉，跟踪
 观测其在整个使用周期中，无异常剥落，开裂，侵蚀均匀，出钢钢水温度的减少了 10℃，炉壳
 表面温度降低了 30℃。
一种无碳铝镁质不烧砖、配制方法及应用

技术领域
[0001] 本发明涉及一种无碳铝镁质不烧砖、配制方法及应用，更确切地说本发明涉及优质品种洁净钢冶炼用钢包内衬工作层铁水区耐火材料铝镁质不烧砖、配制方法及应用，尤其涉及一种所述的无碳镁质不烧砖是由电熔刚玉砂、电熔镁砂、预合成的电熔尖晶石砂、氧化铝等超微粉末粒级配制而成。属于冶炼优质品种结晶钢冶炼用耐火材料领域。

背景技术
[0002] 随着市场对钢铁产品的品质要求不断提高，现代钢铁工业技术水平必须不断进步，低碳和超低碳洁净钢成为发展的重点，其中二次精炼所用的钢包是洁净钢冶炼生产过程中的重要设备，采用真空、强搅拌、吹氧氧化剂等方法，通过改善低碳区脱碳的动力学条件，达到降低钢水中碳含量的目的，使其碳含量低至60ppm甚至10ppm。因此要求在耐火材料的使用中必须严格控制其碳含量。

[0003] 目前，精炼钢包铁水区耐火材料部分以定型铝镁碳砖、铝镁质浇注料为主，由于铝镁碳砖中含有较高含量的碳，易引起钢水增碳，且热导率较高约为 $10 \sim 20 \text{W/(m}\cdot\text{K})$，传热快，热损耗大，影响了钢水的正常浇注因而限制了其使用；铝镁质浇注料由于浇注，烘烤质量控制要求较高，容易出现烘烤裂纹、局部异常损坏等不安全事件，而不便于现场生产管理，且铝镁质浇注料中 SiO$_2$ 含量通常较高，因此在高温下，易与 Al$_2$O$_3$、MgO、CaO 等组分形成低熔物，对耐火材料的高温使用性能不利，其高温强度及荷重软化温度都将下降，抗侵蚀较差，因此对寿命有一定的影响。

[0004] 据国内外文献报道，为了解决铝镁碳砖、铝镁质浇注料，人们研究了水玻璃结合、氯化镁水泥结合等铝镁不烧砖，取得了一定的成绩，其中浙江大学材料与化工学院的梁良军研制的是不引钢水增碳、材料热导率低的铝镁不烧砖在宝钢钢铁公司进行了试验。

[0005] 河北工业大学材料学院牛森森等以各种粒径的棕刚玉、白刚玉、镁砂细粉和 $\alpha -$Al$_2$O$_3$ 为主要原料，铝凝胶粉为结合剂，研究了 Cr2O3 粉加入量对精炼钢包铝镁不烧砖线变化率、抗折强度、耐压强度、显气孔率、体积密度和高温抗折强度的影响，并借助 XRD 和 SEM 研究了不烧砖的物相组成和显微结构。

[0006] 铝镁质无碳不烧砖具有材质高纯，不引起钢水增碳，材料热导率低约为 $3 \sim 5 \text{W/(m}\cdot\text{K})$，生产质量控制容易等优点，因而在优质品种洁净钢冶炼中必将得到广泛应用，所以对铝镁不烧砖性能的研究具有重要意义。

[0007] 本发明拟通过超微细化基质技术的引用，采用磷酸盐基复合结合剂的优化基质的组成性能和复合添加剂技术的应用，在无碳的情况下机压成型，使其具有较高的密度，超微细化基质促进了材料在使用过程中的烧结。使其在完全避免钢水增碳，降低热损耗的同时，达到并超过铝镁碳砖、铝镁浇注料在钢包铁水区的使用寿命。

发明内容
说明书

[0008] 本发明的目的在于提供一种无碳铝镁质不烧砖、配制方法及应用。
[0009] 本发明的特点是通过高磷酸盐基复合结合剂的采用，替代了传统的水玻璃结合剂的使用，有效地避免了SiO₂的引入，减少了高温差低熔物的形成，使用高温强度及荷重软化温度得到保证，抗侵蚀增强。通过在铝镁质不烧砖中引入超微化Al₂O₃和MgO粉末，使其在1000℃左右就开始发生固相烧结反应，并生成原位微细化尖晶石相，使不烧砖具有良好的中高温强度，优异的抗渣性和好的热震稳定性。通过有机增塑剂和润湿剂的复合添加，显著减少了结合剂中溶剂的加入量，提高了材料的塑性，保证了材料的密度，提高了产品半成品成型合格率。
[0010] 具体组成的质量百分数是：
[0011] 5-3mm 电熔刚玉砂 10-25%
[0012] 3-1mm 电熔刚玉砂 20-40%
[0013] ≤ 1mm 电熔刚玉砂 10-25%
[0014] ≤ 88μm 电熔刚玉砂 5-15%
[0015] ≤ 1mm 电熔镁砂 1-5%
[0016] ≤ 25μm 氧化镁微粉 1-5%
[0017] ≤ 6μm 氧化铝超微粉 3-10%
[0018] 添加剂：A：增塑剂 0.1～2%
[0019] B：润湿剂 0.1～2%
[0020] 结合剂（外加）：复合型六偏磷酸钠溶液 1～5%
[0021] 从上述组分中可以看出：
[0022] 1. 电熔白刚玉、电熔镁砂等高纯原料的使用，以及磷酸盐基复合结合剂的采用大大减少了SiO₂的引入，减少了SiO₂与材料中Al₂O₃、MgO、CaO在高温下生成低熔物的形成，又有效控制了在使用过程中与钢水、钢渣中Al₂O₃、CaO反应生成低熔物的可能，保证了良好的高温强度及荷重软化温度，增强了材料的整体抗侵蚀性能。
[0023] 2. 氧化镁微粉和氧化铝超微粉的引入，使其在1000℃左右就开始发生固相烧结反应，并生成原位微细化尖晶石相，起到增强、增韧的作用，使不烧砖具有良好的中高温强度，优异的抗渣性和好的热震稳定性。
[0024] 3. 有机增塑剂分子插入到颗粒、微粉粒子之间，削弱了团聚粒子间的应力，增加了微粉粒子的移动性，降低了微粉粒子间的团聚度，从而使颗粒、微粉粒子的塑性增加，提高材料的塑性，保证了材料的成型密度，提高了产品半成品成型合格率。所述的有机增塑剂为羧甲基纤维素钠、木质素磺酸钠、木质素磺酸钙和聚山梨酯中的一种或任二种。
[0025] 润湿剂即表面活性剂是由亲水基和亲油基组成，降低水性涂料的表面张力，当与固体表面接触时，亲油基附着于固体表面，亲水基向外伸向液体中，使液体在固体表面形成连续相，显著减少了结合剂中溶剂的加入量。所述的表面活性剂为聚羧酸钠、十二烷基苯磺酸钠、聚氧乙烯脂肪醇醚中的一种或几种。
[0026] 本发明提供的铝镁质不烧砖特征在于：
[0027] 1）将复合型六偏磷酸钠溶液引入铝镁质不烧砖中作为结合剂；所述的结合剂是以外加的形式加入的；
[0028] 2）同时将氧化镁微粉和氧化铝超微粉引入到铝镁质不烧砖中；

5
3) 合理的增塑剂和润滑剂搭配引入，提高合格率。

具体而言，本发明提供的铝镁质不烧砖的主要原材料理化性能指标如下表 1:

<table>
<thead>
<tr>
<th>名称</th>
<th>MgO (%)</th>
<th>SiO₂ (%)</th>
<th>Fe₂O₃ (%)</th>
<th>CaO (%)</th>
<th>Al₂O₃ (%)</th>
<th>PH</th>
<th>密度 (g/cm³)</th>
<th>粒度 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>电熔白刚玉</td>
<td>—</td>
<td>0.19</td>
<td>0.22</td>
<td>—</td>
<td>98.92</td>
<td>—</td>
<td>3.60</td>
<td>—</td>
</tr>
<tr>
<td>电熔镁砂</td>
<td>97.83</td>
<td>0.51</td>
<td>0.15</td>
<td>1.30</td>
<td>—</td>
<td>—</td>
<td>3.51</td>
<td>—</td>
</tr>
<tr>
<td>氧化铝超微粉</td>
<td>—</td>
<td>0.18</td>
<td>0.08</td>
<td>—</td>
<td>99.13</td>
<td>—</td>
<td>—</td>
<td>0.06</td>
</tr>
<tr>
<td>氧化镁超微粉</td>
<td>—</td>
<td>0.52</td>
<td>—</td>
<td>1.19</td>
<td>97.18</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
</tr>
<tr>
<td>六偏磷酸钠</td>
<td>总磷酸盐:68</td>
<td>熔点: 550 ℃</td>
<td>水中溶解度:可溶</td>
<td>沸点: 1500 ℃</td>
<td>6.8</td>
<td>2.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

由本发明提供的铝镁质不烧砖的配制生产工艺步骤是:

1) 按上述重量组成比例称料
2) 按照附图 1 所示细粉料预混合和物料混练工艺制度;具体步骤是:
3) i) 先按组成中电熔白刚玉砂搅拌混和 2-3 分钟，然后加入结合剂，结合剂未复合型六偏磷酸钠溶液，混练 2-3 分钟，得到加有结合剂的电熔刚玉砂颗粒料;
4) ii) 步骤 i) 混炼后加有结合剂的电熔白刚玉砂颗粒料中加润湿剂 (即表面活性剂)，再混炼 3-5 分钟;
5) iii) 氧化镁微粉和氧化铝超微粉混和井加入增塑剂进行预混合，预混合时间 10-15 分钟，得到预混合细粉;
6) iv) 将步骤 iii) 和 ii) 的粉料，混炼 8-10 分钟。
7) 附图说明
附图 1 细粉料混合和物料混练的工艺制度。

具体实施方式

下面通过具体实施例进一步阐明本发明实质性特点和显著的进步。

实施例 1

提供铝镁不烧砖含 Al₂O₃ 质量百分数为 89.58, MgO 为 6.51, P₂O₅ 为 1.27 具体配比是 5-3mm 电熔刚玉砂 12%, 3-1mm 电熔刚玉砂 38%, ≤1mm 电熔刚玉砂 22%, ≤88μm 电熔
刚玉砂 12%，≤1mm 电熔镁砂 4%，≤25 μm 氧化镁微粉 3%，≤6 μm 氧化铝超微粉 7.5%，
增塑剂 1%，湿润剂 0.5%，复合型六偏磷酸钠溶液 4.2%（外加），按配方称量后，按生产工艺进行生产，待用。

【0046】实施例 2
【0047】提供铝镁耐火砖含 Al₂O₃ 质量百分数为 88.21，MgO 为 5.23，P₂O₅ 为 1.18 具体配比是 5-3mm 电熔刚玉砂 22%，3-1mm 电熔刚玉砂 30%，≤1mm 电熔刚玉砂 22%，≤88 μm 电熔
刚玉砂 8%，≤1mm 电熔镁砂 2%，≤25 μm 氧化镁微粉 11%，≤6 μm 氧化铝超微粉 10%，
增塑剂 1%，湿润剂 1%，复合型六偏磷酸钠溶液 4%（外加），按配方称量后，按生产工艺进行生产，待用。

【0048】经检测指标如下表 2:

<table>
<thead>
<tr>
<th>项目</th>
<th>条件</th>
<th>实施例 1</th>
<th>实施例 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ %</td>
<td></td>
<td>89.58</td>
<td>88.21</td>
</tr>
<tr>
<td>MgO %</td>
<td></td>
<td>6.51</td>
<td>5.23</td>
</tr>
<tr>
<td>P₂O₅ %</td>
<td></td>
<td>1.27</td>
<td>1.18</td>
</tr>
<tr>
<td>显气孔率 %</td>
<td></td>
<td>10.33</td>
<td>10.62</td>
</tr>
<tr>
<td>体积密度 g/cm³</td>
<td></td>
<td>3.42</td>
<td>3.39</td>
</tr>
<tr>
<td>常温抗折强度 MPa</td>
<td>300℃ *16h</td>
<td>17.8</td>
<td>12.6</td>
</tr>
<tr>
<td>常温耐压强度 MPa</td>
<td>300℃ *16h</td>
<td>98</td>
<td>87</td>
</tr>
<tr>
<td>抗折强度 MPa</td>
<td>1000℃ *3h</td>
<td>30.2</td>
<td>22.4</td>
</tr>
<tr>
<td>耐压强度 MPa</td>
<td>1000℃ *3h</td>
<td>133</td>
<td>125</td>
</tr>
<tr>
<td>线变化率 %</td>
<td>1000℃ *3h</td>
<td>+0.05</td>
<td>+0.03</td>
</tr>
<tr>
<td>抗折强度 MPa</td>
<td>1600℃ *3h</td>
<td>35.1</td>
<td>28.9</td>
</tr>
<tr>
<td>耐压强度 MPa</td>
<td>1600℃ *3h</td>
<td>138</td>
<td>128</td>
</tr>
<tr>
<td>线变化率 %</td>
<td>1600℃ *3h</td>
<td>+0.91</td>
<td>+0.71</td>
</tr>
<tr>
<td>热导率 W·(m·K)-1</td>
<td>1000℃</td>
<td>3.8</td>
<td>4.2</td>
</tr>
</tbody>
</table>

【0050】实施例 1 和 2 使用的增塑剂或润湿剂可以是发明内容中所述的一种或任意二种。
电熔刚玉砂粒料
搅拌 2-3 分钟
加结合剂
混练 2-3 分钟
加润滑剂
混练 3-5 分钟
出料
混练 8-10 分钟
加预混合粉
混练 10-15 分钟
微细粉料和增塑剂进行预混合

图 1