wo 2013/116751 A1 || N0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/116751 Al

8 August 2013 (08.08.2013) WIPOIPCT
(51) International Patent Classification: (71) Applicant (for JP only): TEXAS INSTRUMENTS JA-
GO6F 1/32 (2006.01) PAN LIMITED [JP/JP]; 24-1, Nishi-Shinjuku 6-chome,
(21) International Application Number: Shinjuku-Ku Tokyo 160-8366 (JP).
PCT/US2013/024474 (72) Inventors: LEE, Sejoong; 952 Redbird Lane, Allen, TX
. - ) 75013 (US). CHOI, Soon-hyeok; 1126 Nick Circle, Allen,
(22) International Filing Date: | February 2013 (01.02.2013) TX 75013 (US). LU, Xiaolin; 4567 Kentucky Drive, Pla-
P no, TX 75024 (US).
(25) Filing Language: English 74 Agents: FRANZ, Warren, L. ct al; TEXAS INSTRU-
(26) Publication Language: English MENTS INCORPORATED, Deputy General Patent Coun-
L. sel, P.O. Box 655474, Mail Station 3999, Dallas, TX
(30) PrlOrlty Data: 75265-5474 (US)
13/363,949 1 February 2012 (01.02.2012) Us
. . . L. (81) Designated States (uniess otherwise indicated, for every
(63) Related by c-ontlnua-tlon' (CON) or continuation-in-part kind of national protection available): AE, AG, AL, AM,
(CIP) to earlier application: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Us 13/363,949 (CON) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Filed on 1 February 2012 (01.02.2012) DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
(71) Applicant: TEXAS INSTRUMENT INCORPORATED HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

[US/US]; P.o. Box 655474, Mail Station 3999, Dallas, TX
75265-5474 (US).

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on next page]

(54) Title: DYNAMIC POWER MANAGEMENT IN REAL-TIME SYSTEMS

230
/
Sleep_req
POWER AND CLOCK
Wakeup_req CONTROLLER
204~] 232~Jgook 234~ POWER
SUPPLY
FUNCTIONAL
INTERRUPTS :
2124 T INTERRUPT CPU
CONTROLLER
—
210 202
—
_ATASKID _{Cpu_idle
PREEMPTIVE 208 o
wakeup_int
DYNAMIC SLEEP
CONTROLLER
224
N QoS POLICY
' 226 ™-220
252 MinEnergy POLICY
228

FIG. 2

(57) Abstract: A Dynamic Sleep Controller (220) reduces
power consumption by a processor (CPU 202) in a computer
system by determining a maximum number of times (token
count) that the processor (CPU 202) can incur a start-up
delay after being placed into a low- power mode during a
token period of time when executing a task for a token period
of time. The processor (CPU 202) may be placed into the
low-power mode by a sleep request signal (222) sent to a
power and clock controller (230) while the processor (CPU
202) is executing the task in response to an idle indicator only
if a current value of the token count assigned to the task is
greater than zero. The current value of the token count is
decremented each time the processor incurs a start-up delay
in response to being awakened from the low-power mode.
The current token count is reset to match the assigned token
count at the end of each token period. Furthermore, wakeup
may be anticipated to allow the processor (CPU 202) to be
awakened preemptively by a preemptive wakeup signal (224)
sent to an interrupt controller (210) which sends a wakeup re-
quest (214) to a power and clock controller (230).



WO 20137116751 A1 WK 00N YO0 T A

84)

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Declarations under Rule 4.17:

M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))



WO 2013/116751 PCT/US2013/024474

DYNAMIC POWER MANAGEMENT IN REAL-TIME SYSTEMS
[0001] This invention generally relates to microcontrollers for real-time control
systems, and in particular to reducing power used by the microcontroller.
BACKGROUND
[0002] Computer processors used in real-time control systems are typically
fabricated using a complimentary metal-oxide semiconductor (CMOS) process. In
CMOS circuits, power consumption is proportional to the product of the frequency and
the square of the supply voltage. A reduction in the operating frequency of the
processor and/or its supply voltage can lead to significant savings in energy
consumption and heat dissipation. In a real-time system, the processor may be placed
into a low power mode (LPM) during idle periods when a task is not being executed.
While in the LPM, the processor consumes less power. If the processor receives a
request to resume execution, the processor may be awakened from the LPM and the
processor will return to a normal power state and resume processing.
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIGS. 1A-1C compare CPU activity with conventional and dynamic
power management;

[0004] FIG. 2 is a block diagram illustrating dynamic sleep controller (DSC)
based CPU power management;

[0005] FIGS. 3A-3C are timing diagrams illustrating use of tokens for dynamic
power management;

[0006] FIG. 4 is an illustration of a sleep decision map;

[0007] FIG. 5 is an illustration of a wake-up time-slot decision map;

[0008] FIG. 6 illustrates formation of a wake-up request histogram;

[0009] FIG. 7 is a block diagram of a performance monitoring unit that may be

included with the microcontroller of FIG. 2;



WO 2013/116751 PCT/US2013/024474

[0010] FIG. 8 is a block diagram of an exemplary SoC that includes dynamic
power management; and

[0011] FIG. 9 is a flow diagram illustrating operation of dynamic power
management.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

[0012] A method is described herein that efficiently utilizes a low-power mode

(LPM) of a processor in order to reduce the power consumption of the processor. When
a processor is idle, the processor may be put into LPM during which the processor
provides low performance or even zero performance, while consuming less power.
When the processor receives a request to resume execution, the processor is
awakened from the LPM and the processor will return to the normal power state and
resume the processing.

[0013] A problem of using the LPM is that it takes some time to wake up the
processor from the LPM to normal state. Such latency causes processing delay of tasks
being executed by the processor. In a real-time system with hard task deadlines, the
processing delays can affect adversely the overall system performance.

[0014] A method will now be described that bounds the overall processing delay
in order to limit the performance degradation while maximizing the use of LPM of a
processor. The dynamic power management system described herein allows use of
LPM even while a real-time task is actively running. A token scheme is used that can
bound the performance degradation by wake-up latency such that the tasks running in
the CPU still meet their deadlines. A prediction scheme may also be used that can
maximize the use of LPM by monitoring the activity pattern of the CPU.

[0015] Use of a low-power mode (LPM) involves state transition overhead. The
latency taken by a state change from LPM to normal state as referred to as wake-up
latency. The wake-up latency depends on what kinds of mechanism are used in the
LPM. For example, if the LPM uses a clock-gating feature only, the wake-up process
involves releasing a clock gating signal; therefore, the wake-up latency can be as low as
a couple of clock cycles. On the other hand, if the LPM uses power-gating, in which the
processor saves internal contexts in another secure or non-volatiie memory space

during the transition from normal to the LPM, the wake-up latency involves the context-



WO 2013/116751 PCT/US2013/024474

restoring time which may take a couple of milliseconds. In general, a LPM that
consumes less power requires longer wake-up latency.

[0016] If the wake-up latency of a LPM is negligible, the processor may be put
into LPM whenever the processor is idle, and wake it up in the event of a wake-up
request, such as a wake-up interrupt. In general, however, the wake-up latency is not
negligible, and the latency can adversely impact the overall performance of the system
as the latency causes delay in task execution time of the processor.

[0017] As a result, previously a typical scenario for power conservation put the
processor into LPM only when the application running in the processor is in such state
that it is obvious that the wake-up latency can be tolerated at the time of wake-up
request. In other words, the LPM is used only when a realtime task is not actively
running.

[0018] FIGS. 1A-1C compare CPU activity with conventional and dynamic
power management. FIG. 1A illustrates an execution pattern for an illustrative
realtime task. During idle periods 102, 106, the CPU is not executing an active task.
During active period 104, the CPU is executing a task, but there may still be periods of
idle time during the active period 104.

[0019] FIG. 1B illustrates an example of conventional use of LPM, in which
LPM is used only when the application is obviously inactive, such as during idle periods
102, 106. While the task is active, the processor remains in the normal power state 114.
[0020] FIG. 1C illustrates a method that makes use of LPM modes even when
an application is actively running in the processor, as indicated generally at 124.

[0021] FIG. 2 is a block diagram of an example embodiment of the invention. A
Dynamic Sleep Controller (DSC) 220, which can be implemented in software or
hardware, monitors the cpu_idle signal 204 which is asserted when CPU 202 is idle.
This signal is typically asserted when the processor executes an idle instruction that is
included in the task being executed or by an operating system that is scheduling task
execution. When the cpu_idle is asserted, DSC 220 determines if it is good time to go to
LPM or it is better to stay in normal state. If DSC 220 determines that it is a good time to

go to LPM, it asserts sleep_req signal 222. Then, power and clock controller 230 will put



WO 2013/116751 PCT/US2013/024474

the CPU into LPM by changing clock signal 232 and/or power supply 234 voltage levels
accordingly.

[0022] If interrupt controller 210 detects any unmasked functional interrupt 212, it
asserts wakeup_req signal 214, and power and clock controller 230 puts CPU 202 back
to a normal power state by restoring clock signal 232 and/or power supply levels 234.
As mentioned earlier, CPU 202 may also need to perform a context restore or other
housekeeping task before returning to execution of the task. CPU 202 may also be
preemptively awakened by DSC 220. DSC 220 can wake up CPU 202 by asserting
preemptive wakeup_int signal 224. If the CPU is awakened by preemptive wakeup
interrupt 224, and if it then receives another functional interrupt 212 after that, the CPU
will be able to process the functional interrupt without incurring any wakeup delay since
the wakeup latency occurred in response to the preemptive wakeup request before
receiving the functional wakeup request. The DSC may use this proactive wake-up
mechanism when it expects a functional interrupt to occur soon.

[0023] DSC 220 may perform several dynamic power management functions.
When cpu_idle is asserted 204, the DSC determines whether to go to LPM or not. If the
DSC determines to choose LPM, it may also determine when it will wake up the CPU.
The CPU will experience processing delay due to wake-up latency if a functional
interrupt 212 occurs before preemptive wakeup_int 224 is asserted, but the CPU will not
experience wake-up latency if a functional interrupt 212 occurs after preemptive
wakeup_int 224 is asserted.

[0024] DSC 220 manages accumulation of processing delay caused by the wake-
up latency so that wake-up latency does not exceed a specified threshold. In this
manner, tasks running in the processor meet their deadlines. A Quality-of-Service (QoS)
Policy 226 that is available to DSC 220 contains information specific to the application.
[0025] The DSC may also try to maximize the use of LPM. MinEnergy Policy 228
contains a set of instructions that attempt to use LPM as much as possible as long as
the QoS Policy is met. As discussed above, the instructions may preemptively wake up
the CPU ahead of a next functional wake-up request in order to eliminate wake-up
latency. Also, the instructions may try to wake up the CPU as late as possible in order to



WO 2013/116751 PCT/US2013/024474

maximize the sleep time. The MinEnergy Policy is generated during run-time based on
an activity pattern of the CPU and QoS Policy.

[0026] FIG. 2 illustrates an embodiment in which the DSC manages only one
CPU. In other embodiments, a DSC may manage multiple CPUs as long as the DSC
has enough bandwidth and resources to handle that many CPUs. In some multi-CPU
architectures, it may be beneficial to implement signals such as sleep_req 222,
preemptive wakeup_int 224, and cpu_idle 204 using bus transaction commands
delivered through a bus interconnect rather than dedicated hardwire signals in order to
minimize signal routing and to provide better scalability.

Quality of Service Policy

[0027] An embodiment of QoS Policy and MinEnergy Policy will now be
described in detail. The case where the CPU is in LPM and is awakened up by a
functional interrupt rather than a preemptive wakeup_int will be referred to herein as
mis-prediction. In each mis-prediction occurrence, the DSC has failed to predict the
correct wake-up time and the DSC did not awaken the CPU promptly. When mis-
prediction occurs, the task processing will be delayed by the amount of wake-up latency.
The QoS Policy describes how many times and how often such mis-prediction can be
tolerated by the system.

[0028] Table 1 shows an example of QoS Policy 226. It includes multiple token
constraints. A token constraint includes two parameters: the number of tokens and a
period. One token means that the application running in the CPU can tolerate the
processing delay caused by one occurrence of wake-up latency during each specified
period. For example, token constraint 1 in Table 2 indicates that the system can tolerate
two occurrences of wake-up latency for every 1ms token period. Therefore, if the
system has experienced two occurrences of wake-up latency within 1ms, the DSC will
not use LPM again during that token period in order to avoid any additional processing
delay. During the next 1ms token period, the DSC may use the LPM again. However, it
can now tolerate only one occurrence of wake-up latency during the next 1ms because

of the token constraint 2. Thus, a hierarchical token constraint policy allows a number



WO 2013/116751 PCT/US2013/024474

of wake-up latencies to be specified for a longer period such as 10ms, while preventing

all of the allowable wake-up latencies from being incurred in a short period.

Token constraint ID Number of tokens Token Period
1 2 1ms
2 3 2ms
N 5 10ms

Table 1 - Token Constraints

[0029] The token-based QoS Policy described above is effective to bound the
performance degradation caused by the use of LPM. Soft real-time applications, which
have throughput requirements, can use the token-based QoS Policy while maintaining
the performance above a certain threshold.

[0030] The token-based QoS Policy is also very effective to guarantee deadline
of real-time tasks. In real-time systems, a task 7; is typically modeled by (C, T, D)
parameters, where C is worst-case execution time, T is the period of the task, and D is
the relative-deadline of T1; respectively. This modeling may be done using known
simulation and analysis techniques.

[0031] Once the C, T, and D parameters are determined for each task, a token
constraint may be computed for each task by analyzing slack time of each task. Slack
time is the amount of time left over after the worst-case execution time. The slack time
of each task can be directly translated into the number of tokens by dividing the slack
time by the LPM wake-up latency. As discussed earlier, the LPM wake-up latency
depends on how deeply the processor has been put to sleep. The token period may be
selected to be the same as the T parameter of the task. Each task will produce one
token constraint. After the analysis of a given set of tasks, a set of tuple (TK;, T) is
obtained, where TK; = the number of Tokens for task i, and T; = the parameter T of task i.
If TK < TK;and T; = T;, (TK;, T;) is more strict constraint than (TK;, T;), then (TK;, T;) may

be ignored.



WO 2013/116751 PCT/US2013/024474

Minimum Energy Policy

[0032] FIGS. 3A-3C are timing diagrams illustrating use of tokens for dynamic
power management. MinEnergy Policy 228 describes an optimal timing for use of LPM
in order to maximize sleep time of CPU 202. For this example, assume a token
constraint (3, 10ms). FIG. 3A illustrates one 10ms token period of task execution.
During this token period, there are four bursts of task execution activity 301-304
interspersed with idle periods 311-313. The Task activity must be completed prior to
deadline time 320. Slack time 314 is the idle period between the end of task processing
304 and deadline time 320. In this example, the wake-up latency can occur at least
three times without deadline time 320 being exceeded.

[0033] In FIG. 3B, three occurrences of wake-up latency 331-333 have occurred
in the middle of a 10ms token period, therefore, the CPU cannot be placed in LPM
again during this token period and therefore remains in the normal power state during
the remainder 335 of the 10ms duration.

[0034] On the other hand, FIG. 3C shows another way of using LPM, in which
the DSC is able to use LPM for a longer amount of time and thereby save additional
power. In this example, when first activity burst 301 finishes, the DSC determines to
stay at the normal state. As a result, second activity burst 302 does not cause wake-up
latency. As a result, at the end of second activity burst, the number of remaining tokens
is still two, since one token was used during the wakeup for activity pattern 301. A
second token is used 343 during the wake-up for third activity pattern 303.

[0035] DSC 220 successfully wakes up 344 the CPU ahead of fourth activity
burst 304. Therefore, wake-up latency did not cause processing delay. This means that
the number of remaining tokens is still one.

[0036] When the fourth activity burst 305 finishes, DSC 220 still has one
remaining token. As a result, it can use LPM during the rest of 10ms period 345.

[0037] Thus, as illustrated in FIG. 3B, it can be seen that using tokens alone to
keep track of how often the CPU can be placed in LPM during any token period leads to
power savings. However, as illustrated in FIG. 3C, when a minimal energy policy also

specifies optimized timing to choose to go to LPM and wake up depending on the



WO 2013/116751 PCT/US2013/024474

number of remaining tokens, an increased power savings may result. A MinEnergy
Policy may be defined as follows:

for a given remaining token count, the MinEnergy Policy tells whether to stay at normal
power state or go to LPM at each time when CPU becomes idle;

if MinEnergy Policy tells the CPU to go to LPM, it may also tell when to wake the CPU
up.

[0038] In one embodiment, a MinEnergy Policy may be implemented with two
tables referred to as a ‘Sleep Decision Map (SDM)’ 400 illustrated in FIG. 4 and a
‘Wakeup_time_slot Decision Map (WDM)' 500 illustrated in FIG. 5. The SDM and
WDM divide a token period into smaller pieces of time durations called time-slot. The
SDM describes the condition to go to LPM for each time-slot. The condition is the
number of tokens remaining. For example, if the CPU becomes idle during time-slot 2
(402) and Min_token [2] = 3, the DSC may decide to go to LPM only if the number of
tokens remaining is equal to or more than three.

[0039] DSC 220 uses WDM 500 to decide when to wake the CPU up for each
time-slot. Once the DSC decides to go to LPM based on SDM 400, it refers to WDM
500 in order to decide when to wake the CPU up. WDM 500 is a two-dimensional array.
For each entry in the array, wakeup_time_slot[w][x] is a time-slot value at which the
DSC should wake the CPU if the DSC decides to use LPM at time-slot x and the
number of remaining tokens is (w+1).

Time-slot based CPU activity monitoring

[0040] The MinEnergy Policy including SDM 400 and WDM 500 depends on
knowing a CPU activity pattern. FIG. 6 illustrates a procedure of monitoring the activity
pattern and gathering statistics. In the example of FIG. 6, the Idle-to-Active event of
the CPU is monitored. This is the event that will wake up the CPU if it was in LPM
mode, which is wake-up request 214, referring back to FIG. 2.

[0041] A token period 530 is pre-defined, and the period is divided into time-slots.
If a wake-up request occurs at a certain time-slot, a counter corresponding to the time-
slot is incremented. For example, wake-up request 545 is recorded for time slot 17 as



WO 2013/116751 PCT/US2013/024474

indicated at 517a. It should be noted that a finer time-slot means finer resolution of
DSC operation.

[0042] The counting process is repeated for every period to form a histogram
over a specified number of periods. For example, during next token period 531, wake-
up event 550 is recorded for slot 17 by incrementing the count to two, as indicated at
517b. After a certain amount of time, the counting process stops, and the final counter
value of each time slot is translated into a probability of a wake-up request occurring in
that time slot. The resulting set of wake-up probabilities for the time-slots is referred to
herein as a wake-up probability map.

[0043] Note that the wake-up probability map represents the history of the task
activity pattern and the hypothesis is that such statistics of a past activity pattern will be
somewhat valid for prediction of near future behavior of the system.

[0044] The period of the wake-up probability map should be selected such that
the period is somewhat synchronous to wake-up requests, otherwise, the probability
distribution of wake-up requests may be flat.

[0045] In case of multiple token constraints having different periods, a wake-up
probability map may be built for each token constraint. In this case, the different token
constraints may be correlated to different tasks that are being executed on the
processor. A task ID may be provided to the DSC by the processor to identify what task
is currently being executed, as indicated by task ID signals 206 in FIG. 2.
Alternatively, processor 202 may write the task ID to DSC 220 over a bus interconnect,
for example.

[0046] In another embodiment, a single wake-up probability map may be built as
long as the map captures wake-up requests synchronously. For instance, a least
common multiple of token periods may be used.

SDM and WDM determination

[0047] If DSC puts CPU into LPM at time-slot x and sets wake-up for time-slot

x+a, the energy-saving that can be expected is given by equation (1).



WO 2013/116751 PCT/US2013/024474

Energy-saving expectation =

Eipm * (1-Py) +

Eipm * (1-Px) * (1-Pxs1) +

Eipm * (1-Px) * (1-Pxs1) * (1-Pxs2) + ... +

Erem * (1-Px) * (1-Pxe1) * (1-Pys2) * ... * (1-Pxsat) - (1)

where:

ELpm = Energy-saving during one time-slot by putting CPU into LPM
P« = Probability of wake-up request in time-slot k

[0048] The probability P that the token is not consumed so that it can be used
later until the end of the period is given by equation (2).

P=(1-Px)* (1-Px+1) * ( 1-Px+2) * ... * (1-Px+a-1) (2)
[0049] When multiple tokens are available, various different scenarios are

possible which eventually use up all the tokens while maximizing the sleep time.

[0050] Considering all possible scenarios and probabilities associated with the
scenarios, an expectation of energy-saving can be computed when the CPU is placed
into LPM at time-slot x and a wake-up time-slot is set for time-slot x+a. MinToken[x] and
Wakeup_time_slot[w][x] may be determined such that the energy-saving expectation is
maximized.

Updating statistics

[0051] The SDM and WDM are computed based on the wake-up probability map.
As mentioned above, the wake-up probability map represents the history of the task
activity pattern, and it was assumed that such a historic pattern may be somewhat valid
for prediction of near future behavior of the system. Depending on the dynamics of the
system behavior, such history may valid during long or short period of time.

[0052] Subsequent probability maps and consequent SDM and WDM can be built
continuously in order to represent the most up-to-date characteristics of the system
behavior. However, such continuous update computation effort will use additional
energy, so there may be a tradeoff between actual power savings and attempts to

maximized power savings.

10



WO 2013/116751 PCT/US2013/024474

[0053] FIG. 7 is a block diagram of a performance monitoring unit 440 that may
be included with the system of FIG. 2. In order to update the probability map, it may
be desirable to have a performance monitoring unit 440 that monitors how well DSC
220 is performing. If DSC 220 is not performing well, monitoring unit 440 may trigger a
reiteration of building a probability map and consequent SDM and WDM.

[0054] The performance monitoring unit may monitor several parameters in order
to evaluate the performance of the DSC. The average number of times that CPU 202
receives an interrupt before DSC wakes it up may be monitored. This represents how
well the DSC’s wake-up mechanism is working. The total sleep time that the CPU
spent in LPM vs. the total idle time of CPU may be monitored. This represents how well
the DSC’s sleep decision mechanism and wake-up mechanism are working.

[0055] The performance monitoring unit may alert the DSC to reiterate the
probability map if the parameters described above are lower than a selected threshold
by asserting alert signal 442.

[0056] FIG. 8 is a block diagram illustrating an exemplary application specific
integrated circuit system on a chip (SOC) 800 with CPU 802. For purposes of this
disclosure, the somewhat generic term “microcontroller” (MCU) may be used to apply to
any complex digital system on a chip (SOC) that may include one or more processing
modules 802, memory 850, and peripherals and/or DMA (direct memory access)
controllers 860. At least a portion of memory module 850 may be non-volatile and hold
instruction programs that are executed by processing module(s) 802 to perform the
system applications. CPU 802 may also be coupled to a data cache and instruction
cache, not shown. CPU 802 is coupled to system bus 852 for access to bulk memory
850. Peripherals 860 are also coupled to system bus 852 to allow access and control
by CPU 802.

[0057] The topology and configuration of SOC 800 is strictly intended as an
example. Other embodiments of the invention may involve various configurations of
buses for interconnecting various combinations of memory modules, various
combinations of peripheral modules, multiple processors, etc. CPU 802 may be any
one of the various types of microprocessors or microcontrollers that are now known or

later developed. For example, CPU 802 may be a digital signal processor, a

11



WO 2013/116751 PCT/US2013/024474

conventional processor, or a reduced instruction set processor. As used herein, the
term “microprocessor” or CPU is intended to refer to any processor that is included
within a system on a chip.

[0058] SOC 800 is coupled to realtime subsystem (RTS) 870. RTS 870 may be a
motor, for example, in which case SOC 800 controls motor speed and direction by
controlling the application of voltage to multiple sets of stator windings based on rotor
position. In another example, RTS 870 may be a speaker for playing audio sound or
music that is converted from a digital stream by SOC 800. For the purpose of the
description herein, RTS 870 is any type of device or component now known or later
developed that requires some form of hard real-time control.

[0059] One or more of the peripheral devices 860 may provide control signals or
data signals to RTS 870 and may receive status or other information from RTS 870.
For example, if RTS 870 is a motor, peripheral device 860 may receive rotor position
data from RTS 870 that generates an interrupt for a new stator control setting. SOC
800 may be part of an automotive engine control system, for example and receive
engine position and speed information and provide fuel and spark firing control signals.
[0060] As another example, if RTS 870 is a speaker, peripheral device 860 may
provide an analog sound signal to RTS 870. Another peripheral module may be
accessing a digital stream of audio data and generate an interrupt when a new frame of
audio data is available. SOC 800 may be part of a mobile handset and be receiving
voice and music digital signals via a cellular telephone network, for example.

[0061] DSC 820 may operate as described above in more detail to control clock
and voltage levels 830 to each CPU 802. In one embodiment, there may be sixteen
CPUs 802 that are provided with dynamic power management by DSC 820. In this
example, DSC 820 receives idle indications from the various CPU 802 via transactions
across bus 852. Similarly, DSC 820 sends preemptive wakeup interrupts to the various
CPU 802 via transactions across bus 852. DSC 820 may be implemented as a
hardwired logic, a software controlled microcontroller, a state machine, or other type of
logic that performs the dynamic power management function as described above in

more detail.

12



WO 2013/116751 PCT/US2013/024474

[0062] A performance monitoring unit 840 may also be coupled to DSC 820 to
monitor the performance of DSC 820 for each of the various CPU 802, as described in
more detail above.

[0063] FIG. 9 is a flow diagram illustrating operation of dynamic power
management for dynamically reducing power consumption by a processor in a
computer system. A maximum number of times that the processor can incur a start-up
delay after being placed into a low-power mode during a token period of time when
executing a task for a token period of time is determined 902. This is generally done
while the system is being designed and configured by determining slack time of the task
prior to a deadline time and by determining the wakeup latency that will be incurred
based on the level of a selected low power mode. In some embodiments, there may be
more than one type of low power mode that may be selected.

[0064] A token count is assigned 904 for the task in accordance with the
determined maximum number of times that the processor can incur a start-up delay for
the task. This is done by dividing the slack time for the task by the wakeup latency time.
As described earlier, the start-up delay time may vary depending on what level of low
power mode the processor is placed into.

[0065] The task is executed 906 until an idle point is reached. At this point, the
processor will assert an idle signal to indicate that useful processing has stopped. As
mentioned above, this may be in response to executing an idle instruction that is part of
the task or part of an operating system that is controlling scheduling of the task.

[0066] The processor is placed 910 into the low-power mode while executing the
task in response to the idle indicator only if a current value of the token count assigned
to the task is greater than zero 908. The actual threshold number may be different than
zero, depending on the activity pattern of the processor which is captured by the
histogram 930. The threshold value may also depend on the current time-slot value at
which the idle point has been detected. FIG 4 is an example of such threshold policy,
where each Min_token[x] of time-slot x is determined based on the histogram.

[0067] Execution of the task is resumed by waking 916 the processor out of the
low-power mode. This generally occurs as a result of a functional interrupt produced by

a device or peripheral within the system, or by a counter or timer, for example.

13



WO 2013/116751 PCT/US2013/024474

[0068] The current value of the token count of the task is decremented 918 each
time the processor incurs a start-up delay in response to being awakened from the low-
power mode.

[0069] The current token count is reset 924 to match the assigned token count at
the end of each token period 922.

[0070] A time when the processor is likely to be awakened may be anticipated
912 and the processor may then be preemptively awakened 914 by a dynamic sleep
controller prior to the anticipated time such that a start-up delay is not incurred. In this
case, the current value of the token counter is maintained 915 when a start-up delay is
not incurred when the processor starts processing. Even though the processor is likely
to be awakened, the dynamic sleep controller may decide to not preemptively awaken
the processor if the expected energy-saving from the small probability that the
processor may not be awakened is worth possibly using a token.

[0071] A wake-up interrupt signal is asserted 916 to wake the processor out of
the low power mode when the processor is in a low-power mode and to restart task
execution 920 when the processor did not enter low power mode.

[0072] A histogram of wake-up interrupt occurrences during the token period may
be occasionally created 930 for a plurality of time slots. Each reiteration of the
histogram may be done in response to a performance alert from monitoring unit 440, for
example. A sleep ratio of total sleep time in the low-power mode versus total idle time
of the processor during a period of time may be determined by monitoring unit 440 and
the histogram may be reset when the sleep ratio is lower than a sleep ratio threshold.
The monitoring unit may determine a wakeup ratio of how many times a wakeup
interrupt is received prior to preemptively waking the processor during a period of time,
referred to as prediction failure, and then reset the histogram when the wakeup ratio is
greater than a wakeup ratio threshold. When the monitoring unit counts the prediction
failure, it may disregard a situation in which the dynamic sleep controller intentionally
did not awaken the processor 912 because it was not worth saving a token.

[0073] Alternatively, the histogram may be reset at a periodic rate that is
determined during system design, for example. Typically, the histogram will exclude

preemptive wake-up requests generated by the dynamic sleep controller.

14



WO 2013/116751 PCT/US2013/024474

[0074] A time slot with a histogram value above a threshold value may be
selected as the anticipated time when the processor is likely to be awakened 912.
[0075] After creating a histogram 930, the DSC may determine for each time slot
of the histogram a potential energy-saving that may be achieved by saving a token for
later use. While the processor is in a low-power mode, a time slot may be selected 912
as a preemptive wake-up time slot and a preemptive wakeup request is asserted 914 by
the dynamic sleep controller if the histogram indicates it is likely that the processor will
be awakened by a wake-up interrupt during the time-slot and if it is probable that a
potential energy-saving that can be achieved by saving a token for later use is higher
than an energy-saving that might be achieved by continuing the sleep at the time-siot,
as explained in more detail with regard to equations (1) and (2) by using SDM 400 and
WDM 500, for example.

Other Embodiments

[0076] While the invention has been described with reference to illustrative
embodiments, this description is not intended to be construed in a limiting sense.
Various other embodiments of the invention will be apparent to persons skilled in the art
upon reference to this description. For example, a single DSC may provide dynamic
power control for a single processor or for multiple processor cores within a system on a
chip.

[0077] Embodiments of the dynamic sleep manager and methods described
herein may be provided on any of several types of digital systems: digital signal
processors (DSPs), general purpose programmable processors, application specific
circuits, or systems on a chip (SoC) such as combinations of a DSP and a reduced
instruction set (RISC) processor together with various specialized accelerators. A
stored program in an onboard or external (flash EEP) ROM or FRAM may be used to
implement aspects of the dynamic power management.

[0078] The techniques described in this disclosure may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the software may be executed in one or more processors, such as a microprocessor,
application specific integrated circuit (ASIC), field programmable gate array (FPGA), or

digital signal processor (DSP). The software that executes the techniques may be

15



WO 2013/116751 PCT/US2013/024474

initially stored in a computer-readable medium such as compact disc (CD), a diskette, a
tape, a file, memory, or any other computer readable storage device and loaded and
executed in the processor. In some cases, the software may also be sold in a computer
program product, which includes the computer-readable medium and packaging
materials for the computer-readable medium. In some cases, the software instructions
may be distributed via removable computer readable media (e.g., floppy disk, optical
disk, flash memory, USB key), via a transmission path from computer readable media
on another digital system, etc.

[0079] Those skilled in the art to which this relates will appreciate that
modifications may be made to the described embodiments, and also that many other
embodiments are possible, within the scope of the claimed invention.

16



WO 2013/116751 PCT/US2013/024474

CLAIMS

What is claimed is:

1. A method for dynamically reducing power consumption by a processor in a
computer system, the method comprising:

determining a maximum number of times that the processor can incur a start-up
delay after being placed into a low-power mode during a token period of time when
executing a task for the token period of time;

assigning a token count for the task in accordance with the determined maximum
number of times that the processor can incur a start-up delay for the task;

executing the task until a reaching an idle point;

placing the processor into the low-power mode while executing the task in
response to an idle indicator only if a current value of the token count assigned to the
task is greater than zero;

resuming execution of the task by waking the processor out of the low-power
mode;

decrementing the current value of the token count of the task each time the
processor incurs a start-up delay in response to being awakened from the low-power
mode; and

resetting the current token count to match the assigned token count at the end of
each token period.

2. The method of Claim 1, further comprising:

anticipating a time when the processor is likely to be awakened and preemptively
waking the processor by a dynamic sleep controller prior to the anticipated time such
that a start-up delay is not incurred; and

maintaining the current value of the token counter when a start-up delay is not

incurred when the processor is awakened.

17



WO 2013/116751 PCT/US2013/024474

3. The method of Claim 2, further comprising:

asserting a wake-up interrupt signal to wake the processor out of the low power
mode when the processor is in a low-power mode;

creating a histogram of wake-up interrupt occurrences during the token period for
a plurality of time slots; and

wherein a time slot with a histogram value above a threshold value is selected as
the anticipated time when the processor is likely to be awakened.

4 The method of Claim 3 wherein the histogram excludes preemptive wake-up

requests generated by the dynamic sleep controller.

5. The method of Claim 3, further comprising:

determining a sleep ratio of total sleep time in the low-power mode versus total
idle time of the processor during a period of time; and

resetting the histogram when the sleep ratio is lower than a sleep ratio threshold.

6. The method of claim 3, further comprising:

determining a wakeup ratio of how many times a wakeup interrupt is received
prior to preemptively waking the processor during a period of time; and

resetting the histogram when the wakeup ratio is greater than a wakeup ratio.

7. The method of Claim 1, further comprising:

asserting a wake-up interrupt signal to wake the processor out of the low power
mode when the processor is in a low-power mode;

creating a histogram of wake-up interrupt occurrences during the token period for
a plurality of time slots;

determining for each time slot of the histogram a potential energy-saving that
may be achieved by saving a token for later use; and

wherein while the processor is in a low-power mode, a time slot is selected as a
preemptive wake-up time slot and a preemptive wakeup request is asserted by a

dynamic sleep controller if the histogram indicates it is likely that the processor will be

18



WO 2013/116751 PCT/US2013/024474

awakened by a wake-up interrupt during the time-slot and if it is probable that a
potential energy-saving that can be achieved by saving a token for later use is higher
than an energy-saving that might be achieved by continuing the sleep at the time-slot.

8. The method of Claim 7 wherein the histogram excludes preemptive wake-up

requests generated by the dynamic sleep controller.

9. The method of Claim 1, wherein slack time analysis is used to determine the

maximum number of times the processor can incur a start-up delay for the task.

10. The method of Claim 1, wherein the computer system comprises a plurality of
processor cores coupled to a single dynamic sleep controller, wherein the dynamic
sleep controller is responsible for placing each of the plurality of processor cores into a

low power mode while executing respective tasks.

11. A computer system, comprising:

a processor coupled to a memory, wherein the processor is configured to
execute a software task stored in the memory;

an interrupt controller coupled to the processor, wherein the interrupt controller is
configured to provide a wakeup request signal to a power controller, wherein the power
controller is configured to place the processor into a low power mode; and

a dynamic sleep controller coupled to receive an idle signal from the processor,
wherein the dynamic sleep controller is configured to:

send a signal to the power controller to place the processor into the low-power
mode in response to an idle indicator only if a current value of a token count assigned to
the task is greater than zero, wherein the token count indicates a maximum number of
times that the processor can incur a start-up delay after being placed into a low-power
mode during a token period of time when executing a task for the token period of time;

decrement the current value of the token count of the task each time the
processor incurs a start-up delay in response to being awakened from the low-power
mode; and

19



WO 2013/116751 PCT/US2013/024474

reset the current token count to match the assigned token count at the end of

each token period.

12. The system of Claim 11, wherein the dynamic sleep controller is further
configured to:

anticipate a time when the processor is likely to be awakened and preemptively
wake the processor prior to the anticipated time such that a start-up delay is not
incurred; and

maintain the current value of the token counter when a start-up delay is not

incurred when the processor is awakened.

13. The system of Claim 12, wherein the dynamic sleep controller is further
configured to:

create a histogram of wake-up interrupt occurrences during the token period for a
plurality of time slots; and

wherein a time slot with a histogram value above a threshold value is selected as
the anticipated time when the processor is likely to be awakened.

14. The system of Claim 13, wherein the dynamic sleep controller is further
configured to exclude preemptive wake-up requests generated by the dynamic sleep
controller while creating the histogram.

15. The system of Claim 11, wherein the dynamic sleep controller is further
configured to:

create a histogram of wake-up interrupt occurrences during the token period for a
plurality of time slots;

determine for each time slot of the histogram a potential energy-saving that may
be achieved by saving a token for later use; and

wherein while the processor is in a low-power mode, a time slot is selected as a
preemptive wake-up time slot and a preemptive wakeup request is asserted by a

dynamic sleep controller if the histogram indicates it is likely that the processor will be

20



WO 2013/116751 PCT/US2013/024474

awakened by a wake-up interrupt during the time-slot and if it is probable that a
potential energy-saving that can be achieved by saving a token for later use is higher
than an energy-saving that might be achieved by continuing the sleep at the time-slot.

16. The system of Claim 15, wherein the dynamic sleep controller is further
configured to exclude preemptive wake-up requests generated by the dynamic sleep

controller while creating the histogram.

17. The system of Claim 15, wherein the dynamic sleep controller is further
configured to determine a sleep ratio of total sleep time in the low-power mode versus
total idle time of the processor during a period of time; and to reset the histogram when
the sleep ratio is lower than a sleep ratio threshold.

18. The system of Claim 15, wherein the dynamic sleep controller is further

configured to determine a wakeup ratio of how many times a wakeup interrupt is

received prior to preemptively waking the processor during a period of time; and to
reset the histogram when the wakeup ratio is greater than a wakeup ratio.

19. The system of Claim 11, wherein a plurality of processors are coupled to the

dynamic sleep controller for dynamic power control.
20. The system of Claim 11, further comprising a real-time subsystem coupled to the

processor, wherein the task being executed by processor initiates a real-time control

signal for the real-time subsystem.

21



PCT/US2013/024474

WO 2013/116751

1/7

. yZl A
DI DIA
g1 DIA
901 201
\
Ll
VI DIAd
901 p0l 201
31dl ATAAILOY DNINNNY 31dI

SINOLLVOI'lddVY

Ad1

31vIS
TVINHON

Nd1

41V1S
TVINHON

31dl
Ndd

ASNd
Nndd



WO 2013/116751

PCT/US2013/024474

2/7
230
/
Sleep_req
> POWER AND CLOCK
Wakeup_req _ CONTROLLER
214~ 232~ 934~_| POWER
CLOCK SUPPLY
Y Y
FUNCTIONAL
INTERRUPTS [[ —
212 INTERRUPT -
CONTROLLER
—>
210 202
PREEMPTIVE | |
wakeup_int
DYNAMIC SLEEP
- CONTROLLER
\ (' ospoLcy )
N
y 226
929 ( MinEnergy POLICY )
N
228

FIG. 2



PCT/US2013/024474

WO 2013/116751

3/7

DE DIA Gre m\_\m
.- Y
pog 7€ gog 208 10S
g€ OIH GEE
-
>
Nd1Ad dISNvI
AV1Ad TYNOILIAay
VE ‘DI Noger | | e1e
- U _ /
/
plg
\ N N
yOg €0e 208 10§

swol = (Qoidad NaMoL) 1L

INd1

31vIS
TYINHON

INd1

J1vIS
TYINHON

31dl
NdJ

ASNd
Ndd



PCT/US2013/024474

WO 2013/116751

4/7

§ DIA

[1-S1[1-N]1o|s awn dnayem

[L1[1-N]1ols awiy dnayem

[o][1-NT1ois awiy dnayem

[1-Sl[gliols awn dnayem

[L1[z]ols awn dnayem

[0][z]ols awn dnayem

[1-sl{1hols awn dnayem

[11[1hols swn dnayem

[01[1]1ors awn dnayem

[1-sl[olio1s awi dnayem

[L]1[olols awn dnayem

[o][0l10s awi dnayem

A

[-S10]S-aW |

£10[s-9uWI |

0101S-awllL

h J

a0Id3d NIMOL

A

aold3d NaX0oL

009
No/_\ ¥ DI
[1-S]uayor uly .. [¢]uayor uiN [L]uayoy uipy [oJuayor iy
[-S10|s-awi| 210|s-awi| J10|s-aw| g10s-awi|

/

00v

h J

ONINIVINFY SNIX0L
40 H39INNN



PCT/US2013/024474

WO 2013/116751

5/7

\ 4

Y

9 DJH
1£5 0£S
priofs swij
80129092 VCECCCIC0CEL8LLLILGIVIELZLLILOL G 8 L 9 G ¥ € ¢ V1[802092GeWc€Ecee1c0c6L8.LL9LGEPLELCLLILIOL G 8 L 9 G ¥ € ¢ )

I ¢ I 8 ¢ ¢ | ! b I 3

/T /T

/15~ B/1G-
068~ GG~

JEL

Jsanbay dn-ayem : k

A

pouiad Jajunoa 1sanbai dn-axem

A

J8unod
183nbal
dn-ayem

uieyed
Aoy



WO 2013/116751

PCT/US2013/024474

6/7
220
22\4 /
Wakeup_int < DYNAMIC SLEEP Cou idle
Sleep _req - y CONTROLLER -
222 )
442~ {Low_perf_alert
™-204
—>  PERFORMANCE
Wakeup_req »  MONITORING |«
(FROM INTERRUPT UNIT N 44
CONTROLLER) 5 1; 4 0
FIG. 7
S0C | |
800 |
[
I [ —
CPU NT | —
802 804 |el |—
- - — | ~812
Y 7y 860 870
/ /
POWER PERIPHERALS/ |- REAL TIME
AND DMA R | | SUBSYSTEM
CLOCKS I | _‘
A 852 A
830 | x N v
) J ) J
DSC MEM KO
FIG. 8
8401 PERF MON




WO 2013/116751

7/7

DETERMINE MAXIMUM NUMBER OF
START UP DELAYS FOR A TOKEN
PERIOD WHILE EXECUTING A TASK

902~

Y

ASSIGN A TOKEN COUNT
CORRESPONDING TO THE
MAXIMUM NUMBER

904~

K

/

EXECUTE THE TASK
UNTIL AN IDLE POINT

906~

TOKEN NO

PCT/US2013/024474

920
/

REMAIN IN NORMAL POWER

VALUE > 07

PLACE THE CPU INTO
A LOW POWER MODE

910~

WAKEUP
DURING THIS TIME
SLOT LIKELY? IS IT WORTH
SAVING A TOKEN?

MODE UNTIL FUNCTIONAL
WAKEUP INTERRUPT

Y

930 ¢
\ v

CREATE HISTOGRAM

A

Y

REMAIN IN LOW POWER
MODE UNTIL FUNCTIONAL
WAKEUP INTERRUPT

914~

915

A

DECREMENT TOKEN VALUE
PREEMPTIVELY WAKE UP THE CPU \
918

\
DO NOT DECREMENT TOKEN VALUE

- A

v

NO END OF TOKEN
PERIOD? FIG. 9

RESET TOKEN VALUE

924"




INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/024474

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 1/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by classification symbols)
GO6F 1/32; GO6F 1/08; HO4M 1/00; HO4W 52/02; GO6F 1/26; GO8C 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: power management, real time, interrupt, sensor, dynamic, idle indicator, token.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
gory pprop passag

A US 2010-0332877 Al (MARK A. YARCH et al.) 30 December 2010 1-20
See paragraphs 23-41; and figures 2-3.

A US 2011-0194471 A1 (JI-EUN KIM et al.) 11 August 2011 1-20
See paragraphs 56-68, 81-95; and figures 4-5, 8.

A US 7792066 B2 (KAZUO FUJII et al.) 07 September 2010 1-20
See column 8, line 4 - column 10, line 37; and figures 2-5.

A EP 1008030 B1 (INTEL CORPORATION) 25 April 2007 1-20
See paragraphs 11-22; and figures 2-4, 7.

A KR 10-1997-0066802 A (TRIGEM COMPUTER INC.) 13 October 1997 1-20
See claims 1-3; and figures 1-3.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E"  earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L"  document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P"  document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
30 May 2013 (30.05.2013) 02 June 2013 (02.06.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, KIM, Byoung Sung
3 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8403

Form PCT/ISA/210 (second sheet) (July 2009)



INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/024474
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010-0332877 Al 30.12.2010 CN 101937265 A 05.01.2011
DE 102010025307 A1 03.03.2011
JP 2011-014135 A 20.01.2011
KR 10-2011-0001984 A 06.01.2011
W 201111975 A 01.04.2011
US 2011-0194471 A1 11.08.2011 CN 102017527 A 13.04.2011
KR 10-0932920 B1 21.12.2009
KR 10-2009-0065152 A 22.06.2009
WO 2009-078575 A1 25.06.2009
US 7792066 B2 07.09.2010 CN 1601987 A 30.03.2005
JP 04095501 B2 04.06.2008
JP 2005-018377 A 20.01.2005
US 20050047356 A1 03.03.2005
EP 1008030 B1 25.04.2007 AU 5450098 A 15.07.1998
EP 1008030 A1 14.06.2000
EP 1008030 A4 02.01.2002
JP 04191254 B2 03.12.2008
JP 2001-506788 A 22.05.2001
KR 10-0370641 B1 05.02.2003
TW 388011 A 21.04.2000
US 6085325 A 04.07.2000
WO 98-27482 A1 25.06.1998
KR 10-1997-0066802 A 13.10.1997 None

Form PCT/ISA/210 (patent family annex) (July 2009)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

