



US 20080087206A1

(19) **United States**

(12) **Patent Application Publication**

**Murase**

(10) **Pub. No.: US 2008/0087206 A1**

(43) **Pub. Date: Apr. 17, 2008**

(54) **SEQUIN FEEDER APPARATUS AND SEWING MACHINE CAPABLE OF SEWING SEQUINS**

(75) Inventor: **Aisuke Murase, Kasugai-shi (JP)**

Correspondence Address:

**ROSSI, KIMMS & McDOWELL LLP.  
P.O. BOX 826  
ASHBURN, VA 20146-0826**

(73) Assignee: **TOKAI KOGYO MISHIN  
KABUSHIKI KAISHA,  
Kasugai-shi (JP)**

(21) Appl. No.: **11/870,703**

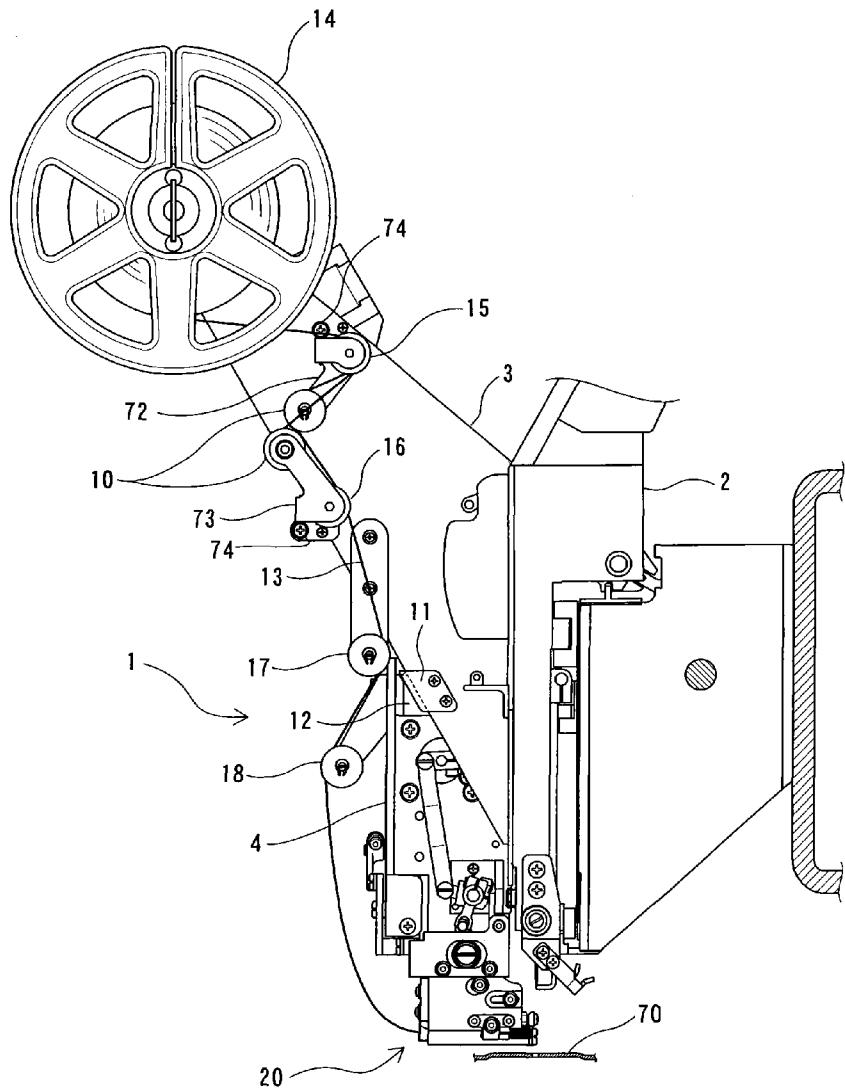
(22) Filed: **Oct. 11, 2007**

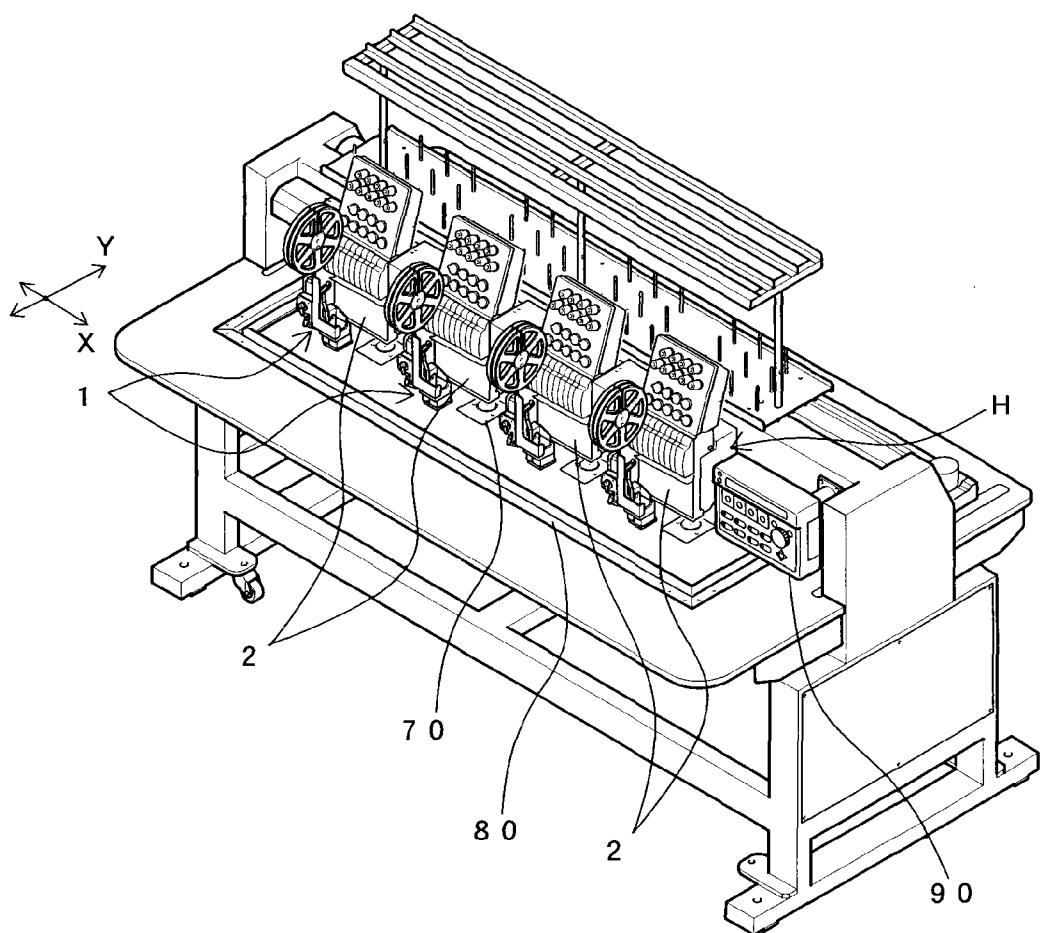
(30) **Foreign Application Priority Data**

Oct. 13, 2006 (JP) ..... 2006-280396  
Sep. 20, 2007 (JP) ..... 2007-244083

**Publication Classification**

(51) **Int. Cl.**

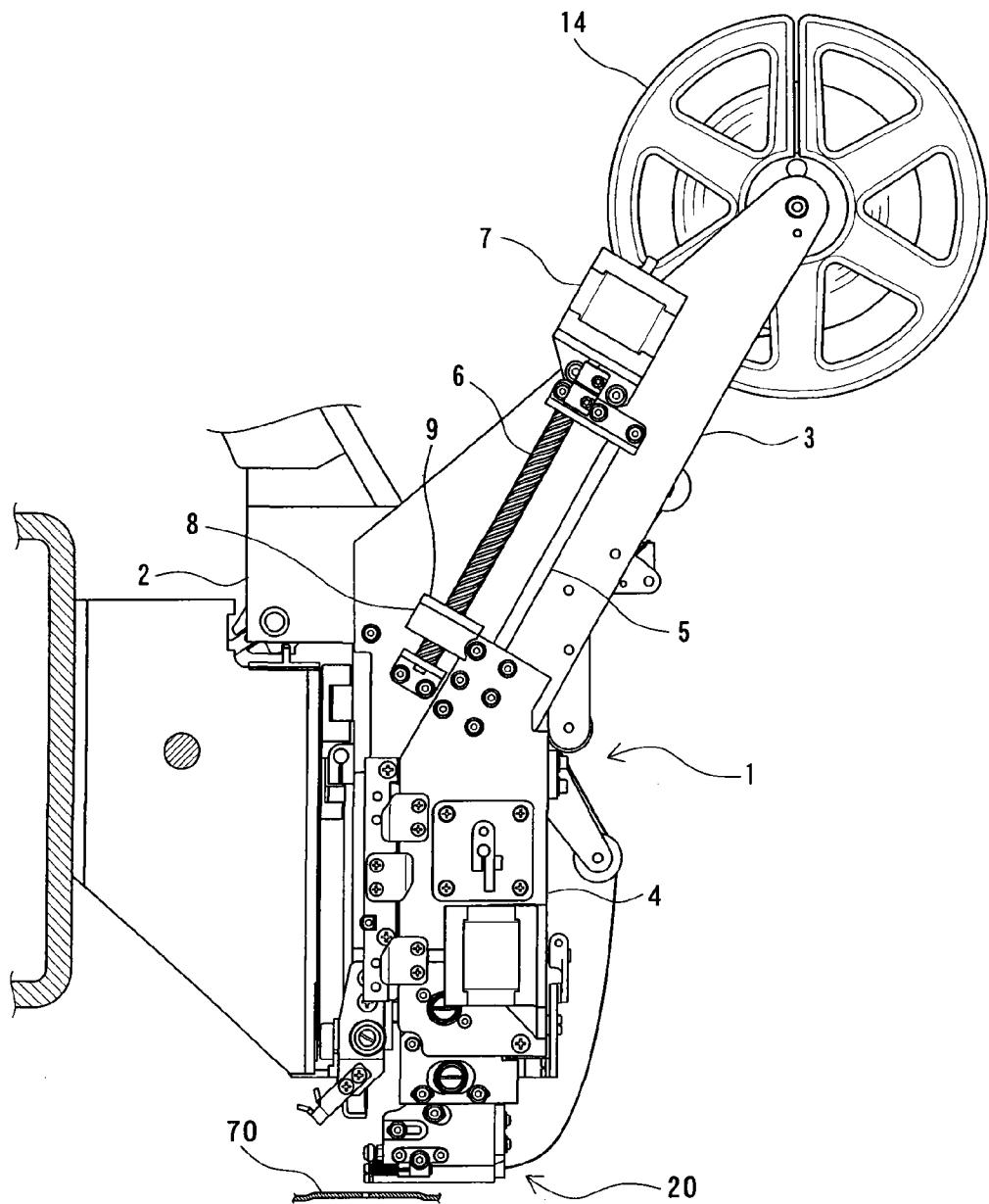

**D05B 3/12**


(2006.01)

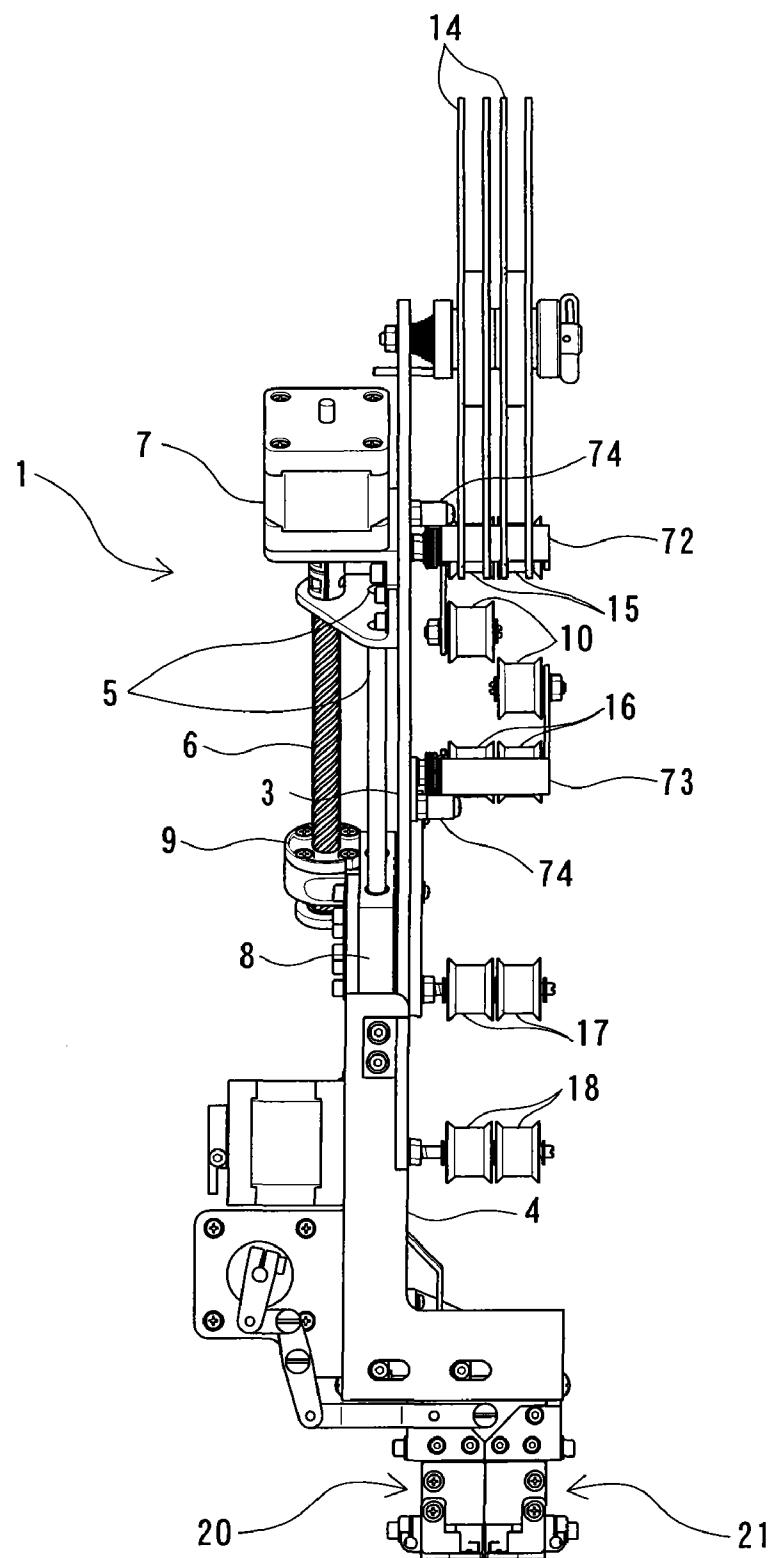
(52) **U.S. Cl. .... 112/106; 112/99**

**ABSTRACT**

Sequin feeder apparatus includes at least two sequin feed units each including a sequin feed mechanism for feeding a continuous sequin strip toward a predetermined cutting position and a sequin-cutting cutter section located in the predetermined cutting position. One of the sequin feed units is selected and positioned in a predetermined sewing operation position, and driving force of a feeding drive mechanism is transmitted to the sequin feed mechanism to feed out a sequin. Respective cutting positions of the cutter sections of the feed units are adjustable independently of each other.







F I G. 1



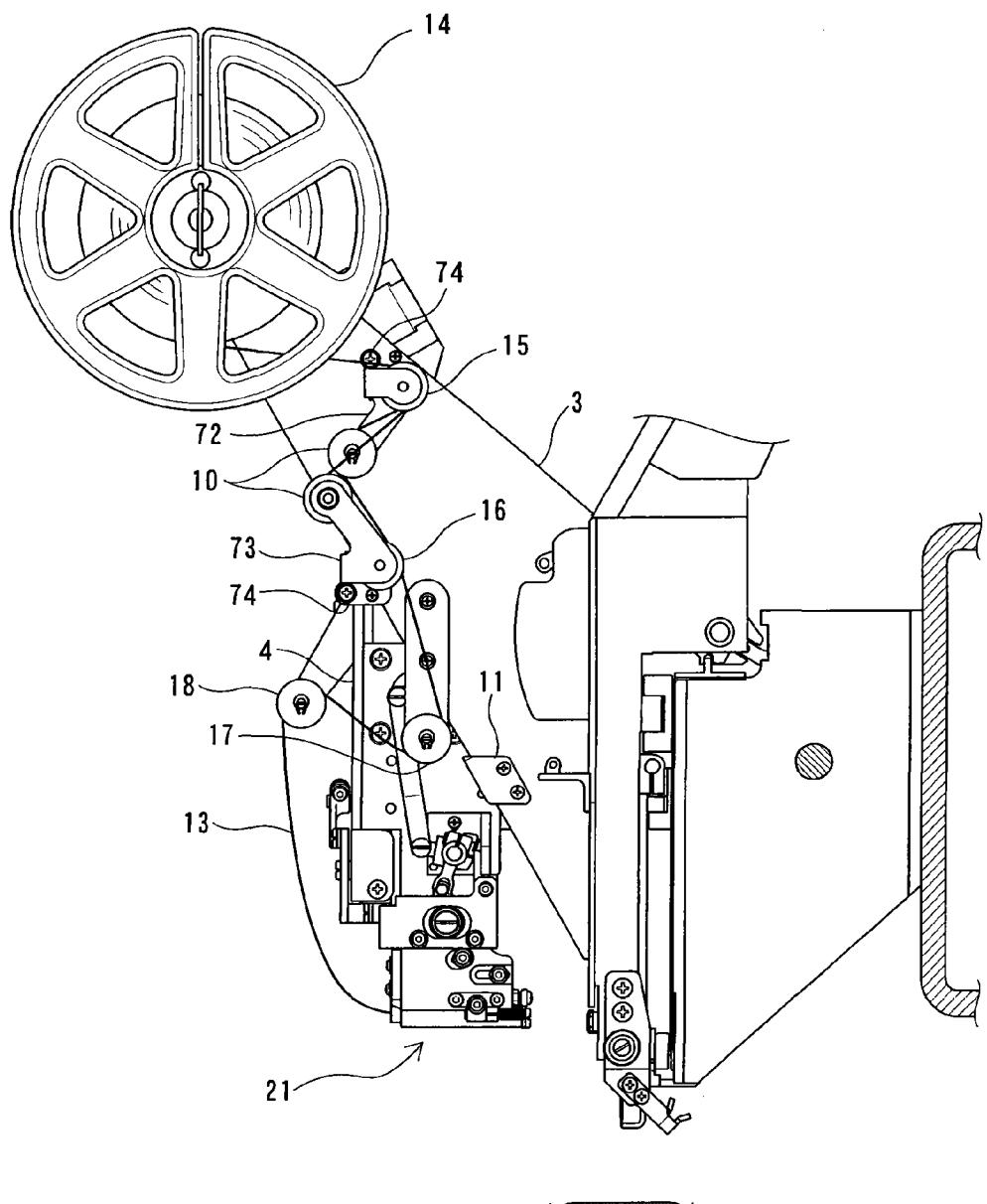
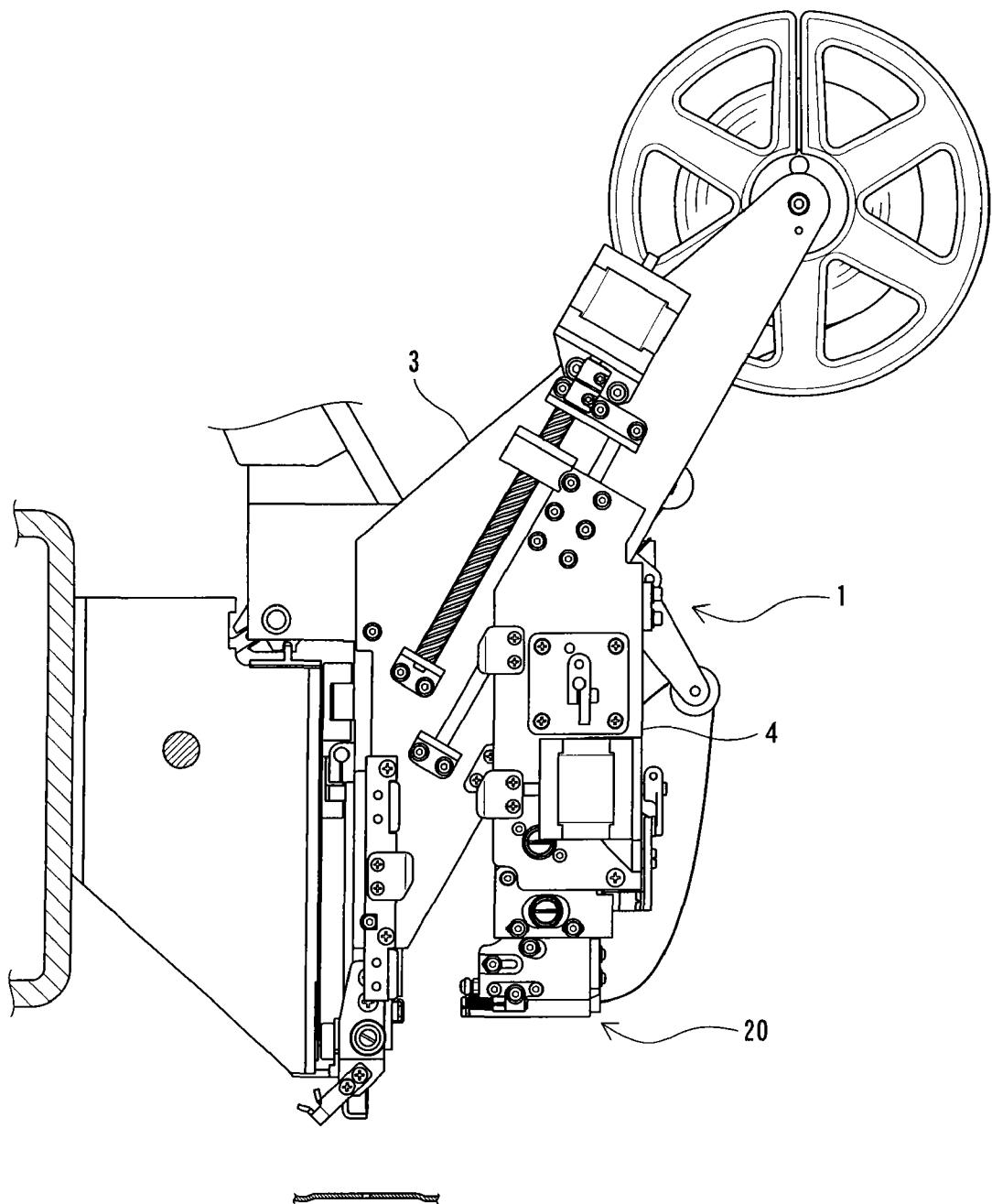
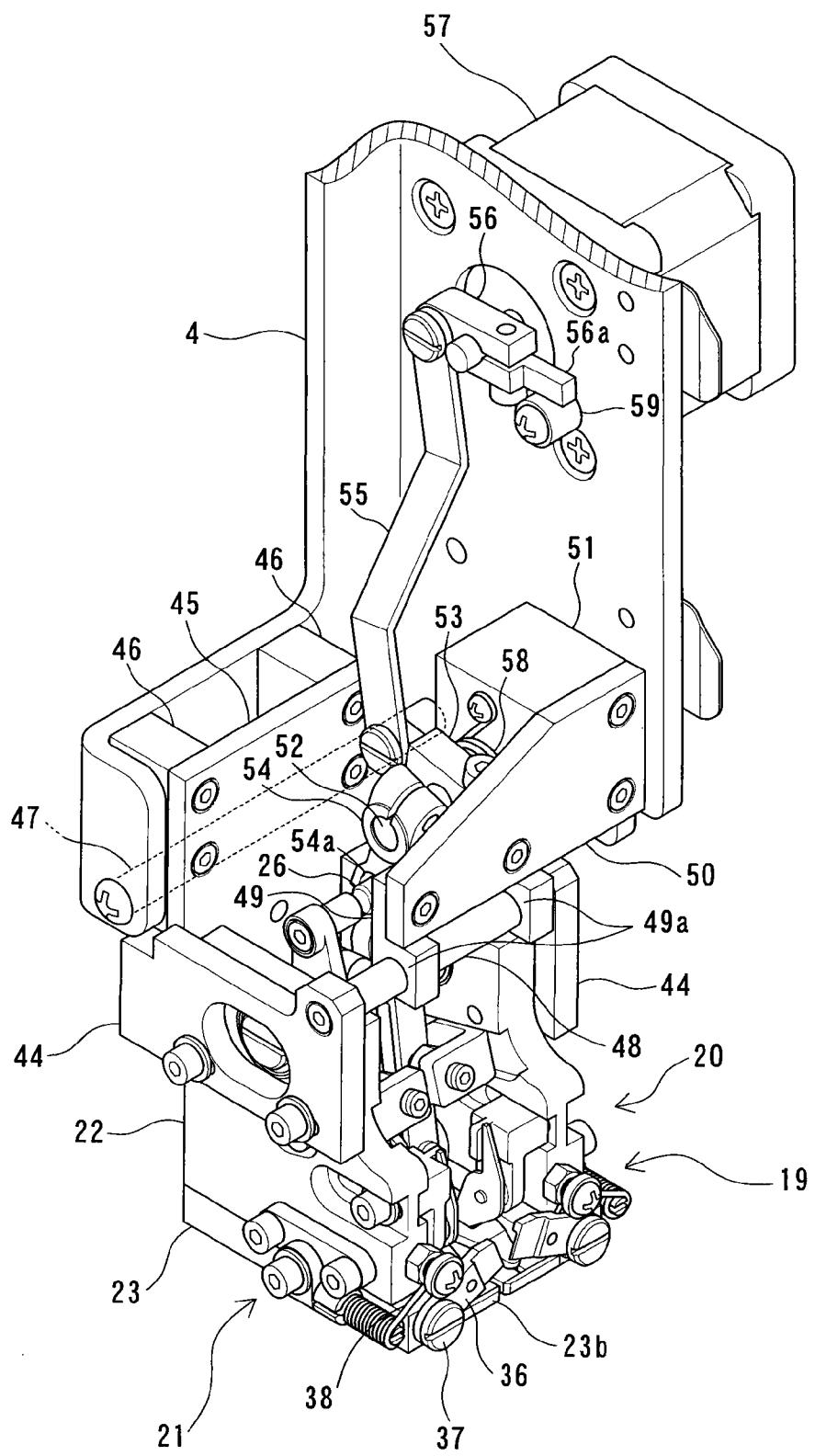
F I G. 2

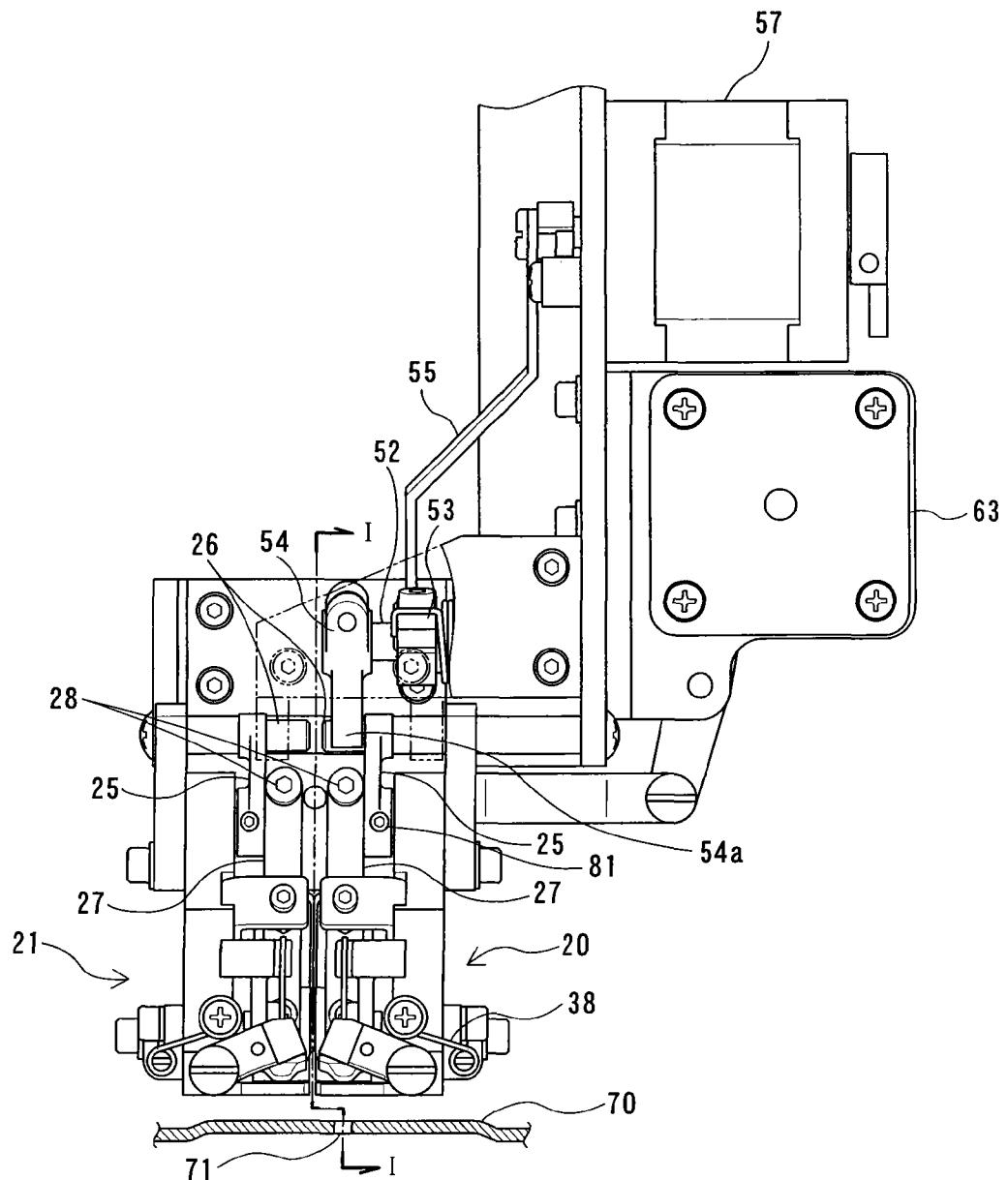


F I G. 3

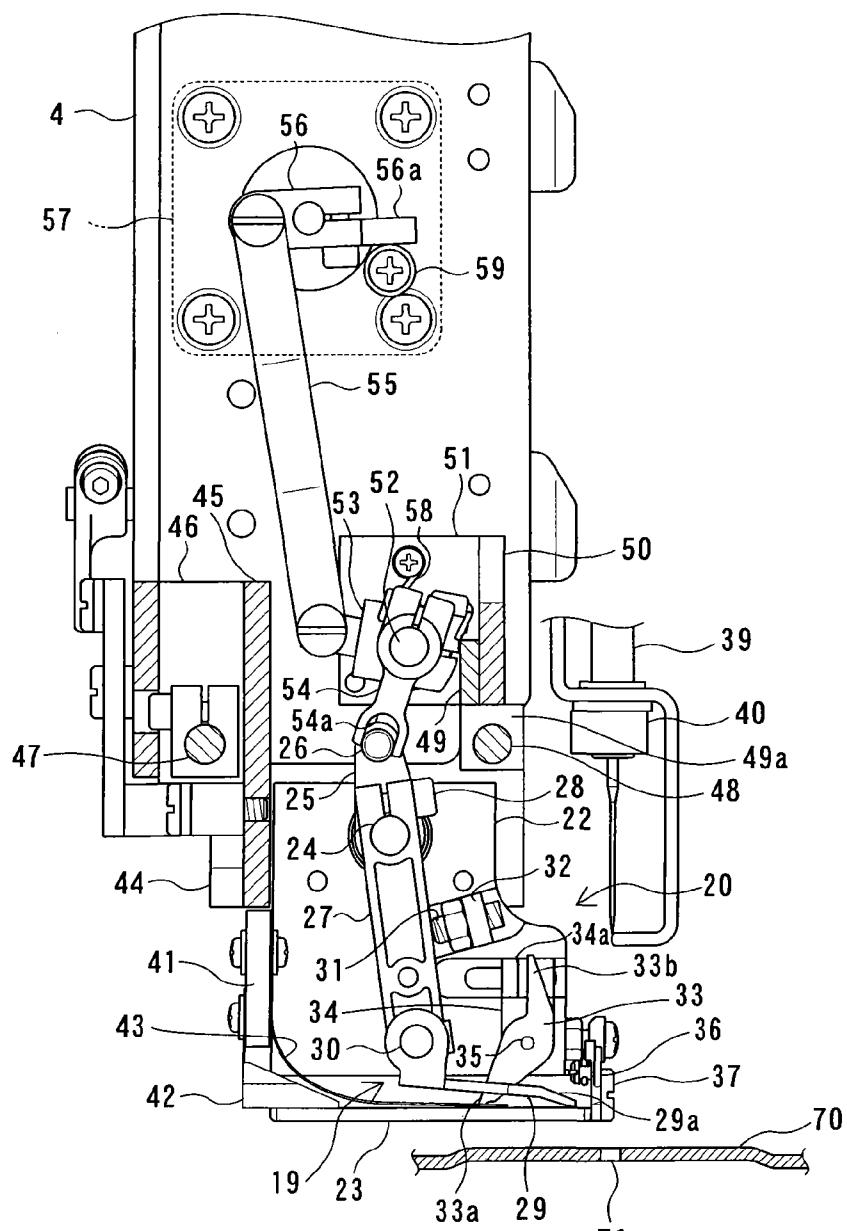


F I G. 4

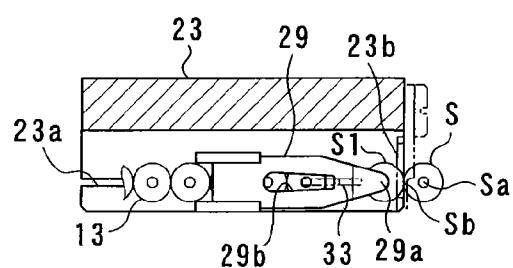






FIG. 5

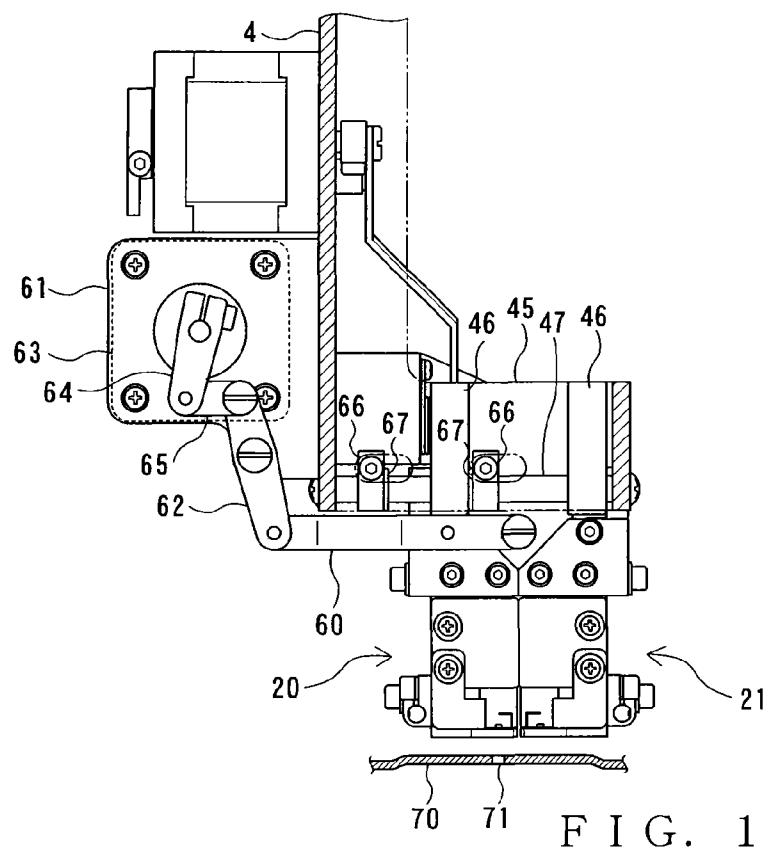



F I G. 6

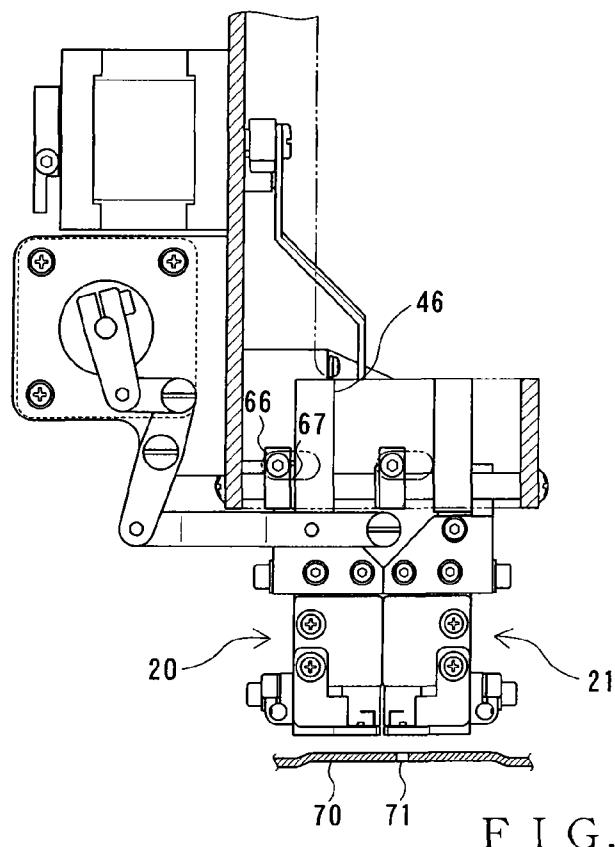



F I G. 7

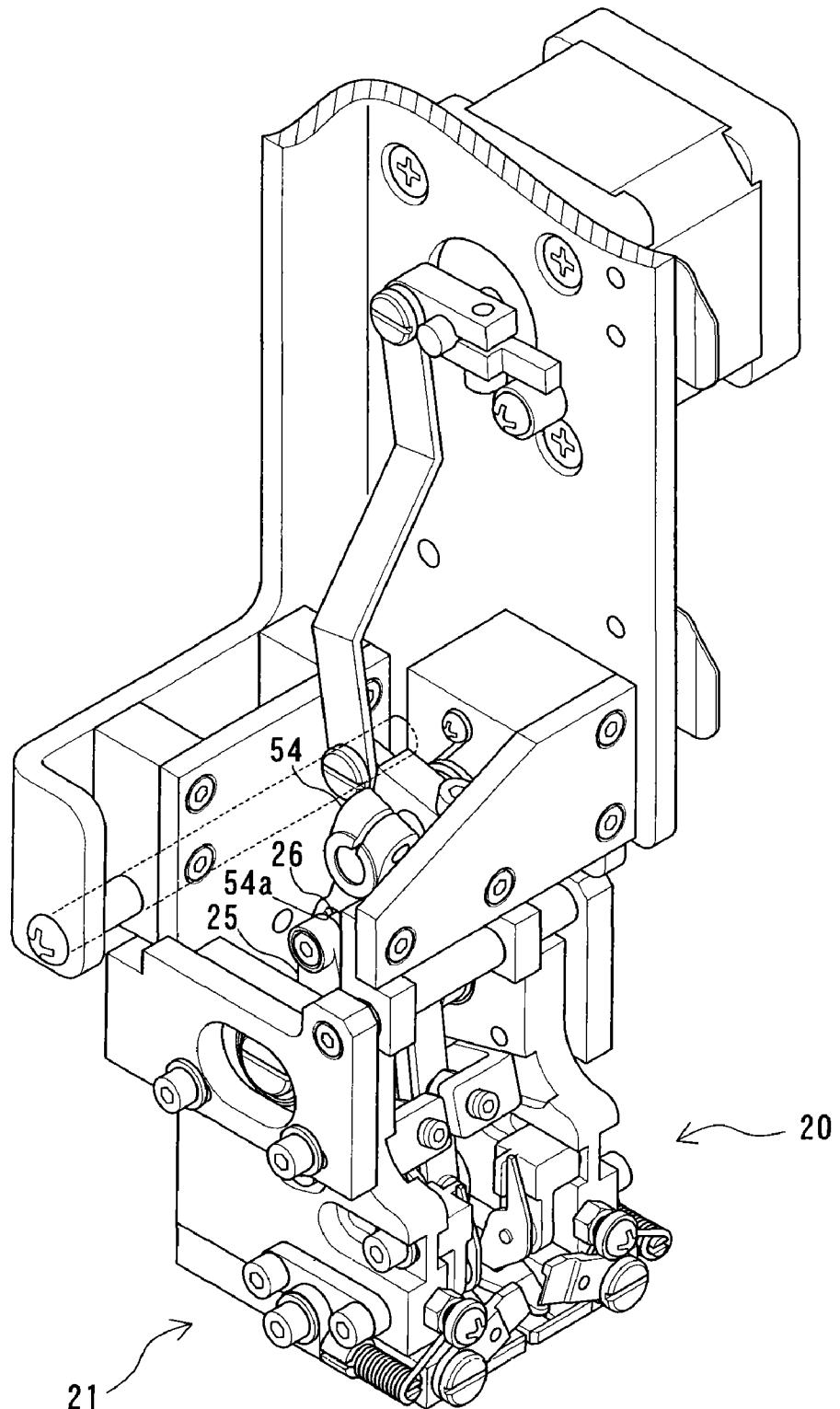



F I G. 8

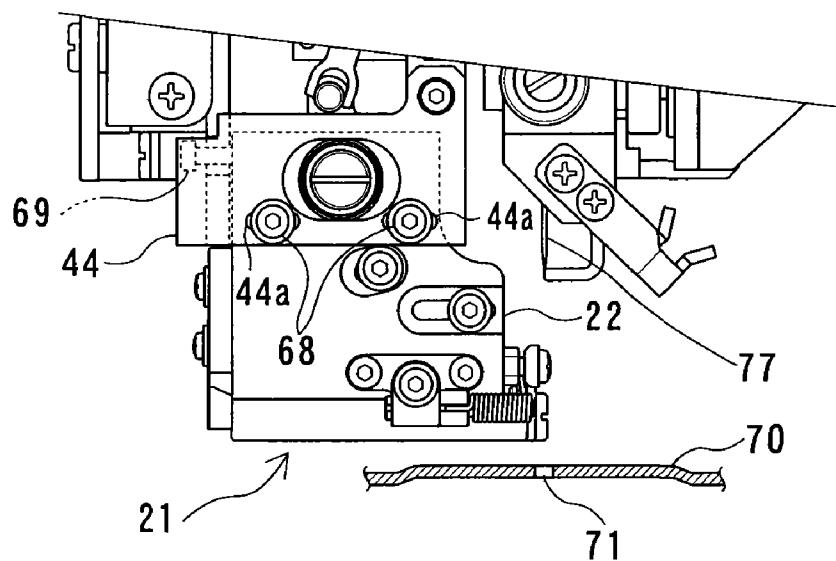



F I G. 9

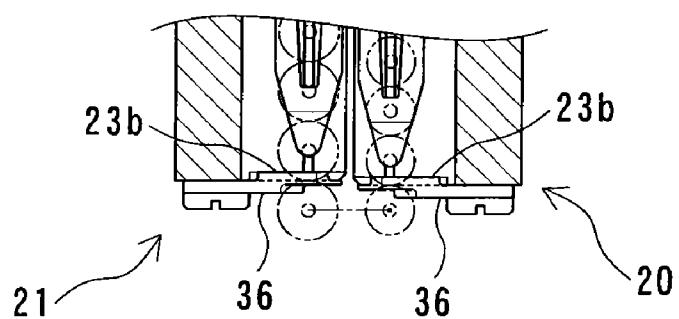



F I G. 10

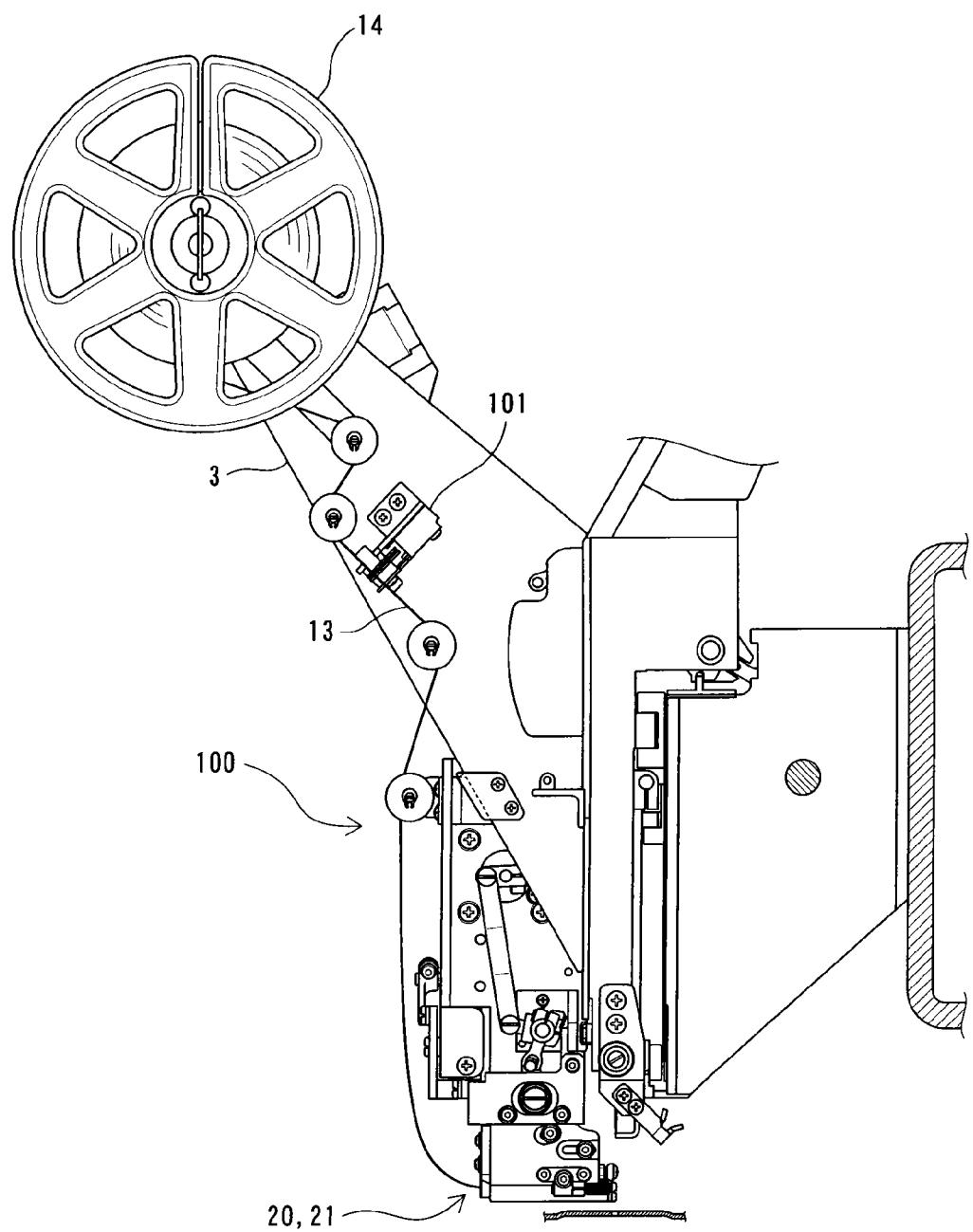



F I G. 1 1




F I G. 1 2




F I G. 13



F I G. 1 4



F I G. 1 5



F I G. 16

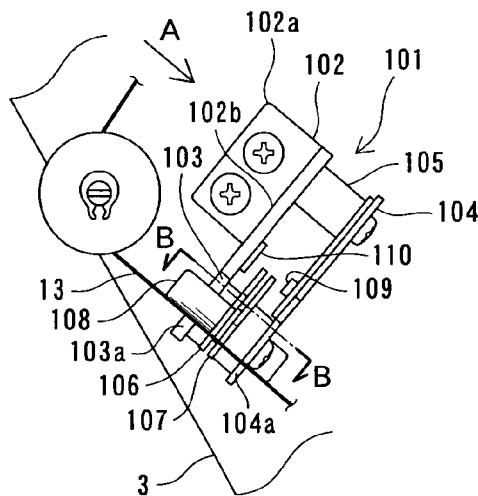



FIG. 17

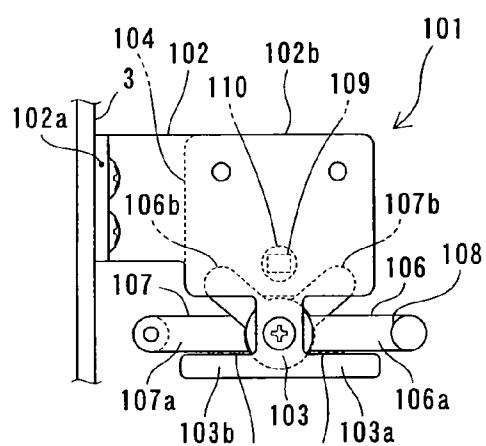



FIG. 18

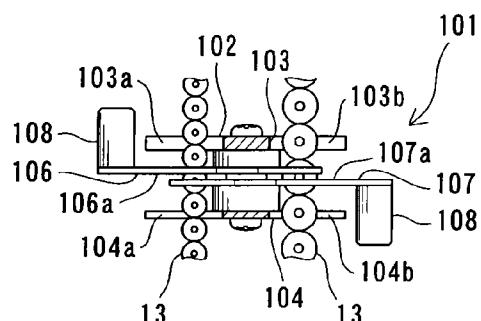
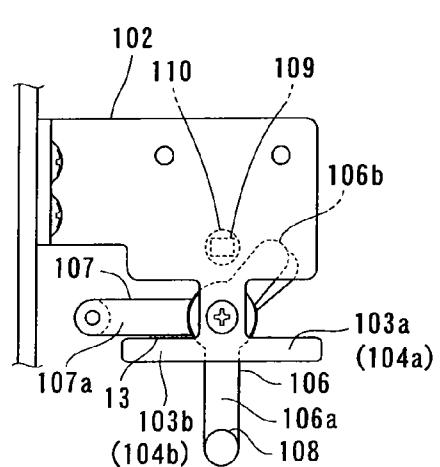
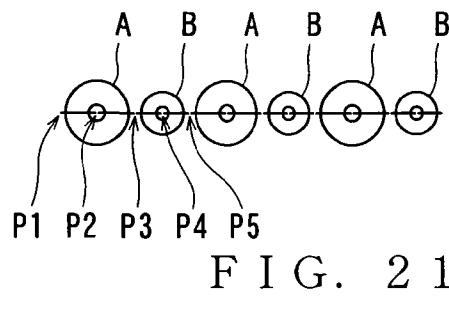
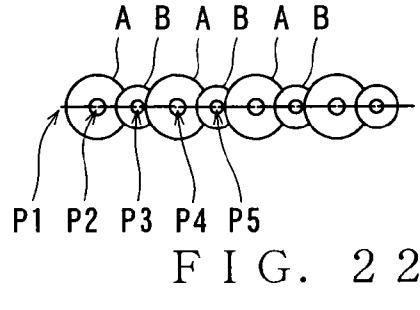
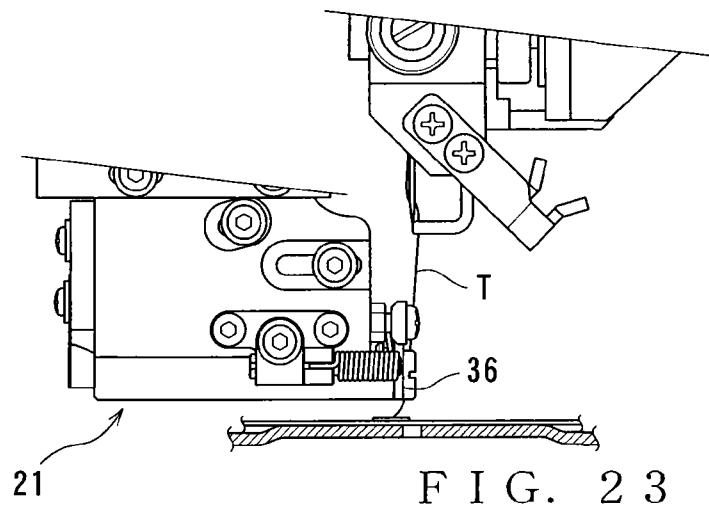
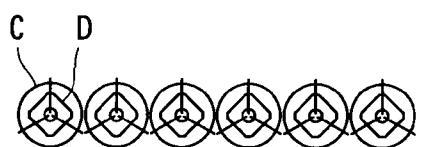



FIG. 19

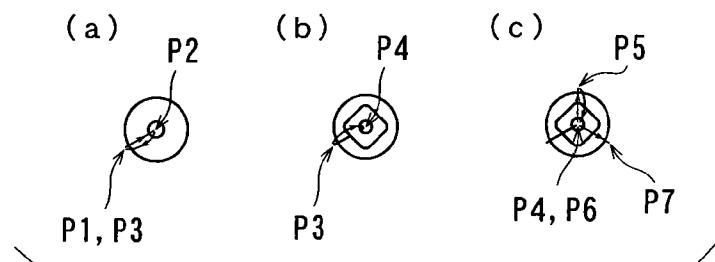






FIG. 20




F I G. 2 1




F I G. 2 2



F I G. 2 3



F I G. 2 4



F I G. 2 5

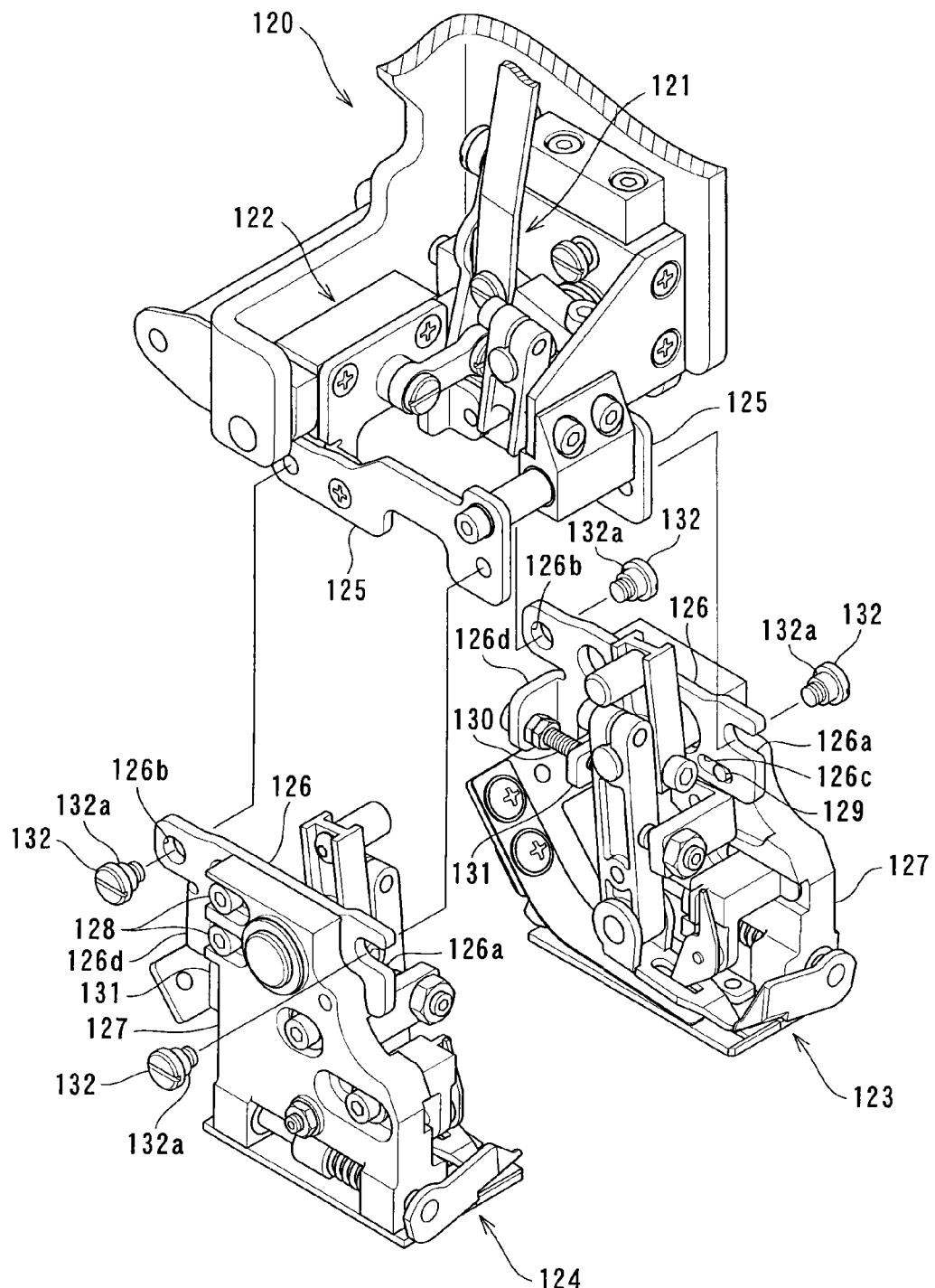



FIG. 26

## SEQUIN FEEDER APPARATUS AND SEWING MACHINE CAPABLE OF SEWING SEQUINS

### BACKGROUND

**[0001]** The present invention relates generally to sequin feeder apparatus for use in sewing machines which sew a sequin onto a sewing workpiece while severing the sequin from a ribbon or strip of continuously-connected sequins. More particularly, the present invention relates to a sequin feeder apparatus which is capable of changing the sequin to be sewn from one type to another in the middle of sewing, as well as a sewing machine suited to sew sequins of different pitches in combination.

**[0002]** Example of the conventional sequin feeder apparatus is known from German Utility Model Registration No. G9209764.2, U.S. Pat. No. 5,755,168 or German Patent No. DE19538084 (corresponding to U.S. Pat. No. 5,755,168 above). Such a known sequin feeder apparatus includes a feed mechanism, which causes a strip of a multiplicity of continuously-connected sequins (or spangles) (hereinafter referred to as "continuous sequin strip") to be let out or paid out from a reel, having the continuous sequin strip wound thereon, onto a support plate and then, through predetermined forward and rearward (i.e., advancing and retracting) movement of a feed lever, feeds the continuous sequin strip at a predetermined pitch corresponding to the size of each sequin of the strip. One sequin is sewn at a time onto a sewing workpiece while being severed or cut off from the continuous sequin strip having been fed in interlocked relation to a sewing operation by a needle bar of the sewing machine.

**[0003]** Further, Japanese Patent Application Laid-open Publication No. 2004-167097 discloses an embroidery sewing machine including a sequin feeder apparatus attached to a sewing head so that sequins can be sewn onto a sewing workpiece, such as an embroidering fabric.

**[0004]** Furthermore, Korean Patent Application Laid-open Publication No. 10-2006-68405 and Korean Patent Publication No. 10-614630 (corresponding to the No. 10-2006-68405 laid-open publication) disclose an apparatus capable of changing or switching the sequin to be sewn to from one type to another in the middle of sewing. The disclosed apparatus includes two sequin reels each having wound thereon a different strip of continuously-connected sequins of a predetermined shape and color, and feeding rods for individually feeding out the respective continuous sequin strips, paid out from the reels, to a needle entry point. By selecting the feeding-out operation by any one of the feeding rods on the basis of a control signal, the disclosed apparatus can successively perform sequin sewing while switching between the continuous sequin strips to be fed toward the needle entry point. However, the disclosed apparatus is provided with only one, common cutter section for cutting a sequin off from any one of the sequin strips; namely, a sequin of one of the continuous sequin strips, which has been fed out by the corresponding feeding rod, is cut off by the common cutter section. Therefore, although sequins can be made different in size between two continuous sequin strips to be set on the reels, the sequin sizes can no longer be changed freely once continuous sequin strips having sequins of predetermined sizes are set. Because, the common cutter section, shared between the two continuous sequin strips, comprises a movable cutter blade having a predetermined stepped structure and a fixed cutter blade (or

die) having a similar predetermined stepped structure, and the stepped structures of these movable and fixed cutter blades have to be mechanically fixed. Namely, if the apparatus is constructed so that continuous sequin strips of different sequin sizes are set on the two reels, the mechanically-fixed structures of the common cutter section can not deal with the different sequin sizes.

### SUMMARY OF THE INVENTION

**[0005]** In view of the foregoing, it is an object of the present invention to provide an improved sequin feeder apparatus which includes a plurality of sequin feed units such that the sequin to be sewn can be changed from one type to another in the middle of sewing and which allows a sequin feed amount of each of the sequin feed units to be changed as desired. It is another object of the present invention to provide an improved sewing machine which is suited to sew sequins of desired different feed pitches in combination using such an improved sequin feeder apparatus.

**[0006]** According to one aspect of the present invention, there is provided a sequin feeder apparatus, which comprises: at least two sequin feed units each including a sequin feed mechanism for feeding a continuous sequin strip toward a predetermined cutting position and a sequin-cutting cutter section located in the predetermined cutting position; a sequin selection mechanism for selecting one of the at least two sequin feed units and positioning the selected one sequin feed unit in a predetermined sewing operation position; and a drive mechanism for engaging with the sequin feed mechanism of the one sequin feed unit, positioned in the predetermined sewing operation position, and thereby driving, in response to a sewing operation, the engaged sequin feed mechanism to feed the continuous sequin strip toward the predetermined cutting position. Here, the predetermined cutting position in each of the sequin feed units is adjustable independently of the predetermined cutting position in the other sequin feed unit, and the cutter section is driven, in response to the sewing operation, to cut a sequin off from the continuous sequin strip having been fed to the predetermined cutting position.

**[0007]** According to another aspect of the present invention, there is provided a sewing machine where the aforementioned sequin feeder apparatus of the present invention is provided in association with a sewing head.

**[0008]** Each of the sequin feed units includes its own sequin feed mechanism and sequin-cutting cutter section, and the predetermined cutting position in each of the sequin feed units is adjustable independently of the predetermined cutting position in the other sequin feed unit. Thus, in each of the sequin feed units, the cutting position, where the cutter section cuts a sequin off from the sequin strip, can be adjusted as desired independently of the cutting position in the other sequin feed unit; thus, the sequin feed units can respectively handle sequins of desired feed sizes. Because the present invention thus arranged allows a sequin feed amount of the continuous sequin strip in each of the feed units to be changed as desired independently of the sequin feed amount in the other feed unit, the sewing machine, to which is applied the sequin feeder apparatus of the present invention, can perform sequin sewing while combining sequins of desired different feed pitches.

**[0009]** The following will describe embodiments of the present invention, but it should be appreciated that the

present invention is not limited to the described embodiments and various modifications of the invention are possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.

#### BRIEF DESCRIPTION OF THE DRAWINGS

- [0010] FIG. 1 is a perspective view showing a general outer appearance of an embroidery sewing machine to which is applied a sequin feeder apparatus of the present invention;
- [0011] FIG. 2 is a right side view showing a first embodiment of the sequin feeder apparatus of the present invention, which particularly shows the sequin feeder apparatus held in a lowered position;
- [0012] FIG. 3 is a left side view of the first embodiment of the sequin feeder apparatus;
- [0013] FIG. 4 is a front view of the first embodiment of the sequin feeder apparatus;
- [0014] FIG. 5 is a right side view of the first embodiment of the sequin feeder apparatus, which particularly shows the sequin feeder apparatus held in an evacuated position;
- [0015] FIG. 6 is a left side view of the first embodiment of the sequin feeder apparatus, which shows the sequin feeder apparatus held in the evacuated position;
- [0016] FIG. 7 is a rear perspective view showing in enlarged scale parts of sequin feed units, sequin selection mechanism and feeding drive mechanism in the first embodiment of the sequin feeder apparatus;
- [0017] FIG. 8 is a rear view of the first embodiment of the sequin feeder apparatus;
- [0018] FIG. 9 is a sectional view taken along the I-I line of FIG. 8;
- [0019] FIG. 10 is a plan view showing a manner in which a leading sequin is cut off from a continuous sequin strip held on a support plate in one of the sequin feed units in the first embodiment;
- [0020] FIG. 11 is a front view showing in enlarged scale parts of the sequin feed units and sequin selection mechanism when the first sequin feed unit is selected;
- [0021] FIG. 12 is a front view showing in enlarged scale parts of the sequin feed units and sequin selection mechanism when the second sequin feed unit is being selected;
- [0022] FIG. 13 is a perspective view similar to FIG. 7, which shows parts of the sequin feed units, sequin selection mechanism and feeding drive mechanism when the second sequin feed unit is selected;
- [0023] FIG. 14 is a side view of a supporting plate of the second sequin feed unit taken from a side opposite a side where the sequin feed mechanism is disposed;
- [0024] FIG. 15 is a sectional plan view showing a manner in which respective cutting positions of the first and second feed units are adjusted in accordance with sequin sizes of continuous sequin strips set on the feed units;
- [0025] FIG. 16 is a right side view of a second embodiment of the sequin feeder apparatus;
- [0026] FIG. 17 is a right side view showing in enlarged scale a detection device employed in the second embodiment;
- [0027] FIG. 18 is a view taken in a direction of arrow A of FIG. 17;
- [0028] FIG. 19 is a sectional view taken along the B-B line of FIG. 17;
- [0029] FIG. 20 is a view showing a state where a supply of one of continuous sequin strips has run out;

[0030] FIG. 21 is a view showing an example of a sequin pattern to be made by alternately sewing sequins of different types to a workpiece;

[0031] FIG. 22 is a view showing another example of the sequin pattern to be made by alternately sewing sequins of different types to a workpiece;

[0032] FIG. 23 is a side view showing a state where a previous-sewn stitch position has got into under the sequin feed unit;

[0033] FIG. 24 is a view showing an example of a sequin pattern to be made by alternately sewing sequins of different types to a workpiece in overlapped relation to each other;

[0034] FIG. 25 is a view showing an example sequence of operations for sewing the sequin pattern, comprising two sequins of different types, to the workpiece in overlapped relation to each other; and

[0035] FIG. 26 is an exploded rear perspective view of a sequin feeder apparatus in accordance with another embodiment of the present invention.

#### DETAILED DESCRIPTION

[0036] FIG. 1 shows a four-head embroidery sewing machine equipped with four sewing machine heads H. Needle bar cases 2 are provided in corresponding relation to the sewing machine heads H, and a needle plate 70 is disposed under each of the needle bar cases 2. Sequin feeder apparatus 1 is attached to the left side and/or right side of each of the needle bar cases 2; in the instant embodiment, the sequin feeder apparatus 1 is attached to only the left side of each of the needle bar cases 2. Each of the needle bar cases 2 comprises a multi-needle structure, and, in the case where the sequin feeder apparatus 1 is attached to the left side of the associated needle bar case 2 as in the illustrated example, the leftmost needle bar in the needle bar case 2 is used as a sequin sewing needle bar (or sequin needle bar). As conventionally known in the art, an embroidery frame 80 is driven in left-right (X) and front-rear (Y) horizontal directions in accordance with predetermined sewing data.

#### First Embodiment

[0037] First, a description will be given about a first embodiment of the sequin feeder apparatus 1.

[0038] FIG. 2 is a right side view showing in enlarged scale a part of one of the sequin feeder apparatus 1, FIG. 3 is a left side view of the sequin feeder apparatus 1, and FIG. 4 is a front view of the sequin feeder apparatus 1. The sequin feeder apparatus 1 includes a fixed base 3 fixed to the left side surface of the needle bar case 2 for attaching the feeder apparatus 1 to the machine head H, and a mounting base 4 mounted on the fixed base 3 in such a manner that it can ascend and descend relative to the fixed base 3. Two guide rods 5 are fixed to the base 3, and a screw shaft 6 is pivotally mounted on the base 3; note that, in FIG. 3, only one of the guide rods 5 is shown with the other guide rod 5 located behind the screw shaft 6 and thus invisible in FIG. 3. The screw shaft 6 is connected to the shaft of a motor 7 fixed to the base 3. Moving member 8 slidably fitted on the two guide rods 5 is fixed to the mounting base 4. Nut member 9 screwed on the screw shaft 6 is fixed to the moving member 8. Thus, as the screw shaft 6 rotates by being driven via the motor 7, the mounting base 4 is vertically movable, along the guide rods 5, between a lowered position in which the sequin feeder apparatus 1 performs a sequin sewing opera-

tion and an evacuated position in which the sequin feeder apparatus **1** does not perform a sequin sewing operation. FIGS. 2 and 3 show a state of the apparatus when the sequin feeder apparatus **1** is in the lowered position, and FIGS. 5 and 6 show a state of the apparatus when the sequin feeder apparatus **1** is in the evacuated position. Further, a positioning block **12** is fixed to the mounting base **4**, and, when the mounting base **4** is in the lowered position, this positioning block **12** fits between two positioning plates **11** having respective distal end portions that project along and are fixed to left and right surfaces of the base **3**. With the positioning block **12** fitting between the two positioning plates **11**, the mounting base **4** in the lowered position is positioned in the left-right horizontal direction.

[0039] Each of the sequin feeder apparatus **1** generally comprises: two sequin feed units **20** and **21**; a sequin selection mechanism (composed of components **44-50**, **60-67** and the like that will be later described with reference to FIG. 7 etc.) for selecting any one of the two sequin feed units **20** and **21** and positioning the selected sequin feed unit **20** or **21** in a predetermined sewing operation position; and a feeding drive mechanism (composed of components **51-59** and the like that will be later described with reference to FIG. 7 etc.) for engaging with a sequin feed mechanism **19** of the one sequin feed unit **20** or **21** positioned in the predetermined sewing operation position. These two sequin feed units **20** and **21**, sequin selection mechanism (**44-50**, **60-67** and the like) and feeding drive mechanism (composed of components **51-59** and the like) are mounted on the above-mentioned mounting base **4** so that they are vertically movable (ascendable and descendable) between an evacuated position for not performing sequin sewing and a lowered position for performing sequin sewing.

[0040] Further, each of the sequin feed units **20** and **21** includes the sequin feed mechanism **19** for feeding a continuous sequin strip **13** toward a predetermined cutting position, and a sequin-cutting cutter section (composed of components **36** and **23b** that will be later described with reference to FIG. 7 etc.) located in the predetermined cutting position. As shown in FIG. 4, two reels (sequin holder sections or sequin strip supply sources) **14**, each having a desired continuous sequin strip **13** wound thereon, are provided, in corresponding relation to the sequin feed units **20** and **21**, for feeding the continuous sequin strips **13** to the corresponding sequin feed units **20** and **21**. Each of the reels **14** corresponding to the sequin feed units **20** and **21** holds, i.e. has wound thereon, the continuous sequin strip **13** comprising a multiplicity of continuously-connected sequins each having a desired shape, color and size (i.e., feed size corresponding to a dimension from the needle-passing hole to the outer periphery of the sequin). Namely, the instant embodiment is capable of using one sequin feeder apparatus **1** to sew a combination of two different types of sequins as sequins to be sewn to make an embroidery pattern. Two reels (sequin strip supply sources) **14** holding two different types of sequins, suiting such a combined sequin-sewing design, are set in a manner as shown in FIG. 4. In the illustrated example of FIG. 4, the left reel **14** corresponds to the left sequin feed unit **20**, while the right reel **14** corresponds to the right sequin feed unit **21**.

[0041] These two reels **14** are coaxially mounted side by side, or juxtaposed, on a same mounting shaft provided on the fixed base **3**. Further, pairs of first, second and third rollers **15**, **16** and **17** for guiding portions of the continuous

sequin strips **13** paid out from the reels **14** are supported on the fixed base **3**, and fourth rollers **18** are supported on the mounting base **4**; each of the pairs of the rollers **15**, **16**, **17** and **18** is also composed of two rollers coaxially mounted side by side. Further, two tension rollers **10** are provided between the first rollers **15** and the second rollers **16**, and these tension rollers **10** are supported on tension bases **72** and **73** rotatably mounted on the shafts of the first and second rollers **15** and **16**, respectively. Torsion springs (not shown) are mounted on the shafts of the first and second rollers **15** and **16**, so that the tension base **72** is normally urged in a clockwise direction of FIG. 2 while the tension base **73** is normally urged in a counterclockwise direction of FIG. 2 and these bases **72** and **73** are normally held in abutting engagement with stoppers **74** secured to the fixed base **3**.

[0042] Portion of the continuous sequin strip **14** paid out from each of the reels **14** is directed to and supported on the first roller **15**, tension roller **10**, second roller **16**, third roller **17** and fourth roller **18** in the mentioned order as shown in FIG. 2, and then guided to the sequin feed mechanism **19** provided on the mounting base **4**. Thus, as the mounting base **4** is moved to the evacuated position, the continuous sequin strip **13** is appropriately pulled by the fourth roller **18**, so that the sequin strip **13** can be prevented from greatly slackening during the movement of the mounting base **4** to the evacuated position.

[0043] FIG. 7 is a rear perspective view showing in further enlarged scale parts of the sequin feed units **20** and **21**, sequin selection mechanism (**44-50**, **60-67**, etc.) and feeding drive mechanism (**51-59**, etc.), FIG. 8 is a rear view of the sequin selection mechanism and feeding drive mechanism, and FIG. 9 is a sectional view taken along the I-I line of FIG. 8. As apparent from these figures, the two sequin feed units **20** and **21** are provided on the mounting base **4** in opposed relation to each other and horizontally slidable relative to the mounting base **4** along sliding rods **47** and **48** provided on the mounting base **4**. Such sliding movement of the sequin feed units **20** and **21** is effected by the sequin selection mechanism (**44-50**, **60-67**, etc.); more specifically, the sequin selection mechanism selects and connects any one of the feed units **20** or **21** to the feeding drive mechanism (**51-59**, etc.), and thus, a sequin is fed out from the selected sequin feed unit **20** or **21** by a driving force of the feeding drive mechanism (**51-59**, etc.) being transmitted to the selected sequin feed unit **20** or **21**.

[0044] Although the two sequin feed units **20** and **21** provided in opposed relation to each other are constructed of same mechanical components (i.e., mechanically constructed in the same manner), the feed units **20** and **21** are arranged and shaped in symmetrical relation to each other. Thus, details of the mechanical components of only one of the sequin feed units **20** will be described representatively with reference to FIG. 9. The sequin feed unit **20** generally comprises a supporting plate **22**; a support plate **23** provided horizontally at the lower end of the supporting plate **22**; the sequin feed mechanism **19** composed of various components (indicated by **24-35** etc.) mounted on the supporting plate **22**; and the cutter section (including fixed cutter blade **23b** and movable cutter blade **36**) located in the predetermined cutting position at the distal end of the support plate **23**. Portion of the continuous sequin strip paid out from the corresponding reel **14** is directed onto the support plate **23** and then sent toward the cutting position or cutter section by

means of the sequin feed mechanism 19. The support plate 23 has a slit 23a (see FIG. 10) having an appropriate dimension in the front-rear or Y direction. The slit 8a is provided to allow entry therein of an engaging claw 33a of a lock lever 33 of the sequin feed mechanism 19 as will be later described.

[0045] First, details of the sequin feed mechanism 19 will be described. Link arm 25 is fixed to the shaft 24 supported on the supporting plate 22, and a link pin having a slanted distal end surface is fixed to a free end portion of the link arm 25. Feed lever 29, having an engaging portion 29a at its distal end, is pivotably supported, via a shaft 30, on a free end portion of the pivot arm or lever 27. Torsion spring (not shown) for normally urging the feed lever 29 in the clockwise direction is fitted on the shaft 30, by which the distal end portion of the feed lever 29 is normally urged toward the support plate 23. With the feed lever 29 urged in the clockwise direction, the pivot lever 27 is normally urged in a direction where it abuts against a stopper 31. The stopper 31 is in the form of a threaded rod screwed to a bracket 32 secured to the supporting plate 22, and the stopper 31 is locked by screwing up of a nut. The pivot lever 27 abuts against the rear end of the stopper 31. The lock lever 33 is provided over the feed lever 29. The lock lever 33 has an engaging claw (or engaging projection) 33a at its one end and a stopper portion 33b at its other end. Intermediate portion of the lock lever 33 is pivotably supported, via a pin 35, on a support block 34 that is in turn fixed to the supporting plate 22. The engaging claw 33a of the lock lever 33 is inserted through a through-hole 29b formed in the feed lever 29. Torsion spring (not shown) is provided on the pin 35 fixed to the support block 34, and the lock lever 33 is normally biased, by that torsion spring, in the counterclockwise direction. With the lock lever 33 normally biased in the counterclockwise direction like this, the lock lever 33 in its free state abuts against a stopper portion 34a of the support block 34, and thus, the lock lever 33 is held in a posture or position where the end of the engaging claw 33a projects into the slit 23a of the support plate 23. The engaging claw 33a of the lock lever 33 held in this posture engages the sewing hole Sa of one of the sequins S of the continuous sequin strip 13 led onto the support plate 23 to thereby immovably lock the continuous sequin strip 13 during sequin sewing (cutting).

[0046] The following lines describe details of the cutter section comprising the fixed cutter blade 23b and movable cutter blade 36. Such movable cutter blade 36 is pivotably supported via a pin 37 on a distal end portion of the support plate 23 and is normally held, via a torsion spring 38, in a retracted or evacuated posture or position where it is spaced upward from the fixed cutter blade 23b. The movable cutter blade 36 is depressed by a needle clamp 40, provided at the lower end of a needle bar 39, as the needle bar 39 descends. Such depression by the needle clamp 40 causes the movable cutter blade 36 to pivot downward against the resilient biasing force of the torsion spring 38, so that the movable cutter blade 36 cuts the continuous sequin strip 13 across a connecting portion Sb (see FIG. 10) of the leading sequin S in conjunction with the fixed cutter blade 23b. As the needle clamp 40 ascends together with the needle bar 39, the movable cutter blade 36 returns to its evacuated position by the restoring or resilient force of the torsion spring 38.

[0047] Next, with reference to FIG. 9, a description will be given about a guide mechanism for guiding a portion of the

continuous sequin strip 13, paid out from the reel 14, to the sequin feed unit 20 or 21. Bracket 41 is fixed to the supporting plate 22, and a guide section 42 for directing the continuous sequin strip 13 onto the support plate 23 is provided on the bracket 41. The guide section 42 is replaceable with another one depending on the width of the continuous sequin strip 13 to be set on the sequin feeder apparatus. Holding member 43, which is in the form of a resilient plate such as a spring steel plate, is fixed to the bracket 41. The holding member 43 has its free end portion resiliently abutted against the upper surface of the support plate 23, and the portion of the continuous sequin strip 13, delivered via the guide section 42 onto the support plate 23, is passed between the support plate 23 and the holding member 43.

[0048] The following lines describe the sequin selection mechanism (44-50, 60-67 and the like). As illustrated in FIG. 7, the sequin feed units 20 and 21 constructed in the aforementioned manner are secured to a slide plate 45 via the respective fixed brackets 44. Slide members 46 are fixed to left and right end portions of the slide plate 45. The two slide members 46 are slidably supported on a first rod 47 that is in turn fixed to the mounting base 4. Second rod 48 is secured at opposite ends to and extends between the two fixed brackets 44; more specifically, the second rod 48 is slidably supported on support sections 49a of a support member 49. The support member 49 is fixed to a bracket 50 that is in turn fixed to the mounting base 4 via a bearing member 51.

[0049] FIG. 7 shows a state of the apparatus when one of the sequin feed units 20 (hereinafter referred to as "first sequin feed unit 20") is selected. FIG. 11 is a front view showing in further enlarged scale the sequin feed units 20 and 21 and sequin selection mechanism in the state of FIG. 7. FIG. 12 is a front view similar to FIG. 11, but shows a state of the apparatus when the other sequin feed unit 21 (hereinafter referred to as "second sequin feed unit 21") is selected. Further, FIG. 13 is a perspective view similar to FIG. 7, but shows the state of the apparatus when the other or second sequin feed unit 21 is selected.

[0050] As clear from FIG. 11, a connecting arm 60 is pivotably connected at one end to the slide plate 45 and connected at the other end to one end of a pivot lever 62 that is in turn pivotably supported on a motor base 61 fixed to the mounting base 4. Drive arm 64 is fixed to the shaft of a motor 63 fixed to the motor base 61, and the drive arm 64 is connected at its free end to the other end of the pivot lever 62 via a connecting member 65. Thus, as the motor 63 is reciprocatively driven, the two sequin feed units 20 and 21 together slide in the left-right horizontal (i.e., X) direction. Limiting members 66 for defining limits of a slidable range of the sequin feed units 20 and 21 are provided on the first rod 47 at left and right sides of the left slide member 46. As shown in FIG. 11, when the left slide member 46 is in a slide position where it abuts against the right limiting member 66 via a shock-absorbing member 67, it means that the first sequin feed unit 20 has been selected and positioned in the predetermined sewing operation position. FIG. 8 also shows the state of the apparatus when the first sequin feed unit 20 is selected. In such a state of the apparatus when the first sequin feed unit 20 is selected and positioned in the sewing operation position, not only a link pin 26 of the link arm 25 of the first sequin feed unit 20 engages with an engagement portion 54a of a transmission lever 54 of the feeding drive

mechanism (51-59 etc.) but also the sewing hole Sa of a sequin S to be fed out by the first sequin feed unit 20 is positioned in vertical alignment with a needle drop position (i.e., position of a needle-passing hole 71 of) of the needle plate 70, as shown in FIG. 8.

[0051] On the other hand, when the left slide member 46 is in a slide position where it abuts against the left limiting member 66 via a shock-absorbing member 67, it means that the second sequin feed unit 21 has been selected and positioned in the sewing operation position, as shown in FIG. 12. In this state, not only a link pin 26 of the link arm 25 of the second sequin feed unit 20 engages with the engagement portion 54a of the transmission lever 54 of the feeding drive mechanism (51-59 etc.) (see FIG. 13) but also the sewing hole Sa of a sequin S to be fed out by the second sequin feed unit 21 is positioned in vertical alignment with the needle drop position (i.e., position of the needle passing hole 71 of) of the needle plate 70. Namely, by causing the two sequin feed units 20 and 21 to slide together, any one of the units 20 and 21 can be selectively positioned in the predetermined sewing operation position. Then, sequin sewing is performed using the selected sequin feed unit 20 or 21, as will be later described. As a modification of the present invention, any one of the two sequin feed units 20 and 21 may be selectively positioned in the predetermined sewing operation position by selectively moving the one sequin feed unit 20 or 21 instead of causing the two sequin feed units 20 and 21 to slide together.

[0052] Note that the sliding movement for selecting the sequin feed unit 20 or 21 in order to change the sequin to be sewn to from one type to another in the middle of a series of sequin pattern sewing operations is performed by the sequin selection mechanism (44-50, 60-67 and the like) while the needle bar 39 is in a raised or upper position. In this way, it is possible to eliminate a need for temporarily stopping the vertical movement of the needle bar 39 (i.e., effecting so-called "jumping" of the needle bar 39) in order to switch between the sequin types, so that the sewing efficiency can be enhanced.

[0053] The following lines describe the feeding drive mechanism (51-59 etc.). Referring to FIG. 7 or 9, a pivot shaft 52 is pivotably supported on the bearing member 51 mounted on the mounting base 4, and a driven lever 53 and the transmission lever 54 are fixed to the pivot shaft 52. The transmission lever 54 has, in its free end, an engagement portion 54a in the form of a U-shaped recess that engages with the link pin 26 of the link arm 25 of each of the sequin feed units 20 and 21. As each of the units 20 and 21 is caused to slide horizontally, the engagement portion 54a in the form of a U-shaped recess allows the link pin 26 of each of the sequin feed units 20 and 21 to move horizontally relative to the engagement portion 54a, so that only the link arm 26 of the selected one sequin feed unit 20 or 21 engages with the engagement portion 54a. Each of the link pins 26 may have a slanted distal end surface to permit smooth engagement with the engagement portion 54a. Note that such a slanted surface may be formed on the engagement portion 54a of the transmission lever 54 rather than on each of the link pins 26, or on both the link pins 26 and the engagement portion 54a.

[0054] The driven lever 53 has its free end portion connected to a free end portion of a driving lever 56 via a connecting link 55, and the driving lever 56 is fixed to the shaft of a motor 57 secured to the left side surface of the mounting base 4. Torsion spring 58 is provided on the pivot

shaft 52, which normally urges the driven lever 53 and transmission lever 54 in the clockwise direction of FIG. 9 so that an abutting piece 56a of the driving lever 56 normally abuts against a stopper 59. To feed out a sequin, the motor 57 performs one reciprocal stroke driving; that is, the motor 57 is caused to pivot through a predetermined angle in the counterclockwise direction of FIG. 9 and then rotated back (returned) through a predetermined angle in the clockwise direction.

[0055] Next, sequin feeding operation by the sequin feed mechanism 19 will be described. First, in response to counterclockwise rotational driving (i.e., forward driving operation) of the motor 57, the driving lever 56 is caused to pivot through a predetermined angle in the counterclockwise direction so that a connection between the lower end of the connecting link 55 and the free end of the driven lever 53 is caused to pivot downward through a predetermined angle in the counterclockwise direction. Thus, the pivot shaft 52 is caused to pivot through a predetermined angle in the counterclockwise direction, so that the engagement portion 54a at the lower end of the transmission lever 54 is driven rearwardly (rightward or counterclockwise in FIG. 9). As the engagement portion 54a is driven rearward, the link pin 26 of the sequin feed mechanism 19 of one of the sequin feed units 20 or 21, currently engaging with the engagement portion 54a, moves rearward together with the engagement portion 54a. In the sequin feed mechanism 19 of one of the sequin feed units 20 or 21, the link arm 25 and pivot lever 27 are caused to pivot about the shaft 24 in the counterclockwise direction of FIG. 9 in response to the movement of the link pin 26, so that the feed lever 29 supported at the free end (lower end) of the pivot lever 27 is moved forward (leftward in FIG. 9). After that, in response to clockwise rotational driving (i.e., rearward driving operation) of the motor 57, each of the relevant components is moved in a direction opposite the aforementioned, so that the feed lever 29 supported at the free end (lower end) of the pivot lever 27 is moved forward (rightward in FIG. 9, i.e. toward the predetermined cutting position).

[0056] One stroke length of the feed lever 29 in the forward or rearward movement generally corresponds to a one-pitch feed amount of the continuous sequin strip 13. As detailed in the above-discussed No. 2004-167097 laid-open publication, the sequin feeding operation is carried out upon completion of sewing of the leading sequin S (and cutting of the continuous sequin strip across the connecting portion Sb immediately following the leading sequin S) shown in FIG. 10. By that time, the engaging portion 29a at the distal end of the feed lever 29 has engaged with the sewing hole of the next sequin S1, and the engaging claw 33a of the lock lever 33 has engaged with the sewing hole of some subsequent (e.g., second sequin) of the next sequin S1.

[0057] The sequin feeding operation in the instant embodiment, which is generally the same as disclosed in the above-discussed No. 2004-167097 laid-open publication, will be described briefly below. As the feed lever 29 is moved forward (leftward in FIG. 9 or 10), the engaging portion 29a of the feed lever 29 gets out of the sewing hole of the sequin S1; at that time, however, the engaging claw 33a of the lock lever 33 still remains engaging with the sewing hole of the subsequent sequin, and thus, the continuous sequin strip 13 can be reliably prevented from being undesirably displaced by impact produced when the engaging portion 29a of the feed lever 29 gets out of the sewing

hole of the sequin S1. As the feed lever 29 is moved further forward (further leftward in FIG. 9 or 10) in this state, the lock lever 33 pivots in the clockwise direction of FIG. 9 against the biasing force of the torsion spring through engagement with the edge of the through-hole 29b of the feed lever 29, so that the engaging claw 33a of the lock lever 33 moves upward away from the sequin out of the engagement with the sewing hole of the sequin. Then, at the end of the forward stroke, the engaging portion 29a of the feed lever 29 is positioned a little ahead (leftward in FIG. 9 or 10) of the sewing hole of another sequin immediately following the sequin S1 (namely, the engaging portion 29a has not yet engaged with the sewing hole of the immediately-following sequin), and the lock lever 33 is still located over the sequin strip. As a modification, arrangements may be made to cause the engaging portion 29a of the feed lever 29 to engage with the sewing hole of the sequin immediately following the sequin S1 at the end of the forward stroke. Note that, during the forward stroke, the continuous sequin strip 13, having disengaged from the engaging claw 33a of the lock lever 33, is held by the spring resiliency of the holding member 43 and thus will not move with the movement of the feed lever 29.

[0058] As the feed lever 29 is moved rearward (rightward in FIG. 9 or 10), the engaging portion 29a of the feed lever 29 engages with the sewing hole of the sequin immediately following the sequin S1. By the engagement of the engaging portion 29a with the sewing hole of the immediately-following sequin, the feed lever 29 feeds the continuous sequin strip 13 toward the predetermined cutting position (i.e., rightward in FIG. 9 or 10). The edge of the through-hole 29b of the feed lever 29 gets out of the engagement with the lock lever 33 during the rearward movement of the feed lever 29, so that the lock lever 33 is caused to pivot in the counterclockwise direction by the resiliency of the torsion spring fitted on the pin 35. Thus, the engaging claw 33a of the lock lever 33 resiliently contacts the upper surface of the sequin strip 13 and slides along the strip's upper surface relative thereto. At the end of the rearward stroke, the current leading sequin S1 reaches the predetermined cutting position (i.e., sewing position) in a similar manner to the leading sequin S shown in FIG. 10. Then, the engaging claw 33a of the lock lever 33 engages with the sewing hole of a predetermined sequin of the sequin strip 13 in the manner as noted above.

[0059] Next, an adjustment mechanism (68, 69) for variably adjusting the cutting position (position relative to a sewing needle 77) in each of the sequin feed units 20 and 21. FIG. 14 is a side view of the supporting plate 22 of one of the sequin feed units 20 or 21 taken from a side opposite the side where the sequin feed mechanism 19 is provided. As shown in FIG. 14, the supporting plate 22 is secured to a fixed bracket 44 via screws 68 passed through an elongated hole 44a formed in the fixed bracket 44. Adjustment screw (or bolt) 69, having a distal end portion screwed to a threaded hole formed in the supporting plate 22, is provided on the fixed bracket 44 in such a manner that it is rotatable about its axis but can not move in an axial direction thereof. By loosening the screw 68 fixing the supporting plate 22 and rotating the adjustment screw 69 clockwise or counterclockwise, the supporting plate 22 is moved linearly forward or rearward relative to the fixed bracket 44 so that its position in the front-rear direction can be adjusted. Once the supporting plate 22 has been adjusted to a desired position in the

front-rear direction, the screw 68 is tightened to fix the supporting plate 22 to the fixed bracket 44.

[0060] However, as the supporting plate 22 is adjusted in position as noted above, the link pin 26 of the link arm 25 is also displaced in the front-rear direction so that positional relationship between the link pin 26 and the engagement portion 54a of the transmission lever 54 in the returned position would go wrong. But, if the link arm 25 is placed in a freely movable state by loosening in advance a screw 81 (see FIG. 8), fixing the link arm 25 to the shaft 24, at the time of positional adjustment of the plate 22, the transmission lever 54 in the returned position can be prevented from undesirably pivoting as the supporting plate 22 is moved; after completion of the positional adjustment of the supporting plate 22, it is only necessary to again fix the link arm 25 to the shaft 24 by tightening the screw 81.

[0061] Through the positional adjustment of the supporting plate 22, the sequin feed unit 21 is adjusted in position in the front-rear direction. Because the sewing needle 77 attached to the needle bar 39 of the machine head is relatively fixed in position (horizontal position), the aforementioned front-rear positional adjustment of the sequin feed unit 21 can adjust the position of the cutter section (36 and 23b) relative to the sewing needle 77, i.e. cutting position (or horizontal distance between the axis of the vertical movement of the sewing needle 77 and the fixed cutter blade 23b). The cutting position is adjusted in accordance with the size of each sequin (i.e., distance from the sewing hole Sa to the connecting portion Sb of the sequin as shown in FIG. 10) of a continuous sequin strip 13 to be set on the sequin feed unit 21. Thus, such adjustment of the cutting position is performed when the reel (sequin holder) 14 holding a continuous sequin strip 13 of one sequin size (or one sequin feed size) and mounted in correspondence with the sequin feed unit 21 is to be replaced with another reel (sequin holder) 14 holding a continuous sequin strip 13 of another sequin size (or another sequin feed size). More specifically, when a reel 14 holding a continuous sequin strip 13 of one sequin size has been newly set, for example, a portion of the continuous sequin strip 13 is paid out and placed onto the support plate 23, then the leading sequin S is positioned a little ahead of the fixed cutter blade 23b so that the connecting portion Sb of the leading sequin S aligns with the fixed cutter blade 23b as illustrated in FIG. 10, and thence the adjustment screw 69 is rotated clockwise or counterclockwise to thereby adjust the front-rear position of the sequin feed unit 21.

[0062] The instant embodiment is not limited to the aforementioned "following" adjustment; for example, the cutting position of the sequin feed unit 21 may be adjusted by measuring a distance from the center of the sewing needle 77 to the fixed cutter blade 23b on the basis of data indicative of the distance from the sewing hole Sa to the fixed cutter blade 23b and adjusting the measured distance to equal the distance indicated by the data. Alternatively, such adjustment based on the measured distance data and copying adjustment may be used in combination. Further, a suitable scale may be provided in relation to the adjustment screw 69 so that correspondence between the current setting of the adjustment screw 69 and the cutting position (or distance from the center of the sewing needle 77 to the fixed cutter blade 23b) can be grasped on the basis of the scale. The adjustment mechanism is not limited to one using the adjustment screw 69 as set forth above and may be one using

another linear displacement mechanism. In an alternative, the adjustment screw **69** may be omitted, in which case the supporting plate **22** may be adjusted in its front-rear position by the human operator holding and moving the supporting plate **22** with his or her hand with the supporting-plate adjusting screw **68** loosened in advance. In another alternative, the cutting position may be variably adjusted by automatically linearly displacing the corresponding sequin feed unit **20** or **21** using a drive means, such as a linear motor.

**[0063]** The mechanism for adjusting the cutting position of the other sequin feed unit **20** is constructed in the same manner as the aforementioned cutting-position adjusting mechanism of the sequin feed unit **21**. However, it should be noted that, in the instant embodiment of the present invention, the cutting position, i.e. position of the cutter section (**36** and **23b**) relative to the sewing needle **77**, of each of the sequin feed units **20** and **21** can be adjusted independently of the cutting position of the other sequin feed unit. Namely, whereas each of the sequin feed units **20** and **21** is slideable in the left-right horizontal direction integrally with the fixed bracket **44** in response to the movement of the above-mentioned slide plate **45**, the cutting positions of the sequin feed units **20** and **21** can be adjusted independently of each other because the feed units **20** and **21** are independently adjustable in position in the front-rear direction relative to the fixed bracket **44**. Thus, if the respective cutting positions of the sequin feed units **20** and **21** are adjusted in accordance with the sequin sizes (i.e., distances from the sewing hole **Sa** to the connecting portion **Sb**) of continuous sequin strips set on the units **20** and **21**, and if the sequin sizes are different from each other, the position, in the front-rear direction, of the support plate **23**, i.e. the position of the cutter section (**36** and **23b**), will differ between the units **20** and **21**.

**[0064]** The following lines describe variable setting of the sequin feed amount (feed pitch) of the sequin feed mechanism **19** in each of the sequin feed units **20** and **21**. When a reel **14** holding a continuous sequin strip **13** requiring sequin feed pitch adjustment has been newly set on any one of the sequin feed units **20** and **21**, the sequin feed amount (feed pitch) of the sequin feed mechanism **19** in the unit **20** or **21** is first adjusted in the following manner. First, the screw **28** (see FIG. 9) fixing the pivot lever **27** is loosened to allow the human operator to readily rotate the pivot lever **27** with a hand relative to the pivot shaft **24**. Further, the nut of the stopper **31** is loosened to cancel the locking by the stopper, and a portion of the continuous sequin strip **13** is paid out from the reel **14** onto the support plate **23** until the leading sequin **S** is positioned a little ahead of the fixed cutter blade **23b**, so that the connecting portion **Sb** aligns with the fixed cutter blade **23b** as illustrated in FIG. 10. Such a state corresponds to a “feed-out completed position” where one-pitch sequin feeding has been completed by the sequin feed mechanism **19**. In this “feed-out completed position”, the pivot lever **27** and feed lever **29** are manually moved to cause the engaging portion **29a** of the feed lever **29** to engage with the sewing hole of the second sequin **S1** from the leading end of the strip **13**. Namely, the pivot lever **27** and feed lever **29** are caused to follow the “one-pitch-feed-out completed position”. Then, the nut of the stopper **31** is again tightened for locking the stopper **31**, and the screw **28** is tightened to fix the pivot lever **27** relative to the pivot shaft **24**.

**[0065]** Then, the locked condition of the support block **34** of the lock lever **33** is canceled, and the lock lever **33** is adjusted with the pivot arm or lever **27**, feed lever **29** and continuous sequin strip **13**, lying on the support plate **23**, held in the “feed-out completed position”. Then, with the stopper portion **33b** at the upper end of the lock lever **33** abutted against the stopper portion **34a** of the support block **34**, the lock lever **33** is adjusted in position by manually adjusting the position, in the front-rear position, of the support block **34** so that the engaging claw **33a** of the lock lever **33** engages with the sewing hole of a predetermined sequin of the continuous sequin strip **13** lying on the support plate **23**; the predetermined sequin is several sequins after (e.g., second sequins from) the sequin **S1** engaged by the engaging portion **29a** of the feed lever **29**. The support block **34** is locked with the lock lever **33** adjusted in position in the aforementioned manner.

**[0066]** In variably setting the sequin feed amount (feed pitch) of the sequin feed mechanism, the “feed-out completed position”, i.e. start position (=end position) of the reciprocative stroke for effecting one-pitch sequin feeding, is set/adjusted through mechanical positional adjustment of the pivot lever **27**, feed lever **29** and lock lever **33**. Then, the end position (=start position) of the reciprocative stroke for effecting one-pitch sequin feeding is set/adjusted by setting data indicative of a rotational range of the motor **57**, which effects one-pitch sequin feeding driving, to a value corresponding to a one-pitch feed amount of the feed lever **29**. Such data indicative of a rotational range of the motor **57** may be set by human operator's manual setting operation on an operation panel **90** (FIG. 1) of the sewing machine, or may be incorporated in advance in embroidery sewing data as sequin-feed-amount setting data. Needless to say, data setting for setting a one-pitch feed amount is performed independently for each of the sequin feed units **20** and **21**. Namely, although the same or common motor **57** is used for sequin feeding driving, when the motor **57** should perform sequin feeding driving for the first sequin feed unit **20**, the driving by the motor **57** is controlled in accordance with a feeding driving amount (rotational range) set for the feed unit **20**, but, when the motor **57** should perform sequin feeding driving for the second sequin feed unit **21**, the driving by the motor **57** is controlled in accordance with a feeding driving amount (rotational range) set for the feed unit **21**.

**[0067]** Basically, the feeding may be performed using, as one feed pitch, the size (i.e., diameter) of a sequin to be fed out; in practice, however, a value slightly greater than the sequin size (i.e., diameter) is set as a one-pitch feed amount of the feed lever **29**, in order to allow feed-out of the sequin strip **13** to be effected with an increased reliability. For example, in the case of a sequin having a 6 mm diameter, the one-pitch feed amount is set at about 7 mm, or in the case of a sequin having a 4 mm diameter, the one-pitch feed amount is set at about 5 mm. Namely, by setting the one-pitch feed amount of the feed lever **29** to a value slightly greater than the sequin size (i.e., diameter), the engaging portion **29a** of the feed lever **29** is positioned a little ahead (leftward in FIG. 9 or 10) of the sewing hole of another sequin immediately following the leading sequin **S1** (namely, the engaging portion **29a** has not yet engaged with the sewing hole of the immediately-following sequin) at the end of the forward stroke. Once the rearward stroke starts in this state, the engaging portion **29a** of the feed lever **29**

enters and engages with the sewing hole of the sequin immediately following the leading sequin S1, so that the continuous sequin strip 13 can be fed toward the cutting position. The one-pitch feed amount of the feed lever 29 may be set at the same value as the sequin size (diameter) in principle, in which case, however, the engaging portion 29a of the feed lever 29 might stop short of the sewing hole of the sequin immediately following the leading sequin S1, instead of entering the sewing hole of the immediately-following sequin, due to an error at the end of the forward stroke of the feed lever 29. Thus, even when the feed lever 29 then starts the rearward stroke, the engaging portion 29a of the feed lever 29 does not engage with the sewing hole of the sequin, so that the feed lever 29 will not perform feeding of the continuous sequin strip 13. In order to forestall such an inconvenience, it is preferable to set the one-pitch feed amount of the feed lever 29 to a value slightly greater than the sequin size (i.e., diameter) as noted above.

[0068] The following paragraphs describe an example of the sequin sewing operation using the aforementioned sequin feeder apparatus 1. In the case where sequin sewing is to be performed using the machine head H having the sequin feeder apparatus 1 set thereon, two different types of sequins can be sewn as desired by using the two sequin feed units 20 and 21 during sewing of an embroidery pattern while switching between the units 20 and 21. According to the present invention, as set forth above, each of the sequin feed units 20 and 21 is capable of setting/changing its sequin feed pitch as desired, and thus, the "two different types of sequins" may differ in any of not only shape and color but also size (diameter). Further, even the same sequin feeder apparatus 1 can sew sequins of any desired size (diameter), i.e. any desired feed pitch, in accordance with a desired sequin sewing design. Note that sewing control to be described below is implemented by a not-shown control device (e.g., computer) executing a sewing control program, containing a sequence of operations to be explained below, on the basis of desired sequin-design sewing pattern data related to two-sequin-combined embroidery. Although a flow chart of the sewing-controlling operational sequence is not shown here, such a flow chart may be readily realized on the basis of the following description of the sewing-controlling operational sequence.

[0069] First, two reels 14 holding, i.e. having wound thereon, continuous sequin strips 13 differing in sequin shape, color and/or size are prepared in accordance with a two-type-sequin-combined embroidering design and then set on the base 3 side by side in correspondence with the two sequin feed units 20 and 21. Portions of the sequin strips 13 are paid out from the two reels 14, then directed to and supported on the first rollers 15, tension rollers 10, second rollers 16, third rollers 17 and fourth rollers 18 in the mentioned order and then guided to the feed units 20 and 21. The portion of the continuous sequin strip 13 paid out from the right reel 14 in FIG. 4 is directed to the support plate 23 of the right feed unit 21, while the portion of the continuous sequin strip 13 paid out from the left reel 14 in FIG. 4 is directed to the support plate 23 of the left feed unit 20. The guide sections 42 (FIG. 9) corresponding to the sequin feed units 20 and 21 are replaced, if necessary, in accordance with the widths of the sequin strips 13. Then, various adjustment, such as adjustment of the "cutting position" and "feed amount" is also performed in the above-described manner in

accordance with the sequin sizes of the set continuous sequin strips 13; such adjustment may be performed in suitable order.

[0070] After completion of predetermined adjustment and setting, the operation of the sewing machine is started, upon which sequin embroidery sewing is carried out under the control of the control device and on the basis of desired sequin-pattern sewing pattern data using a combination of at least two types of sequins. For example, the desired sequin sewing pattern data are embroidery sewing data of a format programmed to realize a desired sewing pattern and include data for driving the embroidery frame along the X and Y axes in accordance with the desired sewing pattern. The sewing pattern data also include data for selecting sequins to be used for sewing in correspondence with an initial stitch and groups of desired one or a plurality of stitches. First, which one of the sequin feed units 20 and 21 should be used is instructed on the basis of the data for selecting a sequin in correspondence with the initial stitch. If use of the first sequin feed unit 20 has been instructed, the motor 63 is driven to position the first sequin feed unit 20 in the sewing operation position as shown in FIG. 11. In this state, the motor 57 is driven, per sewing operation, to cause the pivot lever 27 of the first sequin feed unit 20 to pivot and thereby feed the continuous sequin strip 13. The leading sequin S of the thus-fed continuous sequin strip 13 is sewn onto a fabric, held taut on the embroidery frame 80, by means of the sewing needle 77, and the movable cutter blade 36 is driven downward by the needle clamp 40 of the needle bar 39 lowered simultaneously with the sewing needle 77. The leading sequin S thus sewn is cut off from the sequin strip 13. In the aforementioned manner, sequins fed by the first sequin feed unit 20 can be sewn to the fabric.

[0071] Once a stitch at which a sequin change or switch from one type to another is to be effected arrives as the sequin sewing progresses, use of the second sequin feed unit 21, for example, is instructed on the basis of the embroidery sewing data. Then, while the needle bar 39 is in its raised position, the motor 63 is driven to position the second sequin feed unit 21 in the sewing operation position as illustrated in FIG. 12. Thus, after that, the driving force of the motor 57 is transmitted to the pivot lever 27 of the second sequin feed unit 21, so that the continuous sequin strip 13 of the second sequin feed unit 21 is fed to the cutting position. In order that the sequin-changing (i.e., sequin-switching) slide and sequin feed-out operations may be performed while the needle bar 39 is in its raised position during one up-down movement cycle, the sequin-changing slide operation is performed first, and then the one-reciprocativestroke driving for sequin feed-out is performed by the motor 57. In this manner, sequins fed by the second sequin feed unit 21 can be sewn to the fabric. Then, the sequin feed unit to be used for the sewing can be changed or switched to the other as needed.

[0072] In the aforementioned manner, the first embodiment of the invention can change the sequin to be sewn from one type to another without stopping the rotation of the sewing machine and without jumping the needle bar 39. Of course, the manner of the sequin change control in the instant embodiment is not limited to the aforementioned, and the needle bar 39 may be jumped throughout the sequin-changing slide operation.

[0073] Note that the present invention is not limited to the case where the embroidery sewing data include sequin-selecting (changing) data only in correspondence with a

stitch at which a sequin change is to be effected as noted above; the embroidery sewing data may include sequin-selecting (changing) data per stitch.

[0074] In an alternative, the sequin-changing slide control may be automatically performed on the basis of a predetermined sequin changing pattern or may be manually performed as necessary in response to operation, by the human operator, of the operation panel 90, instead of being performed on the basis of embroidery sewing data as set forth above. For example, the "predetermined sequin changing pattern" may be one in accordance with which a predetermined number  $n$  of sequins of the first sequin feed unit 20 are sewn in succession and then a predetermined number  $m$  of sequins of the second sequin feed unit 21 are sewn in succession; thus, the sequin to be sewn can be changed from one type to another through repletion of the pattern. In such a case, it is preferable that the " $n$ " and " $m$ " values may be manually set/changed as desired by the human operator operating the operation panel 90. In still another alternative, a plurality of different sequin changing patterns may be prepared in advance so that the human operator can select, as necessary, any desired one of the sequin changing patterns by operating the operation panel 90.

[0075] In the above-described embodiment, the two sequin feed units 20 and 21 symmetrically arranged and substantially identically constructed are provided in opposed relation to each other. Alternatively, such identically-constructed sequin feed units 20 and 21 may be provided side by side in a same orientation. In such a case, the shape of the link arm 25, fixing the link pin 26, is modified so that the link arm 25 can move without interfering with the transmission lever 54 during the sliding movement of the feed units 20 and 21. In the case where the link arm 25 is modified in shape and construction as noted above, three or more sequin feed units, rather than the two sequin feed units 20 and 21, can be provided side by side in such a manner that any desired one of the feed units can be selected through the sliding movement. Thus, switching can be made among three or more types of sequins.

[0076] The first embodiment has been described above as constructed to adjust the cutting position of each of the sequin feed units 20 and 21 through positional adjustment of the supporting plate 22 (i.e., the whole of the sequin feed unit in question). Alternatively, the support plate 23 may be made adjustable in position relative to the supporting plate 22 so that desired adjustment of the cutting position can be performed through positional adjustment of the support plate 23 alone. In such a case, the mechanism for linearly displacing the support plate 23 may employ a rotation-to-linear-displacement conversion mechanism, such as the above-mentioned adjustment screw 69, linear motor, or the like.

#### Second Embodiment

[0077] With reference to FIGS. 16-20, the following paragraphs describe a sequin feeder apparatus 100 in accordance with a second embodiment of the present invention.

[0078] FIG. 16 is a right side view of the sequin feeder apparatus 100, which is provided with a detection device 101 for detecting that the entirety of a continuous sequin strip 13 has been supplied from the reel 14. Namely, the detection device 101 is provided for detecting whether the supply from any of the supply sources (reels) 14 to the respective sequin feed units 20 and 21 has stopped. The

sequin feeder apparatus 100 according to the second embodiment is slightly different, in installed position of the rollers for guiding the sequins strips 13 paid out from the reels 14, from the sequin feeder apparatus 1 because of the provision of the detection device 101, but, the two embodiments are identical to each other in the other structural features.

[0079] FIGS. 17-20 are views showing in enlarged scale an example construction of the detection device 101. More specifically, FIG. 17 is a side view of the detection device 101, FIG. 18 is a view taken in a direction of arrow A of FIG. 17, and FIG. 19 is a sectional view taken along the B-B line of FIG. 17. Mounting bracket 102 of the detection device 101 includes a mounting section 102a mounted on the fixed base 3, and a first base plate 102b bent at a right angle from the mounting section 102a. As shown in FIG. 18, the first base plate 102b has a projection 103 of an inverted T shape formed integrally with the lower edge thereof, and guiding portions 103a and 103b for guiding the respective continuous sequin strips 13 extend leftward and rightward from the projection 103. Second base plate 104, having a similar shape to the first base plate 102b, is secured, by means of a stud 105, to the mounting bracket 102 in parallel with the first base plate 102b. Namely, the second base plate 104 has guiding portions 104a and 104b similar to the guiding portions 103a and 103b of the first base plate 102b. Thus, as shown in FIG. 19, the two continuous sequin strips 13, hanging down from above, are guided by the left and right guiding portions 103a, 103b and 104a, 104b with each of the continuous sequin strips 13 supported at two points by a pair of the preceding and succeeding guiding portions 103a and 104a (103b and 104b). Between the first and second base plates 102b and 104, right and left levers 106 and 107 are rotatably mounted via a pin provided on the projection 103. The right and left levers 106 and 107 has respective arms 106a and 107a capable of abutting against the corresponding continuous sequin strips 13 supported by the preceding and succeeding (i.e., upper and lower) guiding portions 103a, 104a and 103b, 104b, and detecting portions (made of metal) 106b and 107b extending from the right and left levers 106 and 107, respectively. Knobs 108 are provided at the respective ends of the levers 106 and 107.

[0080] Each of the right and left levers 106 and 107 functions as a displacement member displaceable between first and second positions. The "first position" is where the displacement member (lever 106 or 107) is held in abutting contact with the corresponding continuous sequin strip 13, while the "second position" is where the displacement member (lever 106 or 107) is located past the first position, without abutting against the corresponding continuous sequin strip 13, due to a stoppage (i.e., runout) of the supply of the continuous sequin strip 13.

[0081] FIG. 18 shows where the two continuous sequin strips 13 supported by pairs of the preceding and succeeding guiding portions 103a, 104a and 103b, 104b. In this state, the arms 106a and 107a of the right and left levers 106 and 107, having pivoted downward by the weights of the respective knobs 108, are in abutting contact with the corresponding continuous sequin strips 13 from above; hardly, the right and left levers 106 and 107 are each held in the first position. On the other hand, when the continuous sequin strip 13 is not being supplied by the guiding portions 103a, 103b (104a, 104b), i.e., when the supply of the continuous sequin strip 13 has run out as shown in FIG. 20, the right lever 106 pivots

in the clockwise direction by the weight of the knob 108 to pass between the guiding portions 103a and 104a, so that the lever 106 takes a posture where the corresponding knob 108 is oriented vertically; namely, the lever 106 takes the second position.

[0082] Magnetic sensor 109 is provided on the upper surface of the second base plate 104 and on pivoting trajectories of the detecting portions 106b and 107b, and a permanent magnet 110 is provided on the lower surface of the first base plate 102b. When none of the detecting portions 106b and 107b is located between the magnetic sensor 109 and the permanent sensor 110 as shown in FIG. 18, the magnetic sensor 109 is kept in an ON state. But, as the right lever 106 pivots, from the position of FIG. 18, in the clockwise direction (i.e., shifts from the first position to the second position) due to a stoppage (runout) of the supply of the right (-side) continuous sequin strip 13 as shown in FIG. 20, the detecting portion 106b passes transversely between the magnetic sensor 109 and the permanent sensor 110 and thereby temporarily blocks out the magnetism of the permanent magnet, so that the magnetic sensor 109 is shifted to an OFF state. In this way, it is possible to detect that the supply of the continuous sequin strip 13, so far has been paid out or supplied from the reel 14, has run out.

[0083] The detection device 101 in the second embodiment operates as follows at the time of sequin sewing. First, as in the first embodiment, two reels 14 holding, or having wound thereon, continuous sequin strips 13 differing in shape and/or size, are set side by side on the fixed base 4. Portions of the continuous sequin strips 13, paid out from the reels 14, are passed to and engaged with the individual rollers and detection device 101 and then directed to the corresponding sequin feed units 20 and 21. In the detection device 101, the continuous sequin strips 13 are set on the guiding portions 103a, 104a and 103b, 104b, respectively. When a continuous sequin strip 13 is set relative to the right side of the detection device 101, for example, the following operation takes place. As long as no continuous sequin strip 13 is set on the right side of the detection device 101, the right lever 106 is held in the second position where the knob 108 is oriented vertically downward as shown in FIG. 20. Thus, the human operator holds the knob 108 of the right lever 106 to cause the right lever 106 to pivot from the second position in the counterclockwise direction until the arm 106a of the right lever 106 is located above the first position shown in FIG. 18, after which the operator inserts and sets the right-side continuous sequin strip 13 between the arm 106a and the guiding portions 103a, 104a. In this manner, the right lever 106 is held in the first position where the arm 106a is held horizontally with the right lever 106 supported by the upper surface of the continuous sequin strip 13 that is in turn supported at two points thereof by the preceding and succeeding guiding portions 103a and 104a. Left-side continuous sequin strip 13 can be set relative to the left side of the detection device 101 in generally the same manner as the right-side continuous sequin strip 13.

[0084] When sequin sewing is started after the continuous sequin strips 13 have been properly set in place in the aforementioned manner, the two levers 106 and 107 are held in the first position as shown in FIG. 18 and the magnetic sensor 109 is kept in the ON state detecting the magnetism of the permanent magnet 110, as long as there exist the sequin strips 13 on the detection device 101. Then, once the supply of one of the continuous sequin strips (e.g., right-side

continuous sequin strip) 13 runs out and the right-side continuous sequin strip 13 is no longer present at the guiding portions 103a and 104a, the right lever 106 pivots downward to the second position shown in FIG. 20. At that time, the detecting portion 106b of the right lever 106 passes transversely between the magnetic sensor 109 and the permanent magnet 110, so that the magnetism of the permanent magnet 21 is temporarily blocked out and thus the magnetic sensor 109 is temporarily placed in the OFF state and then returns to the ON state. Output of the magnetic sensor 109 is supplied to a not-shown control device. When the control device detects that the output of the magnetic sensor 109 has switched to the OFF state, it determines that the supply of the continuous sequin strip 13 has run out, so that it automatically deactivates the sewing machine and informs, via suitable visible and/or audible means, the human operator that the supply of the continuous sequin strip 13 has run out.

[0085] In the aforementioned detection device 101, the magnetic sensor 109 is kept in the ON state while the lever 106 or 107 is held in the second position. Thus, when sequin sewing is to be performed with a continuous sequin strip 13 set only on one of the two sequin feed units (i.e., with no sequin color change to be effect), there is no need to make an arrangement for preventing a state of the other sequin feed unit, where no continuous sequin strip 13 is set, from being detected, e.g. by evacuating the lever 106 or 107 of the other sequin feed unit. Because the lever 106 or 107 of the other sequin feed unit, where no continuous sequin strip 13 is set, is held in such a manner that the corresponding knob 108 is oriented vertically downward by its own weight alone, the lever 106 or 107 of the other sequin feed unit might undesirably pivot if the embroidery sewing machine vibrates greatly, which tends to result in a false detection. To avoid such an inconvenience, holding members, such as leaf springs, may be provided to restrict movement the levers 106 and 107 such that, when any one of the levers 106 or 107 is in the second position (where the knob 108 is oriented vertically downward), the lever 106 or 107 can be reliably prevented from undesirably pivoting due to vibration. Alternatively biasing members, such as torsion springs, for normally urging the levers 106 and 107 to the second position (i.e., position where the knob 108 is oriented vertically downward), in which case it is preferable to provide stoppers for holding the thus-urged levers 106 and 107 in the second position.

[0086] Note that, in the above-described second embodiment, the detection device 101 only detects that any one of the two continuous sequin strips 13 has run out and does not specifically detect which one of the two continuous sequin strips 13 has run out. This is because the second embodiment can achieve necessary and sufficient functions by automatic deactivation of the sewing machine or information to the human operator based on the mere detection that any one of the two continuous sequin strips 13 has run out. However, the present invention is not so limited, and two detection devices of the aforementioned construction may be provided, in correspondence with two continuous sequin strips 13 to be set, so as to specifically detect which one of the two continuous sequin strips 13 has run out.

[0087] Note that the detection device 101 for detecting that a continuous sequin strip 13 has run out is also applicable to sequin feeder apparatus of the conventionally-known type where only one continuous sequin strip is set

and fed, instead of being limited to the sequin feeder apparatus 1 of the type where two or more continuous sequin strips 13 are set side by side to permit sequin selection or change as desired. In such a case, the construction of the detection device 101 shown in FIGS. 17-20 may be used as-is, and the continuous sequin strip 13 only has to be guided by the left- or right-side guiding portions 103a and 104a (or 103b and 104b). Alternatively, the construction of the detection device 101 shown in FIGS. 17-20 may be modified; for example, there may be provided only the left- or right-side 103a and 104a (or 103b and 104b) and the corresponding lever 106 (or 107).

[0088] Further, the detection device 101 may comprise any suitable detection means, such as an optical sensor or mechanical sensor, rather than a magnetic sensor.

#### Other Improvements or Modifications

[0089] According to the present invention, spring members for holding the two reels 14 sideways against excessive rotation are provided at positions where the reels 14 are set side by side. Thus, some force would act on the two juxtaposed reels 14 such that the reels 14 tend to rotate together; consequently, as one of the reels 14, which is currently involved in sequin sewing, rotates, the other reel 14, which is not currently involved in the sequin sewing, may undesirably rotate together with the one reel 14 and slacken to have adverse influences on the sequin sewing. To avoid such adverse influences, it is desirable to take some measure to prevent the two reels 14 from rotating together. As an example of such a measure, a key groove may be formed in the mounting shaft supporting the reels 14, and a washer having a key formed, on its inner periphery, for fitting engagement with the key groove may be provided between the two reels 14. Alternatively, a part of the mounting shaft may be formed into a substantial D sectional shape, and a washer having a hole corresponding in sectional shape to that part may be provided between the two reels 14. In this way, the two reels 14 can be reliably prevented from rotating together, and, besides, the holding force applied sideways effectively acts on both of the reels 14.

[0090] Further, the mounting base 4 may be constructed so that it can also be stopped and held in an intermediate position between the lowered position and the evacuated position. For example, when the sequin sewing operation is to be switched to the embroidery operation by the sequin needle bar, it has been conventional to hold the mounting base in the lowered position in order to reduce the necessary working time; however, according to the modification of the present invention, the mounting base 4 is raised from the lowered position to the intermediate position without the sewing machine being deactivated. With such a modification, it is possible to avoid the inconveniences that the movable cutter blade 36 is easily damaged by being unnecessarily hit by the needle clamp 40. Furthermore, the modification can reduce the time required for ascending and descending of the mounting base 4, and, because the sewing machine is not deactivated, it can effectively reduce the loss of the operating time as compared to the case where the switching from the sequin sewing operation to the embroidery operation is effected with the base 4 held in the lower position. Alternatively, the needle bar may be held in the jumping state, in which case too the loss of the operating time can be considerably reduced. Note that the "intermediate position" of the mounting base 4 may be any suitable

position where the movable cutter blade 36 is not hit by the needle bar 40. Also note that, in the case where the mounting base 4 is constructed to be able to be stopped and held in the intermediate position as noted above, the mounting base 4 may be evacuated from the intermediate position to the evacuated position upon deactivation of the sewing machine. Further, the human operator may set individually whether the mounting base 4 should be held in the lowered position or should be raised to the intermediate position or to evacuated position in various predetermined states, such as when the thread is to be cut and when a thread breakage has been detected.

[0091] In the case where the sequin feeder apparatus 1 is attached to the left side of the needle bar case 2 as shown in FIG. 1, a state or position where the right-side sequin feed unit 21 of the two sequin feed units 20 and 21 is in the sewing operation position may be set as a "reference position"; namely, when the sequin sewing operation is not to be performed, the right-side sequin feed unit 21 may be positioned in the sewing operation position. Thus, in an operation for threading a needle bar located immediately to the right of the sequin needle bar, for example, the threading can be performed with ease without being interfered with by the sequin feeder apparatus 1. In the case where the sequin feeder apparatus 1 is attached to the right side of the needle bar case 2, on the other hand, a state or position where the left-side sequin feed unit 20 is in the sewing operation position may be set as the "reference position".

[0092] Furthermore, for each of the sequin feeder apparatus 1, there may be provided a feeding switch operable to instruct an operation for feeding a continuous sequin strip 13, a switching switch operable to instruct that the sequin feed unit to be used for feeding the continuous sequin strip 13 be changed or switched over to the left or right sequin feed unit 20 or 21, an ascending/descending switch operable to instruct that the sequin feeder apparatus 1 be caused to ascend or descend, and other switches, so that any desired operation can be instructed by the human operator manually operating a corresponding one of the switches.

[0093] During operation of the sewing machine, embroidery sewing data corresponding to several stitches may be pre-read so that sequin changing (switching) can be effected at a stitch preceding the sewing of the several stitches. More specifically, once a particular stitch at which a sequin change is to be effected is identified through pre-reading of the embroidery sewing data, a determination is made as to whether or not the sequin change is possible at a stitch preceding the particular stitch. If the preceding stitch is a stitch at which a sequin is not to be fed out, then it is determined that the sequin change is possible at the preceding stitch. If, on the other hand, the preceding stitch is a stitch at which a sequin is to be fed out, then it is determined that the sequin change is impossible at the preceding stitch, and jump stitch data is inserted for jumping the needle bar between needle stitches so that a sequin change can be effected during the jumping of the needle bar.

[0094] Such a sequin change will be described in more detail below in relation to a case where sequin patterns shown in FIGS. 21 and 22 are to be sewn. The sequin patterns shown in FIGS. 21 and 22 each comprise a pattern to be made by alternately sewing sequins of different sizes, and let it be assumed here that, of the sequin patterns, the large-size sequins A are sewn via the sequin feed unit 21 while the small-size sequins B are sewn via the other sequin

feed unit **20**. In each of FIGS. **21** and **22**, **P1** represents a first “sewing stitch” formed by a first “needle stitch”, **P2** a second sewing stitch formed by a second needle stitch, **P3** a third sewing stitch formed by a third needle stitch, **P4** a fourth sewing stitch by a fourth needle stitch, and so on. In the sequin pattern shown in FIG. **21**, there are provided, between the large-size sequins **A** and the small-size sequins **B**, “no sequin” stitches where no sequin is sewn, while, in the sequin pattern shown in FIG. **22**, the different-size sequins **A** and **B** are sewn successively stitch by stitch, i.e. with no “no-sequin stitch”.

**[0095]** The following lines describe a sequence of operations performed by the control device (e.g., computer) for sewing the sequin pattern shown in FIG. **21**. First, the sequin feed unit **21** is positioned in the sewing operation position in correspondence with the first large-size sequin **A** to be first sewn to a workpiece, and then the first sewing stitch **P1** corresponding to the first needle stitch is formed with no sequin sewn. Then, the sequin **A** is fed out via the sequin feed unit **21** and sewn to the workpiece by the second sewing stitch **P2**. Then, sewing of the first small-size sequin **B** at the fourth needle stitch is identified by pre-reading of embroidery sewing data, and a determination is made as to whether or not a sequin change is possible at the third needle stitch preceding the fourth needle stitch. Because the third needle stitch is where no sequin is to be fed out, it is determined that the sequin change is possible at the third needle stitch. Thus, the control device decides to effect the sequin change at the third needle stitch, on the basis of which the sequin feed unit **20** is positioned in the sewing operation position in correspondence with the small-size sequin **B** to be next sewn. Then, the third sewing stitch is formed with no sequin sewn, at which time the sequin feed unit to be positioned in the sewing operation position is switched while the needle bar is raised between the second and third needle stitches. Then, the small-size sequin **B** is fed out via the sequin feed unit **20**, currently positioned in the sewing operation position, and sewn to the workpiece by the fourth sewing stitch **P4**. Then, in a similar manner to the aforementioned, the sequin feed unit **21** corresponding to the second large-size sequin **A** is positioned in the sewing operation position, and thence the fifth sewing stitch **P5** is formed with no sequin sewn. After that, the aforementioned operations are repeated, so that the sequin pattern shown in FIG. **21** is sewn to the workpiece.

**[0096]** The following lines describe a sequence of operations performed by the control device (e.g., computer) for sewing the sequin pattern shown in FIG. **22**. First, the sequin feed unit **21** is positioned in the sewing operation position in correspondence with the first large-size sequin **A** to be first sewn to a workpiece, and then the first sewing stitch **P1** corresponding to the first needle stitch is formed. Then, the sequin **A** is fed out via the sequin feed unit **21** and sewn to the workpiece by the second sewing stitch **P2**. Then, sewing of the first small-size sequin **B** at the third needle stitch is identified by pre-reading of embroidery sewing data, and a determination is made as to whether or not a sequin change is possible at the second needle stitch preceding the third needle stitch. Because the second needle stitch is where the large-size sequin **A** is to be sewn, it is determined that the sequin change is impossible at the second needle stitch, jump stitch data is inserted for jumping the needle bar between the second and third needle stitches. Thus, the needle bar is jumped with a jump stitch, and the sequin feed unit **20** is positioned in the sewing operation position in

correspondence with the small-size sequin **B** to be next sewn. Then, the small-size sequin **B** is fed out via the sequin feed unit **20** and sewn to the workpiece by the third sewing stitch **P3** corresponding to the third needle stitch. Then, in a similar manner to the aforementioned, jump stitch data is inserted, the needle bar is jumped, and the sequin feed unit **21** is positioned in the sewing operation position in correspondence with the first large-size sequin **A**. Then, the sequin **A** is fed out via the sequin feed unit **21** and sewn to the workpiece by the fourth sewing stitch **P4** corresponding to the fourth needle stitch. After that, the aforementioned operations are repeated, so that the sequin pattern shown in FIG. **22** is sewn to the workpiece. Namely, a change or switch from a sequin of one type to a sequin of the other type and feeding of the sequin of the other type may be performed at different stitches, by effecting the sequin change at a stitch preceding the stitch at which the sequin is to be sewn.

**[0097]** Note that, even where a stitch at which no sequin is to be fed is present before a stitch at which a sequin is to be sewn as in the sequin pattern of FIG. **21**, it may be determined that no sequin change is possible if the embroidery frame **80** is to be moved rearward. This is because, if the embroidery frame **80** is moved rearward, a previously-sewn stitch position will get into under the sequin feed units **20** and **21**, and thus, an upper thread (or needle thread) **T** may contact the distal or lower end (movable cutter blade **36**) of the sequin feed unit **20** or **21** as shown in FIG. **23**. Thus, if the sequin feed units **20** and **21** differ in position in the front-rear direction, for example, depending on the sizes of the sequins set thereon as illustrated in FIG. **15**, and if switching is made from the sequin feed unit **21** to the sequin feed unit **20**, the upper thread **T** may enter the cutter section (**36, 23b**) of the sequin feed unit **20**. If the upper thread **T** has entered the cutter section (**36, 23b**), not only the sewing is adversely influenced, but also the upper thread **T** is undesirably cut by the cutter section (**36, 23b**) during sewing of a sequin. Thus, in the case where a sequin change at a point when the embroidery frame **80** is to be moved rearward has been determined to be impossible, a further determination may be made as to whether a sequin change is possible at a further preceding stitch that precedes the aforementioned preceding stitch. If the further preceding stitch is a stitch at which no sequin is to be fed out, and if the embroidery frame **80** is to be moved rearward, the desired sequin change is effected at the further preceding stitch. If, on the other hand, no sequin change is impossible at the further preceding stitch too, then jump stitch data is inserted. Note that, in order to prevent the upper thread **T** from entering the cutter section (**36, 23b**) with an increased reliability, the sequin feed units **20** and **21** may each be provided with a guide member for guiding the upper thread **T** so as not to enter the cutter section (**36, 23b**). Furthermore, by pre-reading the embroidery sewing data, the sewing speed of the sewing machine may start to be lowered several stitches before a stitch at which a sequin change is to be effected; the sewing speed may be returned to a normal speed when no sequin change is to be effected between given stitches.

**[0098]** The following lines describe an example manner in which a sequin pattern is created using the basic principles of the present invention. Sequin pattern, comprising a heretofore-unachievable, novel pattern structure, can be created by using the sequin feeder apparatus **1** of the present invention to sew two sequins **C** and **D** of different types to a workpiece in an overlapped relation to each other as shown

in FIG. 24. Now, with reference to FIG. 25, a description will be given about an example sequence of operations performed by the control device (e.g., computer) for creating such a novel sequin pattern. First, one of the sequin feed units 20 or 21 to be used for sewing of the sequin C to a workpiece is positioned in the sewing operation position, and then a first sewing stitch P1 corresponding to a first needle stitch shown in (a) of FIG. 25 is formed. Next, the sequin C is fed out and sewn to the workpiece by a second sewing stitch P2 corresponding to a second needle stitch. After that, the other sequin feed units 21 or 20 to be used for sewing of the sequin D to the workpiece is positioned in the sewing operation position, and then a third sewing stitch P3 corresponding to a third needle stitch is formed. Then, the sequin C is fed out and sewn to the workpiece by a fourth sewing stitch P4 corresponding to a fourth needle stitch. After that, sewing stitches P5, P6 and P7 corresponding to fifth, sixth and seventh needle stitches are sequentially formed as shown in (c) of FIG. 25. In the meantime, the sequin feed unit 20 or 21 to be used for sewing of the next sequin C to the workpiece is positioned in the sewing operation position, and the next sequin C is sewn to the workpiece by an eighth sewing stitch corresponding to an eighth needle stitch. Afterward, the aforementioned operations at the third to eighth needle stitches are repeated, so that the sequin pattern shown in FIG. 24 is sewn to the workpiece. In the aforementioned sewing, some places where two or more sewing stitches overlap occur on the workpiece; in each of these places, the sewing stitches may be formed either at the same position or at positions slightly displaced from each other.

#### Other Embodiment of Sequin Feeder Apparatus of the Invention

[0099] FIG. 26 is an exploded rear perspective view of a sequin feeder apparatus 120 in accordance with another embodiment of the present invention. FIG. 26 shows in enlarged scale parts of a feeding drive mechanism 121, sequin selection mechanism 122, left-side sequin feed unit 123 and right-side sequin feed unit 124. In this sequin feeder apparatus 120, each of the sequin feed units 123 and 124 includes an adjustment mechanism for variably adjusting a cutting position (position relative to a sewing needle 77) in the feed unit 123 or 124. As detailed later, the sequin feeder apparatus 120 is constructed in such a manner that, in each of the sequin feed units 123 and 124, the cutting position, adjusted in each of the sequin feed units 123 and 124 in accordance with a sequin size of a continuous sequin strip set on the unit, can be maintained even after detachment of the feed unit from the apparatus 120, and that the sequin feed units 123 and 124 can be accurately attached to the feeder apparatus 120 by being fixedly positioned at respective predetermined positions.

[0100] The following lines describe constructions of the sequin feed units 123 and 124 and mounting sections thereof. For mounting of the sequin feed units 123 and 124, the sequin selection mechanism 122 includes base members 125 on its left and right sides. Each of the sequin feed units 123 and 124 includes a mounting bracket 126 having a mounting groove 126a and hole 126b. Each of the sequin feed units 123 and 124 can be detachably fixed to the corresponding bracket 125 by means of two stepped screws 132, and the height of the groove 126a and diameter of the hole 126b of the mounting bracket 126 are appropriately

chosen such that shaft portions 132a of the stepped screws 132 can be fitted in the groove 126a and hole 126b with no wobbling or backlash. In this way, the mounting brackets 126 can always be positioned in same positions relative to the corresponding base members 125.

[0101] Each of the mounting brackets 126 is fixed to a corresponding supporting plate 127 by means of two fastening screws 128. The mounting bracket 126 includes a mounting section for each of the fastening screws 128, which has a stepped shape having a through-hole for passage therethrough a threaded portion of the fastening screw 128 and an increased-diameter portion for fitting engagement therein of a head portion of the fastening screw 128. The through-hole and increased-diameter portion of the mounting section together constitute an elongated hole extending in the front-rear direction of the sequin feeder apparatus. Further, each of the mounting brackets 126 has a guide hole 126c extending in the front-rear direction of the sequin feeder apparatus so that one of guide pins 129 fixed to the supporting plate 127 can be slidably fitted therein. In each of the mounting brackets 126, an adjustment screw 130 is supported by a support section 126d, bent at a right angle from the body of the bracket 126, in such a manner that the screw 130 is rotatable about its axis but immovable in the axial direction thereof, and the adjustment screw 130 has a distal end portion screwed into a threaded hole of a support member 131 that is in turn fixed to the supporting plate 127. Thus, in response to rotation of the adjustment screw 130, the support member 131 having the threaded hole and the supporting plate 127 are linearly displaced without the adjustment screw 130 being linearly displaced. Thus, as the adjustment screw 126 is rotated clockwise or counterclockwise, the supporting plate 127 is linearly displaced in the forward or rearward direction so that its position in the front-rear direction can be adjusted. The other structural elements of the sequin feeder apparatus 120 than the above-described will not be described here because they are similar in function to those of the sequin feeder apparatus 1 according to the first embodiment of the invention although slightly different from the latter in terms of shapes and positions of some of the component parts.

[0102] When some adjustment has to be made for at least one of the sequin feed unit 123 and 124 in the sequin feeder apparatus 120 in accordance with the size of sequins to be sewn, the sequin feed unit 123 or 124, requiring the adjustment, is detached from the body of the sequin feeder apparatus 120, and the sequin feed amount (i.e., positional adjustment of the pivot lever and lock lever) of the detached sequin feed unit 123 or 124 is adjusted. After that, the sequin feed unit 123 or 124 is re-attached to the body of the sequin feeder apparatus 120, and then the cutting position (position relative to a sewing needle 77) is adjusted by rotating the adjustment screw 130 clockwise or counterclockwise to move the supporting plate 127 in the front-rear direction. Then, the rotational range of the sequin-feeding drive motor is set, as necessary, to a value corresponding to a one-pitch sequin feed amount. Namely, the desired adjustment can be made with ease by detaching the sequin feed unit 123 or 124, requiring the adjustment, from the body of the sequin feeder apparatus 120 as noted above.

[0103] Further, because each of the mounting brackets 126 can always be positioned in the same position relative to the corresponding base members 125, the cutting position in the sequin feed unit 123 or 124 will not vary even though the

feed unit **123** or **124** is detached and attached after the supporting plate **127** is positioned in position according to the sequin size. Therefore, if some scale means indicative of adjusted positions of the supporting plate **127** corresponding to various sequin sizes is provided, and if arrangements are made for permitting the cutting position adjustment while the feed unit **123** or **124** is detached from the body of the sequin feeder apparatus **120**, the desired adjustment can be made with ease. Further, such arrangements permit novel usage of the sequin feeder apparatus, in accordance with which sequin feed units adjusted according to various sequin sizes are prepared in advance and switching is made to one of such prepared sequin feed units, which corresponds to the size of a sequin to be used, without making various adjustments in accordance with the size of the sequin to be used.

[0104] Note that, whereas the structure for sliding the sequin selection mechanism in each of the above-described embodiments has been described above as comprising the two rods and member slidably supported on the rods, the present invention is not limited to such a structure and any other desired sliding structure comprising a linear rail may be employed.

[0105] This application is based on, and claims priority to, JP PA 2006-280396 filed on 13 Oct. 2006. The disclosure of the priority application, in its entirety, including the drawings, claims, and the specification thereof, is incorporated herein by reference.

What is claimed is:

1. A sequin feeder apparatus comprising:  
at least two sequin feed units each including a sequin feed mechanism for feeding a continuous sequin strip toward a predetermined cutting position and a sequin-cutting cutter section located in the predetermined cutting position;  
a sequin selection mechanism for selecting one of said at least two sequin feed units and positioning the selected one sequin feed unit in a predetermined sewing operation position; and  
a drive mechanism for engaging with said sequin feed mechanism of said one sequin feed unit, positioned in the predetermined sewing operation position, and thereby driving, in response to a sewing operation, the engaged sequin feed mechanism to feed the continuous sequin strip toward the predetermined cutting position, wherein the predetermined cutting position in each of said sequin feed units is adjustable independently of the predetermined cutting position in other of said sequin feed units, and  
said cutter section is driven, in response to the sewing operation, to cut a sequin off from the continuous sequin strip having been fed to the predetermined cutting position.
2. A sequin feeder apparatus as claimed in claim 1 wherein each of said sequin feed units includes an adjustment mechanism for adjusting a position, relative to a position of a sewing needle, of said cutter section of the sequin feed unit independently of the other of said sequin feed units.
3. A sequin feeder apparatus as claimed in claim 2 wherein said adjustment mechanism of each of said sequin feed units adjusts the cutting position, where said cutter section cuts the sequin off from the sequin strip, by linearly displacing a whole of the sequin feed unit.

4. A sequin feeder apparatus as claimed in claim 2 wherein each of said sequin feed units includes a support plate for supporting thereon the continuous sequin strip to be fed toward the cutting position, and said cutter section of the sequin feed unit is provided at a distal end of said support plate, and

said adjustment mechanism of each of said sequin feed units adjusts the cutting position, where said cutter section cuts the sequin off from the sequin strip, by linearly displacing said support plate of the sequin feed unit.

5. A sequin feeder apparatus as claimed in claim 3 wherein said adjustment mechanism of each of said sequin feed units includes a mechanism for linearly displacing the whole of said sequin feed unit.

6. A sequin feeder apparatus as claimed in claim 5 wherein said mechanism for linearly displacing the whole of the sequin feed unit includes a mechanism for converting rotation of an adjustment screw into linear displacement of the sequin feed unit.

7. A sequin feeder apparatus as claimed in claim 1 wherein said cutter section of each of said sequin feed units includes a fixed cutter blade and movable cutter blade that operate independently of the fixed cutter blade and movable cutter blade of the other sequin feed unit.

8. A sequin feeder apparatus as claimed in claim 1 wherein said sequin feed mechanism of each of said sequin feed units is capable of setting a sequin feed amount independently of the sequin feed mechanism of the other sequin feed unit.

9. A sequin feeder apparatus as claimed in claim 8 wherein said drive mechanism drives said sequin feed mechanism of the one sequin feed unit, currently positioned in the predetermined sewing operation position, with a drive amount corresponding to the sequin feed amount set by said sequin feed mechanism of the one sequin feed unit.

10. A sequin feeder apparatus as claimed in claim 1 wherein said at least two sequin feed units are disposed side by side in such a manner that said sequin feed units are slidably together, and

said sequin selection mechanism positions one of said at least two sequin feed units in the predetermined sewing operation position by sliding said at least two sequin feed units together.

11. A sequin feeder apparatus as claimed in claim 1 wherein said drive mechanism includes:

an engagement portion for engaging with said sequin feed mechanism of the one sequin feed unit positioned in the predetermined sewing operation position;

a motor drivable in interlocked relation to the sewing operation; and

a link mechanism for transmitting motion of said motor to said engagement portion, and

wherein said sequin feed mechanism of the one sequin feed unit positioned in the predetermined sewing operation position is caused to operate, in response to the motion of said motor and via said link mechanism and said engagement portion, to thereby feed the continuous sequin strip toward the predetermined cutting position.

12. A sequin feeder apparatus as claimed in claim 1 wherein said cutter section of the one sequin feed unit positioned in the predetermined sewing operation position is

driven, in response to movement of a needle bar during the sewing operation, to thereby cut a sequin off from the continuous sequin strip.

**13.** A sequin feeder apparatus as claimed in claim **1** which further comprises a detection device for detecting whether or not a supply of the continuous sequin strip from a sequin strip supply source to any of said sequin feed units has run out.

**14.** A sequin feeder apparatus as claimed in claim **1** wherein each of said sequin feed units is detachably attached to a base section of said sequin selection mechanism.

**15.** A sewing machine comprising the sequin feeder apparatus, recited in claim **1**, in association with a sewing head.

**16.** A sewing machine as claimed in claim **15** wherein different continuous sequin strips of at least two types are supplied from the sequin strip supply sources to the at least two sequin feed units, and

which further comprises a control device that, on the basis of sewing pattern data of a desired sequin pattern that uses at least two types of sequins in combination, controls the sequin selection mechanism to select any one of said at least two sequin feed units at a particular sewing position where the sequin to be used is to be changed from one type to another, said control device then performing control such that sequin sewing is performed using the selected sequin feed unit.

**17.** A sewing machine as claimed in claim **16** wherein the desired sequin pattern comprises a pattern to be made by alternately selecting and sewing the at least two types of sequins.

**18.** A sewing machine as claimed in claim **16** wherein the desired sequin pattern comprises a pattern to be made by

alternately selecting and sewing the at least two types of sequins in overlapped relation to each other.

**19.** A sequin feeder apparatus comprising:

a sequin feed unit including a sequin feed mechanism for feeding a continuous sequin strip toward a predetermined cutting position and a sequin-cutting cutter section located in the predetermined cutting position; a drive mechanism for driving, in response to a sewing operation, the sequin feed mechanism to feed the continuous sequin strip toward the predetermined cutting position, the cutter section being driven, in response to the sewing operation, to cut a sequin off from the continuous sequin strip having been fed to the predetermined cutting position; a displacement member provided between a sequin strip supply source and the sequin feed unit and displaceable between a first position and a second position, said first position being where said displacement member is held stationary in abutting contact with the continuous sequin strip supplied from the sequin strip supply source to the sequin feed unit, said second position being where, due to absence of the continuous sequin strip, said displacement member is located past said first position without abutting against the continuous sequin strip; and

a detection device for detecting that said displacement member has shifted from said first position to said second position,

wherein that a supply of the continuous sequin strip has run out is detected on the basis of an output of said detection device.

\* \* \* \* \*