

FORM 1

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

We,

SUMITOMO CHEMICAL COMPANY,
LIMITED

of

5-33, KITAHAMA-4-CHOME
CHUO-KU
OSAKA
JAPAN

610009

hereby apply for the grant of a standard patent for an invention entitled:

~~AN INSECTICIDAL TRANSPARENT EMULSION OF PYRETHROIDAL INSECTICIDE WITH A SURFACE ACTIVE AGENT AND POLAR SOLVENT~~
which is described in the accompanying complete specification

Details of basic application(s):

Number of basic application	Name of Convention country in which basic application was filed	Date of basic application
-----------------------------	---	---------------------------

63-196622	JP	05 AUG 88
-----------	----	-----------

Our address for service is care of GRIFFITH HACK & CO., Patent Attorneys, 601 St. Kilda Road, Melbourne 3004, Victoria, Australia.

DATED this 1st day of August 1989

SUMITOMO CHEMICAL COMPANY,
LIMITED

GRIFFITH HACK & CO.

Chris Bentler

TO: The Commissioner of Patents.

APPLICATION ACCEPTED AND AMENDMENTS

ALLOWED 15.2.91

M 011228 030889

AUSTRALIA

DMO:AS P11270

B

PATENTS ACT 1952

APPLICATION
BY ASSIGNEE
OF INVENTOR

DECLARATION IN SUPPORT OF AN APPLICATION
FOR A PATENT

no. 39253/89

NAME OF
APPLICANT

In support of an application/made by:

SUMITOMO CHEMICAL COMPANY, LIMITED

TITLE

for a patent for an invention entitled:

AN INSECTICIDAL TRANSPARENT EMULSION

FULL NAME AND
ADDRESS OF
SIGNATORY

I, Yoshihiko NISHIZAWA

of c/o Sumitomo Chemical Company, Limited,

5-33, Kitahama-4-chome, Chuo-ku, Osaka, Japan

do solemnly and sincerely declare as follows:

1. I am authorised by the above mentioned applicant for the patent to make this declaration on its behalf.

2. The name and address of each actual inventor of the invention is as follows:

Tadahiro MATSUNAGA, 1-7, Semiyama, Fukiaicho,
Chuo-ku, Kobe-shi, Japan

Kazunobu DOHARA, 10-3-331, Sonehigashinocho-2-chome,
Toyonaka-shi, Japan

3. The facts upon which the applicant is entitled to make this application are as follows:

The applicant is the assignee of the invention
from the inventors.

4. The basic application(s) as defined by Section 141 of the Act was (were) made as follows:

Country Japan on 5th August 1988

in the name(s) SUMITOMO CHEMICAL COMPANY, LIMITED

and in _____ on _____

in the name(s) _____

5. The basic application(s) referred to in the preceding paragraph was (were) the first application(s) made in a Convention country in respect of the invention the subject of this application.

Declared at Osaka, Japan

this 20th day of October 1989

Signed

Y. Nishizawa
Position YOSHIHIKO NISHIZAWA

REPRESENTATIVE DIRECTOR

GRIFFITH HACK & CO

PATENT AND TRADE MARK ATTORNEYS

MELBOURNE · SYDNEY · PERTH

(12) PATENT ABRIDGMENT (11) Document No. AU-B-39253/89
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 610009

(54) Title
INSECTICIDAL EMULSION CONTAINING PYRETHRIN(S)

International Patent Classification(s)

(51)⁴ A01N 053/00

(21) Application No. : 39253/89 (22) Application Date : 03.08.89

(30) Priority Data

(31) Number (32) Date (33) Country
63-196622 05.08.88 JP JAPAN

(43) Publication Date : 08.02.90

(44) Publication Date of Accepted Application : 09.05.91

(71) Applicant(s)
SUMITOMO CHEMICAL COMPANY, LIMITED

(72) Inventor(s)
KAZUNOBU DOHARA; TADAHIRO MATSUNAGA

(74) Attorney or Agent
GRIFFITH HACK & CO, GPO Box 1285K, MELBOURNE VIC 3001

(57) Claim

1. An insecticidal transparent emulsion comprising

(A) at least one pyrethroidal insecticide selected from the group consisting of

3-phenoxybenzyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

2,2,3,3-tetramethylcyclopropanecarboxylate,

2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl

chrysanthemate and

α-cyano-3-phenoxybenzyl chrysanthemate, or

a mixture of at least one pyrethroidal

insecticide selected from the group consisting of

3-phenoxybenzyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

(11) AU-B-39253/89
(10) 610009

-2-

chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

2,2,3,3-tetramethylcyclopropanecarboxylate,

2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl

chrysanthemate and

α -cyano-3-phenoxybenzyl chrysanthemate

and at least one pyrethroidal insecticide

selected from the group consisting of

α -cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl-
cyclopropanecarboxylate,

3,4,5,6-tetrahydronaphthalimidemethyl chrysanthemate,

3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-
dimethylcyclopropanecarboxylate and

1-ethynyl-2-methyl-2-pentenyl chrysanthemate, as an
active ingredient,

(B) a polar solvent-containing mixed surface active
agent containing calcium dodecylbenzenesulfonate,
polyoxyethylene styrenated phenol having an HLB of 12-16
and propylene glycol, and

(C) water, the content of (B) in the emulsion being
equal to or more than that of (A) and 6% by weight or
less.

AUSTRALIA

610009

PATENTS ACT 1952

Form 10

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE

Short Title:

Int. Cl:

Application Number:
Lodged:

Complete Specification-Lodged:

Accepted:

Lapsed:

Published:

This document contains the
amendments made under
Section 49 and is correct for
printing

Priority:

Related Art:

TO BE COMPLETED BY APPLICANT

Name of Applicant:

SUMITOMO CHEMICAL COMPANY,
LIMITED


Address of Applicant: 5-33, KITAHAMA-4-CHOME
CHUO-KU
OSAKA
JAPAN

Actual Inventor:

Address for Service: GRIFFITH HACK & CO.,
601 St. Kilda Road,
Melbourne, Victoria 3004,
Australia.

Complete Specification for the invention entitled:
TRANSPARENT EMULSION OF PYRETHROIDAL INSECTICIDE WITH A
SURFACE ACTIVE AGENT AND POLAR SOLVENT

The following statement is a full description of this invention
including the best method of performing it known to me:-

1 The present invention relates to an insecti-
cidal transparent emulsion prepared by solubilizing a
water-insoluble pyrethroidal insecticidal component in
water with the aid of a particular mixed surface active
5 agent, said insecticidal transparent emulsion being
transparent and homogeneous as well as superior in the
solution state and the stability of the active in-
gredient over a wide temperature range.

Pyrethroidal insecticides, because of their
10 low toxicity to mammals, have been widely used in
household spray insecticides.

Since the pyrethroidal insecticides are
insoluble in water, they usually are dissolved in an
organic solvent such as kerosene or aromatic solvents at
15 first and (1) the resulting solution is directly sprayed
with a sprayer, (2) the resulting solution is formed
into an aerosol and sprayed with a jet gas, etc., or (3)
the resulting solution is formed into an emulsion with
an emulsifier, diluted with water and sprayed.

20 JP-B-58-29761 and JP-B-60-54928 disclosed a
domestic application that a water-based solubilized-
type insecticide is sprayed for killing insects.

When insecticides are sprayed indoors, how-
ever, insecticidal preparations which contain a large
25 quantity of organic solvents and are used as in the

1 above item (1) are not only unpleasant to sprayers but also undesirable in terms of safety and environmental hygiene. Aerosols which contain an inflammable gas in addition to organic solvents and are used as in the
5 above item (2) are disadvantageous because they are inflammable at the time of use and are difficult to waste after the use. Further, the life of the emulsion as used in the item (3) after diluted with water is only about several hours at longest, so that the emulsion
10 suffers from creaming and separation of oily layer, and cannot maintain the homogeneity over a long period of time. Because of this, the emulsion is usually used immediately after diluted with water. Further, there would be accompanied offensive odors of non-polar
15 solvents such as aromatic solvents, kerosenes, etc. used, adverse effects on the sprayed surface that these solvents exert and change of the sprayed surface into white by the emulsifier.

The conventionally known water-based solubi-
20 lized-type insecticides, which has been domestically and horticulturally used to control insect pests, come to lose the stable solution state by the environmental tem- perature change during the storage and produce precipi- tates. Thus their performances as insecticides are not
25 reliable when the environmental temperature sharply moves up and down. These insecticides, therefore, have a problem in durability of sufficient quality to put them to practical use, and so may not always be said

1 to be satisfactory.

According to the present invention, there is provided an insecticidal transparent emulsion comprising

(A) at least one pyrethroidal insecticide selected 5 from the group consisting of

3-phenoxybenzyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

10 2,2,3,3-tetramethylcyclopropanecarboxylate,

2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl

chrysanthemate and

α -cyano-3-phenoxybenzyl chrysanthemate, or

a mixture of at least one pyrethroidal

15 insecticide selected from the group consisting of

3-phenoxybenzyl chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

chrysanthemate,

3-allyl-2-methyl-4-oxocyclopent-2-enyl

20 2,2,3,3-tetramethylcyclopropanecarboxylate,

2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl

chrysanthemate and

α -cyano-3-phenoxybenzyl chrysanthemate

and at least one pyrethroidal insecticide

25 selected from the group consisting of

α -cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl- cyclopropanecarboxylate,

3,4,5,6-tetrahydronaphthalimidemethyl
chrysanthemate,

3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-
dimethylcyclopropanecarboxylate and

5 1-ethynyl-2-methyl-2-pentenyl

chrysanthemate, as an active ingredient,

(B) a polar solvent-containing mixed surface
active agent containing at least one metal alkylbenzene-
sulfonate, at least one nonionic surface active agent

10 having an HLB (hydro- and lipophilicity balance) of 10 to
18 and at least one polar solvent, and

(C) water,

the content of (B) in the emulsion being 6% by weight or
less, and the content of (A) in the emulsion being equal
15 to or less than the content of (B).

In the present invention, the mixed surface
active agent containing a polar solvent refers to those
containing at least one metal alkylbenzenesulfonate, at
least one nonionic surface active agent having an HLB of

20 10 to 18 and at least one polar solvent. The metal
alkylbenzenesulfonate is not critical. The number of
carbon atoms of the alkyl group is not critical either,
but it is preferably 8 to 13, more preferably 10 to 12.
The metal of the metal salt is not critical, and it
25 includes for example sodium and calcium.

The nonionic surface active agents used are
those containing 6 to 40 moles of ethylene oxide, wherein
the ethylene oxide is added so that the agent has an HLB
of 10 to 18. The HLB is preferably 12 to 16.

1 Specific examples of the agent are polyoxyethylene
styrenated phenol, polyoxyethylene alkylphenyl ether,
polyoxyethylene alkyl ether, etc. Specific examples of
the polar solvent are propylene glycol, butyl glycol,
5 butyl diglycol, isopropyl alcohol, ethanol, methoxy-
butanol, etc.

The mixing weight ratio between the metal
alkylbenzenesulfonate, the nonionic surface active agent
and the polar solvent is not critical, and it is pre-
10 ferably 25-40 : 40-55 : 5-30, more preferably 28-37 :
43-50 : 15-23. The mixing weight ratio of the metal
alkylbenzenesulfonate to the nonionic surface active
agent is preferably 1:2 to 1:1.

The insecticidal transparent emulsion of the
15 present invention contains the foregoing polar solvent-
containing mixed surface active agent in a weight equal
to or more than that of the pyrethroidal insecticide
which is an active ingredient, and besides in an amount
of 6% by weight or less of the emulsion. Preferably,
20 the emulsion contains the polar solvent-containing mixed
surface active agent in a weight 3 to 6 times that of
the pyrethroidal insecticide.

Specific examples of the pyrethroidal
insecticide used in the present invention are 3-
25 phenoxybenzyl chrysanthemate (phenothrin), 3-allyl-2-
methyl-4-oxocyclopent-2-enyl chrysanthemate (allethrin),
3-allyl-2-methyl-4-oxocyclopent-2-enyl 2,2,3,3-tetra-
methylcyclopropanecarboxylate (terallethrin), 2-methyl-

- 1 4-oxo-3-(2-propynyl)cyclopent-2-enyl chrysanthemate (prallethrin), α -cyano-3-phenoxybenzyl chrysanthemate (cyphenothrin) α -cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate (fenpropathrin),
- 5 3,4,5,6-tetrahydronaphthalimidemethyl chrysanthemate (tetramethrin), 3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylate (permethrin), 1-ethynyl-2-methyl-2-pentenyl chrysanthemate (empenthrin) and their isomers such as geometrical isomers and
- 10 optical isomers.

The insecticidal transparent emulsion of the present invention may contain, if necessary, a synergist such as piperonyl butoxide (hereinafter referred to as PBO), octachlorodipropyl ether, etc., whereby the 15 activity is expected to be strengthened.

Further, the stability of the active ingredient can be maintained by optionally adding an antioxidant [e.g. 2,6-di-tert-butyl-4-methylphenol (BHT), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), n- 20 octadecyl 3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)-propionate], salts (e.g. sodium benzoate, ammonium benzoate), etc. Further, the insecticidal transparent emulsion of the present invention can prevent water-mold by adding disinfectant such as Proxel® GXL (manufactured 25 by ICI Americans Inc.). Moreover it can also be used for horticultural purposes together with fungicides.

For producing the insecticidal transparent emulsion of the present invention, it is most general to

1 prepare a concentrate by mixing the pyrethroidal
insecticide which is an active ingredient, the polar
solvent-containing mixed surface active agent and if
necessary, oil-soluble additives (e.g. BHT), and dilute
5 the resulting concentrate with water (Process A).

In an alternative process (Process B), a
concentrate is prepared by mixing the pyrethroidal
insecticide as an active ingredient, the polar solvent-
containing mixed surface active agent, oil-soluble
10 additives (e.g. BHT) which is added as need arises and a
substance for increasing the weight of the concentrate,
for example a polar solvent, water or a mixture of the
both, and then the resulting concentrate is diluted with
water.

15 In Process A, the concentrate has a high
viscosity, and when it is weighed, calculation of the
amount to be weighed is troublesome. According to
Process B, by contrast, the weighing operation can be
improved.

20 For example, when the insecticidal transparent
emulsion containing 0.2 % of allethrin and 0.2% of
phenothrin is produced, a concentrate is first produced
by mixing 5 parts by weight of each of allethrin and
phenothrin, 40 parts by weight of the polar solvent-
25 containing mixed surface active agent, 1 part by weight
of BHT and any of propylene glycol, a propylene glycol/
water (1:1 by weight) mixture and water in a quantity
sufficient for making the total weight 100 parts, and

1 then 4 parts by weight of the concentrate is mixed with
96 parts by weight of water to prepare the desired
insecticidal transparent emulsion.

When the insecticidal transparent emulsion of
5 the present invention thus prepared is domestically
used, it is effective to fill the emulsion in a small
hand sprayer and directly spray onto the body of flying
insects (e.g. flies, mosquitoes) and crawling insects
(e.g. cockroaches), or apply to the refuge of the
10 crawling insects. The insecticidal transparent emulsion
of the present invention is also useful to exterminate
bedbugs, fleas, lice, etc.

The concentrate of the insecticidal trans-
parent emulsion obtained by the foregoing Process B can
15 be used without diluted with water for ULV spraying
(ultra low volume spraying).

The insecticidal transparent emulsion of the
present invention contains the pyrethroidal insecti-
cides, active ingredients, in an amount of preferably
20 0.02 to 2% by weight, more preferably 0.05 to 1% by
weight.

The present invention will be illustrated in
more detail with reference to the following examples,
but it is not limited to these examples.

25 Example 1

Insecticidal transparent emulsions having a
composition shown in Table 1 were prepared using Hymal

1 1119, 1141, 1156 or 1159 (a product of Matsumoto Yushi
Seiyaku Co., Ltd.; a mixture of calcium dodecylbenzene-
sulfonate, polyoxyethylene styrenated phenol having an
HLB of 12 to 16 and propylene glycol) as the polar
5 solvent-containing mixed surface active agent.

Table 1

Formulation example No.	Polar solvent-containing mixed surface active agent* (% w/w)	Active ingredient (% w/w)	Additives (% w/w)
1	0.8	Tetramethrin 0.1 d-Phenothrin 0.1	
2	0.8	d-Allethrin 0.1 Permethrin 0.1	
3	0.8	Terallethrin 0.2	
4	0.8	d-Allethrin 0.1 d-Phenothrin 0.1	
5	1.5	d-Allethrin 0.25 d-Phenothrin 0.25	
6	2.0	d-Allethrin 0.25 d-Phenothrin 0.25	
7	3.0	d-Allethrin 0.25 d-Phenothrin 0.25	
8	3.0	d-Allethrin 0.5 d-Phenothrin 0.5	
9	0.8	d-Phenothrin 0.2	BHT 0.01
10	0.8	d-Tetramethrin 0.1 d-Phenothrin 0.1	BHT 0.01

- Cont'd -

Table 1 (Cont'd)

11	0.8	Prallethrin PBO	0.05 0.15	BHT	0.01
12	0.8	d-Allethrin Phenopropathrin	0.1 0.1	BHT	0.01
13	0.8	d-Allethrin d-Phenothrin	0.1 0.1	BHT Propylene glycol	0.01 0.01
14	0.8	d-Allethrin d-Phenothrin	0.1 0.1	Isopropyl alcohol	0.01
15	0.8	d-Allethrin	0.2	Ammonium benzoate	0.7
16	0.8	d-Allethrin d-Cyphenothrin	0.1 0.1	Ammonium benzoate	0.7
17	0.8	d-Allethrin d-Phenothrin	0.1 0.1	BHT Propylene glycol Proxel GXL	0.02 0.98 0.1
18	0.8	d-Cyphenothrin	0.2		
19	0.8	d-Cyphenothrin	0.2	BHT	0.02
20	0.35	Prallethrin	0.05		
21	0.70	Prallethrin	0.1		
22	0.70	Prallethrin	0.1	BHT	0.01
23	0.70	Prallethrin	0.1	Proxel GXL	0.2

(Cont'd)

Table 1 (Cont'd)

24	0.70	Prallethrin	0.05	BHT Proxel GXL	0.01 0.2
25	1.40	Prallethrin	0.2		
26	1.80	Prallethrin PBO	0.1 0.3		

*Used polar solvent containing mixed surface active agent

No. 1 - 17 Hymal 1119
 No. 18, 19 Hymal 1141
 No. 20 - 25 Hymal 1156
 No. 26 Hymal 1159

1 In Formulation examples 1 to 8, firstly a
single and mixed active ingredients were each mixed with
Hymal 1119 in a ratio shown in Table 1 while heating to
about 40°C with stirring. After the solution phase had
5 become uniform, the concentrates were diluted with water
to the respective active ingredient concentrations shown
in Table 1 to obtain uniform and transparent insecti-
cidal transparent emulsions.

10 In Formulation examples 9 to 12, a single
active ingredient, alone or mixed with PBO, and mixed
active ingredients were each mixed with Hymal 1119 and
BHT in a ratio shown in Table 1 while heating to about
40°C with stirring. After the solution phase had become
uniform, the concentrates were diluted with water to the
15 respective active ingredient concentrations shown in
Table 1 to obtain uniform and transparent insecticidal
transparent emulsions.

16 In Formulation example 13, d-allethrin and d-
phenothrin which are an active ingredient, Hymal 1119,
20 BHT and propylene glycol were mixed in a ratio shown in
Table 1 while heating to about 40°C with stirring.
After the solution phase had become uniform, the con-
centrate was diluted with water to the active ingredient
concentration shown in Table 1 to obtain a uniform and
25 transparent insecticidal transparent emulsion.

17 In Formulation example 14, a uniform and
transparent insecticidal transparent emulsion was
obtained in the same manner as in Formulation example 13

1 except that isopropyl alcohol was used in place of
propylene glycol, and BHT was not added.

In Formulation examples 15 and 16, a single active ingredient and a mixture of two active ingredients were each mixed with Hymal 1119 in a ratio shown in Table 1 while heating to about 40°C with stirring. Thus, concentrates having a uniform solution phase were obtained. The concentrates were then diluted with a 0.7% aqueous ammonium benzoate solution to the active ingredient concentrations shown in Table 1 to obtain uniform and transparent insecticidal transparent emulsions.

In Formulation example 17, a mixture of d-allethrin and d-phenothrin which is an active ingredient, Hymal 1119, BHT and Proxel GXL were mixed in a ratio shown in Table 1 while heating to about 40°C with stirring. After the solution phase had become uniform, the concentrate was diluted with water to the active ingredient concentration shown in Table 1 to obtain a uniform and transparent insecticidal transparent emulsion.

In Formulation examples 18 and 19, a single active ingredient d-Cyphenothrin, Hymal 1141 and BHT were mixed in a ratio shown in Table 1 while heating to about 40°C with stirring. After the solution phase had become uniform, the concentrate was diluted with water to the active ingredient concentration shown in Table 1 to obtain a uniform and transparent insecticidal

1 transparent emulsion.

In Formulation examples 20 to 25, a single active ingredient Prallethrin, Hymal 1156, BHT and Proxel GXL were mixed in a ratio shown in Table 1 while 5 heating to about 40°C with stirring. After the solution phase had become uniform, the concentrate was diluted with water to the active ingredient concentration shown in Table 1 to obtain a uniform and transparent insecticidal transparent emulsion.

10 In Formulation example 26, a mixture of Prallethrin and PBO which is an active ingredient and Hymal 1159 were mixed in a ratio shown in Table 1 while heating to about 40°C with stirring. After the solution phase had become uniform, the concentrate was diluted 15 with water to the active ingredient concentration shown in Table 1 to obtain a uniform and transparent insecticidal transparent emulsion.

Formulation examples in which surface active agents not included in the scope of the present invention were used, are shown in Table 2 as comparative 20 examples.

In Comparative formulation examples A to E, a single or mixed active ingredients and surface active agents not included in the scope of the present invention 25 were mixed in ratios shown in Table 2 while heating to about 40°C with stirring. The resulting concentrates were diluted with water to the active ingredient concentrations shown in Table 2 to obtain comparative preparations.

Table 2

Comparative formulation example	Surface active agent, etc. (% w/w)	Active ingredient (% w/w)
A	Polyoxyethylene polypropylene glycol monooleate (HLB, 18.5)	0.2
	Polyoxyethylene (10 moles)·styrenated phenol	0.4
B	Polyoxyethylene (40 moles)·castor oil	1.0
	Polyoxyethylene·styrenated phenol (HLB, 14.0)	0.5
C	Polyoxyethylene (10 moles)·styrenated phenol	0.4
	Polyoxyethylene stearic acid ester (HLB, 15.6)	0.2
D	Polyoxyethylene polypropylene glycol monooleate (HLB, 18.5)	0.5
	Polyoxyethylene (20 moles)·sorbitan monostearate	0.5
E	Polyoxyethylene polypropylene glycol monooleate (HLB, 18.5)	0.2
	Polyoxyethylene (40 moles)·castor oil	0.2

1 Example 2

The insecticidal transparent emulsions and comparative emulsions prepared in Example 1 were stored in the following different conditions and observed for the solution state : (1) Two weeks' storage at different temperatures, 10°C, 25°C and 40°C in a constant-temperature vessel or room, and (2) 2 weeks' storage at a temperature of -20°C and then 24 hours' standing at 25°C or shaking subsequent to the standing. Further, after the test emulsions had been stored under a severe condition of 60°C x 2 weeks, the percentages of the residual active ingredient were measured by gas chromatography as follows.

To 1 g of the sample was added 10 or 20 ml of a 0.1%(w/v) acetone solution of an internal standard substance, and the mixture was concentrated under reduced pressure. The residue was then dissolved in 2 ml of acetone. The resulting test solution was quantitatively analyzed by gas chromatography according to the internal standard substance method with an FID detector. The measurement conditions were as follows.

Column: 5% SE-30 (100-200 mesh)

Carrier gas: Nitrogen (flow rate, 50 ml/min)

Ingredient to be analyzed	Internal standard substance	Temperature of column (°C)	Temperature of gasification room (°C)
Tetramethrin (or d-tetramethrin) and d-phenothrin	Triphenyl-methane	180°C	230°C
Terallethrin	Same as above	Same as above	Same as above
d-Allethrin and d-phenothrin	Triphenyl phosphate	220°C	270°C
d-Allethrin	Same as above	Same as above	Same as above
d-Allethrin and d-cyphenothrin	Same as above	Same as above	Same as above
d-Cyphenothrin	Same as above	Same as above	Same as above
Prallethrin and PBO	Diphenyl phthalate	200°C	250°C
Prallethrin	Same as above	Same as above	Same as above
d-Allethrin and permethrin	Triphenyl phosphate* Diphenyl phthalate**	200°C* 215°C**	270°C* 270°C**

Note: * Conditions at the analysis of d-allethrin.

** Conditions at the analysis of permethrin.

The results are shown in Table 3. The solution state is shown by the following symbols.

○:Transparent

△:Translucent

×:Opaque (white turbid) or formation of precipitates.

Table 3

Test example	Formulation examples shown in Tables 1 and 2	Initial solution state	Solution state after 2 weeks								Percentage of residual active ingredient after 2 weeks at 60°C (%)	
			10°C	25°C	40°C	-20°C→25°C		60°C→25°C				
						Stand-ing	Shak-ing	Stand-ing	Shak-ing			
1	1	○	○	○	○	○	○	○	○	Tetramethrin 92 d-Cyphenothrin 100		
2	2	○	○	○	○	○	○	○	○	d-Allethrin 98 Permethrin 100		
3	3	○	○	○	○	○	○	○	○	Terallethrin 103		
4	7	○	○	○	○	○	○	○	○	d-Allethrin 97 d-Phenothrin 99		
5	8	○	○	○	○	○	○	○	○	d-Allethrin 98 d-Phenothrin 100		
6	10	○	○	○	○	○	○	○	○	d-Tetramethrin 96 d-Phenothrin 98		
7	11	○	○	○	○	○	○	○	○	Prallethrin 97 PBO 99		
8	13	○	○	○	○	○	○	○	○	d-Allethrin 102 d-Phenothrin 101		
9	15	○	○	○	○	○	○	○	○	d-Allethrin 97		

- Cont'd -

Table 3 (Cont'd)

10	16	○	○	○	○	○	○	○	○	d-Allethrin 97 d-Cyphenothrin 100
11	17	○	○	○	○	○	○	○	○	d-Allethrin 99 d-Phenothrin 99
12	18	○	○	○	○	○	○	○	○	d-Cyphenothrin 100
13	19	○	○	○	○	○	○	○	○	d-Cyphenothrin 100
14	20	○	○	○	○	○	○	○	○	Prallethrin 98
15	21	○	○	○	○	○	○	○	○	Prallethrin 98
16	22	○	○	○	○	○	○	○	○	Prallethrin 99
17	23	○	○	○	○	○	○	○	○	Prallethrin 100
18	24	○	○	○	○	○	○	○	○	Prallethrin 97
19	25	○	○	○	○	○	○	○	○	Prallethrin 98

- Cont'd -

Table 3 (Cont'd)

20	26	○	○	○	○	○	○	○	○	○	Prallethrin PBO	100 98
21	A	△	△	×	×	×	△	×	×			
22	B	○	×	△	△	△	△	△	△			
23	C	△	×	×	×	△	△	×	×			
24	D	○	×	△	△	×	×	△	△			
25	E	○	×	△	△	×	×	△	△			

1 Example 3

Twenty adults per group (sex ratio = 1 : 1) of housefly (Musca domestica) were liberated in a 0.34 m³ glass test chamber, and a prescribed amount of the 5 insecticidal transparent emulsion prepared according to Formulation example was sprayed onto the adults by means of a trigger sprayer (Canyon CHS-3B; produced by Canyon Co., Ltd.). After spraying, the number of knocked-down insects was counted with the lapse of time, and after 20 10 minutes, the whole test insects were recovered in a clean cup. After giving water and baits, the cup was transferred to an observation room, and a mortality 15 after 24 hours was examined. The KT₅₀ value was calculated according to the Bliss' probit method. This test was repeated three time to five times.

The results are shown in Table 4.

Table 4

Test agent		Amount sprayed	Knock-down ratio (%, min)								KT ₅₀ (min)	Mortality (after 24 hours) (%)
Active ingredient (% w/w)	Polar solvent- containing mixed surface active agent (% w/w)		0.7	1	1.5	2	3	5	7	10		
d-Tetramethrin	0.2	0.7 g	1	12	30	43	66	84	95	97	2.3	100
d-Phenothrin	0.2											
d-Tetramethrin	0.2	1.4 g	9	26	50	65	83	95	98	100	1.6	100
d-Phenothrin	0.2											
Oil agent (control)*	-	0.7 ml	7	22	40	45	48	65	81	88	2.7	63
Pyrethrin	-	1.4 ml	17	25	37	43	65	80	93	97	2.0	40

* The oil agent as a control was prepared by dissolving natural pyrethrin in a solvent comprising Nisseki fog solvent (kerosene for insecticides; produced by Nippon Sekiyu Kagaku Co., Ltd.) so that the content of the pyrethrin was 0.1 % w/w, as converted to a pure active ingredient.

1 The insecticidal transparent emulsion of the
present invention is stable in a solution state to
temperature change which is an important quality, so
that it may be said to have solved the long-standing
5. problem.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An insecticidal transparent emulsion comprising
(A) at least one pyrethroidal insecticide selected from the group consisting of
3-phenoxybenzyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl 2,2,3,3-tetramethylcyclopropanecarboxylate,
2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl chrysanthemate and
α-cyano-3-phenoxybenzyl chrysanthemate, or
a mixture of at least one pyrethroidal insecticide selected from the group consisting of
3-phenoxybenzyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl 2,2,3,3-tetramethylcyclopropanecarboxylate,
2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl chrysanthemate and
α-cyano-3-phenoxybenzyl chrysanthemate and at least one pyrethroidal insecticide selected from the group consisting of
α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate,

3,4,5,6-tetrahydronaphthalimidemethyl chrysanthemate, 3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate and 1-ethynyl-2-methyl-2-pentenyl chrysanthemate, as an active ingredient,

(B) a polar solvent-containing mixed surface active agent containing calcium dodecylbenzenesulfonate, polyoxyethylene styrenated phenol having an HLB of 12-16 and propylene glycol, and

(C) water, the content of (B) in the emulsion being equal to or more than that of (A) and 6% by weight or less.

2. An insecticidal transparent emulsion according to Claim 1, wherein the active ingredient is at least one pyrethroidal insecticide selected from the group consisting of

3-phenoxybenzyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl 2,2,3,3-tetramethylcyclopropanecarboxylate,
2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl chrysanthemate and
2-cyano-3-phenoxybenzyl chrysanthemate.

3. An insecticidal transparent emulsion according to Claim 1, wherein the weight ratio between calcium dodecylbenzenesulfonate, polyoxyethylene styrenated phenol having an HLB of 12-16 and propylene glycol is 25-40 : 40-55 : 5-30.

4. An insecticidal transparent emulsion according to Claim 1, wherein the active ingredient is at least one pyrethroidal insecticide selected from the group consisting of

3-phenoxybenzyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl chrysanthemate,
3-allyl-2-methyl-4-oxocyclopent-2-enyl 2,2,3,3-tetramethylcyclopropanecarboxylate,
2-methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl chrysanthemate and
 α -cyano-3-phenoxybenzyl chrysanthemate
wherein the weight ratio between calcium dodecylbenzenesulfonate, polyoxyethylene styrenated phenol having an HLB of 12-16 and propylene glycol is 25-40 : 40-55 : 5-30.

DATED THIS 5TH DAY OF FEBRUARY 1991

SUMITOMO CHEMICAL COMPANY LIMITED

By its Patent Attorneys:

GRIFFITH HACK & CO.

Fellows Institute of Patent

Attorneys of Australia.

