USOORE49943E

as United States

a2 Reissued Patent
Wang et al.

(10
(45

(54) SYSTEM AND METHOD FOR A CONTEXT

LAYER SWITCH
(71) Applicant: Futurewei Technologies, Inc., Plano,
X (US)
(72) Inventors: Guo Qiang Wang, Santa Clara, CA
(US); Wen Tong, Ottawa (CA)
(73) Assignee: FUTUREWEI TECHNOLOGIES,
INC., Plano, TX (US)

@
(22)

Appl. No.: 16/855,771

Filed: Apr. 22, 2020

Related U.S. Patent Documents

Reissue of:

(64) Patent No.:
Issued:
Appl. No.:
Filed:

U.S. Applications:

(63) Continuation of application No. 12/769,052, filed on
Apr. 28, 2010, now Pat. No. 8,504,718.

9,319,311
Apr. 19, 2016
13/959,486

Aug. 5, 2013

(51) Imt.CL
HO4L 45/50 (2022.01)
HO4L 45/302 (2022.01)
HO4L 45/7453 (2022.01)
HO4L 49/35 (2022.01)
HO4L 67/1074 (2022.01)
(52) US. CL
CPC HO4L 45/50 (2013.01); HO4L 45/306
(2013.01); HO4L 45/7453 (2013.01); HO4L
49/355 (2013.01); HO4L 67/1076 (2013.01)
(58) Field of Classification Search

CPC HOAL 45/50; HO4AL 45/64; HOAL 45/306;
HOAL 45/7453; HOAL 49/355; HOAL
67/18; HOAL 67/1076

See application file for complete search history.

) Patent Number: US RE49,943 E
) Date of Reissued Patent: Apr. 23, 2024
(56) References Cited
U.S. PATENT DOCUMENTS
6,535,518 B1* 3/2003 Huetal ... 370/401
7,096,210 Bl 8/2006 Kramer et al.
7,120,148 B1* 10/2006 Batz HO4L 67/561
370/392
7,209977 B2* 4/2007 Acharya ... HO4L 29/12009
370/395.3
7,469,310 B2 12/2008 Kadambi et al.
7,509,673 B2 3/2009 Swander et al.
7,948,986 Bl 5/2011 Ghosh et al.
7,961,739 B2 6/2011 Perry et al.
8,516,193 B1* 82013 Clinton HO4L 67/1097
711/118
9,246,801 B1* 12016 Kompella HO4L 45/50
(Continued)

OTHER PUBLICATIONS

Luciani et al., RFC 2334: Server Cache Synchronization Protocol,
Apr. 1998, The Internet Society, pp. 1-40. (Year: 1998).*

(Continued)

Primary Examiner — Eron I Sorrell
(74) Attorney, Agent, or Firm — Slater Matsil, LLP

(57) ABSTRACT

In accordance with an embodiment, a network device has an
input port for receiving input packets, and an output port for
sending output packets, where the input packets and output
packets have context layer information. The network device
also includes a processor configured to process the input
packets and output packets using a network protocol having
a context layer.

22 Claims, 21 Drawing Sheets

1612 1614 1616
| cLL RoUTING PLANE | | CLL SERVICE PLANE | | CLL STORAGE PLANE |
| 1600
e -{_ i |
1 1
1 1
I CL HEADER CELNELIS‘ENA?I%TEJLN CL HEADER CLASSIFY | 1
1 1
| PROCESSING - |_rorwreon conrrot | - AND LOOK UP |
7 7] 7
I I | I I
i 1618 CL HEADER : 1610 ! : 1608 CL HEADER i
1 1
1 | QoS SCHEDULER AND [POLICY ENGINE - - DEEPER PACKET 1
| | " CLLDISPATCHER _|=="-{ (e.0. SECURITY AND QoS) [-===] _ INSPECTION]
I 650 GET/DATA 1 534 1 666 GET/DATA |
1 1
N TRANSPORT ADAPTATION ENGINE ||
1 1
b o e —— -4

ADJACENT ACCESS/ROUTER INTERFACE (WIRELESS OR WIRELINE)

V4
1602

US RE49,943 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

9,882,954 B2* 1/2018 Burckart HO4L 67/2876
2002/0068584 Al™* 6/2002 Gagecccccen. HO4L 61/4557
455/445
2004/0114579 Al1* 6/2004 Karaoguz et al. 370/352

2008/0192740 Al 8/2008 Lorusso et al.
2008/0301320 ALl* 12/2008 MOITiS ..covvvevenenn. HO4L 69/22
709/238
2011/0040688 Al1* 2/2011 Renetalcoceonnen. 705/59
2011/0093609 Al1* 4/2011 Blom et al. ... 709/231
2011/0161409 A1* 6/2011 Naircccocevvvvvenn. GOGF 8/38
709/203

OTHER PUBLICATIONS

Koponen, T., et al,, “A Data-Oriented (and Beyond) Network
Architecture,” SIGCOMM 07, Aug. 27-31, 2007, 12 pages, Kyoto,
Japan.

“Why do we need a Content-Centric Furture Internet? Proposals
towards Content-Centric Internet Architectures,” Created by the
Future Content Networks Goup, May 2009, 23 pages, Prague.
Dobrescu, M., et al., “RouteBricks: Exploiting Parallelism To Scale
Software Routers,” Proceedings of the 22" ACM Symposium on
Operating Systems Principles, Oct. 11-14, 2009, 14 pages, Big Sky,
MT.

Jacobson, V., “Introduction to Content Centric Networking,” FISS
09, Jun. 22, 2009, 96 pages, Bremen, Germany.

* cited by examiner

US RE49,943 E

Sheet 1 of 21

Apr. 23,2024

U.S. Patent

SINID 19
I DI SYITAN NOILYIINNWINGD INTHIAHIa O@OOO A
A
%01 - 921~ (SSI1IYIM ‘STdND/d3g14 ‘LINYIHLI ‘STdN/I) 200N
N / « INIONT NOILYLHOASNVHL , ONISSI00Hd
ALITIOVA ALITIOvS HOLVHINTD o1
SISAIYNY | y
SISATYNY lonsoL I — S3SJONAS
I11404d SOV D144Vl AXOHdd
% 7 S
0cl 801
0l C ¥ J VLI
HITIOHLNOD PEL~] wam0uiNoD HOLVHINTD INIDNI INIDNT HILdvav
v0l ONIHOVD [~ 17 -8}
ONIHOVD P~ S ALVE3d000 [SISAONAS |« NOILN10STY [« ONILNOY |e—] 1Nd/13D
JAILYEId00D oL 30w [S1S3N03d JNVYN IN3LNOD INALINOD
\ A A A > A
1
HITIOHINOD ¢8I~ uITIOHINOD ¥ >
NOLLYZINILd0 |—¢0} | NOUVZINLLAD f2 INIDNI
INIOF INIOr 01 y JOVHOLS
JOVAHIINI INIDNT WI01
»| ONIHOVD |«
A 4
300N wz_wm%w_omn_] FONYNILNIYIA éo@ S
wzm_m,__wmm__%m_m_mn_ ONIYIId 0L [* \w AB0170d40L HEd 1HA ~-¢21 OLL 9L
JOVAHIINI {4
IdV N3dO
/ " SNOILVOITddVY
001 Le -

US RE49,943 E

Sheet 2 of 21

Apr. 23,2024

U.S. Patent

(Na@)
MHOMLIN H3Hv3d v1va
31VAIHd/21Nand

MHOMLAN
dNoYys
43HSI14aNd

HHOMLIN
dNOYd
d3INNSNOD

\(& ¢0¢

|dV JOIAYIS N340

US RE49,943 E

Sheet 3 of 21

Apr. 23,2024

U.S. Patent

£ DIH
01E~] AHd INITIHIM AHd INIMTIHIM AHd INMIHIM AHdANMIHIM | -01€
ANV SSTT13HIM ANV SSTT13HIM ANV SSTTIHIM ANV SSTT13HIM
¢~ yayvagviva H3HY3g Y1VQ H3HY3g YLva yuvagviva Pl
(TIVIAT "30I10A ‘83M \ / (TIvIAT '3010A ‘83IM
glg—] o1dnv ‘03din 90¢ v0g ‘0IaNy '03AIN - ~_g|¢
SNOILYDITddY SNOILYDITddY
80¢ ¢0¢

U.S. Patent Apr. 23,2024 Sheet 4 of 21 US RE49,943 E

NETWORK-SPECIFIC
(LOCATICN,
PRESENCE, ETC)

USER-SPECIFIC
(NAME, DEVICE,
PREFERENCE, ETC)

CONTEXT
LABEL

SECURITY-SPECIFIC
(ENCRYPT/DECRYPT)

APPLICATION-SPECIFIC
(CONTENT, VERSION,
SIZE AND TTL, ETC)

\

FIG. 4

URI CL-HEADER URL-DATA
www.yahoo.com/movie/AVATAR AVATAR CONTENT
\
SIGNATURE: KEY-LOCATOR: TTL: 2-DAY
XXX AVATAR PUBLIC KEY

FIG. 5

U.S. Patent Apr. 23,2024 Sheet 5 of 21 US RE49,943 E

CONSISTENT 256 BITS

HASH

URI |t >

www.yahoo.com/movie/AVATAR

FIG. 6

USER-FRIENDLY
NAME
y

CONTEXT LABEL
INTERNAL 1D (SIGNATURE, KEY-LOCATOR, TTL, ...)

Y

CONTENT ENTITY FIG. 7

US RE49,943 E

Sheet 6 of 21

Apr. 23,2024

U.S. Patent

X3t WOIHOUVEIH HO 1H v8019 < =>~908 1na vaHouveaH C_>--v08 1svoavous vawy wo01 $1%~208

—_——

U.S. Patent Apr. 23,2024 Sheet 7 of 21 US RE49,943 E

REGION DHT C
904

REGION DHT D

908 REGION DHT B

U.S. Patent

Apr. 23,2024

Sheet 8 of 21

US RE49,943 E

CL-HEADER
1st LAYER P-KEY | SIGNATURE 1
2nd LAYER P-KEY | SIGNATURE2 |c——=>| NAME | CONTENT
3rd LAYER P-KEY | SIGNATURE 3
FIG. 11
1214 1210
N /
NAME CONTENT COOPERATIVE
RESOLUTION ROUTING CACHING %E MI\?NPTOE%\&%E
ENGINE ENGINE CONTROLLER
A A Y 4
121\ 6 12\1\ 2 — —
\ Y
SONTENT AL STORAGE RESOURCE
GET/PUT |e—={ CACHING
ACAPTOR AINE CONTENT iTORAGE
‘ 1202
4
L LOCAL STORAGE ENGINE |+23%B o1 [CONTENT CACHE
7 N
1208 1204
NAME RESOLUTION
1200 STORAGE
N
1206

FIG. 12

U.S. Patent

Apr. 23,2024

Sheet 9 of 21

US RE49,943 E

1318 1316 1312 1314
N / / /
NAME CONTENT TRAFFIC REQUESTS
PROXY RESOLUTION | | GET/PUT SYNOPSES SYNOPSES
ENGINE ADAPTER GENERATOR | | GENERATOR
A A y
PROTOCOL6) | PROTOCOL 2)
\ A
[INFORMATION
1300 " COLLECTING MODULE
N
1304
| COMPUTING MODULE
N
CONTENT 1338 1306
ROUTING .
13101 "L GINE PROTOCOL i) CONTROL OUTPUT
< MODULE
JOINT OPTIMIZATION
JOINT 13027 CONTROLLER
OPTIMIZATION
SUBSYSTEM
PROTOCOL 7), 8) PROTOCOL 5)
\ A A
TRANSPORTATION ENGINE onr | TOPOLOGY
(IP/MPLS, ETHERNET, <bR | MAINTENANCE
FIBER/GMPLS, WIRELESS) ETHERNET

FIG. 13

US RE49,943 E

Sheet 10 of 21

Apr. 23,2024

U.S. Patent

Bunnoy wajuoy A
sasdouAg anel] O
sasdoufs sisanbay 1asn ©

(19u1By1q Jano) aubug uoyepodsuel] 4
(urewop-1a3u1 ‘odo]) uoinjosay aweN O
Ja|jo4ucg uoneziwido uop x

sisAjeuy ajlj01d V

(1o1depe nd/ab ‘auibua Buiyses [eoo| ‘auibus abelols [200]) 86RI0IS POPPALIT HIOMIEN A
(urpwop-1ay; ‘ode| '|HQ) uonnjosal auey <

Ja|j0u0s ayoe) aAneladoos >

Axold

U.S. Patent Apr. 23, 2024 Sheet 11 of 21 US RE49,943 E

1508 WEB VIDEO AUDIO
N I I I
API
F §
e B
| |
I 1512\ IS UBSCRIBER POLICY MGMT ENGINE I
' CLL === (e.., SECURITY) N " _cu '
I | DISPATCHER = RECEIVER | |
: (ADD CL (REMOVE :
i | HEADER) |« > ATTACHMENT « »| CL HEADER) | |
, INTERFACE CONFIG .
e 4] 7 3} '
| 1510 CET 1514 | 1594 1506 [DATA |
| |
I TRANSPORT ADAPTATION ENGINE I
| |
N P]
Y
ATTACHED ACCESS INTERFACE (WIRELESS OR WIRELINE)
N
FIG. 15 1502
1612 1614 1616
N / /
CLL ROUTING PLANE | | CLL SERVICE PLANE | | CLL STORAGE PLANE
| | 1600
J
r—-—==msmmsmmrm—————-r—_e—_——_—_—_—_———_—————————— '{_ i |
| Y |
| » P |
I CL HEADER %hELISIENA’E%TEJLN CL HEADER CLASSIFY | 1
| |
i PROCESSING - |_rorwaroG conroL | AND LOOK UP :
4 4 ' 74
1 | | | I
I 1618 "CL HEADER : 1610 ! : 1608 CL HEADER I
| |
I | QoS SCHEDULER AND L POLICY ENGINE | 1 DEEPER PACKET |
| |__CLLDISPATCHER _|-—="- (e.g. SECURITY AND QoS) [-——1 INSPECTION !
|1 650 GET/DATA 1 634 1 666 GET/DATA |
| Y |
: TRANSPORT ADAPTATION ENGINE :
| 4 |
S -
\ i
ADJACENT ACCESS/ROUTER INTERFACE (WIRELESS OR WIRELINE)

/
1602 FIG. 16

U.S. Patent Apr. 23, 2024 Sheet 12 of 21 US RE49,943 E

DATA STORAGE ___ — |
| NODE STORAGE RESOURCE |
| CONTENT STORAGE
| 1714 1712 |

N N 1708~ 1718 116
| [CONTENT LOCAL \ |
GET/PUT || CACHING

| | ApaPTOR ENGINE CONTENT CACHE |

| _ e — — — — 11
rreree———————e—e—e————_—————————— —_—_——————————— ="
V| ___ _I__ | |
Lo 1| SUBSYSTEM NAME RESOLUTION '
| -} > |
! | | LOCAL STORAGE ENGINE | , STORAGE !
B) S '
' 1706 1710 I
|
I I— _______ _, — et |
3 INDEXING NODE |

FIG. 17 1704
GLOBAL
DHT/HIERARCHICAL
TREE OF CRXP

REGIONAL REGIONAL
MULTI-LAYERED / \" MULTI-LAYERED
HIERARCHICAL 7/ HIERARCHICAL

/

O INDEXING NODE E=) DATA STORAGE NODE
————— ONE INDEXING NODE CAN JOIN REGION DHT AND GLOBAL DHT/CRXP SAME TIME

CONTENT NEED REGISTER ON THE INDEXING NODE
BASED ONE THE KEY BY HASHING THE CONTENT NAME

FIG. 18

U.S. Patent Apr. 23,2024 Sheet 13 of 21 US RE49,943 E

CLS USER ACCESS CLS NODE
(CC) NETWORK (CP)
- LINK UP .
B CSP LIST
SELECT CSP FROM
NEWLY/PREVIQUSLY

ACQUIRED CSP LIST

ACCESS AUTHENTICATION REQ

ACCESS AUTHENTICATION REQ

ACCESS AUTHENTICATION
RSP (CP's IP ADDR)

A

ACCESS AUTHENTICATION
RSP (CP's IP ADDR)

DHCP (CC's IP ADDR)

CLS SUBSCRIBER ENTRY

STORE
CONFIGURATION
DATA

FIG. 19

U.S. Patent

NEW CLS
NODE

CONFIG IS-IS
LINKS TO ISP
ROUTER

LSA (OPAQUE TLV)

Apr. 23,2024

Sheet 14 of 21

US RE49,943 E

ISP

ROUTER

ISP

ROUTER

PRE-CONNECTED
CLS NODE

P

EXCHANGE LSA
DATABASE

LSA (OPAQUE TLV)

CREATE CLS
ROUTING
DATABASE

ESTABLISH
CLS PEERING
PATHS

CONTENT
INQUIRY
—

SELECT THE
BEST PATH
TO NEXT HOP
CLS NODE

LSA (OPAQUE TLV)

CONTENT INQUIRY

UPDATE CLS
ROUTING
DATABASE

CONTENT RETURN

f

FIG. 20

U.S. Patent Apr. 23,2024 Sheet 15 of 21

MainPeer
2106

ProfilePeer

>
P

2102 00@00 RemoteBackupPeer
ORIGINATING 2110
PEER
PUBLISHER A
/

2112 FIG. 21
MainPeer
2106

SUBSCRIBER

ProfilePeer /
2104 m

A 2102 00@00

ORIGINATING
PEER

FIG. 22 A

2.1 5 % Locall;z;c(l)(;pPeer
AN
A []

US RE49,943 E

LocalBackupPeer
2108

U.S. Patent

INTERNAL
LINES

Apr. 23,2024

R BPS

H

| ~2302

230& = AN

1 [~

~ -

Sheet 16 of 21

Vo

-
-

)
/

INTER-SERVER
"SWITCH"

2304

\
A
~ A Y

- \
- :

./
<

I

-

<

\\
N

7 NS

< 1N-2302

__/’

I\

US RE49,943 E

2302 ™~2302
SERVER T l
FIG. 23
ONE SOCKET SYSTEM
2502
I
|
TO I/0 HUB
FOUR SOCKETS SYSTEM
T0 |/9 HUB
FIG. 25 | <2004
1 —___1
1 —___1

T0 I/0 HUB

US RE49,943 E

Sheet 17 of 21

Apr. 23,2024

U.S. Patent

AHOWIN

0LPZ~,

’
A 44

vy DIH
3194
anH 0/ L~ v0ve
YNIT O-L3N00S
— 801 ¢
3409 340D 80¥¢—~ W02 340D
\mxoé/ \mxoé/
NI snd ASONIN
um<x #_<I <
13%D0S-HILNI
mmoo/ / Qoo mmoo/ f \#_8 N3N A\ 44
4] 7] N
v0ye 90v¢ v0¥¢ 90¥¢ 0l¥¢
134008 HITIOHINOD
AHOWAW
@3LvH9IINI

US RE49,943 E

Sheet 18 of 21

Apr. 23,2024

U.S. Patent

sty |
! 13%0vd | Lodss3und | | owevd |, [Luod ssaweni |, 13vovd | 9C OIH
I v1vd SAUVO AN | | HOLMS [| SQHVD INIT vlva az_mu«%me I
! 7 7 S | 2092
" 7192 9192 2192 o
| |
“ ¢€9¢ 0€9¢ 8¢9¢ 9¢9¢ £AST4 ¢C9¢ 029¢ 819¢ “
_ N N\ N N / / / _
[E 0LdAHD | | oop | | INIENI ¥3INaIHOS | |INIBNINowoY | | Adissv1oany | | Movis [
o I . 19 AOI0d | | BNIHOLIMS T2 M014 10 dn 00179 allAl “
I I ¥09¢
L __________—____—_—_ J \
svavivd 8¥9z | NOLLYOO1 NOILYHOEVT103
¥v9¢ INV1d
yeaz~J AIM0d 39311AIMd — | oninoy 19 aNv ™ . ONLNoY aNv ONILNOY
SS300Y L————J 9¥9¢ | _ALNIGON 100010Hd DNLLNOH 19
9¢9¢ wmmw
\V} NOLLYSIYDDY 7592 ~ JIIAH3S BNIHOVD ININ AIM | -269¢
INIINODTO | | any FunamLsiaay INLNOD ALIENO3S R Grinde
- ‘HONAS Tvd019 | 059¢ NOILYNINASSIa 809¢
0792 —_— - | 1wow Odval ALTIHO ONY | - NOLVTILSIO | vy
8G9¢ 9G69¢
N N IN3DITTALNI INIWHOVLLY OIS
NOLLYZINILJO JONVYNILNIVIN
v1vad 10 v1va 10
HIAHIS FHOVD VD01
H E 19 IN9 ‘dINNS HON | 3INVId
/ 899~ —J 99921 woawinan v99z | amavo | 1noW
909¢ 0192 Vad

US RE49,943 E

Sheet 19 of 21

Apr. 23,2024

U.S. Patent

20.¢ LC DIA ¥0.¢
N e _ ¥
9¢/¢ -
mmm/m T -~ anoNg NowoY Moy 904~ S140d 0/1 7
xa938 10 | | | 3nano 2262 9162
sop | | 3ISSYID ONY dn¥OOT MO H0SS3004d
01,29 ovig N N INY1d JHODILINA (dd) AJONIA
\ cvle w1z ¢cle ¥z 0€/¢ ONIQHYMHOA H0SSII0Hd $S3004d MOT4
01dAHD 10 N Z HLVd 1SV4 2
a4 | |e3naaHos ANIINI 0267~ 4ITIONINGD <
avouso | b—1 | Mmoo | gz | Aonod ~0ele AJONIN o
AV B XANIT [S0 FHOOILTNW INDNA | 2162~ 0162 i3
NN 30VH0LS WA | TNOW MO SomaIs Wt | e | e 20T 40553004d
14V , N 1d ~—vi6z | 300owinm @s)
) HoSnIdA NOLLYZIYNLHIA v INIONI J0IAHIS
9092 7oz V9T oz 29 09z |3NIdSIMEES 1I00S
917 N N / / =
o oo |3Hovo | [oNcoosNveL | | N33 | fdnHsww | | 00000 T—/—/ ——————————— 1
¥8.¢ ¢82¢ 08.¢ AW Q
N AN N 802~ \ \
NOILNT0S3H INILNOY HOLVHINID SISdONAS S1H0d 0/1 o
INN IN3LNOD 1S3N034/D144vHL < W
|||||||| 906¢ v06¢ 9062 ¢06¢ %
8Lieq| eu 01/ ¥lLZ 2T 0L p p p %
N N N N N IV ¥aTiouINeD | [Hoss3004d | [H0Ss3008d | | E
INawHavLLY | | Aomod | [oninoy | [waw | [1av T0HINOD AHOWIW INION3 INION3 g
Hasn 30435 | | Avie3no | | tHa | | Nado /LNOW QALYHOILNI LNOI ONLLNOY
1020104 INILNOY 13%00S

US RE49,943 E

Sheet 20 of 21

Apr. 23,2024

U.S. Patent

—_ r—-——"™"™""™"=>""™"="="=—="="=-"=—="="="=""=""=""™>"""™""™"""™""™"""™""™""™="™=""7™"™"7="+ 1
| |
0508 | ¥90€ " yow tawrovity | ggog [won Aao10dor twodsnwel | 2908 i Sonvisnianw eanea b YS0E | quvo
HITIOHLNOD | N “ YIAYIS
ANION3 T04INOD
NENI 1 0g0g | HONABDT0d0LSTO | | G LHO | | NOIOS3 INWN |\ ggpe =] STIBVLONUNOY |\ zope
S -
A /
G0o€
fo=——=—=—————————————~— 1 L ~V00E | 900€
_ 1| 3onvisN — /
I AOIN0d FHIYI SOILSILYLS I NV HIAHT
1| 3718vH9NTd-LOH 1= - H00€E
_ 7 7 | zeog 0808 |
I ¥20€g ¢coe | /™ x
| 8¢0¢ 9¢0¢g I &
Z Z 2, _d/1nooL
I I Tavl T | | snooy -
|| H3OVNVI 39vHOLS IdV 3DYHOLS _|v IN3INOD = (dvM404
b e m - —— = —— =] INBNT IDVHOLS =
§S300V m
VoIS oL~ [____________________ 5
OBVMHOS ! eoe 1 zonvas =
I ™ HOSIAYIJAH I | ANV 43AMQ =
" O s | |BTow o
_ NHOYIN | | aNIHOWW 1 020E °) S MaN
I WA | | vnidia I N
A~ CHOET omuss | | somess | T 7HOE || d18vL Mo | 1 pe—— 13%0vd
100 | | L8019 < 9e0€ - 1ndNI
L olog—1 4V NOLLYOIddY “ INONI A/mwwmm dd
¢z org | t\- 0= -7 77777 -————- A NOLLVOrlddY a4V YIAY3S NOILYOIlddY
: ™-000¢

US RE49,943 E

Sheet 21 of 21

Apr. 23,2024

U.S. Patent

6C OIA
o= ———— - 1
| |
Y . 2 e W e a1
| |
| ONILNOH NHOMLIN ONILNOY | | |
! LHOJSNVHL LHOASNVHL /"~ 1| LHOdSNVHL | I |
_ N3LSASENS | walsasans | g
_ INILNOY 1| onmnow |11
B¢ ! INIINDD rLIE ' inanos [V vOIE
| L e e e Jd 1
NN ™ uanuasddy |« o winIsddy P~ INNII
ans s19 " et ans S19
1 |
NN | INN INN | NN
901€ A I A =~ o | 4 ko 201€
N »__\ 4/__/» /
H3HSMand \"\\ AT oLLe" //"/ HIHSEaNd
Nnoo 1 AXOHd IN3INOD AXOHd INAINOD ™ s
b e e J
and $10 and 10

US RE49,943 E

1

SYSTEM AND METHOD FOR A CONTEXT
LAYER SWITCH

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Reissue Application of U.S. Pat. No.
9,319,311 B2, issued on Apr. 19, 2016 from U.S. application
Ser. No. 13/959,486 filed on Aug. 5, 2013, which is a
continuation of U.S. application Ser. No. 12/769,052, filed
on Apr. 28, 2010, issued as U.S. Pat. No. 8,504,718 B2 on
Aug. 6, 2013, entitled, “System and Method for a Context
Layer Switch,” which application is hereby incorporated
herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to data commu-
nication systems, and more particularly to a system and
method for a context layer switch.

BACKGROUND

After an over forty-year journey from its infancy to a
widely accepted business/application model, the TCP/IP
based Internet has become a universal communication plat-
form. Internet technologies have successfully transformed
legacy end-to-end communication systems from a circuit-
to-circuit model (i.e., circuit switching) to a host-to-host
model (i.e., packet switching). Recently, however, the indus-
try is gaining momentum to transfer next generation Internet
technology from connectivity-based networking to content-
based networking. Content-centric networking is designed
and optimized for the content itself, and aims to be highly
distributed and collaborative to fill the growing demand for
networks that support personalization and social media.

Internet protocol (IP) routing is designed for host-to-host
conversation, but today most Internet traffic is used for
content dissemination. As the demand for content, such as
streaming video, increases, using traditional IP routing
becomes more challenging. For example, a small percentage
of content may account for a large percentage of total
network traffic. Current Internet IP routing designs, how-
ever, have not been optimized for this skew distribution
resulting in over-subscription between Digital Subscriber
Line Access Multiplexer (DSLLAM) and Ethernet switchers,
between Ethernet switchers and Broadband Remote Access
Servers (BRAS), and between BRAS to edge routers. Over-
subscription occurs, for example, when IP routing only
provides a “pipe” transmission without regard to the char-
acteristics of the content being carried. Therefore, IP routing
has difficulty optimizing content traffic dissemination over
underlying link layer network resources such as bandwidth
and topology.

What are needed are efficient systems and methods of
content distribution having high availability, high reliability,
low latency, and ubiquitous mobility.

SUMMARY OF THE INVENTION

In accordance with an embodiment, a network device has
an input port for receiving input packets, and an output port

10

20

30

40

45

55

65

2

for sending output packets, where the input packets and
output packets have context layer information. The network
device also includes a processor configured to process the
input packets and output packets using a network protocol
having a context layer.

In accordance with another embodiment, a method of
operating a network device includes transmitting and receiv-
ing packets on at least one port and receiving a first packet
from a client on at least one port, where the packets have
context layer information and the first packet includes a
content name and a context label header. The method also
includes determining if requested content associated with
the content name is in a local memory. If the requested
content is not in the local memory, at least one second packet
is transmitted to a second network device on the at least one
port, where the at least one second packet includes the
content name. In some embodiments, the at least one second
packet also includes a context label header. If the requested
content is in the local memory, at least one third packet is
transmitted to the client on the at least one port, where the
at least one third packet includes the requested content.

In accordance with another embodiment, a method of
operating a context level switch includes receiving a first
packet from a client on at least one port, where the packet
includes a content name and a context label header. The
method also includes retrieving the requested content from
memory and transmitting at least one second packet to the
client on the at least one port, where the at least one second
packet includes the requested content.

The foregoing has outlined rather broadly the features of
an embodiment of the present invention in order that the
detailed description of the invention that follows may be
better understood. Additional features and advantages of
embodiments of the invention will be described hereinafter,
which form the subject of the claims of the invention. It
should be appreciated by those skilled in the art that the
conception and specific embodiments disclosed may be
readily utilized as a basis for modifying or designing other
structures or processes for carrying out the same purposes of
the present invention. It should also be realized by those
skilled in the art that such equivalent constructions do not
depart from the spirit and scope of the invention as set forth
in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawing, in which:

FIG. 1 illustrates a functional block diagram of an
embodiment Context Label Switch (CLS) node;

FIG. 2 illustrates an embodiment CLS reference network
model,;

FIG. 3 illustrates networking in the context of an embodi-
ment Context Label Layer (CLL) protocol stack;

FIG. 4 illustrates content of an embodiment context label;

FIG. 5 illustrates an embodiment content name with a
CL-header;

FIG. 6 illustrates an embodiment mapping between name
space;

FIG. 7 illustrates content data with a multi-identifier and
Context Label (CL) according to an embodiment;

FIG. 8 illustrates an embodiment name resolution
scheme;

FIG. 9 illustrates a two layered dynamic hash table (DHT)
according to an embodiment of the present invention;

US RE49,943 E

3

FIG. 10 illustrates a block diagram illustrating inter-
domain content resolution for CLS and non-CLS systems
according to an embodiment;

FIG. 11 illustrates an embodiment implementation of
name and content authentication;

FIG. 12 illustrates an illustrates an embodiment network
build-in Storage Node (SN) architecture;

FIG. 13 illustrates an embodiment joint optimization
subsystem;

FIG. 14 illustrates an embodiment deployment mapping
CLS logical entities to network elements;

FIG. 15 illustrates a block diagram of Content Client (CC)
functionality for an embodiment;

FIG. 16 illustrates a block diagram of Content Proxy (CP)
functionality for an embodiment;

FIG. 17 illustrates an embodiment mapping of a content
storage subsystem to a logical node;

FIG. 18 illustrates a logical view of index nodes and data
storage nodes according to an embodiment of the present
invention;

FIG. 19 illustrates a diagram depicting an embodiment
CLS user initial entry procedure;

FIG. 20 illustrates an embodiment CLS topology auto
discovery diagram;

FIG. 21 illustrates distributed content storage according to
an embodiment;

FIG. 22 illustrates distributed content resolution and
access according to an embodiment;

FIG. 23 illustrates an embodiment cluster router archi-
tecture;

FIG. 24 illustrates an embodiment cluster router;

FIG. 25 illustrates further embodiment cluster routers;

FIG. 26 illustrates a block diagram showing an embodi-
ment architecture of a CLS;

FIG. 27 illustrates an embodiment mapping of a system
software package onto hardware;

FIG. 28 illustrates a CLS according to an embodiment;
and

FIG. 29 illustrates an embodiment network system using
content proxies.

Corresponding numerals and symbols in the different
figures generally refer to corresponding parts unless other-
wise indicated. The figures are drawn to clearly illustrate the
relevant aspects of the embodiments and are not necessarily
drawn to scale.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The making and using of various embodiments are dis-
cussed in detail below. It should be appreciated, however,
that the present invention provides many applicable inven-
tive concepts that can be embodied in a wide variety of
specific contexts. The specific embodiments discussed are
merely illustrative of specific ways to make and use the
invention, and do not limit the scope of the invention.

The present invention will be described with respect to
embodiments in specific contexts, for example, a context
layer switch. Embodiment devices include, but are not
limited to context layer switches, routers, network devices,
client devices, cellular telephones, and Internet access
devices, as examples.

Embodiments of the present invention include applica-
tions of Context Label Switching (CLS) technology for next
generation Internet that moves content among people and
machines. A Context Label (CL) as a relationship profile
which interrelate the communication-enabled attributes of a

15

20

25

30

35

40

45

50

55

4

network, user and interested content/application. In embodi-
ments, CL is used to label application information chunks
(I-chunk) and to guide the data delivery services, and is used
to describe the delivery service semantics of Internet (i.e.,
who, what, when & where). Based on a given CL, embodi-
ment CLS-enabled network devices could switch and deliver
application data among peers. Embodiments work within a
Context Label Layer (CLL) framework architecture and
operate using content-oriented network communication
techniques. In CLL, the CL is created, added, removed and
switched between content publisher and consumer or from
machine to machine.

The Internet has become a common platform that allows
people to share information and content. Content sharing
over hyper-connected Internet with user/device mobility has
moved Internet communication model from a traditional
fixed point-to-point conversation (e.g., phone) to p-mp or
mp-mp ubiquitous information dissemination (e.g., video
conference). The current technology development is toward
the convergence of services over diverse delivery platforms
for both wire-line and wireless communication networks.
Networks, user devices and service/applications will adapt
to the user’s personal preference and context.

For the end users, Internet application/service operational
semantics can be represented, in some embodiments, as a
“Who gets or provides What at Where and When, and with
Trustiness” system, in which “Who” is the user ID (e.g.,
consumer ID or supplier ID in subscriber/supplier model), or
device ID (e.g., machine-to-machine model); “What” is the
interested content/service name; “Where” is the location of
user or device; “When” is the time stamp of consumer
requested or the content/service to be provided, and how
long the content can exist in the network; the “Trustiness™ is
an agreement for confidence or faith between consumer and
supplier.

In principle, this Internet service operational semantic can
be characterized and quantified as a relation R=(User/De-
vice, Content/Service, Time, Location, Security). In embodi-
ments, a Context-Oriented Profile (CCP) is defined, where
CCP is a subset of R. Each element of CCP is a Context
Label (CL). CL can be used in Internet service operation to
inquire and deliver content and service/application data. For
example, CL can be embedded in user’s request such as
“Tony’s iPhone wants movie: xxx at location: (e.g., GPS)
on: next Monday,” and the movie supplier can deliver
movie: xxx with an assigned security code in the response
and follow the navigation guided by the given CL. Embodi-
ments of the present invention use CLS.

In an embodiment, a CLS forwards and relays content
I-chunk with build-in CL between peers. CLS has a local
cache for content storage, where the working mode of CL.S
is to store, process, and forward, where the “process”
function is to process the local content cache, based on a
defined CL. In some embodiments, irrelevant content rep-
lication and unnecessary data relay operations are removed.
In some embodiments, the CLS is “application-aware” and
provides a “smart-pipe” for the service provider and enter-
prises of next generation Internet.

In some embodiments, a context is defined as a profile that
consists of minimal set of attributes associated with sup-
porting content delivery in a communication network. From
the operational semantic of content/application delivery
service, context interrelates altogether of communication-
enabled attributes from dynamically changing network
property such as, location and presence; user profile such as
interesting preference, device type, user ID, and service
transaction time; and application attributes, such as content

US RE49,943 E

5

name, version, security, size and TTL (Time-To-Live). Other
attributes can be defined in other embodiments. The context
is adapted into the service delivery platform to guide the
content delivery in the network.

In embodiments, the “label to” represents a context
defined for data content, for example, CL. In some embodi-
ments, CL is different from the legacy label defined in a
Multiple Protocol Label Switch (MPLS), Generalized
MPLS (GMPLS), and/or Transport MPLS (TMPLS), or
Provider Backbone Bridge/Provider Backbone Transport
(PBB/PBT) where a label is used to identify a data transport
connection/connectivity. In embodiments, CL is used to
identify a relationship profile for content delivery service.
This profile has of several attributes from network, device,
application/service, security, etc. In some embodiments, the
context label is created and attached to application I-chunks,
and is used as an in-band or an out-band signaling mecha-
nism to guide the content delivery service and storage
service in the network.

In embodiments, CL is defined as an N-element-tuple
(N>=1) which has attributes and elements defined from a
network property, a user/device profile and/or applications
and services. For example, in an embodiment, network-
defined elements may include location info and presence
info; a user profile may include user ID, device-1D/device-
type, and preference and transaction time, etc. In embodi-
ments, application/service-defined elements may include
content name, version, medium type, content I-chunk num-
ber, chunk size, content published time, content TTL and
security code, etc. Each CL is an element of a content-
oriented profile that represents the relationship between user,
content and network.

In an embodiment CLL, a CL can be implemented as an
ASCII string (constituted by following certain rules) in
content data chuck. The format of the CL is identified and
processed by a FPGA, an ASIC, or a network processor
based on pre-defined rules. For example, in one embodi-
ment, CL uses a format of widely used application layer
protocol such as URL or other format. In embodiments, CL,
normally is created by the end device based on a pre-defined
policy for content publishing, inquiry and delivery. CL is
attached to application I-chunks and can be modified by a
CLS within the network for the purpose of delivery security
(e.g., add/remove encryption) or late-banding (e.g., change
location or time element).

In embodiments, CLL is defined as a protocol stack to
create, add, remove, update and switch CL in the network.
From the perspective of layered protocol stack, CLL is
located between application/service and data transport pro-
tocol. The application/service layer may be any type of
content such as video, audio, Web, Email, and voice, while
the data transport layer could be TCP/IP, UDP, P2P, PPP,
Broadcasting protocol, Ethernet MAC, wireless MAC,
MPLS/TMPLS, PBB/PBT, or GMPLS. CLL is overlaid with
any data transport layer. An embodiment data transport layer
is overlaid with various physical link layers such as Ether-
net, Bluetooth, WiMAX/LTE, WiFi, DSL, xPON, DOCSIS,
and Optical. In alternative embodiments, other application
service layers, data transport layers and/or physical layers
can be used.

In embodiments, CLL can be implemented at an end user
device, an access device, an access gateway and a CL-
enabled router/switch. CLL is responsible to segment/as-
semble the application content to/from variable size content
chunks, and dispatch/receive the CL data to/from the lower
layer, depending on the maximum transmission unit (MTU)
capacity of various physical links. Based on pre-defined

10

15

20

25

30

35

40

45

50

55

60

65

6

profile policy, CLL creates and inserts CL for each content
chuck (at the sender), or modifies CL (at an intermediate
relay node), or removes CL (at the receiver) from each
content chunk in some embodiments. CLL also implements
CL management plane, CL routing plane, CL. forwarding
plane, CL service process plane and CL caching process
plane. Based on CL, the CL routing plane is used to find the
routing path, to guide global content search/discovery, to
determine next hop/interface, and to manage mobility
anchoring and location service. The CL forwarding plane is
used to guide the content delivery, to manage content flow
for load balancing and traffic engineering, to prioritize traffic
scheduling for Quality of Service (QoS) and to control CL.
switching fabric. The CL service plane is used to execute
content distillation, dissemination, mash up, content aggre-
gation and content chunk customization (i.e., same video
may be sent to different end devices with various resolution/
contrast), and intelligent traffic management. The CL cach-
ing process plane is used to execute local data retrieval, local
caching, content database maintenance, global content syn-
chronization and aggregation, content deduplication, and
content access privilege policy management. In alternative
embodiments, CL. management plane, CL routing plane, CL.
forwarding plane, CL service process plane and CL caching
process plane may encompass a subset, superset, and/or
different functionality as the functions described above. In
further embodiments, CLL. may implement a security sub-
layer to handle all security issues including the encryption/
decryption for content chunk and CL, as well as to manage
security key distribution.

In an embodiment, each N-element CL is a variable size
ASCII string which may be implemented as widely used
format such as URL. CL is used mainly for facilitating
content discovery and content delivery/routing. In some
embodiments, CL. uniquely identifies a content chunk. The
composition of CL follows some policy-constraint rules
such as constitution priority. For example, a CL. may be
created by the following embodiment method:

1. CL=Content title; If not unique, continue;

2. CL=CL+version; If not unique, continue;

3. CL=CL+publisher-name; If not unique, continue; and

4. CL=CL+published-time.

In an embodiment, CL. composition follows a hierarchical
structure (i.e., tree-like), where each node in the tree repre-
sents an attribute defined by network, user/device profile or
by an application and/or service. The position of each node
in the tree is defined by the policy of a Content Oriented
Profile. CLL will use this naming tree to create a CL. and use
CL in the following scenarios:

1. Publish CL content to local repository and content

server;

2. CL content distillation, dissemination, mash up, global

synchronization and aggregation;
. CL as index for local content storage and maintenance;
. CL as index for Content search and inquiry;
. Content routing to find a path;
. Content forwarding;
. CL for mobility management and location services; and

8. CL for security key distribution and crypto operation.
In further embodiments, CL can be used for other functions.

In some embodiments, CL represents the content delivery
relationship between the subscriber and the supplier, which
inter-relate attributes from network, user and application. In
some embodiments CL only describes a delivery service
operational semantic. When content chunks are delivered on
overlay data transport network, CL can be mapped into any

~] N W

US RE49,943 E

7
type of transport connection medium such as MPLS/GM-
PLS label, IP address, MAC address, WiMAX/LTE connec-
tion ID, etc.

In some embodiments, CL is created, added and removed
by the end user node or content server, and may be updated
at intermediate nodes. In some embodiments, CL is handled
at access edge nodes as long as the edge device knows how
to deliver the content to the right user device without using
CL operation.

In some embodiments, CLL-enabled relay nodes may
modify some elements of a given CL. For example, if a
particular link/network needs security protection, CLL-en-
abled relay node may add extra security coding in CL and
remove these security codes before making content chunks
leave the link/network. In some another cases, CLL-enabled
relay nodes may change CL location elements or TTL
elements due to the next hop reachability issue or some other
considerations (e.g., the presence or the mobile location of
the receiver). This is referred to as a “late-binding” capa-
bility.

In an embodiment, CLS is a CLL-enabled access device,
gateway, routing switch, or some other data-capable access
and transport devices. From system level, CLS implements
several CCL functional engines (or planes), which may
include a management plane, CL routing plane, CL forward-
ing plane, CL service process plane, and CL local cache
process plane. Local cache is a local database or data server.
Physically these planes can be built into the same box/
chassis, or in separate box/chassis depending on the embodi-
ments. Each plane may have its own network processors
(multi-core or single-core) and I/O interfaces, and commu-
nicate with each other via high-speed channels. Logically,
these functional planes are clustered together and are rep-
resented by a CLS in some embodiments.

The management plane conducts system FCAPS func-
tions using management interfaces such as GUI, Web, CL],
SNMP, CORBA or some other standard/proprietary man-
agement protocols in some embodiments. This plane imple-
ments NE Operation, Administration, Maintenance & Pro-
visioning (OAM&P) functions.

The CL routing plane implements CL routing algorithms
and protocols to determine the adjacent CLSs and next hop
for relaying content chunks in embodiments. The next hop
CLS determination may rely on interested content distribu-
tion, CL location info and overlay physical network topol-
ogy. Various criteria help determine CL routing paths in
some embodiments. For example, in one embodiment, a
hybrid approach is used in a broadcasting-enabled LAN and
point-to-point WAN autonomous domain. In LAN or PBB/
PBT enabled access network, CL.S may use broadcasting CL.
inquiries (similar to Dynamic source routing protocol) to
determine the next hop, while in BGP domain or MPLS/
TMPLS/GMPLS network, DHT or DNS protocols can be
used to determine where the next hop is for inquired content.
In GPS covered area, for example, the location information
embedded in CL can be used to determine the next hop. In
CLL networking topology, the next hop is defined as the
adjacent CLL-enabled end devices, the CLL-enabled switch/
router, or the CL-enabled local cache server. In embodi-
ments, each CL contains enough information, for example
content chunk name prefix and GPS information, for the
routing plane to determine the routing path. When CLS
nodes overlay existing transport infrastructure, for example,
an IP network, CL routing learns underlying topology and
bandwidth to conduct integrated routing to optimize network
resources and promote content delivery performance in

10

20

25

35

40

45

8

some embodiments. For example, CLL layer topology and
IP layer topology can be collaborated.

In some embodiments, the CL next hop may also include
the local cache (if the interested inquiry is discovered in the
local cache). Similar to normal IP router, CL routing plane
stores a routing table which consists of the mapping between
CL prefix and the logical/physical 1/O interfaces of CLS.
Once a CL routing table is established, it will be installed in
the CL forwarding plane, for example, for relay purposes.
When CLL is implemented over an overlay network such as
IP routing, PBB/PBT routing, MPLS/GMPLS routing, the
CL routing plane may co-exist with these routing planes in
some embodiments. The collaboration between the CL rout-
ing plane and the other routing planes is implemented in
either an overlay model or integrated model. An embodi-
ment CL routing plane may also support mobility manage-
ment and location services, due to the fact that CL. may have
embedded location information.

The CL forwarding plane includes CLS switch fabric, I/O
interfaces and network processors to handle content relay, to
manage content flow for load balancing and traffic engineer-
ing, and to prioritize traffic scheduling for QoS, and delivery
policy enforcement. In some embodiments, CLL security
sub-layer crypto functions may be implemented in this
plane. To accelerate content relay at line speed, CL look up
and classification (“deeper packet inspection”) process and
security encryption/decryption may all be implemented, for
example, in an FPGA, ASIC, or very-high speed network
processor. Based on the CL routing table made from the CL
routing plane, and an action list defined by the CL service
plane, the forwarding plane executes CL look up to deter-
mine the egress interface, and shifts content chunks from the
ingress port of switch fabric to the egress port. Based on the
overlay network architecture and interfaces, CL forwarding
plane handles all 1.2/1.3/1.4 protocol stacks to terminate and
dispatch the received data packets in some embodiments.
The CL forwarding plane may also execute relay policy
enforcement. In embodiments, the policy profiles are con-
figured from either the CL. management plane or the CL
service plane.

In an embodiment, the CL service plane is responsible for
several tasks including content distillation, dissemination,
mash up, content aggregation and content chunk customi-
zation (i.e., same video may be sent to different end devices
with various resolution/contrast). This plane may also sup-
port local/global load balancing and intelligent traffic man-
agement for content distribution. Based on the policy for
content flow, the service plane may install user/content
service profiles and related action list into CL forwarding
plane for flow processing. Optionally, this control plane may
support content security functions such as authentication and
key distribution. In some embodiments, the control plane
communicates with a local cache server to store and update
content database.

In further embodiments, other functions of the service
plane may also include user account and device attachment
management, user presence and mobility management, and
service level agreement (SLA) profile management.

In an embodiment, Local cache server manages local
content storage. Typical tasks of an embodiment local cache
are to create, update, re-fresh (based on TTL in CL), retrieve
and synchronize/aggregate the contents with other CLSs,
and make/remove the duplication of contents. The CL. name
prefix is used as key/index to store and to discover the
interested data. In some embodiments, content and its key
refreshment and disposal may be restricted by TTL. This
plane also manages content access privilege policy.

US RE49,943 E

9

In one embodiment, a trust-to-trust content-oriented net-
working model delivers content and applications based on
named data with built-in security. In one embodiment,
named hosts are not used. Rather, the network handles more
“application semantics” which are relevant to the environ-
mental context of the information such as the security/
privacy, the content name and type, the end user device, user
location and presence, and the content life circle (e.g., time
to live (TTL)) within the network. In such an embodiment
content-oriented network, content security, content storage
and content delivery are built-in functions of the network. In
some embodiments the network leverages powerful distrib-
uted computing and optimization to minimize capital
expenses and operational expenses, as well as improving
user experience for content.

An embodiment CLS is a platform for a content-centric
networking model. CLS delivers contents by leveraging and
consolidating advanced distributed computing, joint optimi-
zation based routing/forwarding protocols, and more cross/
inter-layer optimization algorithms. In an embodiment, CL.S
provides content/application delivery services with these
enabling technologies to create a “green” and “behavior-
adaptable” environment for global information sharing.

In an embodiment, a CLS system encompasses 5 building
blocks: a very scalable and fast Content-based Naming and
Resolution scheme with self certifying content names, a cost
efficient and scalable collaborative network embedded stor-
age cloud for caching, practical Traffic Engineering/Server
Selection, a content positioning system having joint optimi-
zation (i.e., cross-layer) for content dissemination routing to
leverage IP or non-IP capabilities such as content network-
ing directly over Ethernet, and a parallel computing cloud
for user-content profile analytics and content service pro-
cessing.

In embodiments, CLS has protocols that support content
based naming, resolution and joint optimization. However,
in some embodiments, existing protocols are incorporated
into systems, such as embedding opaque type length value
(TLV) into routing protocols such as Intermediate Systems-
Intermediate Systems/Border Gateway Protocol (IS-IS/
BGP) data packets. The opaque TLV is used to carry the
information of CLS node and CL.

In some embodiments, CLS-enabled delivery services
incorporate embodiment network reference models, inter-
face requirements, functional entities, protocols, and proce-
dures for various CLS implementation alternatives.

In an embodiment CLS architecture, logical entities
decompose and alternative deployment views map CLS
logical entities to physical network elements (NEs).

In an embodiment, CLS nodes interwork with each other
via CLS User Network Interface (UNI) and CLS Node-Node
Interface (NNI) protocols, including, but are not limited to:

1) intra/inter-domain content based naming and resolution

protocol;

2) user-content requests profile collection protocol;

3) collaborative cache decision/suggestion feedback pro-

tocol;

4) user-content profile analytics feedback protocol; and

5) joint TE/SS routing decision feedback protocol.

In some embodiments CLS system use existing data
transport mechanisms including both infrastructure (e.g., IP,
MPLS, Ethernet transport and packet-optical, 3G/4G wire-
less) and infrastructure-less (e.g., wireless ad hoc and Ultra
Wideband (UWB) radio). In some embodiments CLS is
implemented over IP including IPv4 and IPv6. In other
embodiments CLS networks directly over Ethernet. This
yields performance improvement in some embodiments. In

10

15

20

25

30

35

40

45

50

55

60

65

10

further embodiments, CLS can operate over other network
types, for example, over fiber, and over wireless connections
such as WiFi and Bluetooth.

In some embodiments, CLS systems use several protocols
between a CLS node and an IP router/Ethernet switcher
(logically, in physical deployment, and/or the CLS node
might be a part of the CLS enabled router/switcher), as
follows:

6) protocols for collecting traffic condition (e.g., queue

length) from router, in an echo-pattern like way;

7) Protocols for notifying the router about the joint
optimization result, so as to let the router modify its
routing by MPLS or other schemes;

8) Protocols for notifying the OpenFlow controller about
joint optimization results, so as to let the controller
modify the forwarding table inside switchers. In some
embodiments, OpenFlow is used as a test bed for CLS
over Ethernet;

9) Protocols for publishing/retrieving content to/from the
CLS network; and

10) Protocols for transmitting content among user and
CLSs.

In some embodiments, CLS systems include content-
based naming and resolution schemes with self certifying
content names, which fit the topologies of the existing
networks. In an embodiment naming scheme, a self-certified
binding between name, publisher and content is supported.
In some embodiments, the naming scheme the format is
hybrid, HTTP or flat (by hashing the HTTP name). A HTTP
name is used in the User-Network Interface (UNI) and in the
inter-Autonomous System Node-Node Interface (AS NNI).
In some embodiments, a flat version is used in the intra AS
NNIL

In an embodiment resolution scheme, a hierarchical
dynamic hash table (DHT) based resolution design is used
that fits the hierarchy of infrastructure networks, such as
access/edge/metro accumulation/backbone. For the inter-AS
portion, another global DHT is used in one embodiment.
Alternatively, a hierarchical tree of Content Resolution
Exchange (CREX) similar to what is implemented by a
Data-Oriented Network Architecture (DONA). In the first
hop (or in the local access networks), CLS also adopts a
broadcast/multicast method for the name resolution in some
embodiments, for example, Address Resolution Protocol
(ARP).

In some embodiments, CLS systems use a cost efficient
and scalable collaborative network embedded storage cloud
for content storage and caching. In an embodiment, the
storage cloud is logically composed of an embedded storage
engine and a local and collaborative caching decision maker.
The embedded storage engine is responsible for the storage
of content that has not expired. The embedded storage
engine resides inside network elements (e.g., DSLAM,
switcher, routers) or servers placed proximately to such
elements. In some embodiments the CLS storage engine can
also leverage the customer terminals’ capabilities.

The local and collaborative caching decision maker
decides or suggests whether specific content should or
should not be cached. In one embodiment, the storage
capacity of each CLS node is partitioned into two portions.
One portion is left to the local caching decision maker and
may use a Least Recently Used (LRU) like evictor patter,
and the other portion is utilized to realize a collaborative
caching system, with the assistance of a collaborative cach-
ing decision maker. In one embodiment “local” means that
a decision is just made according to local requests served by
the node itself. In the later case, multiple proximate CLS

US RE49,943 E

11

nodes contribute some portion of their storage capacity to
implement a virtual caching storage unit which is shared by
all the CLS nodes in the same domain in some embodiments.

In some embodiments, CLS systems use Practical Traffic
Engineering/Server Selection joint optimization for content
dissemination routing. When CLS nodes are deployed by
carriers that normally operate the infrastructure networks, a
joint optimization solution uses content routing for some
embodiments. How to respond in time and handle burst
background traffic churn is handled by blocks that perform
information collecting, computing, and feedback.

Using an embodiment information collecting module,
CLS collects the traffic information by using a protocol for
collecting traffic conditions, and user content request by a
user-content request profile collection protocol. In some
embodiments, the protocol for collecting traffic conditions
can be applied in an Echo-pattern like way. In such an
embodiment, the root of managed device tree sends a query
down to the leaves. When the collected responses are sent
back reversely along the tree, each sub-tree root only sends
aggregated results back to its own parent node. In some
large-scale embodiments where the massive scale and fre-
quent churn of Internet traffic pattern makes it difficult to
capture every dynamic change, embodiment systems devise
a threshold based solution.

An embodiment computing module called CPS (Content
Positioning System) that performs joint optimization in
minutes, or within seconds, if possible, to determine the best
routing paths between any two CLS nodes and re-direct the
content delivery between them. In embodiments, CPS makes
its decision for content placement (where the content should
be stored) and routing re-direction (which path the content
should be delivered) based on certain criteria. For example,
CPS makes decisions primarily based on the knowledge it
acquired from both context layer (e.g., “hotness” of the
content) and underlying infrastructure layer utilization (e.g.,
bandwidth and congestion situation over particular physical
links). In embodiments, fast response time is achieved in
two ways. One embodiment method is to leverage the
parallel computing facility described in the parallel comput-
ing facility described hereinbelow. Here, the joint optimi-
zation problem is decomposed into multiple sub-problems
that are computed in parallel. Another embodiment method
to achieve fast response time is to divide the network into
multiple hierarchical sub networks, and then let each sub
network compute its own optimization problem, where the
upper layer network (its sub networks turn into a node)
coordinates their computation.

Using an embodiment feedback method, after computing,
an embodiment CLS system uses a protocol for notifying the
router about joint optimization results and protocols for
notifying an OpenFlow™ controller about the joint optimi-
zation results, as discussed above, in order to modify infra-
structure layer forwarding/routing policies. A joint TE/SS
routing decision feedback protocol is also used to notify
correspondent CLS nodes (normally the first CLS hop from
the customer, and potentially the CLS enabled customer
device itself) to adjust its application layer routing policy.
For example, the application layer routing policy can be the
proportion of downloading content from one specific node.
In alternative embodiments, other protocols can be used.

Many conventional access networks exhibit a tree like
pattern because most traffic comes from the backbone net-
work. An over-subscription model is reasonable for web
surfing, in that each user conforms to a click-downloading-
reading behavior model. In such a model, reading lasts much
longer than the downloading. Therefore, other users can

10

15

20

25

30

35

40

45

50

55

60

65

12

reuse the bandwidth for downloading. Streaming content
changes this model, in that over-over-subscription becomes
a large bottleneck if many customers want to watch stream-
ing content simultaneously.

In an embodiment, CLS systems cache popular content
inside each access/accumulation network so that a consid-
erable proportion of the traffic is redirected to a local
metro-area network. In one embodiment, an existing tree
like Ethernet access network is transformed, by a certain
degree, into a non-blocking network (for local content
exchange), by using commodity hardware, for example,
using 1 Giga Ethernet switchers, or by using spare ports of
Ethernet switchers in existing metro-networks. In alternative
embodiments, other hardware can be used.

In an embodiment, a parallel computing cloud facility is
used for parallelized joint optimization and user-content
profile analysis. Parallel computing for optimization, corre-
sponding to an embodiment metro-area Ethernet implemen-
tation, assures that computation is completed in time in some
embodiments.

Regarding collection and feedback, embodiment CLS
implementations, a user-content request profile traffic col-
lection protocol to collect the user profiles. In one embodi-
ment, possible user requests are captured at the resolution
node and logs are summarized. To some extent, the profiles
can be regarded as a two-dimensional matrix in which each
row corresponds to one user, and each column corresponds
to one piece of content. After utilizing content usage pattern
analysis, results of the computation methods are used for
recommendation and/or feedback for CLS parameters self-
adjustment. User behavior pattern analysis is also used for
other services, for example, personalized target advertise-
ment in some embodiments.

In some embodiment CLS implementations, an Applica-
tion Programming Interface (API) is included that is open to
carriers and/or third parties.

In some embodiments, CLS applications include CLS-
enabled wireless backhaul, HT'TP streaming video for video
on demand (VoD) services, CLS over Carrier Ethernet and
Fiber, and CLS interworking with a cloud data center. In
some embodiments, CLS building block functions are
implemented using Intel Router Brick and OpenFlow™
enabled system platforms, and CLS system software and
interface primitives implemented on Linux OS. In alterna-
tive embodiments, CLS applications include other applica-
tions, implementations, and software.

FIG. 1 illustrates a functional block diagram of embodi-
ment CLS node 100, which interfaces to other distributed
CLS processing nodes and centralized controllers. Such
functionalities can also be selectively supported by one
specific Network Element (NE). In an embodiment, there are
three controller entities, joint optimization controller 102,
cooperative caching controller 104 and profile analysis
facility 106, which are centralized for each domain. In an
embodiment, a domain is defined as a cluster of CLS nodes
that are grouped together based on certain administrative
policies. In other embodiments, these functions can be
provided locally or provide functionality for multiple
domains. In alternative embodiments, greater or fewer con-
troller entities, as well as other types of controller entities
can be used.

In embodiments where the controller entities service a
domain of multiple nodes, CLS processing node 112 is
coupled to joint optimization controller 102, cooperative
caching controller 104 and profile analysis facility 106 via
interfaces 132, 134 and 136, respectively.

US RE49,943 E

13

Joint optimization controller 102 collects user content
requests and traffic dynamics, and utilizes optimization
decomposition to periodically work out the policy for con-
tent server selection, content positioning, and traffic engi-
neering (such as changing IP routing direction). Joint opti-
mization controller 102 then provides notice the content
routing engine 108 about such policy changes. In an embodi-
ment, notice of policy changes helps CLS node 100 provide
efficient routing.

Cooperative caching controller 104 collects user content
requests and/or traffic dynamics, and works out the global
optimal caching policy for each domain. In an embodiment,
CLS local caching engine 110 accords to such policy, so as
to contribute some portion of their storage to constitute a
shared cache.

Profile analysis facility 106, which has parallel computing
facilities, is used for user content profile analysis. The output
of profile analysis facility 106 provides feedback to coop-
erative caching controller 104 in some embodiments. In
further embodiments, the output of profile analysis facility
106 can also be used by other applications, for example to
provide a recommendation for personalized target advertise-
ment.

In an embodiment, each CLS processing node 112 has
distributed processing entities including proxy 114, content
routing engine 108, local storage engine 116, local caching
engine 110, content GET/PUT adapter 118, name resolution
engine 120, Dynamic Hash Tree Key-Based-Routing DHT
KBR 122, topology maintenance 124, transportation engine
126, user request synopses generator 128, and traffic syn-
opses generator 130. In some embodiments, greater or few
distributed entities can be used, and/or distributed process-
ing entities having other functionality can also be included.
In embodiments of the present invention, these distributed
processing entities of this category can operate indepen-
dently or cooperate in a decentralized way.

Proxy 114 is a bridge between user terminals that may not
be CLS enabled and the CLS network. Proxy 114 receives
user requests, distributes the requests to relevant engines to
process the messages, forwards the messages to the next hop
(if needed), and dispatches the response to the users. In some
embodiments, proxy 114 is deployed in the very edge of the
network, for example, on the DSLAMS, at the first CLS hop
from a user’s point of view.

The core module of CLS processing node 112 is content
routing engine 108, which decides where and how to get
requested content wanted. Content routing engine 108
chooses between the local cache, remote CLS peers, and the
original publisher. In some embodiments, content routing
engine 108 uses name resolution engine 120 to get a list of
possible candidates if it is determined that requested content
is not in local cache. Content routing engine 108 receives
instructions from the joint optimization controller 102, so as
to enforce content layer routing (server selection) and the
underlay routing jointly.

In an embodiment, local storage engine 116 includes
storage optimized for streaming content, as well as for small
sized Key-Value object storage for CLS indexing.

Local caching engine 110, which is an agent of the
cooperative caching controller 104, defines local greedy
caching policies such as LRU in some embodiments. Local
caching engine 110 decides whether or not content is cached.
In embodiments, Local caching engine 110 is also config-
ured to evict some content due to expiration or lack of
storage space. Content GET/PUT adapter 118 encapsulates

10

15

20

25

30

40

45

50

55

60

65

14

the basic semantics of the storage for content, and also
performs some preprocessing tasks such as operations in
batch.

Name resolution engine 120 is another core module of
CLS processing node 112. In one embodiment, in order to
return a list of suitable nodes hosting the wanted content,
name resolution engine 120 switches between three operat-
ing methods. These three operating methods include broad-
casting such as Address Resolution Protocol (ARP) in a
local area, DHT lookup inside a metro area or AS and some
inter AS resolution mechanisms, for example, REX tree or
Global DHT.

In an embodiment, DHT KBR 122, fulfils a key based
routing task of DHT, by leveraging the information learned
from topology maintenance module. CLS builds up the
hierarchical DHT inside each AS or metro area, and each
layer corresponds to some specific layer of infrastructure
networks, for example, the DSLAM layer, Ethernet Switcher
layer and Edge Router layer. Considering that such peers
are, in fact, network elements, one hop DHT KBRs are
implemented inside each cluster in some embodiments.

Topology maintenance block 124 performs CLS node
discovery and status monitoring of CLS nodes. In some
embodiments, topology maintenance block 124 incorporates
the opaque TLV embedded in IS-IS and BGP packets, a
broadcasting/multicasting method, or some configuration
service assistance.

Transportation engine 126 maps CLS over the main
stream and potential layer-3 and/or layer-2 communication
layers. In some embodiments, Non-IP capabilities are imple-
mented, as well. Also, in some embodiments, Transportation
engine 126 includes Ethernet enhancement for metro area
content networking. User request synopses generator 128
summarizes user demand for content, and sends it to joint
optimization controller 102, cooperative caching controller
104 and profile analysis facility 106. Traffic synopses gen-
erator 130 summarizes background traffic information and
reports it to joint optimization controller 102 and coopera-
tive caching controller 104.

FIG. 2 depicts an embodiment CLS reference network
model. The CLS network is made of several players: con-
sumers 202, publishers, CLS nodes 206 and 208, Access
Service Network (ASN) operators 210 and 212 and data
bearer network operators 214. In this network reference
model, CLS network is operated as a Content Distribution
Service Provider (CDSP), which may be the same provider
of ASN 210 and 212 and Data Bearer Network (DBN) 214,
or an independent 3rd operator having bilateral agreement
with the providers of ASN 210 and 212 and DBN 214.

In this layered view, the top layer contains content/
application aware virtual clouds 216 which provide service
intelligence to support service requirements, service quality
agreements, service brokering, service scenario and flexible
service billing. Virtual cloud layer 216 uses open APIs 218
to offer consumers novel media/content experience. For
example, APIs are provided to help publishers/subscriber to
publish/retrieve the generated/requested contents, to offer
content storage service, to provide event notification service
and to provisioning CLS nodes for efficient content delivery.

Middle layer 220 is made of CLS functional entities. In
some embodiments, each of these functional entities is
realized in a centralized entity. In other embodiments, these
functional entities may be distributed over multiple physical
functional entities. Embodiment CLS content overlays may
be implemented over various access technologies and data
bearer technologies, such as Personal Area Network, Body
Area Network, Home Area Network, Fix/Mobile access, and

US RE49,943 E

15
Metro and Core data network. CLS connects consumer and
publisher via CLS User Network Interface (C-UNI) and
CLS Node-Node Interface (C-NNI) and delivers content
between them. Inter-CLS-AS communication occurs via an
Exchange Network-Network Interface (E-NNI). To overlay
with various access and data bearer network, CLS interop-
erates with the underline network via I-NNI. The CLS
reference model depicts the normative reference points
C-UNI, C-NNI and I-NNI as shown in FIG. 2. C-UNI
mainly uses HTTP or other well known protocol to minimize
the modification of client device. An embodiment C-NNI
includes one of more of the following protocols: intra/inter-
domain content based naming and resolution protocol, user-
content requests profile collection protocol, collaborative
cache decision/suggestion feedback protocol, user-content
profile analytics feedback protocol, and joint TE/SS routing
decision feedback protocol. An embodiment I-NNI includes
protocols for collecting traffic condition (e.g., queue length)
from router, in a Echo-pattern like way, protocols for noti-
fying the router about the joint optimization result, so as to
let the router modity its routing by MPLS or other schemes,
Protocols for notifying the OpenFlow™ controller about
joint optimization results, so as to let the controller modify
the forwarding table inside switchers. In alternative embodi-
ments, greater, fewer and/or different protocols can be used.

Lower layer is 222 is made of network elements, such as
access point, 3G/4G wireless, core routers, MPLS switches,
residential gateways, data centre switches, or even wireless
ad hoc networks, etc. These elements provide underline data
“pipe” connectivity for the CLS overlay. In some embodi-
ments, lower layer 222 is a merged layer with the middle
layer, for example, when all or part of its NEs are CLS
enabled, or upgraded to be CLS enabled. From a user
experience perspective, in some embodiments, content can
be shared over any delivery medium. In some embodiments,
a CLS system delivers content over any network, whether
the network is an infrastructure network or an infrastructure-
less network.

In an embodiment, a CLS system allows multiple imple-
mentation options for a given functional entity, and yet
achieves interoperability among different realizations of
functional entities. Interoperability is based on the definition
of communication protocols and data plane treatment
between functional entities to achieve an overall content
delivery function, for example, security, “findability” or
content caching management. Thus, the functional entities
on either side of reference point represent a collection of
control and bearer plane end-points. In an embodiment,
interoperability can be based only on protocols exposed
across a reference point, which depends on the end-to-end
function or capability realized (based on the usage scenarios
supported by the overall network).

In an embodiment, CLS uses a CL to characterize each
content data, where context is an attribute-profile that asso-
ciates real-time information with social objects. From a
protocol perspective, CLS defines a CLL between applica-
tion layer and data bearer layer. With CL as a handle, CLL
is knowledgeable to deliver and to process content between
content consumers and publishers. In an embodiment, CLL
has two types of intelligence: knowledge from application
(via CL) and the knowledge from the bearer networks (via
link adaptation and integrated routing). Thus the CLL col-
lectively couples applications with infrastructure resources
and optimally utilize network topology and resources for
delivering content.

FIG. 3 illustrates networking in the context of an embodi-
ment CLL protocol stack. In an embodiment, the CLL

25

30

40

45

50

55

65

16

provides a generic content delivery layer for a content-
centric network. With a well-defined CL and limited seman-
tic scope, CLS can control “how much” the network should
learn from applications and the best balance between needed
overhead and processing performance. Each network node
302, 304, 306 and 308 implements a protocol stack that
includes physical layer 310, data bearer layer 312, which is
a data transport layer, and CLL 314. Nodes 302 and 308
represent endpoints, for example, client nodes or data pro-
viding nodes, and have application layer 316. Nodes 304 and
306, on the other hand, represent intermediate nodes that
perform routing and content storage, for example.

In an embodiment, CLS implements a distributed Con-
tent/Service-aware overlay for content delivery services. To
realize “content awareness” and to control the complexity of
processing content semantics, CLS treats content as a “con-
noted data.” In an embodiment CLS system, each content
data chunk is attached with a Context Label CL is defined as
n-element tuple (n>=1). Each element in a CL is an attribute
which characterizes the content. For example, the tuple
(time, location, security) is a CL that can be used to define
and/or determine whether the designated content is mean-
ingful or not.

For example, one scenario for “connoted” movie Y is to
use CL=(2-day, Singapore, key-locator). In this example, the
user can only watch movie Y for two days, Y is prohibited
from circulating in Singapore area and the subscriber can get
public key of Y from key-locator. In some embodiments, an
implicit rule can be applied using the CL. For example, after
the key expires in two days the movie is no longer watch-
able. In one embodiment, the CL is a relational array that
defines the semantic scope for the associated data. In the
view of CLS, each data is not an isolated object, but rather
data is characterized by its surrounding environment. In an
embodiment, CLS uses CL to guide content searching,
routing/forwarding, local caching and mash up processing.

In an embodiment, each CL is a “meta data” which are
attributes used to scope whether the content is meaningful or
meaningless against a certain context when people share
information using the Internet. These meta data (attributes)
come from many aspects in some embodiments. For
example, as shown in FIG. 4, a user-specific context may
include user ID, device name and device type; network-
specific context may include location and presence; appli-
cation-specific context may include content name, version,
size and TTL (time-to-live); and security-specific context
may include security key and crypto algorithms. When
content is being generated or being delivered, a CL is
attached to the content as a “header.” CL characterizes the
relationship between content and its existing environment.

Embodiment CLs can be implemented in a variety of
ways. For example, when application data is carried in
HTTP, a CL-enabled extension-header can be defined for
HTTP 1.0 protocol as follows:

http://video.aol.com/category/

comedy?sem=1&ncid=AOLVDP001

/my-iPhone: 1234

my-location: GPS

security-key: %&*(

TTL: 24-hour

Signature: (HMACICMAC)

In the above example, video content is attached with a CL
header, which is a list of (name:value) pairs. This example
CL header defines that the video should be delivered to an
IPhone at location GPS with security key. As defined by the
CL, the video is viewable for only 24-hour, and the receiver

US RE49,943 E

17
has to verify the signature of the publisher which was signed
using either HMAC or CMAC algorithm.

In an embodiment usage method using HTTP over CLS,
a client gets a list of content names from a search engine.
Next, the client enters a URL. The client device adds a CL
header, which binds a node ID and an application ID, and
other context information, if any. Next, the client device
sends CL to all connected access interfaces. The message is
propagated to all reachable CLS nodes within a certain
scope, in one embodiment, until it reaches either a node with
the cached content, or the node nearest to the publisher (i.e.,
the web server.) Next, the contents are delivered along the
backward path (soft-state path established by CL-get). Sub-
sequent updates to the local cache (i.e., saving a copy) are
done at each node. In an embodiment, Any-cast and/or
Multi-Point-Multipoint is performed via the multicasting
message from the client and from a CLS node in some
embodiments. In some embodiments, any-cast is used where
content owner is not pre-known. In one embodiment, a
request to a DNS is only issued by a network node and not
by a client node, such that the network node will only issue
a DNS if it cannot find content within the CLS system.

In embodiments, CLS systems use three core context
values: Real-time, Socialization and Personalization. A car-
rier can utilize an embodiment context to couple real-time
Internet operational semantics (i.e., where, who, when, and
how) with user social objects.

In an embodiment, CLS applies hybrid content naming
schemes for content delivery, with respect to the different
interfaces. For example, with respect to a C-UNI interface,
CLS utilizes widely used user-friendly formats such as a
Uniform Resource Locator (URL) structured name in one
embodiment. For a C-NNI interface within a CLS AS, CLS
uses flat naming space to facilitate Multi-tier DHT name
resolution. For inter-CLS-AS domain, either a structured
name or a flat name can be used relying on how global
naming is agreed. For CLS/mon-CLS interworking, struc-
tured name should be used. Alternatively, other naming
schemes can be used. In embodiments, a CLS node provides
mapping functions to transform the name between structured
naming space and flat naming space, if necessary.

In an embodiment, CLS supports URL naming with
extension header over a C-UNI interface, where an exten-
sion header is used for context label. Given that almost 70%
Internet traffic today is carried by HTTP protocol, CLS uses
URL naming for backward compatibility purposes in some
embodiments. For example, as illustrated in FIG. 5, a movie
publisher can publish movie URI “www.yahoo.com/movie/
AVATAR?” to the CLS network. Together with this ID, the
publisher can define a CL-header which includes several
attributes, such as a signed checksum for content authenti-
cation, the public key of publisher, and a TTL which
indicates how long the content can exist in the CLS network.

In an embodiment, CLS implements multi-tier DHT to
support content resolution and distributed data storage
within an AS cluster. In a DHT-enabled network, flat naming
(i.e., unstructured name) is used to facilitate a content
search. After a URI is received over C-UNI, CLS nodes
mapping user-friendly name into multi-tier DHT flat naming
space and determine where the content should be stored (i.e.,
publish operation) or searched (i.e., inquiry operation) in
some embodiments. The CLS node creates a mapping entry
between the URI and the flat name. In an embodiment, the
flat name may use a signature (content name, content data)
that was signed by publisher’s private key. The meta data
carried by CL-header is also stored together with the content
name. For example, when a CLS node receives a content

10

15

20

25

30

35

40

45

50

55

60

65

18

inquiry from subscriber, CLS translates URI to a 256-bit
DHT name and finds a copy of the movie within the cluster,
as shown in FIG. 6, which illustrates mapping between name
spaces. After the content (e.g., a movie) is delivered to the
originating CLS node by checking the mapping entry, CL.S
returns the movie with the URI to the subscriber.

In one embodiment, CLS inter-domain communications
include two scenarios: inter-CLS-AS and CLS/non-CLS
interworking. The inter-CLS-AS interface uses a global
DHT flat name in an embodiment. Alternatively, a structured
name is used that implements Content Resolution Exchange
Point (CREX) functions with name translations similar to
C-UNI. For CLS/non-CLS interworking, the structured
name is applied such that content routing exchange func-
tions (e.g., DNS) uses the structured name for further
content resolution and routing. In either of the interworking
cases, if an originating CLS node cannot find the content, the
inquiry (with structured or flat name) will be submitted to all
adjacent CREXs to execute the further search. In an embodi-
ment CREX determines whether it should go to a further
resolution or drop the search.

In an embodiment, name persistence implies that content
name remains valid in case of storage location change,
content modification, owner change, and change of algo-
rithms used for naming purpose (e.g., a hashing algorithm).
In an embodiment CLS system, each content data object
may have multiple identifiers. For example, data may have
user-friendly name using URI and an internal DHT
ID=HASH (URI). In addition to the name, a data object also
contains meta data (i.e., a Context Label) representing the
content entity in some embodiments. In an embodiment, one
attribute of a CL is a signature. The signature is a checksum
function of content name and content data entity, and signed
with the private key of the publisher. The signature is used
by the subscriber to authenticate the owner of the content.
One embodiment CLS considers two scenarios of naming
persistence: one for a content data entity change, and one for
content ownership change.

Regarding content data entity modification, whenever
content data is updated, CLS re-calculates the signature of
(Name, Content), where “Name” is kept unchanged and
“Content” is the modified data entity in one example. After
the modification, CLS re-publishes the updated content with
the new context label. Under this scenario, the context label
keeps all the other attributes unchanged but the new Signa-
ture. The name is kept unchanged. In other scenarios, other
attributes are changed.

When content changes its owner or service provider, an
embodiment CLS system re-calculates the Signature (Name,
Content) by using a new owner’s private key and replacing
the key locator of Context Label by pointing to the public
key of new owner. After the modification, CLS re-publishes
a new CL containing new Signature and new public key. In
this example, both Name and Content are kept unchanged.

In an embodiment, a CLS system has a content first
networking architecture. In this embodiment, customers do
not need to specify the address of the communication peer;
they just request content directly by the correspondent
content name as discussed hereinabove. The embodiment
CLS network finds candidate sources hosting the content
and gets it back to the customer using, for example, multi-
path downloading. An embodiment name resolution entity
answers the question of “where” such candidate sources are.
“Where” here means the address of the ultimate server or
even the next hop. FIG. 7 illustrates how a user-friendly
name is mapped to a content entity via a multi-identifier and
a context label.

US RE49,943 E

19

FIG. 8 illustrates embodiment name resolution schemes
for local area resolution 802, an intra AS (or metropolitan
area) resolution using a hierarchical DHT based approach
804, and inter AS resolution using global DHT or hierar-
chical REX 806.

In an embodiment local access area resolution method, a
broadcasting based name resolution is a very efficient broad-
casting is naturally supported in both wireless access envi-
ronment and Ethernet access networks. Considering the
scalability of broadcasting, its application is limited inside
each local access area in some embodiments. By using a
broadcasting scheme, a user who broadcasts an interest can
be responded to by anyone else (including other users or
CLS nodes) who has the desired content. In some embodi-
ments, ARP or other broadcasting based primitives, for
example, can be used.

In an embodiment intra AS (or metropolitan area) reso-
Iution, a hierarchical DHT based approach is used. The DHT
hierarchy fits the hierarchy of infrastructure networks, such
as DSLAMS, Ethernet Switches, BRAS, routers, etc., in
some embodiments. All, or representative peers from the
lower layer DHT join the upper layer DHT. FIG. 9 depicts
a two layered hierarchical DHT, where all region DHT peers
902, 904, 906 and 908 join whole DHT 910 at the same time.
In an embodiment, a node needing content first uses hashing
to get a flat name, then performs a lookup in the lowest level
of DHT to which it belongs. The node then switches to upper
layer DHT to lookup more candidates if necessary. If a
content resolution fails at the top DHT, the inquiry will be
sent to CREX to get global resolution.

In an embodiment, Inter AS resolution another global
DHT is used, which unifies the CLS name resolution design.
Alternatively, a hierarchical tree of CREX is implemented.
In alternative embodiments, other methods can be used for
Inter AS resolution.

In one embodiment, there are two scenarios for inter-
domain exchange: inter-CLS-AS domain and CLS/non-CLS
domain. Inter-CLS-AS domain communication is performed
between two CLS networks, while the latter is performed
between a CLS network and non-CLS network. CLS imple-
ments CREX to exchange the content name resolution
information across the CLS domain in an embodiment. Each
CLS-AS may be adjacent to several other CL.S-AS, based on
the definition of CLS admin/routing domain. Within each
CLS-AS cluster, some CLS nodes are designated as the
border nodes to communicate with other CLS-AS via
CREX. The border nodes implement inter-domain protocols
to exchange information with CREX. When a new CLS
node joins the AS, the new node automatically discovers all
the border nodes within the AS, and the new node estab-
lishes point-to-point infrastructure connectivity with each
border node. When a CLS node (ak.a., originating node)
receives a content inquiry from a user, it firstly maps the URI
name to flat name and conducts an intra-domain resolution.
If the content cannot be found, the originating node multi-
casts the inquiry to all the border nodes. The latter commu-
nicates with CREX to execute further resolution. In an
embodiment, CREX is a logical entity that can be imple-
mented on the border node or on a different box in some
embodiments. In an embodiment, CREX determines how far
the resolution should go and what the inter-domain protocol
is used for adjacent domains. To support large scale content
resolution, CREX implements content name aggregation in
some embodiments.

In one embodiment, CREX inter-domain content resolu-
tion is performed by extending the BGP protocol to populate
top level content name across the domain. In this case, BGP

10

20

25

30

35

40

45

50

55

60

65

20

is used to exchange both infrastructure reachability and
content routing reachability. The top level name represents
the integrated content naming hierarchy in an embodiment.
For example, the top content name is an AS-ID/content-
domain or City-ID/content-domain. Opaque TLV can be
extended to BGP to include the top content name. The
extended BGP is installed at CLS border node to exchange
the top content name and to perform inter-domain name
resolution. Alternatively, BGP is run to exchange infrastruc-
ture topology information only, and other protocols are used
for inter-domain content name resolution.

For CLS/mon-CLS interworking, CREX can directly trig-
ger a DNS inquiry for content resolution in an embodiment.
Here, CREX uses the returned IP address to get the content
from the origin server. In inter-domain cases, in some
embodiments, if a CLS network cannot find the content in
intra-domain, the inquiry is forwarded to CREX for further
search. The inquiry is dropped if the content cannot be found
at CREX. FIG. 10 is a block diagram illustrating inter-
domain content resolution for CLS and non-CLS systems.

In embodiments, CLS nodes resolve a large amount of
on-line content. To support this, a huge DHT or similar
distributed indexing implementation composed of tens of
thousands nodes is used in one embodiment. Alternatively,
other name aggregation schemes can be used. For example,
in one embodiment, the top content name can be an AS-ID/
content-domain or City-ID/content-domain and the content
domain is defined according to either geographical region,
administrative domain or underlying routing domain. Each
domain is managed by third independent parties in some
embodiments. If the content-domain is made to be equiva-
lent to the host name part of the URL, then the number of
content names is almost comparable with the number of host
domain names. In this case, a DNS server like architecture
can be used in some embodiments. In embodiments that
aggregate into a more abstract level (e.g., the content-
domain is an aggregation of host names), then the number of
top level content names will be reduced comparing to the
number of DSN entries. In such embodiments, a content-
centric network (CCN) can be used.

In some embodiments, CLS systems use built-in security
mechanisms for content delivery using an information-
oriented view of security, that is, the security is applied
against the content, rather than against the “connectivity
pipes.” An advantage of using an information-oriented view
of security is that it is suited to defend against malicious
attacks to which “secured pipe” connections have difficulty
defending such as Replay and Man-in-the-Middle or Man-
in-the-Page, where an interceptor changes and/or frauds a
message between sender and receiver. In one embodiment
CLS implementation, trustworthiness comes from the con-
tent itself, not from the machine on which the content is
stored. Some embodiment CLS implementations support a
receiver-centric security model in which the user can decide
what content they would like to receive and from whom they
will receive the content.

An embodiment CLS security approach enables a user to
authenticate the linkage between content names and content.
For example, given a Name N associated with Content C, a
publisher could create a digital signature Sign(N, C), and
publish mapping triple {N, C, Sign(N, C)} into CLS net-
work. Here, Sign(N, C) is a check sum signed by publisher’s
private key. For example, before the movie publisher pub-
lishes www.yahoo.com/movie/AVATAR into the network,
the publisher uses his/her private key to create a signed
check sum “xxx.” The triple, {www.yahoo.com/movie/
AVATAR, AVATA-content, xxx}, is then published to CLS.

US RE49,943 E

21

The name, www.yahoo.com/movie/AVATAR is published
into a search engine like Google, as well. The subscribers
then get ID “www.yahoo.com/movie/AVATAR” from
Google and issue a CLS search for the movie with the
selected ID. As described in previous section, the mapping
triple {N, C, Sign(N, C)} is implemented in URL with CL
header in HTTP. After subscriber receives the movie, he/she
will use the publisher’s public key to verify xxx and to
authenticate the publisher, where the authentication is suc-
cessful only if the publish key matched with private key for
decrypting the signature. In alternative embodiments, other
security methods can be used.

In an embodiment, this procedure is iterated based on a
layered privilege security with delegation model. For
example, consider that there are security domain ownership
relations among a VP, Director and Employee in the content
naming tree, and the VP, Director and Employee are the
holders of public key 1, public key 2 and public key 3,
respectively. After the Employee calculates xxx=Sign 3(N,
C) and publishes {N, C, xxx}, the Director can use his
private key to create a new signature yyy=Sign 2(XxX,
public-key-3) and attach yyy to the content. This implies a
delegation relationship between the director and the
employee (i.e., director guarantees that Sign 3 is the one
from the employee). In turn, the VP can use his private key
to create a new signature 7zz=Sign 1(yyy, public-key-2) and
attach “zzz” to the content. When the subscriber receives the
content, he can use top level public key (i.e., public-key-1
from VP) to verify “zzz” (which authenticates the VP is the
right person who manages the director), and use public-
key-2 to verify yyy (which authenticates the director is the
right person who manages the employee), and public-key-3
to verify “xxx” (which authenticates the employee is the
right person who is the author of Content with name N). By
applying this embodiment approach CLS can support a
flexible layered access privilege security management and
delegation model between content publisher and the con-
sumer. FIG. 11 illustrates an example of an implementation
of authentication name and content.

In an embodiment, a CLS system creates a label header to
facilitate the layered public key management. This header
contains an array of entries to indicate where the user can get
the public key (a.k.a., key locator). In embodiments, the key
locator is a public key, or a URL indicating the CA (Certi-
fication Authority) from which the user can locate the public
key. In further embodiments, other types of key locators can
be used.

In embodiments, a CL.-header with key locator provides
CLS a flexible mechanism to support a “security delegation”
model. In this model, both subscriber and publisher indicate
their certification authority (CA), or delegate their CA in the
locator. In an embodiment method, when labeled content
(either an inquiry or data) is received, the receiver gets a
sender’s CA URL link (i.e., key locator) and follows the
URL link to peer’s delegate to get sender’s public key for
authentication. After executing the authentication (i.e., veri-
fying the signature), the receiver reads the contents. Alter-
natively, the receiver conducts further crypto operations
with the sender to exchange a symmetrical key if the content
is encrypted.

In an embodiment, CLS can delegate CA to a trustable
third party who is a certificate authority to represent a social
community like subscribers and publishers. By providing
CA URL links in CL header, CLS creates a social security
control layer that verifies the social relationship between the
sender and the receiver. The CA delegation can proceed in
one domain if sender and receiver are in the same social

10

15

20

25

30

35

40

45

50

55

60

65

22

society, or in multiple domains. Thus, in embodiments, CLS
security is integrated flexibly with today’s web-based hier-
archical CA system.

In an embodiment, CLS security implements a peer-to-
peer trust relationship for information networking, and per-
forms content access privilege check associated with social
trust and policies. By checking the relationship between
content name and the content, and using a CL header, CL.S
implements a social control layer of trustworthiness which
defines and verifies the social relationship between the
content supplier and the consumers in some embodiments.

An embodiment content storage subsystem provides stor-
age and caching capabilities for the content, and storage for
the content name resolution items. In an embodiment, con-
tent storage capability permanently stores content until the
content is deleted. The content storage subsystem can be
used by CLS, for example, to provide services like Amazon
Simple Storage Service (Amazon S3™). In one embodi-
ment, a CLS system stores content by storage service first
and then publishes content to a name resolution system.

In an embodiment, content cache capability is used to
dynamically store content so that future requests for that
content can be served faster. In an embodiment, when a CLS
system requests content, if the requested content is con-
tained in cache (cache hit), the request is served quickly by
reading the cache. Otherwise, the request is routed and the
requested content is fetched from its original storage loca-
tion or from other locations. In an embodiment, name
resolution storage capability is used by the name resolution
system to store and operate the name resolution item.

In an embodiment, a CLS system has a distributed storage
system for the content storage and caching. The distributed
storage system has large scale Storage Nodes (SN) that
provide storage resources. In an embodiment, two types of
SNs are provided: a network built-in SN and a User equip-
ment build-in SN. An embodiment network build-in SN is
embedded in the Network infrastructure and may be inte-
grated within network nodes like router or Ethernet switch.
In some embodiments, the network build-in SN is imple-
mented as a storage server with a physical link to network
nodes. High availability and with low churn of this kind of
SN facilitate maintenance and management in some embodi-
ments. An embodiment user equipment build-in SN is
embedded in user equipment such as personally-owned hard
disk. When a user device attaches to CLS network, part of
its own storage space becomes available to CLS network in
some embodiments. Also, in some embodiments, user equip-
ment build-in SNs are characterized by mobility, multi-
homing and high SN churn.

FIG. 12 illustrates an embodiment network built-in SN
architecture. Storage resource 1200 is made of one or more
kinds of storage media such as hard disk drive, memory,
Solid State Disk, for example. The determination of which
type of storage media is used is determined by read-write
efficiency, cost and business demands in some embodiments.
Storage resource 1200 is divided into three portions for three
types of data: content storage 1202, content cache 1204 and
name resolution storage 1206. During operation, an embodi-
ment SN chooses all data types or certain data types to be
stored based on its own configuration. For example, some
embodiment SNs may only store and cache content, while
other embodiment SNs may just store name resolution
storage 1206.

Local storage engine 1208 integrates local storage
resource management and provides a unified data operation
interface to other subsystems or internal modules in some
embodiments. Local storage engine 1208 performs optimi-

US RE49,943 E

23

zation to improve the efficiency of data access. In embodi-
ments local storage engine 1208 informs topology mainte-
nance subsystem 1210 of the information on local storage
resource such as the data type being stored, the total capac-
ity, and the free capacity for each data type.

Local caching engine 1212 splits the local content cache
resource into two portions: non-cooperative caching and
cooperative caching. The capacity ratio of two portions is
dynamically adjusted by cooperative caching controller

24

Conflicting operations include read-write conflicts and
write-write conflicts. Some embodiment systems make sure
that conflicting operations are done in the same order for all
cooperative caching. Since a large number of synchroniza-
tion jobs, especially for content cache, will consume large
amounts of network bandwidth and server resources, net-
work bandwidth and server utilization is taken into account
in some embodiments. Regarding availability, consistency
and availability may not be satisfied same time in some

1214 in some embodiments. Non-cooperative caching maxi- 10 , - 1 e
. . . systems, based on Brewer’s Consistency, Availability and
mizes the local hit rate for highly popular content, where the - .
. . . Partition tolerance (CAP) theorem. Therefore, in some
content replacement strategy is determined by local caching
- - - embodiment systems, if an application service needs high
engine 1212 itself. In some embodiments, content replace- Labili . b ded off
ment strategy is completely determined by local caching availability, cor}smency may be traded off.
engine 1212. For example, in some embodiments a LRU 15 In.an embodiment system,.content storage uses a strong
replacement can be used. Cooperative caching, on the other consistency or eventua¥ conmstency for content storage. A
hand, aims to vanish cache-capacity constraints by allowing ~ User may define a consistency requirement when content is
each cache to utilize nearby caches to prevent excessive pubh.shed. Ifauser does not define the requirement, adefgult
replication for content. Such a content replacement strategy consistency (based on system configuration) is applied.
is determined by policy dynamically installed by Coopera- 20 Another related attribute is number of replicas for the
tive Caching Controller 1214 and the local access pattern of content storage which is defined by the user or by a system
the content. The policy (e.g. access cost) is calculated by default value in other embodiments.
Cooperative Caching Controller 1214 based on the global With regard to content caching, the consistency require-
information such as access pattern of the content, cache ment is relaxed in some embodiments. For example, in one
locatiop, network tOpOlOgy and availe}ble bandwidth in some 25 embodiment, content Cachjng uses Only eventual consis-
embodlments. In alternative embodiments, greater, fewer, tency for content cache. There are two attributes related to
and/or different parameters can be use.d. achieve eventual consistency. One is TTL, which defines
_ Content GET/PUT Adaptor 1216 hides the local opera- how long a replica of content cache can live, and another is
UO,I}al de.talls ffor different t}ipes ?.f content and provides a check time, which limits a SN to take no more than N ms in
untform nterface to external applications. . 0 trying to check the new version of the content by contacting
In some embodiments, data consistency is a consideration . - -
. L original SN. In an embodiment, N is between about 50 ms
for CLS systems, where content is stored, cached, distrib- .
: . . and about 100 ms. These two attributes can be defined by the
uted and replicated across multiple SNs. Embodiment sys- by a default val
tems track some or all of the following parameters: number useI:r or by ab Z.au vame. . ides that all
of replicas of the content, placement of the replicas, access- 35 oL an embo 1ment3 strong consistency provides that a
to-update ratio, conflicting operations, network bandwidth read and write operations to content at the original SNs are
and server utilization, and availability. The number of rep- executed in some sequential order, and that a read to content
licas for the original content storage can be limited by a ~ from original SNs always sees the latest written value.
Content Publish operation, however, in some embodiments, EYepmal Conswtepcy 1mP11e§ that Wnte§ to an content at
the number of replicas for the content cache may uncon- 40 original SNs are still applied in a sequential order, but reads
trollable, dynamically changed and very large. The place- to a content from caching SNs can return stale data for some
ment of the replicas is based on the geographic/topological period of inconsistency (i.e., before writes are applied on
complexity of the replica, especially with respect to content caching SNs).
cache. Access-to-update ratio is closely related to the service Table 1 describes an embodiment interface between a SN
property. and another subsystem:
TABLE 1
Interface between SN and other subsystems
Subsystem Function Parameter Return
Name Publish (Name, Name: content name Success
Resolution Attribute, Location) Attribute: optional (see or Fail reason
Engine following table for detail)
Location: content location list or
location list
Resolve (Name) Name: content name Location List
(empty list means
no match
resolution entry)
Withdraw (Name, Name: content name Success
Location) Location: content location list or or Fail reason
location list
Content Put (Name, Attribute, Name: Content name Success
Routing Data) Attribute: (see next table) or Fail reason
Engine Data: Content data
Get (Name) Name: content name Content data
or Fail reason
Delete(Name) Name: content name Success

or Fail reason

US RE49,943 E

25
TABLE 1-continued

26

Interface between SN and other subsystems

Subsystem Function Parameter Return

Cooperative Install (Policy) Policy: access cost. Success

Caching or Fail reason

Controller unlnstall (Policy) Policy: access cost? Success

or Fail reason

Topology Inform StorageResInfo: Array of < Success

Maintenance (StorageResInfo) Supported data type, total or Fail reason
capacity, free capacity>

TABLE 2 engine 1310. Joint optimization controller 1302, which has

15 information collecting module 1304, computing module

Attribute Definition 1306 and control output module 1308, executes information

Attribute collection, rapid computation of joint optimization prob-

Category Attribute Name Meaning lems, and results feedback used for network utility maximi-
: : zation and user experience optimization.

Security Signature = XXX checksum for content 20 In an embodiment, joint optimization receives known
authentication (see inf . . der t K timal decisi Such
next section for security) information in order to make an optimal decision. Suc

KeyLocator = Location of the public Key known information includes a list of candidate servers
public key location having wanted content, network status such as topology
checksum for content information and traffic information, and request information
authentication (see lated inals. 1 bodi
next section for details), 25 re ate tp user teqmna s. In some embo 1ment.s, server
the public key from information is obtained from content routing engine 1310,
publisher to help the and network status information is obtained from traffic
subsriber for synopses generator 1312. User request information is
authentication, and a TTL h
which defines how obtglned from.user request synopses generator 1314. Infor-
long the content can exist 30 mation collecting module 1302, therefore, connects to con-
. . in the CLS network tent routing engine 1310 to get the list of candidate servers,
Consistency Consistency Type = Define the consistency traffic synopses generator 1312 to collect the traffic infor-
Eventual requirement for the . b . Is fi lecti i diti
Consistency content. mation by using protocols for co egtlng trathc con 1t1.0n
or Strong (e.g., queue length) from the router, in a Echo-pattern like
Consistency o 35 way, and requests synopses generator 1314 obtains user
CheckTime = N Limit a SN to take no more content requests by using a user-content requests profile
than N ms in trying to check lecti 1
the version of the content by collection protocp . .
contacting original SN. In an embodiment, computing module 1306 helps to
TIL=T Define a time no more than T execute joint optimization calculations so as to obtain opti-
ms a r;;;tllca of the content 40 mal results. In embodiments, three methods efficiently cal-
can exist.
Placement PlaceArmay Define a list of placement culgte an optimal §Qlut10n. One method is to apply optimi-
{<AS =X, requirement for the content. zation decomposition theory to decompose the joint

Each item means to store N
replica of content in AS named X.

RepNum = N>, .. .}

Traditionally, Internet Service Provides (ISPs) mainly
provide Internet connectivity and optimize traffic engineer-
ing on their networks to control how resources are used and
what path the traffic will take through their networks (that is,
how the traffic is routed from its source to its destination).
Typically, current IP layer traffic engineering and application
layer server selection respectively optimizes their own
objectives and these two parties have no cooperation, which
can only obtain sub-optimal equilibria. Furthermore, due to
the fact that the subscribers of ISPs are becoming the
subscribers of CPs, ISPs have a strong incentive to offer
content to their own subscribers by deploying their own
content distribution infrastructure. Based on these two con-
siderations, embodiment methods employing joint optimi-
zation between traffic engineering and server selection pro-
vides for content routing and good user experience.

FIG. 13 illustrates an embodiment joint optimization
subsystem 1300, which provides an optimal policy for IP
layer traffic engineering and application layer server selec-
tion. In an embodiment, joint optimization subsystem 1300
has joint optimization controller 1302 and content routing

45

50

55

60

65

optimization problem into multi-level sub-problems, and
solve each sub-problem directly in parallel. Another method
is to apply a projection type method to find an optimal point
of a convex/concave function on an intersection of convex/
concave sets. A third method is to divide the network into
multiple hierarchical sub-networks so that these sub-net-
works independently compute its own optimization problem
due to their irrelevance and having the upper layer network
help coordinate their computation by using bandwidth cou-
pling. In alternative embodiments, other methods can be
used to calculate an optimal solution.

In an embodiment, control output module 1308 exports
optimal routing to content routing engine through a protocol.
In one embodiment, a content positioning protocol can be
used. The control output module 1308 exports a mapping of
users and servers, the paths of each user-server pair, and the
traffic proportion of each path. These optimal results will
then formulate two policies, one is an IP layer routing policy,
and the other is an application layer server selection policy.

Content routing engine 1310 establishes an indirect inter-
action with user terminals through proxy, which accumu-
lates user requests. Such requested information eventually
reaches requests synopses generator 1314. Furthermore, in
some embodiments, content routing engine 1310 decides
where and how to get wanted content. For example, content

US RE49,943 E

27

routing engine 1310 can request wanted content from the
local cache through content GET/PUT adapter 1316. If
content routing engine 1310 finds that the wanted content is
not in the local cache, it uses name resolution engine 1318
to get a list of candidate servers. After joint optimization
subsystem 1300 finishes its calculation and obtains optimal
results, content routing engine receives instructions from a
control output module 1308 of joint optimization controller
1302. These instructions are classified into two types, one is
to inform transportation engine to modify the underlay
routing policy by using protocols for notifying the router
about the joint optimization result, so as to let the router
modify its routing by MPLS or other schemes, and/or
protocols for notifying the OpenFlow™ controller about
joint optimization results, so as to let the controller modify
the forwarding table inside switchers or both. The other type
directs topology maintenance to execute content layer rout-
ing (server selection) by using protocol joint TE/SS routing
decision feedback protocol or protocols for notifying the
router about the joint optimization result, so as to let the
router modify its routing by MPLS or other schemes.

FIG. 14 illustrates an embodiment deployment mapping
CLS logical entities to network elements. In an embodiment,
CLS nodes include many different subsystems to support
content routing/resolution, content storage/caching, global
inter-layer resource optimization and content service pro-
cessing. In an embodiment, these functions are implemented
independently and operated via a collaborative manner. In
an embodiment, CLS nodes virtually organize these func-
tions together to scale the system in the way of pay-as-you-
Zrow.

In an embodiment, CLS Client (CC) and CLS Proxy (CP)
are software modules to support content routing and content
forwarding, where CC is implemented at user device and CP
is implemented on CLS node. Both CC and CP implement
C-UNI protocols, while CP also supports C-NNI, I-NNI and
E-NNI protocols. In alternative embodiments, other proto-
cols can be supported.

In an embodiment, CC is the middleware between appli-
cations, for example, Web, Video, Audio, and access link
layer. CC implements C-UNI protocols communicating with
CP, and CLL functions which add/remove content labels for
each content chunk. CC can be built into a Web browser, or
run as an independent software module. CC further provides
link adaptation functions to manage access links and execute
attachment management and mobility support. CC also
provides open API to application layer to publish user-
generated content, to inquire the interested content, and to
adapt content delivery functions to various access links with
serial or parallel operation mode (e.g., multi-homing opera-
tion). In further embodiments, CC also implements security/
privacy operation such as data crypto and content authenti-
cation.

FIG. 15 illustrates a block diagram of CC functionality for
an embodiment. Given an attached access interface 1502,
which can be a wireless or wireline interface, transport
adaptation engine 1504 receives data from interface 1502
and forwards it to CLL receiver module 1506, which
removes the CL header. The data is then forwarded to a use
application via API 1508. Likewise, transmitted data from
API 1508 is routed to CLL dispatcher module 1510, which
adds the CL header and forwards the data to transport
adaptation engine 1504 for transmission over attached
access interface 1502. Subscriber policy engine 1512 is used
to manage per-subscriber access privilege profiles (e.g.,
access security and QoS enforcement), and attachment con-

10

15

20

25

30

35

40

45

50

55

60

65

28

figuration interface module 1514 is used to manage user’s
access status (e.g., presence and location).

In an embodiment, CP is a proxy software module that
implements CLS node processing functions described
above. CP is responsible for content routing and content
forwarding over C-UNI, I-NNI, C-NNI and E-NNI. For
C-UNI, CP manages CC attachment and mobility for loca-
tion-based services. CP also implements content service
process for designated applications such as content mash up,
transcoding and targeted advertisements in some embodi-
ments. For I-NNI, CP implements IS-IS to support CLS
topology automatic discovery and maintenance. IS-IS is also
used to collect and integrate underlying infrastructure topol-
ogy for CLS routing path selection and optimization. The
routing integration can be done either using integrated mode
(i.e., CLS and infrastructure share the same IS-IS routing
database), or using an overlay model (i.e., CLS maintains an
individual routing database but keeps a mapping in
between). Based on the knowledge of information resource
at CLS level and network topology at infrastructure level,
CLS has global cross-layer optimization. For C-NNI, CP
supports content naming resolution and content caching/
storage functions. CP implements mapping functions
between C-UNI naming space and C-NNI naming space. In
alternative embodiments, other interface types can be used.

For CLS border nodes, CP implements E-NNI protocols
interworking with CREX for inter-domain name resolution.
In an embodiment, CP forwarding plane implements a
L2/L.3/L4 protocol stack to terminate/dispatch content
chunks. These stacks are based on the adjacent links. Ter-
minated packets are classified by inspecting CL-header, and
the flow action engine looks up the pre-configured action
table to determine where the packet should be processed. For
example, after content is found from DHT resolution at
remote CLS node, one copy may be made in the local cache.
In an embodiment, before the originating CLS node sends
the content back to the user, a mash up procedure may be
executed (e.g., add some ads in the web page). In some
embodiments, CLS implements OpenFlow™ management
to execute policy-based forwarding, and provide open API
to service layer to customize rule-based content routing.
Furthermore, the forwarding plane may implement QoS
policy engine to schedule the packet relaying functions with
priority. In some embodiments, CL-based crypto procedures
for encryption/decryption may be implemented.

FIG. 16 illustrates a block diagram of CP 1600 function-
ality for an embodiment. In some embodiments, CP func-
tionality is performed by software running on a context label
switch (CLS). In an embodiment, transport adaptation
engine 1604 receives data from adjacent access/router inter-
face, which is a wireless or wireline interface. Deeper packet
inspection is performed 1606, and the CL header is looked
up and classified 1608. The data is then forwarded to CL
flow action engine 1610, which interfaces to CLL routing
plane 1612, CLL service plane 1614, and CLL storage plane
1616. Data is also received from these planes by CL flow
action engine 1610 and forwarded CL header processing
module, which applies the CL header and forwards the data
to QoS scheduler and CLL dispatcher 1620. GET/DATA is
than forwarded to adjacent access/router interface 1602 via
transport adaptation engine 1604.

In an embodiment, CP 1600 checks to see if requested
data is stored in CLL storage plane 1616. If the content is not
stored locally a request is sent to CLL routing plane 1612,
which initiates a request for the data externally through CL
header processing block 1618, QoS scheduler and dispatcher
1620 and transport adaptation engine 1604. When the CP

US RE49,943 E

29

receives the externally requested data, the data may sent to
CLL service plane 1614 via transport adaptation engine
1604, deeper packet inspection 1606, CL. header classify and
look up 1608 and CL flow engine 1610, in some embodi-
ments, for example, to insert advertisements on web pages.
In some embodiments, service plane 1614 performs func-
tions such as transcoding video for clients according to the
type of client hardware, base on a client provided context
label. For example, a small mobile client device may require
video with a lower picture resolution than a desktop com-
puter client device.

In an embodiment, based on the supported storage type,
each CS subsystem is mapped to two kinds of logical nodes:
indexing node 1704 and data storage node 1702, as illus-
trated in FIG. 17. Indexing Node 1704 has local storage
engine 1706 and name resolution storage 1710 within stor-
age resource 1708. Each index node can simultaneously
joins in one or more name resolution subsystems, for
example, regional Multi-Layered DHT, Global DHT/CRXP,
(Content Resolution Exchange Point) and stores and looks-
up name resolution items belong to specific key range in
some embodiments. Each resolution item has a mapping
relationship between a content name and a list of content
locations. Each location is a data storage node address where
a replica of content stored. In such embodiments, content
name resolution and content storage are logically separated.

Data storage node 1702 is made of local storage engine
1706, local caching engine 1712, Content GET/PUT Adap-
tor 1714 and storage resource 1708 for content storage 1716
and content caching 1718. In an embodiment, when a user
attempts to publish content to the CLS system, a topology
maintenance subsystem (not shown) will decide which data
storage nodes should store the content based on the
acknowledge of storage resources of each node and place-
ment policy defined by user. When data storage node 1702
stores or caches content, data storage node 1702 publishes
the content to corresponding indexing node 1704 based on
hash of the content name. When a user tries to get content
from CLS system, a content routing engine routes the
content request to an appropriate SN by querying corre-
sponding indexing node 1704 in the name resolution sub-
system. FIG. 18 illustrates a logical view of index nodes and
data storage nodes for an embodiment of the present inven-
tion.

In embodiments of the present invention, a CLS overlay
model uses several interfaces: C-UNI, C-NNI and I-NNI.
Each interface implements a group of functions that reside
in different functional entities on either side of it. Specifi-
cally, two types of CLS functions are defined with respect to
data plane protocols and control plane protocols. The nor-
mative protocol and the associated functional entities for
each interface are specified as follows.

In an embodiment, C-UNI is the interface between CLS
Client (CC at user device) and CLS Proxy (CP at network
side). An embodiment C-UNI Data plane procedure supports
content inquiry and content publish, based on given content
name and associated context label. In one embodiment, a
data plane implementation uses HTTP 1.0 with entity-header
extension for CL. An embodiment C-UNI control plane
procedure support CLS-access-peering discovery, bootstrap
configuration and attachment management. Based on the
type of physical link interfaces, CC implements a couple of
protocol options for the control plane. For example, when
CC attaches to IP-enabled access network (wireless and
wireline), the network may broadcast a CLS operator ID as

10

15

20

25

30

35

40

45

50

55

60

65

30

a “NSP,” or CC selects NSP from a pre-configured NSP list.
In an embodiment, CC could use NSP ID for network entry
procedure.

During an embodiment authentication process, ASP AAA
server sends CC the IP address of CP as “content home.”
After CC has allocated IP address via DHCP, CC establishes
IP connectivity to CP to conduct further CLL layer attach-
ment procedures. While in an ad hoc wireless network (i.e.,
no IP infrastructure), after the link layer association is up,
both CC (at one device) and CP (at peering device) sends
broadcasting messages to discover peers and use an election
protocol to establish CLL association in an embodiment. An
embodiment CLL attachment procedure may include
exchanging configuration data such as security, boot up data,
capacity negotiation and other policies. After a CLS con-
nection is up, a heart beaten (Keep-alive) protocol can be
used to maintain the attachment. When the boot up proce-
dure is done, the CLS access point floods the attachment to
all the other CLS nodes (within the same AS), thus support-
ing CC mobility.

In one embodiment CLS networking scenario, CC is
always connecting to a CP at a CLS node, whether CLS
function is implemented in an infrastructure box (e.g.,
access router), or CLS node is co-located with an infrastruc-
ture box.

In an embodiment, C-NNI is the interface between two
CPs residing on adjacent CLS nodes within a single CLS AS
cluster (a.k.a., intro-domain). In an embodiment CLS over-
lay model, CLS node adjacency is a logical link over an
underlying [.2 or [.3 connectivity (saying MPLS LSP or a IP
tunnel). Embodiment C-NNI data plane protocols mainly
include content name resolution, content retrieval and con-
tent storage. Embodiment C-NNI control plane protocols are
for overlay topology discovery and infrastructure connec-
tivity establishment/maintenance. CLS uses Multi-tier DHT
for data plane and IS-IS for topology routing, respectively,
in some embodiments.

Regarding content name resolution, an embodiment nam-
ing resolution protocol uses Sandstone Multi-tier DHT pro-
tocol which maps URI-based content name to flat naming
space for processing the content retrieval and storage. In an
embodiment, when an originating CLS node receives an
inquiry from user, it first maps a hierarchical URI to a flat
name (via consistent hash) to find out where the content is
stored within the CLS AS cluster, and then forwards the
inquiry to the next hop to get the content. In some embodi-
ments, CLS may implement one-hop resolution. If full-name
mapping cannot determine the next hop (i.e., CLS cannot
find the content in local domain), the originating node
forwards the inquiry (with the full structured name) to the
designated CLS border node. The border node will bubble
up the search to a neighboring CLS domain or to the
non-CLS domain via CREX. If the border CLS node cannot
find the content, the inquiry dropped in some embodiments.
The details of embodiment inter-domain protocol are
described with respect to I-NNI hereinbelow. The originat-
ing CLS includes URI with CL header in inquiry message
when it is sent to the targeting CLS border node.

Regarding CLS topology discovery and formation, in one
embodiment, CLS assumes that the underlying infrastruc-
ture network is IP-routing-capable, whether it is an IP router,
a MPLS/GMPLS, or an IEEE 802.l1ag-enabled Ethernet
transport. CLS implements extended IS-IS with opaque TLV
for CLS node boot up and automatic topology discovery.
The opaque TLV includes CLS node neighborhood infor-
mation such as node ID, link capability, the designated
border node 1D/address, and node type (e.g., a border node),

US RE49,943 E

31

etc, in some embodiments. When a new CLS node joins the
network, it floods IS-IS LSA with an opaque TLV via
connected IP network. This LSA will be populated within
IS-IS AS domain to notify all the other CLS nodes that a new
node is added in. All the pre-connected CLS nodes receive
this TLV and establish a new link in their routing database
to reach to the new node. As well, via exchanging L.SA
database with the connected IP router, the new CLS node can
acquire all the topological information of pre-connected
CLS nodes. With such an embodiment automatic discovery
procedure, a new CLS network topology is formed and
synchronized in all CLS nodes (a.k.a., topology conver-
gence). If DHT implements one-hop reachability, the CLS
forms a fully mesh topology. On the other hand, if DHT
implements multi-hop reachability, the CLS forms a partial
mesh or ring-like topology.

Regarding mapping between CLS topology and transport
topology, C-NNI protocol is overlaid over an I-NNI plat-
form. By using Multi-tier DHT and extended IS-IS protocol,
each CLS node holds two routing topologies: one from CLS
layer and one from an underlying IP layer. The CLS node
can effectively map CLS layer topology to the IP transport
topology. This mapping refers to inter-layer optimization in
some embodiments. In some embodiments, CLS imple-
ments transport adaptation engine functions to support inter-
layer routing, mapping and optimization to any data bearer
network. IP transport connectivity between any two CLS
nodes can be established either on-demand, or by pre-
configuration, depending on which control capability is
provided by the underlying networks.

In an embodiment system, I-NNI represents an interwork-
ing interface between adjacent CLS nodes and overlaid
infrastructure node. The control plane of I-NNI is an IS-IS
protocol that manages the adjacent topological links for the
overlay networks. The transport adaptation engines of CLS
node discover, establish and maintain .2/.3 connectivity for
various adjacent links. Based on the type of data bearer
network, the data plane protocol encapsulates/de-encapsu-
lates CLS messages to/from underline 1.2 or L3 data packets
protocols. An embodiment CLS node supports [.2/1.3/1.4
protocol stacks. For CLS intra-domain routing, the path
between CLS nodes can be pre-configured or created on-
demand. For example, IP GRE tunnel is established between
two CLS nodes via an OAM&P system, or a MPLS LSP path
is created via RSVP signaling protocol. As described pre-
viously, IS-IS running in a data bearer network exposes
underlying topology information to the CLS layer. In
embodiments, the topology information includes links, link
bandwidth availability, and other QoS parameters. With such
knowledge, embodiment CLS nodes select a best path to
reach the next hop CLS node.

In an embodiment, E-NNI represents a content resolution
exchange interface between CLS border nodes within dif-
ferent CLS AS, or between CLS border node and the
adjacent non-CLS data networks. In both cases, the resolu-
tion protocol is implemented via CREX functions in some
embodiment.

For CLS inter-domain content routing, a CLS border node
uses extended BGP (with opaque TLV) to exchange both IP
reachability and content resolution reachability with CREX.
Alternatively, a CLS border node only uses legacy BGP to
exchange IP reachability while implementing a global DHT
resolution protocol for content reachability with CREX.

In an embodiment, when CLS border nodes connect to a
non-CLS network, CREX functions as a DNS agent. After a
CLS border node receives content inquiry from an originat-
ing CLS node (within CLS AS cluster), it triggers DNS

10

15

20

25

30

35

40

45

50

55

60

65

32

request to the non-CLS domain to get the IP address of the
original destination and forward the inquiry to the targeting
server. Once it gets the content back, the border node sends
the received content back to CLS originating node. In an
embodiment, CREX is responsible to determine whether the
further inquiry should continue or drop the incoming
request, based on the exchange policy.

In embodiments of the present invention, CLS workflow
analysis includes a CLS boot up procedure for user initial
entry, CLS topology automatic discovery, CLS content
publish and inquiry, and CLS content naming and routing in
both intra-domain and inter-domain.

FIG. 19 illustrates a diagram depicting an embodiment
CLS user initial entry procedure. In an embodiment access
entry discovery and selection method, a CLS user (i.e., CC
on user device) discovers a CLS Service Provider (i.e., CP
on CSP’s CLS node). This embodiment procedure is typi-
cally executed on a first time use, initial network entry,
network re-entry, or when user transitions across different
CLS domains. In a first step CC detects one or more
available CLS CSP or CC detects CSPs via a stored con-
figuration acquired from a previous entry or configured by
CLS management system. In some embodiments, the CSP
list may be broadcasted from access network such as WiFi,
LTE or WiMAX. In a second step, CC identifies all acces-
sible CSPs and selects a CSP based on some preference
criteria. In one example, preference criteria include CSPs
that have a bilateral agreement with the access network
operator. In a third step, CC performs more concrete pro-
cesses procedures with access network. In a fourth step CC
becomes authorized on the selected CSP for service sub-
scription and creates a business relationship enabling access
via the selected CSP. Finally, in a fifth step, CC acquires and
stores the configuration information.

Turning to FIG. 20, an embodiment CLS topology auto
discovery diagram is illustrated. An embodiment CLS AS
domain is defined by content naming resolution area (i.e.,
DHT routing domain), which is scoped by geographical
range or administration domain. In one embodiment, the join
or leave of a CLS node causes all the CLS nodes (within the
AS) to update the routing database and to synchronize the
changes. In one embodiment, during a first step, the CLS
node connects to ISP routers and configures IS-IS links. In
a second step, IS-IS (on CLS new node) sends LSA with
opaque TLV which include CLS neighborhood information.
Next, in a third step, ISP routers flood LSA to all adjacent
nodes. Specifically, this TLV is sent over a CLS link at far
end pre-connected CLS node. In a fourth step, far end CL.S
creates a CLS-adjacent link with the new node and updates
its routing database, and in a fifth step, a new CLS node is
synchronized with attached ISP router by exchanging L.SA
database. The new node creates a CLS routing database from
LSA DB that contains all pre-established CLS links (with
opaque TLV). In an embodiment, the new CLS node holds
two topologies: one for CLS layer and one for underlying IP
routing domain. During a sixth step, from routing database,
the new node creates peering adjacent links to all the other
CLS nodes by calculating the best paths (assuming IP layer
t support QoS routing). In a seventh step, when a CLS node
receives content inquiry, it uses DHT protocol to determine
the designated next hop and to forward the inquiry to the
destination over the selected path.

In an embodiment, CLS uses distributed content storage,
as illustrated in FIG. 21. For example, a CLS node creates
content storage under two scenarios: one is when CLS
clients publish a new content to the network; and the other
is when the local cache makes a local copy after a successful

US RE49,943 E

33

retrieval. In FIG. 21, peer nodes 2102, 2104, 2106, 2108 and
2110 are implemented as CLS nodes. Originating peer 2102
is the CLS node that receives published content from an
attached client.

In an embodiment method, publisher 2112 publishes
content to CLS node. Next CLS node 2102 (originating
peer) divides the content into pieces, and determines the
destination peers (one primary peer 2106 and two backup
peers 2108 and 2110) to store the pieces based on one-hop
routing table. Next, Originating peer 2102 sends the pieces
to the primary peer 2106. Primary peer 2106 then sends the
pieces to the backup peers using infrastructure network
connectivity, and backup peers 2108 and 2110 send results
back to the primary peer node to get content. Primary peer
2106 then sends the results back to originating peer 2102,
and originating peer 2102 determines the destination profile
peers (one primary peer and two backup peers) to store the
profile data of this piece based on one-hop routing table.
Lastly, originating peer 2102 sends profile data to these
profile peers.

The procedure of making a copy at local cache is similar
to what is described above, except that the trigger is issued
from the CLS node which makes the local copy, instead of
from the publisher client, in some embodiments.

FIG. 22 illustrates distributed content resolution and
access for an embodiment of the present invention. In an
embodiment, after content is resolved by originating peer, an
inquiry is forwarded to the destination CLS node (Main peer
2106). Main peer 2106 then sends the content back to
originating peer 2102. First, a subscriber issues an inquiry,
then originating peer 2102 determines profile peer 2104 that
stores the profile of the interested content. Next, originating
peer 2102 sends a request to profile peer 2104 to get the
attributes of the content pieces. For example, the request can
be a request for a total number of pieces, in one embodiment.
Profile peer 2104 then returns the results, and then Origi-
nating peer 2102 determines the destination nodes that
stored the interested content (i.e., Primary and Backup CLS
nodes). Next, originating peer 2102 then sends a request to
primary node 2106 to get the content. If Primary node 2106
fails, the request is sent to backups 2108 and 2110. Main
peer 2106 then sends back the content to originating peer
2102. In turn, the content is sent back to the subscriber.

In one embodiment, a CLS node is implemented by using
leading technologies from Multi-core computing servers,
distributed local caching and advanced routing framework.
In one embodiment, a CLS node is implemented using an
Intel RouteBricks platform, which has a software-defined
router with high-speed parallel processing capability by
using Intel’s multi-core computing technology. In one
embodiment, 35 Gbps parallel routing capability is used.
One RouteBricks based CLS embodiment is fully program-
mable using a Click/Linux environment and some embodi-
ments can be built from off-the-shelf, general-purpose server
hardware. In one embodiment, the architecture allows rout-
ing capability to linearly scale up.

FIG. 23 illustrates an embodiment cluster router archi-
tecture having servers 2302 interconnected by inter-server
switch 2304. In an embodiment, the cluster router is imple-
mented using RouteBricks to form high-speed switch fabric
to connect servers 2304. In an embodiment, the servers are
NIC cards; however, other server implementations can be
used in other embodiments.

FIG. 24 illustrates an embodiment cluster router. Each
server has multiple processing cores 2408, arranged in
“sockets” 2404. All cores 2408 in a socket share the same L3
cache 2408. Each socket 2404 has integrated memory con-

10

15

20

25

30

35

40

45

50

55

60

65

34

troller 2410, connected to a portion of overall memory space
2402 via a memory bus. Sockets 2404 are connected to each
other and to the I/O hub via dedicated high-speed point-to-
point links. Finally, /O hub 2404 is connected to the NICs
via a set of PCle buses.

FIG. 25 illustrates various alternative embodiments
including one socket system 2502 that includes a single
socket, and a four socket system 2504 that has four sockets.
In alternative embodiments of the present invention, any
number of sockets can be used in a system depending on the
system’s specification and environment.

FIG. 26 illustrates a block diagram showing an embodi-
ment architecture of a context label switch (CLS). Embodi-
ment CLS functionality includes flow-based content for-
warding represented by forwarding plane 2602, content
routing protocols represented by routing plane 2604, dis-
tributed local cache management for content retrieval and
storage represented by local cache server 2606, content
service processing (e.g., mash up, transcoding and adapta-
tion/customization) represented by service plane 2608, and
management plane 2610 that provides OAM interface for
OSS in one embodiment. In alternative embodiments, CLS
may also provide open API for content flow management
and for 3rd party brokering services.

In an embodiment, forwarding plane 2602 has [1.2/1.3/1.4
stack 2618, CL look up and classify module 2620, CL. flow
action engine 2622, CL switching scheduler 2624, policy
engine 2626, CL crypto module 2630 and Forwarding
Information Base (FIB) 2632. These modules interface to
line cards having an ingress port 2612, switch fabric 2616,
and line cards having egress port 2614. Forwarding plane
performs operations that affect CL. flow in some embodi-
ments.

Routing plane 2604 has CL routing protocol and routing
collaboration module 2644, mobility and location module
2640 and CL routing database 2648. In some embodiments
routing plane 2604 performs some functions similar to that
of conventional routers. Routing plane 2604 also performs
infrastructure routing, as well as content routing integrated
with infrastructure routing in some embodiments.

Service plane 2608 has event service module 2662, dis-
tillation dissemination mash up customization module 2650,
third party service brokering module 2660, attachment and
mobility module 2656, security key management module
2652, intelligent traffic management module 2658 and con-
tent caching service module 2654. Service plane 2608
processes services such as mash up and advertisement. For
example, in some embodiments, service plane 2608 per-
forms advertising insertions onto web pages depending on
the context information from the client.

Local cache server 2606 has CL data storage and main-
tenance block 2642, global synch, redistribution and aggre-
gation module 2638, access policy privilege policy module
2634, CL data retrieval optimization module 2640 and CL
content module 2636. In an embodiment, local cache service
module provides local cache and storage for the CLS.

Management plane 2610 has OAM&P module 2664, NE
Ul manager module 2666 and Management Information
Base (MIB) module 2668. In alternative embodiments,
greater and/or few modules may be used. In further alter-
native embodiments, other functionality can be incorporated
within the system software.

In one embodiment, a CLS system achieves a balance
between CL overhead processing and system performance
for routing throughput. In an embodiment, a CLS node is a
“router+server” platform, in which content flow for forward-
ing and relay is processed at CL header level, which means

US RE49,943 E

35

the termination of [L.2/[.3/[.4 stack. The incoming content
inquiry is searched in local cache (or shared storage) to
determine if there is a local copy to be returned. In addition
to relay and inquiry functions, each UNI-faced NIC card can
also participate in content service processing tasks such as
mash up. CLS design may also facilitate other leading-edge
technologies such as Deep(er)PI and open flow management
for CL-based content forwarding. The following figure
depicts the mapping relationship between CLS software and
RouteBricks hardware.

FIG. 27 illustrates an embodiment mapping of system
software package 2702 onto hardware 2704. In this example,
hardware is implemented using four server cards 2706 and
a fitth server card 2708 for a control server. Forwarding
plane functions 2710, operating system (OS) 2712, virtual-
ization plane 2714 and services plane 2716 are run on server
cards 2706, whereas routing protocol 2718 is ran on control
server 2708. In one embodiment, forwarding plane 2710 can
be ran on one processor, and the virtual storage management
of virtualization plane 2714 can be implemented in local
cache engine 2720 of server cards 2706. In alternative
embodiments, software can be mapped onto hardware dif-
ferently. Also, in further alternative embodiments, CLS
systems can be implemented using other architectures and
technologies.

In an embodiment, software system 2702 implements
forwarding plane 2710 having policy engine 2730, flow
lookup and classifier 2734, flow action engine 2736, CL flow
scheduler 2732, FIB 2742, CL crypto, 2740 and CL. REGEX
2738. In one embodiment, OS 2712 is implemented by
Linux, however, in alternative embodiments; other operating
systems can be used. Virtualization plane 2714 has hyper-
visor 2750, virtual service flow manager 2754 and virtual
storage manager 2752. Services plane 2716 has mash up
module 2760, event module 2762, transcoding module 2764,
and cache 2766. Management and control plane 2718 has
open API 2770, DHT KBR 2772, overlay routing 2774,
service policy 2776, user attachment 2778, traffic/request
synopsis generator 2780, content routing 2782 and name
resolution 2784. Control server 2708 has routing engine
processor 2902, integrated memory controller 2906 and I/O
ports 2908. Each server card/socket 2706 has service engine
(SE) multi-core processor 2910, local cache engine multi-
core processor 2720, integrated memory controller 2912,
FIB cache 2914, fast path processor (FP) multi-core proces-
sor 2920, flow process memory 2916 and 1/O ports 2922.

FIG. 28 illustrates a CLS according to an embodiment of
the present invention. CLS 3000 has one or more application
server cards 3001 and control server card 3005. Application
server card 3001 has CP 3006, content routing dispatcher
3009, application engine 3003 and storage engine 3004.

CP 3006 receives an input packet and compares the CL to
an entry in flow table 3036. If the entry does not match the
flow table, a new flow is initiated, otherwise, an action, such
as a mash up procedure to add a short advertisement in video
stream, is taken. In some embodiments, CP 3006 performs
content flow management, which identifies, creates and
removes flow entries from the flow table, and adds, deletes,
and/or modifies relevant actions for each flow in the table.
Content routing dispatcher 3009 distributes packets to appli-
cation engine 3003, storage engine 3004 or routing engine
controller 3050 to handle data-path packets and control-path
packets accordingly.

Application engine 3003 has application API 3010, and
one or more service virtual machines 3012, 3014, global
flow table 3018, driver & instance 3020 and hypervisor

10

20

25

30

40

45

55

36

3034. These functions can be implemented by hardware, or
by software running on hardware.

Storage engine 3004 has storage API 3022, storage man-
ager 3024, statistic block 3026, hot pluggable cache policy
3028, content table 3030 and driver and instance 3032. In
alternative embodiments of the present invention, CLS 3000
may provide other functions and/or have greater or fewer
modules than depicted. In embodiments, storage engine
3004 also includes storage for local cache, which is imple-
mented using hardware such as disk drives, or other types of
storage. The total amount of storage devoted to each CLS,
depends on usage, the number of clients, and total memory
capacity of storage engine 3004. In some embodiments,
storage engine 3004 is expandable to keep up with network
demands. In an embodiment, storage engine 3004 stores
frequently requested content. Content that is not frequently
requested, or content that expires because of expired security
keys and or TTL labels can be overwritten by new data.

Control server card 3005 has routing engine controller
3050, which includes routing tables 3052, drivers & instance
3054, name resolution 3058, DHT KBR 3056, CLS topology
manager 3060, transport topology manager 3062, and
attachment manager 3064.

FIG. 29 illustrates a block diagram of embodiment net-
work system 3100 using an embodiment CLS. CLS pub-
lisher 3102 and CLS subscriber 3104 are coupled to first
content proxy 3110, and CLS publisher 3106 and CLS
subscriber 3108 are coupled to second content proxy 3112
via CP UNI interfaces. Transport routing functions of con-
tent proxies 3110 and 3112 are coupled together via trans-
port network 3114, while the CP NNI interfaces of content
proxies 3110 and 3112 communicate with each other.

Embodiments of the present invention formalize the
operational semantic of content/application delivery service
platform for next generation Internet via a context label.
Embodiment CLs inter-relate user personal/device profile,
application context and network property all together to
form a middleware layer to utilize application intelligence,
user profile and network intelligence to guide content/
application delivery. In some embodiments, CL/CLL can be
implemented to overlay any data transport layer in both
infrastructure-oriented and infrastructure-less network,
which can deliver content via simple and transparent multi-
modal interfaces (e.g., WiFi, Bluetooth, 3G/4G wireless,
Ethernet, Optical, etc). Embodiment systems provide effi-
cient and effective network resource optimization by local-
izing popular content in a local cache server thus creating a
“Green” delivery service platform to reduce traffic and
non-deterministic data distribution, and in turn, to reduce
energy consumption. Some embodiment systems embed
security and privacy to support personalized services, and
provide intelligent & autonomous network architecture and
management (e.g., CL context profile is used for in-banding
signaling to support user dynamic mobility). In some
embodiments, CLL is a common layer and framework to
seamlessly correlate wire-line and wireless for content deliv-
ery services.

In an embodiment, a context is a profile having minimal
a set of attributes associated with supporting content deliv-
ery in a communication network. From the operational
semantic of content/application delivery service, a context
inter-relates communication-enabled attributes from
dynamically changing network properties such as location
and presence, a user profile such as interest or preference, a
device type, a user ID, and service transaction time; and
application attributes such as content name, version, secu-
rity, size and TTL.

US RE49,943 E

37

In an embodiment, a CL represents a context assigned for
data content. Different from the legacy label defined in
MPLS/GMPLS/TMPLS or PBB/PBT, in which a label is
used to identify a data transport connection/connectivity. In
embodiments, a CL is used to identify a relationship profile
for content delivery service. In some embodiments, a CL is
an ASCII string attached to application data chucks. Accord-
ing to the defined rules, in one embodiment, CL is identified
and processed by a FPGA, an ASIC or a network processor
for content switching/routing.

In an embodiment, a protocol stack called Context Label
Layer (CLL) creates and inserts a CL for each content chuck
(at sender), or modifies a CL (at intermediate relay node), or
removes a CL (at receiver) from each content chunk. CLL
also implements a CL routing plane, CL. forwarding plane,
CL service process plane and CL caching process plane.
From the perspective of a layered protocol stack, CLL is
located between application content/service and data trans-
port protocol. In an embodiment, CLL is responsible to
segment/assemble the application content to/from variable
size content chunks and dispatch/receive the I-chunks
to/from the various lower layer data transport, depending on
the MTU capacity of various physical links.

In an embodiment, a context label switch includes com-
putation resources, communication resources, and storage
resources. By using computation and communication
resources, the context label switch provides content routing
and mobility functionality. By using computation and stor-
age resources, the context label switch provides classifica-
tion, filtering and mash up functionality. By using storage
and communication resources, the context label switch pro-
vides content search, naming resolution and security func-
tionality. In alternative embodiments, the context label
switch provides other resources.

In accordance with an embodiment, a network device has
an input port for receiving input packets, and an output port
for sending output packets, where the input packets and
output packets have context layer information. The network
device also includes a processor configured to process the
input packets and output packets using a network protocol
having a context layer.

In a further embodiment, the network device has a cache,
and the processor is further configured to receive an infor-
mation request from a client via the input port, where the
information request includes at least one input packet having
a client identification context label and a content identifica-
tion label. The processor is further configured to determine
if content data corresponding to the content identification
context label is in the cache. If the content data is in the
cache, the content data is sent to the client in at least one first
output packet via the output port. The content data is
addressed to the client with the client identification label.

In a further embodiment, the network device is further
configured to send at least one second output packet to a
second network device requesting the content data if the
content data is not in the cache. In an embodiment, the at
least one second output packet indentifies the content data
by the content identification label.

In a further embodiment, the processor is further config-
ured to send at least one third output packet to a third
network device requesting the content data if the content
data is not available from the second network device, where
the at least one third output packet, which carries the content
data, is encapsulated and identified by either an IP address,
or some other [.2 protocols such as an Ethernet MAC
address. In an embodiment, the processor is also configured
to reformat the content data according to the client identi-

10

15

20

25

30

35

40

45

50

55

60

65

38

fication context label. In some embodiments, the content
data comprises video data in a first format, and the processor
is further configured to reformat the video data in the first
format into a second format. In further embodiments, the
network device further includes a switch fabric configured to
switch packets between the input port and the output port.

In a further embodiment, the processor of the network
device is further configured to transmit a first output packet
to a client, where the output packet has a client identification
context label identifying the client. If transmission to the
client is not successful, or if the client stops asking for more
content, the processor will stop the transmission. In an
embodiment, a keep-alive protocol can be used to test for the
presence of the client. If a client device is no longer
reachable, the attachment/presence status of the client is
modified.

In a further embodiment, the processor of the network
device is further configured to process context layer infor-
mation comprising user specific information, application
specific information, network specific information and secu-
rity specific information.

In accordance with another embodiment, a method of
operating a network device includes transmitting and receiv-
ing packets on at least one port and receiving a first packet
from a client on at least one port, where the packets have
context layer information and the first packet includes a
content name and a context label header. The method also
includes determining if requested content associated with
the content name is in a local cache. If the requested content
is not in the local cache, at least one second packet is
transmitted to a second network device on the at least one
port, where the at least one second packet includes the
content name and the context label. If the requested content
is in the local cache, at least one third packet is transmitted
to the client on the at least one port, where the at least one
third packet includes the requested content.

In a further embodiment, the method also includes trans-
mitting at least one fourth packet to a third network device
if the second network device does not have the requested
content. In a further embodiment, the packets include the
content name in HTTP URI and the context label in an
extended HTTP entity header that comprises a user device
identifier, location information, timing and some other attri-
butes. In some embodiments, the packets are encapsulated in
IP protocol if there are IP transport connections among
clients and network devices. In some embodiments, the
packets are encapsulated in link layer (L.2) protocol if there
is no IP transport, for example, in Bluetooth, WiF1i, Ethernet
or other wireless radio links. In further embodiments, trans-
mitting the at least one third packet to the client that
comprises the retrieved content and the context label. The
third packet is sent back to the client from the ports at which
the network devices received the first packet.

In a further embodiment, the method also includes locat-
ing a client based on the context label header. The client
device may install a GPS locator which can determine the
current user location. In a further embodiment, every net-
work device, as well, can install a GPS to determine its own
location and they have the GPS knowledge of all the other
peering network devices. When the client device sends the
first packet, the first packet can include the user’s GPS
location in the context label. When the second, the third or
the fourth network devices send the retrieved content back
to the first network device, based on the calculation of
client’s GPS proximity with the GPS of the network devices,
the proximately is used to determine to which first network
device the client is currently attached. In some embodi-

US RE49,943 E

39

ments, the access points are changed while the client device
is mobile. For example, the retrieved content is sent to the
network device that is the closest one to the user device. The
method can also include transmitting at least one second
packet to a second network device on the at least one port,
and accessing a copy of the requested content from an
upstream content provider.

In accordance with another embodiment, a method of
operating a context level switch includes receiving a first
packet from a client on at least one port, where the packet
includes a content name and a context label header. The
method also includes retrieving the requested content from
the cache and transmitting at least one second packet to the
client on the at least one port, where the at least one second
packet includes the requested content. In a further embodi-
ment, the context label header includes a client device type
context identifier. The method also includes reformatting the
requested content according to the client device type context
identifier before transmitting the at least one second packet
in some embodiment.

In a further embodiment, the context label header includes
a time-to-live (TTL) identifier, the TTL identifier denoting a
lifetime for the requested content. The method can also
include deleting the requested content from the memory at
an expiration of the TTL. In some embodiments, the context
label header includes a security key for the requested
content. In further embodiments, the context label header
comprises location information, and the location informa-
tion comprises global positioning system (GPS) based loca-
tion information.

In an embodiment, a method of operating a client device
includes forming a context label, sending a packet over the
network, and receiving a packet. The client device has a
processor that runs software implementing content client
(CC) functionality. In some embodiments, the client device
runs software that implements a network a context label
layer (CLL). Alternatively, CLL functionality is imple-
mented by hardware in the client device. The client device
is configured to communicate with a network having a
context label layer (CLL).

In an embodiment, a method of operating a context layer
switch includes receiving packets from clients, and trans-
mitting contents to clients based on a locally stored cache.
Ifthe content on the locally stored cache is not available, the
context layer switch accesses copies of the content from
upstream CLS nodes and/or a content provider. In a further
embodiment, a method of operating a context layer switch
includes having a context layer (CL) in the Network proto-
col.

In an embodiment, a method of operating context layer
switch includes locating clients based on CL header. In some
embodiments, the CL header is used (e.g., GPS information)
instead of an IP address. In an embodiment, the context
switch interacts with the rest of the network to maintain
continuity of service based on the CL header.

In an embodiment, a method of managing cached content
includes associating TTL with content, reformatting stream-
ing video data based on client device, and keeping content
in cache based on validity of client keys.

In an embodiment, a context layer switch device is
configured to receive packets from clients, and transmit
content to clients based on locally stored cache. If locally
stored cache is not available, the context layer switch obtains
copies of the content from upstream CLS nodes and/or a
content provider. In a further embodiment, the context layer
switch device is configured to locate clients based on a CL.
header and interacts with the rest of the network to maintain

20

30

40

45

55

40

continuity of service. In a further embodiment, the CL
header is used instead of an IP address.

In an embodiment, a context layer switch device is
configured to associate TTL with content, reformat stream-
ing video data based on a client device, and keep content in
cache based on validity of client keys. In a further embodi-
ment, a context layer switch device is configured to run
content proxy (CP) software and/or implement CP function-
ality in hardware.

In an embodiment, a context layer switch device is
implemented with interconnected sockets. The context layer
switch device has management plane, service plane and
routing plane functionality. In a further embodiment, a
context layer switch device is configured to operate on a
network with a context layer (CL) in the network protocol.
In some embodiments, the context layer switch has software
that executes a network protocol having a context layer. In
some embodiments, network protocol functionality is imple-
mented in hardware.

The advantages of embodiments of the present invention
include the ability to help interne service providers (ISPs) to
differentiate and prioritize the “high-value” content bits for
their billing model, the ability to overlay the content layer
over all kinds of data transport layers and flexibly adapt to
various link sizes and diverse MTUs, and the ability to
efficiently utilize network bandwidth/resource/topology to
reduce the cost, improve performance and save energy.

Some embodiments also provide application layer knowl-
edge to better support QoS, scale load balancing, and create
a better user experience with personalized services.

Advantages of embodiments further include a networking
architecture optimized for content storage and dissemination
that addresses issues of scalability, cost efficiency and secu-
rity for content.

An advantage of embodiments of the present invention
that store video content locally and transcode the video
according to the screen resolution of the client device is
reduced network traffic because multiple versions of the
video data do not need to be requested from the service
provider.

Advantages of embodiments that employ RouteBricks
multi-server/multi-core clusters include fulfillment of con-
tent search and process and relay objectives, while at the
same time maximizing the system to reduce the delay and to
promote throughput.

Although present embodiments and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims. For example, many of the
features and functions discussed above can be implemented
in software, hardware, or firmware, or a combination
thereof.

Moreover, the scope of the present application is not
intended to be limited to the particular embodiments of the
process, machine, manufacture, composition of matter,
means, methods and steps described in the specification. As
one of ordinary skill in the art will readily appreciate from
the disclosure of the present invention, processes, machines,
manufacture, compositions of matter, means, methods, or
steps, presently existing or later to be developed, that
perform substantially the same function or achieve substan-
tially the same result as the corresponding embodiments
described herein may be utilized according to the present
invention. Accordingly, the appended claims are intended to
include within their scope such processes, machines, manu-
facture, compositions of matter, means, methods, or steps.

US RE49,943 E

41

What is claimed is:
1. A system for Context Label Switching (CLS) compris-
ing:
a network device including a context label layer for
managing a context label for each content chunk of a
plurality of content chunks, the context label compris-
ing [at least one of] interested content information],
location information, time stamp information, security
information,] and user ID information, the user ID
information including a consumer 1D, a supplier 1D,
[and] or a device ID, [wherein the context label layer
comprises] the managing the context label comprising:
[a routing plane configured to determine] determining
a routing path for a content chunk in accordance with
the context label; and

[a service plane configured to process] processing the
content chunk[; and), wherein the context label layer
comprises:

a cache plane configured to store and manage the
content chunk in association with the context label,

wherein the context label is carried in a layer above a
data transport layer, and

wherein the managing the context label comprises creat-
ing and inserting the context label at a sender, modi-
fving the context label at an intermediate relay node,
and removing the context label at a receiver.

[2. The system of claim 1, wherein managing the context
label comprises creating and inserting the context label at a
sender, modifying the context label at an intermediate relay
node, and removing the context label at a receiver.]

3. The system of claim 1, wherein the [context label layer
further comprises a forwarding plane configured to guide]
managing the context label comprises:

guiding content chunk delivery associating the [routing
plane] routing path; and [manage]

managing content flow.

4. The system of claim 3, wherein the [forwarding plane]
managing the content flow comprises managing the content
flow for load balancing[and], traffic engineering, and priori-
tizing traffic scheduling.

5. The system of claim 3, wherein the [forwarding plane
determines] guiding the content chunk delivery comprises
determining an egress interface for the content flow in
accordance with a routing table [from the routing plane] for
the routing path and an action list [defined by the service
plane] for the processing the content chunk.

6. The system of claim 5, wherein the routing table
includes mapping between a profile defined by the context
label and I/O interface of the system.

7. The system of claim 1, wherein processing the content
chunk comprises content distillation, dissemination, mash
up, content aggregation and content chunk customization.

8. The system of claim 1, wherein [the] storing and
managing the content chunk comprises storing the content
chunk, updating the content chunk, retrieving the content
chunk and synchronizing the content chunk with other CLS
system, and removing duplicated content chunk.

9. The system of claim 1, wherein the [routing plane is
further configured to guide] managing the context label
Sfurther comprises content search, [to determine] determin-
ing a next hop, and [to manage] managing a mobility
anchoring and location service.

10. The system of claim 1, [further comprising a man-
agement plane configured to provide] wherein the managing
the context label further comprises providing the an inter-
face for operation, administration, maintenance and provi-
sioning.

10

15

20

25

35

40

45

50

55

60

65

42

11. A system for Context Label Switching (CLS) com-
prising:
a network device including a context label layer for
managing a context label for each content chunk of a
plurality of content chunks, the context label compris-
ing [at least one of] user ID information, interested
content information, and at least one of location infor-
mation, time stamp information[, and] or security infor-
mation, wherein the time stamp information comprises
a time stamp when [the] a content chunk is requested,
a time stamp when the content chunk is to be provided,
and an indication as to how long the content chunk can
exist in the system, [wherein the context label layer
comprises] the managing the context label comprising:
[a routing plane configured to determine] determining
a routing path for the content chunk in accordance
with the context label; and

[a service plane configured to process] processing the
content chunk[; and), wherein the context label layer
comprises:

a cache plane configured to store and manage the
content chunk in association with the context label,
wherein the context label is carried in a layer above a
data transport layer, and
wherein the managing the context label comprises creat-
ing and inserting the context label at a sender, modi-
fving the context label at an intermediate relay node,
and removing the context label at a receiver.
12. The system of claim 11, wherein ke processing the
content chunk comprises content distillation, dissemination,
mash up, content aggregation and content chunk customi-
zation.
13. The system of claim 11, wherein [the] storing and
managing the content chunk comprises storing the content
chunk, updating the content chunk, retrieving the content
chunk and synchronizing the content chunk with other CL.S
system, and removing duplicated content chunk.
14. A method for Context Label Switching (CLS) com-
prising:
determining, by a routing plane of a context label layer, a
routing path for a content chunk in accordance with a
context label, the context label being managed by the
context label layer and comprising [at least one of]
interested content information[, location information,
time stamp information, security information,] and user
ID information, the user ID information including a
consumer ID, a supplier ID, [and] or a device ID,
wherein the context label layer performs:
processing, by a service plane of the context label layer,
the content chunk, and

storing and managing, by a cache plane of the context
label layer, the content chunk in association with the
context label,

wherein the context label is carried in a layer above a
data transport layer, and

wherein management of the context label by the context
label layer comprises creating and inserting the context
label at a sender, modifying the context label at an
intermediate relay node, and removing the context
label. at a receiver.

[15. The method of claim 14, wherein management of the
context label by the context label layer comprises creating
and inserting the context label at a sender, modifying the
context label at an intermediate relay node, and removing
the context label at a receiver.]

US RE49,943 E

43

16. The method of claim 14, further comprising:

guiding, by a forwarding plane of the context label layer,
[the] content chunk delivery associating the routing
plane; and

managing content flow.

17. The method of claim 16, further comprising deter-
mining, by the forwarding plane of the context label layer,
an egress interface for the content flow in accordance with
a routing table from the routing plane and an action list
defined by the service plane.

18. The method of claim 17, wherein the routing table
includes mapping between a profile defined by the context
label and an I/O interface of a system.

19. The method of claim 16, wherein the managing the
content flow comprises managing ke content flow for load
balancing[and], traffic engineering, and prioritizing traffic
scheduling.

20. The method of claim 14, wherein the storing and
managing the content chunk comprises storing the content
chunk, updating the content chunk, retrieving the content

10

15

44

chunk and synchronizing the content chunk with other CL.S
system, and removing duplicated content chunk.

21. The method of claim 14, further comprising guiding,
by the routing plane, content search, determining a next hop,
and managing @ mobility anchoring and location service.

22. The method of claim 14, wherein tke processing the
content chunk comprises content distillation, dissemination,
mash up, content aggregation and content chunk customi-
zation.

23. The method of claim 14, wherein the context label
further comprises time stamp information, and wherein the
time stamp information comprises a time stamp when the
content chunk is requested, a time stamp when the content
chunk is to be provided, and an indicator as to how long the
content chunk can exist in a system.

24. The system of claim 1, wherein the context label is
carried in the layer below an application layer, and wherein
the interested content information and the user ID informa-
tion exclude layer-2 information, layer-3 information, and
layer-4 information.

