1

3,645,895

SODIUM CHLORATE COMPOSITIONS OF REDUCED FIRE HAZARD CONTAINING AN ALKALI METAL SILICATE FIRE RETARDANT

John A. Peterson, Niagara Falls, N.Y., and Albert H. Ross, Niagara Falls, Ontario, Canada, assignors to Hooker Chemical Corporation, Niagara Falls, N.Y. No Drawing. Filed Jan. 15, 1968, Ser. No. 697,637

Int. Cl. C09k 3/28; A01n 5/00; B23p 1/16

U.S. Cl. 252—8.1

14 Claims

10

ABSTRACT OF THE DISCLOSURE

An alkali metal silicate alone or in combination with one or more alkali metal or ammonium-chromate, hydroxide, carbonate, sulfate, borate and phosphate when added to solutions of an alkali metal or ammonium chlorate in minor amounts will act as flame retardants for combustible organic material upon which the chlorate has been deposited. The function of these flame retardants when added to chlorate containing solutions does not detract from the function of the chlorate solution in electrochemical machining, milling and grinding operations or in agricultural applications.

This invention relates to compositions of matter containing an alkali metal or ammonium chlorate (preferably sodium chlorate), an alkali metal silicate and optionally other inorganic compounds. These compositions find utility in the field of agricultural chemistry as soil sterilizers, defoliants, and weed killers. These compositions also have utility as electrolytes for use in electrochemical machining and grinding operations. The compositions are especially useful because of their flame retardant properties.

Alkali metal and ammonium chlorates, especially sodium chlorate, are ideal electrolytes for use in electrochemical machining operations. The major problem attending their use resides in their tendency to rapidly oxidize combustible materials. The advantages and problems residing in the use of chlorates as the electrolyte in electrochemical machining operations are summarized in the article appearing in Metal Progress, March 1967, pp. 81–84. For example, when some of the chlorate containing electrolyte comes into contact with the clothing of the operator, or any combustible material near an electrochemical machining operation, the tendency to initiate fire is great after the wetted material has dried.

By electrochemical machining operations it is intended to include those operations by which a workpiece is machined, milled, or ground so that the metal is removed by an electrochemical process to produce shaped or curved structures. These operations also include the production of smooth flat surfaces and the formation of holes in a workpiece. The workpiece to be shaped functions as the anode in electrically conducting relationship with the cathode die through a suitable electrolyte. Metal is dissolved from the workpiece anode. Some electrolytes used in electrochemical machining are described in U.S. 2,798,846 to Comstock, issued July 9, 1957 as NaNO₂, Na₂CRO₄, KNO₂, K₂CrO₄, the amines of sodium nitrate, sodium and potassium dichromate, sodium and potassium 65 chlorate and sodium and potassium chlorite. Essentially, the selection of the electrolyte is based upon its conducting properties, its tendency to attack the electrodes, its performance in electrochemical machining operations and its cost. Comstock mentions the rusting of a workpiece 70 and its prevention through the use of a rust inhibiting agent as the electrolyte.

2

Sodium chlorate is an excellent electrolyte for electrochemical machining operations. Sodium chlorate solutions used as the electrolyte in electrochemical machining are typically aqueous solutions containing about 350 g./1 NaClO₃. Solutions containing from about 300 to 400 grams per liter NaClO₃ are typical examples of efficient electrolytic solutions. The used electrolyte solutions, usually of pH above about 6 to 7, contain precipitated hydroxides of the metal removed from the workpiece. For example, where the workpiece contains iron, nickel or chromium, the corresponding iron, nickel or chromium hydroxides are formed.

In the electrochemical machining of chromium containing alloys, some soluble sodium chromate is introduction of small amounts of sodium chromate into the electrolyte actually increases the fire hazard attending the action of chlorate on combustible organic material. Hence, any flame retardant additive will have to function in the presence of at least low concentrations of dissolved CrO_4^{-2} ions. It is also important that any additive must not change the characteristics of sodium chlorate in its operation as an electrolyte. However, it is most desirable that an additive both act as a flame retardant and improve the properties of sodium chlorate as an electrolyte.

In the field of agricultural chemistry, alkali metal chlorates have been used as defoliants (especially for cotton), weed killers, soil sterilizers, insecticides and as seed disinfectants. One of the major drawbacks to the use of chlorates as agricultural chemicals resides in the problem of its flammability when dried in contact with organic matter such as the workers' clothing. The discovery of additives such as an alkali metal silicate alone or in conjunction with a co-additive for the chlorate solutions used in agricultural applications obviates this objection to the use of chlorates and broadens the field for uses of chlorates at concentrations heretofore considered too dangerous for handling by the layman.

It is the object of this invention to develop compositions of matter containing a major proportion alkali metal chlorate in combination with one or more additives, the latter functioning as flame retarding agents when said compositions are deposited in a dry state upon combustible organic materials.

It is an additional object of this invention to provide compositions of matter containing a major proportion of alkali metal chlorate with minor proportions of one or more additives which will function as a flame retardant and as the electrolyte in electrochemical machining operations with the same degree of effectiveness as sodium chlorate alone.

DETAILED DESCRIPTION OF THE INVENTION

It has been discovered that an alkali metal silicate, when dissolved in a solution with an alkali metal or ammonium chlorate, will act as a flame retardant when the solution is dried on a combustible material. The ratio of SiO₂ to chlorate may vary from 1:4 to about 1:40 on a dry weight basis. The preferred ratio of Na₂SiO₃ to NaClO₃ is between 1:4 and 1:10 on a dry weight basis. In an electrolytic solution, this ratio represents, for a solution containing between about 300 to 400 grams per liter NaClO₃, from about 7–75 grams of SiO₂ (as a soluble silicate) per liter and preferably between about 15 to 50 grams SiO₂ per liter.

The preferred silicate additive for chlorate containing solutions employed as electrochemical machining or grinding electrolytes is sodium metasilicate (Na₂SiO₃) which may be added either as the anhydrous salt or as a hydrate such as the nona-hydrate (Na₂SiO₃.9H₂O).

3

Other silicates such as the disilicate ($Na_2Si_2O_5$) and tetrasilicate ($Na_2Si_4O_9$), commonly referred to as water glass may be employed as the fire retardant additive for various chlorate containing compositions. However, as an electrolyte in electrochemical machining and grinding operations sodium metasilicate is preferred to silicates of lower Na/Si ratios such as water glass because the tendency of the latter silicates is to deposit hydrous SiO_2 from solution in the presence of chlorate.

Co-additives which may be advantageously employed 10 in conjunction with the silicate additive are alkali metal or ammonium chromates, carbonates hydroxides, phosphates, sulfates, and borates. These co-additives are effectively present in an amount between 10 and 80 grams per liter of solution in the use of chlorate-silicate solu- 15 tions as the electrolyte for electrochemical machining and grinding operations. On a dry weight basis, the ratio of silicate, expressed as SiO2, and independently the coadditive to chlorate may be 1:4-40, while a more preferred ratio is about 10-25 parts of sodium metasilicate to 20 from about 4-10 parts of sodium metaborate for every 100 parts of sodium chlorate and the most preferred ratio is 2:1:16 sodium metasilicate to sodium metaborate to sodium chlorate. Exemplary mixtures containing sodium chromate as the co-additive are those containing on a dry 25 weight basis a mixture of about 10-25 parts of sodium metasilicate and from about 10 to 20 parts of sodium chromate for every 100 parts of sodium chlorate. The most preferred mixture containing sodium chromate as the co-additive is 1:1:8 sodium metasilicate to sodium 30 chromate to sodium chlorate.

The most preferred aqueous solutions of electrolyte for electrochemical machining operations are those containing from 300 to 400 grams sodium chlorate per liter and from 30 to 100 grams sodium metasilicate per liter; or 30 to 100 grams sodium metasilicate per liter in combination with from about 12–40 grams per liter sodium metasorate; or from about 30–100 grams per liter sodium metasilicate in combination with about 30–80 grams per liter sodium chromate.

Since an aqueous solution containing between about 300 to 400 grams per liter of sodium chlorate and up to about 100 grams per liter of sodium metasilicate is alkaline in pH, it is desirable to include an appropriate amount of NaOH whenever an acidic co-additive such as borax (Na₂B₄O₇), sodium pentaborate (Na₂B₁₀O₁₆) or Na₂HPO₄ is used. If NaOH is not employed in conjunction with acidic co-additives, the pH drop of the electrolyte solution causes hydrolysis of the silicate and precipitation of hydrous SiO₂.

The alkali metal silicate additives alone are very effective flame retardant additives for chlorate induced combustion of organic materials in many applications. However, a further factor which must be considered in evaluating the flammability of chlorate electrochemical 55 machining or grinding electrolyte which has been dried on cloth, is the presence of trace amounts of chromate ion in the chlorate containing solution. Trace amounts of chromate, usually equivalent to 0.05 to 2 grams of hexavalent chromium per liter appear in the electrolyte used 60 in the processing of chromium containing metals as the probable result of complete oxidation of the chromium to CrO₄-2 during the machining or grinding operation. These trace amounts of chromate serve to accelerate the by the chlorate containing solution and dried. This acceleration is very pronounced when a cloth wetted with the chlorate containing solution is quite dry (e.g. under normal room conditions at 20 percent relative humidity) The accelerating effect of chromate on chlorate induced 70 combustion is less pronounced when the organic material contains more moisture, as under normal room conditions at 60 percent relative humidity, but it remains a very important factor to be considered relative to the

4

trace chromate on chlorate induced combustion is clearly illustrated in Example 1 of this specification.

An additional problem in the determination of flame retardant properties of additives for chlorates resides in the fact that the combustion rate of a cloth impregnated with sodium chlorate and a prospective flame retardant is often dependent upon the size of the ignition source. A large flame may cause rapid burning while a small ignition source such as a match or the coal of a cigarette may cause slow combustion. A flame retardant additive which is effective with respect to common accidental ignition sources which may attend the personal habit of an operator of an electrochemical machining apparatus, such as a match flame or cigarette coal, may be considered adequate for the protection of that person. However, the degree of effectiveness for the same additive may be less in flame retardancy towards a large ignition source.

The alkali metal silicates are extremely effective flame retardants for chlorate induced combustion. In the presence of trace amounts of chromate ions, the effectiveness of an alkali metal silicate as a flame retardant is somewhat diminished although it is still adequate to provide the degree of protection needed for the machine operator. However, the introduction of a co-additive in conjunction with the silicate, will produce a silicate based additive which is more effective than silicate alone under the conditions of low humidity, the presence of trace chromate and a large ignition source. The silicate based additives are superior to most other additive systems tested.

In essence, in any application of solutions containing chlorate ions, conventional formulations applicable to the art may be supplemented with the silicate fire retardant of this invention with or without the addition or complementary fire retardant additives.

For example, in the field of electrochemical machining, it may be desirable to add minor amounts of other electrolytes to the sodium chlorate solution containing the fire retardant additives of this invention. Such supporting electrolytes may be NaCl, NaBr, NaF, NaNO₃, etc.

It is to be understood that whenever chromate is referred to in the specification as a co-additive, it is intended to include Na₂CrO₄, or sodium dichromate or chromic acid in the presence of sufficient NaOH to produce chromate in situ via the reaction:

Chromic acid or $Na_2Cr_2O_7 + xNaOH \rightarrow Na_2CrO_4$

The following Examples I–XVI represents specific embodiments of this invention. They represent applicable additive concentration levels which will produce the desired result. The minimum operable concentration of the flame retardant additives is desirable because excessive concentrations may cause inferior performance of the chlorate solution as electrolyte in an electrochemical machining or grinding operation.

To determine the effect of an alkali metal silicate with and without other additives as a flame retardant for organic materials impregnated with alkali metal or ammonium chlorate, the following experiments were conducted.

EXAMPLES I-XVI

The burning tests employed in the determination of the effectiveness of a given flame retardant additive were conducted as follows:

Strips of cotton twill 6 feet by 1.5 inch were soaked in the test solution, wrung out and dried under controlled test solution, wrung out and dried under controlled test solution is very pronounced when a cloth wetted with the chlorate containing solution is quite dry (e.g. under normal room conditions at 20 percent relative humidity). The accelerating effect of chromate on chlorate induced combustion is less pronounced when the organic material contains more moisture, as under normal room conditions at 60 percent relative humidity, but it remains a very important factor to be considered relative to the effectiveness of a flame retardant additive. The effect of 75

of cloth. Each solution contained 400 grams sodium chlorate per liter. This concentration approximates the usua' concentration of chlorate used for electrochemical machining (3 pounds per gallon=359 grams per liter).

to the electrochemical reaction which may be considered oxidation of the iron in the workpiece to the ferrous or ferric state. A suspension of hydrous metal oxides was formed in the recirculating electrolyte and slowly settled

TABLE 1.—BURNING TIMES FOR COTTON TWILL STRIPS IMPREGNATED WITH NaClO3+ADDITIVES [Burning time=sec./52-inch section, 11/2 inches wide]

	Solution composition, gms./liter		Drying of strip, percent rel.	Ignition	Burning time for strip, sec., when solution contained gms. Cr/liter (present as N2aCrO4) of:						
Ex.	NaClO ₃	Additive(s)	humidity, 25° C.	flame - size	No Cr	0.05 Cr	0.1 Cr	0.5 Cr	1.0 Cr	2.0 Cr	Other Cr
12345678	400 None 400 400 400 400 400	No additive	{ 20 52 (1) 20 20 57 20 20 20 20	Small Large Large Small Large Small Large Large Large Large Small Large Large Large Large Large Large Large Large Small Small Large Small Large Small	12. 6 36 		12. 5			2.4	25 Cr=40 sec.
9	400 400 400 400 400 400	50.8 Na ₂ SiO ₃ (=25 SiO ₂)	56 20 20 20 20 20 20 20 20	Small Large Small Large Small Large Small Large Small Large Small Large Large Large Large Large	>300 254 300 249	280	65 185 250	115 6. 9		4. 5 100	15 Cr=50 sec. 15 Cr=38 sec.

1 20 and 55.

the original cloth (Example 3) is drastically reduced by chlorate and further reduced by chlorate in the presence of trace amounts of chromate (Examples 1 and 2).

Experiments presented in Examples 4-6 demonstrate the effects of low humidity and large ignition flame size in decreasing the burning time of the chlorate impregnated cloth in the presence of sodium chromate as a flame retardant additive. The same effects are illustrated in Examples 7-9, as well as the effect of trace amounts of chromate, for the flame retardant sodium hydroxide.

Experiments resulting in the data presented in Examples 10 and 12 illustrate the flame retardant effect of sodium metasilicate in the presence of trace amounts of chromate and at a low humidity for a small ignition source. The addition of both sodium metasilicate and sodium metaborate exemplified in Examples 13 and 14 demonstrates the higher degree of flame retardancy attending the use of a co-additive with the silicate.

Examples 15 and 16 demonstrate the flame retardant properties of another silicate based additive of this invention, specifically sodium metasilicate and sodium chromate.

The alkali metal or ammonium chromate, carbonate, hydroxide, phosphate, sulfate, borate co-additives for alkali metal silicate based flame retardant additives of this invention perform the same function and may be used in substantially the same amounts as illustrated for chromate and metaborate to achieve substantially the same results.

EXAMPLE XVII

The solution described in Examples 13 and 14 in the preceding table was charged to the reservoir of an electrochemical grinding machine. The grinding wheel (1 inch in width) was a conductive-bonded mixture of alumina and copper grains. The grinding wheel was made the cathode relative to the workpiece-anode. The workpiece (a 3 inch wide bar of 304 stainless steel) was fed into the wheel which was set to give a specified depth of cut. During the cutting operation, the electrolyte solution was pumped from the reservoir and injected between the grinding wheel and the workpiece. Used electrolyte drained back to the reservoir. Several cuts were made across the workpiece as slots 1 inch wide and 0.05 to 0.10 inch deep.

The feed rate of the workpiece into the grinding wheel was varied when necessary to maintain a light load on the grinding wheel drive motor. The power input to the drive motor was kept at about 10 percent of the load theoretically needed to cut the metal workpiece by abrasion alone.

It is apparent from this data that the burning time of 25 in the electrolyte reservoir to form a brownish sludge. For an 0.05 inch deep cut, the grinder drew 1500 emperes at 11 volts and the 3 inch long cut was completed in 80 seconds. For a depth of cut of 0.10 inch, 1900 amperes were drawn at 10 volts and a 3 inch cut required 140 seconds for completion. The ground sulface was smooth and there was no evidence of excessive overcutting. The burning time of cloth impregnated with the used electrolyte was approximately the same as that for the original solution.

> The presence of sodium metasilicate and sodium metaborate had no deleterious effect on the performance of sodium chlorate as an extremely efficient electrolyte in the electrochemical grinding operation. Likewise the alkali metal based silicate flame retardant additives of this invention when employed in conjunction with chlorate as an electrochemical grinding or machining electrolyte present no deleterious effect in the actual grinding or machining operation while affording the advantage of flame retardancy to protect the operator and his clothing from 45 accidental damage from fire induced by the chlorate.

The illustration of a specific electrolyte containing solution in conjunction with an electrochemical grinding operation is representative of the operation of all the disclosed compositions in grinding and machining operations.

Having disclosed the invention, it will be apparent to those skilled in the art that obvious modifications may be made. For example, in any of the disclosed combinations of additives for NaClO₃, the amount of silicate plus coadditive present may be increased without deleterious 55 effects. The minimum amount of the flame retardant additive or additives is the critical factor to be considered in most applications because of possible deleterious effects that may impair the function of the chlorate as an electrochemical machining electrolyte. Therefore, the examples herein presented are intended to be illustrative of the inventive concept rather than limitations upon the actual scope of the contribution.

If higher or lower chlorate concentrations are desired in electrochemical machining or grinding operation, the relative proportion of silicate and co-additive may be employed.

What is claimed is:

1. A composition of matter comprising a member selected from the group consisting of an alkali metal chlorate, ammonium chlorate and mixtures thereof, and a flame retardant proportion of a member selected from the group consisting of an alkali metal silicate and hydrates thereof, in which the silicate, expressed as SiO2, to chlo-Therefore, practically all of the metal removal was due 75 rate weight ratio is between about 1:4 to 1:40.

7

- 2. The composition of claim 1 in which sodium metasilicate and sodium chlorate appear in the weight ratio of about 1:4 to 1:10.
- 3. A composition of matter comprising a member selected from the group consisting of an alkali metal chlorate, ammonium chlorate and mixtures thereof; a flame retarding proportion of a member selected from the group consisting of an alkali metal silicate and hydrates thereof; and a flame retarding proportion of a co-additive selected from the group consisting of an alkali metal chromate, borate, carbonate, phosphate, sulfate, hydroxide, ammonium analogs thereof, hydrates thereof and mixtures thereof, in which the silicate, expressed as SiO₂, co-additive and chlorate are in the weight ratio of 1:1:4-40.
- 4. The composition of claim 3 comprising about 10-25 parts of sodium metasilicate, and about 4-10 parts of sodium metaborate to each 100 parts of sodium chlorate.
- 5. The composition of claim 3 in which the weight ratio of sodium metasilicate to sodium metaborate to sodium chlorate is about 2:1:16.
- 6. The composition of claim 3 comprising about 10-25 parts of sodium metasilicate and about 10-20 parts of sodium chromate to each 100 parts of sodium chlorate.
- 7. The composition of claim 3 in which the weight ratio of sodium metasilicate to sodium chromate to sodium chlorate is about 1:1:8.
- 8. An aqueous solution of an electrolyte comprising from about 300 to about 400 grams per liter of a member selected from the group consisting of an alkali metal chlorate, ammonium chlorate and mixtures thereof; about 7 to about 75 grams per liter of an alkali metal silicate, expressed as SiO₂; and from 10 to about 80 grams per liter of a co-additive selected from the group consisting of an alkali metal chromate, borate, carbonate, phosphate, sulfate, hydroxide, the ammonium analogs thereof and 35 mixtures thereof.
- 9. The solution of claim 8 in which the chlorate is sodium chlorate, the silicate is sodium metasilicate and the co-additive is sodium metaborate.
- 10. The solution of claim 9 which contains from about 40 30-100 grams per liter of sodium metasilicate and from about 12-40 grams per liter of co-additive sodium metaborate.
- 11. The solution of claim 8 in which the chlorate is sodium chlorate, the silicate is sodium metasilicate and 45 the co-additive is sodium chromate.

8

- 12. The solution of claim 11 which contains from about 30-100 grams per liter of sodium metasilicate and from about 30-80 grams per liter of co-additive sodium chromate.
- 13. The solution of claim 8 in which the chlorate is sodium chlorate, the silicate is sodium metasilicate appearing in from about 30 to 100 grams per liter and the amount of co-additive present is zero.
- 14. A method of retarding chlorate induced combustion of organic material which comprises incorporating into aqueous solutions containing the chlorate ion, a flame retardant proportion of an alkali metal silicate and a flame retardant amount of a co-additive selected from the group consisting of an alkali metal chromate, carbonate, borate, phosphate, sulfate, hydroxide, ammonium analogs thereof and mixtures thereof, in which the silicate, expressed as SiO₂, co-additive and chlorate are in the weight ratio of 1:1:4–40.

References Cited

UNITED STATES PATENTS

225,858 280,500 671,548 1,271,506 1,534,289 2,704,243 2,749,247	3/1880 7/1883 4/1901 7/1918 4/1925 3/1955 5/1956	O'Connor 117—138 Meyer 117—138 Gordon 117—138 Ferguson 117—138 Teppet 71—128 Seibert 71—69 Bales 71—69 Seibert 71—128
2,749,227 2,886,425 3,464,810 3,306,765	5/1956 5/1959 9/1969 2/1967	Bales 71—69 Seibert 71—128 Young 71—128 Du Fresne et al 117—138

OTHER REFERENCES

Thomas et al.: "Effect of Alkali-Metal Compounds on Combustion," Industrial and Engineering Chemistry, June 1928, pp. 1–8.

Hodgman et al.: Handbook of Chemistry and Physics, Chem. Rubber Pub. Co., Cleveland, 1959, pp. 652-661.

JOHN T. GOOLKASIAN, Primary Examiner

D. J. FRITSCH, Assistant Examiner

U.S. Cl. X.R.

71-61, 62, 63, 69, 128; 204-143 M; 219-69 D

PO-1050 (5/69)

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION

Patent No	3,645,895	Dated	February 29, 1972	
Inventor(s)	John A. Peterson	and Albert H	• Ross	
It is cer and that said	tified that error ap Letters Patent are h	pears in the ereby correct	above-identified patent ed as shown below:	
Column 2	line 12 Hearbonate	es!! should re	adcarbonates,	
Column 4, line	33, "addition or" s	should read -	addition of 26, "emperes" should read	pq
amperes;	line 30, "sulface"			

Signed and sealed this 18th day of July 1972.

(SEAL) Attest:

EDWARD M.FLETCHER, JR. Attesting Officer

ROBERT GOTTSCHALK Commissioner of Patents PO-1050 (5/69)

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION

Patent No	3,645,895	Dated	February 29, 1972			
Inventor(s)	John A. Peterson and Albert H. Ross					
It is cen and that said	rtified that error ap Letters Patent are h	pears in the ereby correct	above-identified patent ed as shown below:			
Column 3,	33. "addition or" s	should read -	adcarbonates, addition of 26, "emperes" should read			
amperes;	line 30, "sulface"					
Signed	and sealed this l	.8th day of	July 1972.			

(SEAL) Attest:

EDWARD M.FLETCHER, JR. Attesting Officer

ROBERT GOTTSCHALK Commissioner of Patents