

US006413943B1

(12) United States Patent

McArthur et al.

(10) Patent No.: US 6,413,943 B1

(45) **Date of Patent: Jul. 2, 2002**

(54) METHODS AND REAGENTS FOR INHIBITING PROLIFERATION OF SMOOTH MUSCLE CELLS

(75) Inventors: James McArthur, San Carlos; Mitchell H. Finer, Woodside, both of CA (US); Jeno Gyuris, Winchester, MA (US)

(73) Assignees: Cell Genesys, Inc., Foster City, CA (US); GPC Biotech Inc., Waltham, MA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/457,568(22) Filed: Dec. 9, 1999

Related U.S. Application Data

- (60) Provisional application No. 60/122,974, filed on Mar. 1, 1999, and provisional application No. 60/163,382, filed on Nov. 5, 1999.
- (52) **U.S. Cl.** **514/44**; 435/320.1; 435/325; 435/366; 424/93.1; 424/93.21; 536/23.1; 536/23.4

(56) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

WO	WO9727297	7/1997	
WO	WO9903508	1/1999	
WO	WO99/06540	2/1999	C12N/15/00

OTHER PUBLICATIONS

A Vidal et al., Elsevier Review, "Cell-cycle inhibitors: three families united by a common cause," Gene 247 (2000), 1–15.*

McArthur et al. XP-082144030 p. 603, (1999) "Cancer Gene Therapy with Novel Chimeric p27/p16 Tumor Suppressor Genes."

Biochemical and Biophysical Research Communications, vol. 220, No. 3, pp. 703–709 (1996). Kwon et al., "The cdk2 Binding Domain of p27^{kip} Correlates with the Inhibition of the Kinase Activity of cdk2/Cyclin Complexes."

Lange, MD, R.A. et al. The American Journal of the Medical Sciences vol. 306, No. 4, Oct. 1993, "Southwestern Internal Medicine Conference: Restenosis: The Achilles Heel of Coronary Angioplasty", pp. 265–275.

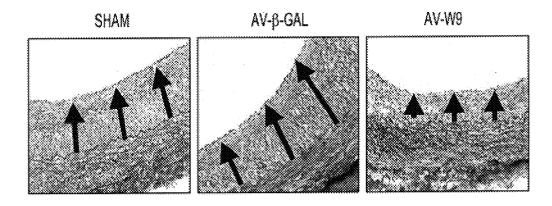
Kaneda, Y. et al., Annals New York Academy of Sciences 811; "Prevention of Restenosis by Gene Therapy", pp. 299–310.

Fukui, R. et al., Atherosclerosis 132 (1997); Inhibition of smooth muscle cell migration by the p21 cyclin–dependent kinase inhibitor (Cip1); pp. 53–59.

Morisake, H. et al., Biochemical and Biophysical Research Communications 240 (1997); Cell Cycle–Dependent Phosphorylation of p27 Cyclin–Dependent Kinase (Cdk) Inhibitor by Cyclin E/Cdk2, pp. 386–390.

Blais, A. et al., Biochemical and Biophysical Research Communications 247 (1998); "Structure of the Gene Encoding the Human Cyclin–Dependent Kinase Inhibitor p18 and Mutational Analysis in Breast Cancer", pp. 146–153.

(List continued on next page.)


Primary Examiner—James Ketter Assistant Examiner—Q Janice Li

(74) Attorney, Agent, or Firm—Roylance, Abrams, Berdo & Goodman, L.L.P.

(57) ABSTRACT

Disclosed are methods for using $\Delta E1/\Delta E4$ recombinant adenoviruses encoding cyclin dependent kinase inhibitors (CDKi's) as reagents for inhibiting smooth muscle cell proliferation. Also disclosed are recombinant lentiviruses encoding cyclin dependent kinase inhibitors (CDKi's).

26 Claims, 35 Drawing Sheets

OTHER PUBLICATIONS

Jen, J. et al., Cancer Research 56, Dec. 15, 1994; "Deletion of p16 and p15 Genes in Brain Tumors", pp. 6353–6358. Channon, K.M. et al., Cardiovascular Research 35 (1997); "Efficient adenoviral gene transfer to early venous bypass grafts: comparison with native vessels", pp. 505–513.

Sherr, C. J., Cell, vol. 73, Jun. 18, 1993; "Mammalian G, Cyclins", pp. 1059–1065.

Gyuris, J. et al., Cell vol. 75, Nov. 19, 1993; Cdi1, a Human G1 and S Phase Protein Phosphatase That Associates with Cdk2; pp. 791–803.

Harper, J.W. et al., Cell, vol. 75, Nov. 19, 1993; "The p21 Cdk-Interacting Protein Cip1 is a Potent Inhibitor of G1 Cyclin-Dependent Kinases", pp. 805-816.

Cyclin–Dependent Kinases", pp. 805–816. Polyak, K. et al., Cell, vol. 78, Jul. 15, 1994; "Cloning of p27^{kip1}, a Cyclin–Dependent Kinase Inhibitor and a Potential Mediator of Extracellular Antimitogenic Signals", pp. 59–66

Yonemitsu, Y. et al., Cir. Res. 82; "Transfer of Wild-Type p53 Gene Effectively Inhibits Vascular Smooth Muscle Cell Proliferation In Vitro and In Vivo", pp. 147–156.

Nomura, H. et al., Gene 191 (1997); "Cloning and Characterization of rat p27^{kip1}, a cyclin–dependent kinase inhibitor", pp. 221–218.

Scheaff, R.J. et al., Genes & Development 11, 1997; "Cyclin E-CDK2 is a regulator of p27^{kip1}", pp. 1464–1478.

Scherr, C.J. et al., Genes & Development 9, 1995; "Inhibitors of mammalian G_1 cyclin–dependent kinases", pp. 1149–1163.

Lee, M.H. et al., Genes & Development 9, 1995; "Cloning of p57^{kip2}, a cyclin–dependent kinase inhibitor with unique domain structure and tissue distribution", pp. 639–649. Matsuoka, S. et al., Genes & Development 9, 1995; "p57^{kip2}, a structurally distinct member of the p21^{cip1} Cdk inhibitor family, is a candidate tumor suppressor gene", pp. 650–662. Chang, M.W. et al., J Clin. Invest. vol. 96, Nov. 1995; "Adenovirus–mediated Over–expression of the Cyclin/Cyclin–dependent Kinase Inhibitor, p21 Inhibits Vascular Smooth Muscle Cell Proliferation and Neointima Formation in the Rat Carotid Artery Model of Balloon Angioplasty", pp. 2260–2268.

Chen, D. et al., J. Clin. Invest. vol. 99, No. 10, May 1997; "Downregulation of Cyclin–dependent Kinase 2 Activity and Cyclin A Promoter Activity in Vascular Smooth Muscle Cells by p27^{kip1}, an inhibitor of Neointima Formation in the Rat Carotid Artery", pp. 2334–2341.

Graham, F.L. et al., J. gen. Virol., (1997), 36; "Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5", pp. 59–72.

Dull, T. et al., Journal of Virology, vol. 72, No. 11, Nov. 1998; "A Third–Generation Lentivirus Vector with a Conditional Packaging System", pp. 8463–8471.

Guan, K.L. et al., Molecular Biology of the Cell, vol. 7, Jan. 1996; "Isolation and Characterization of p19^{INK4d}, a p16–related Inhibitor Specific to CDK6 and CDK4", pp. 57–70.

Susuki, J. et al., Nature Medicine, vol. 3, No. 8, Aug. 1997; "Prevention of graft coronary arteriosclerosis by anisense cdk2 kinase oligonucleotide", pp. 900–903.

Serrano, M. et al., Nature, vol. 366, Dec. 16, 1993; "A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4"; pp. 704–707.

Morgan, D.O., Nature, vol. 374, Mar. 9, 1995; "Principles of CDK Regulation", pp. 131–134.

Russo, A.A. et al., Nature, vol. 395, Sep. 17, 1998; "Structural basis for inhibition of the cyclin–dependent kinase Cdk6 by the tumour suppressor p16^{INK4an}; pp. 237–242.

Okamoto, A. et al., Proc. Natl. Acad. Sci. USA, vol. 91, Nov. 1994; "Mutations and altered expression of p16^{INK4a} in human cancer"; pp. 11045–11049.

Yang, Z.Y. et al., Proc. Natl. Acad. Sci. USA, vol. 93, Jul. 1996; "Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury", pp. 7905–7910.

Zhang, S. et al., Proc. Natl. Acad. Sci. USA, vol. 95, Mar. 1998; "Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16^{INK4a} and p19^{ARF}, is a candidate for the plasmacytoma susceptibility locus, Pctr1"; pp. 2429–2434.

Chang, M.W. et al., Science, vol. 267, Jan. 27, 1995; "Cytostatic Gene Therapy for Vacsular Proliferative Disorders with Constitutively Active Form of Retinoblastoma Gene Product", pp. 518–522.

Draetta, G., Trends Biochem Science Oct. 15, 1990, "Cell cycle control in eurkaryotes: molecular mechanisms of cdc2 activation"; pp. 378–383.

^{*} cited by examiner

		CDK4/ yclin D1 (nM)	CDK2/ cyclin E (nM)	CDC2/ cyclin B (nM)		F-LIFE RS) As
p16	1 156	100	>1000	>1000	~3	~3
p27	1 198	23	2.4	12	~3	~4.5
Δp27 ¹²⁻¹⁷⁸	12 178	52	11	44	<2	<1
Δp27 ²⁵⁻⁹³	25 93	30	8.3	31	<1	<1
W3	1 198 2 156	17	3.0	18	~2.5	~6.5
W4	1 198/2 156	39	8.9	15		
W5	1 156 2 198	44	11	18		
W6	1 156/2 198	26	8.4	17		
W8	12 178 2 156	23	4.4	17		
W7	12 178/2 156	16	2.6	9.2	~3	~20
W10	25 93 2 156	38	3.0	17		
W9	25 93 /2 156	47	3.5	18	~2	~4.5
p27 + p16	1 156 1 198	25	1.7	12		

FIG. 1

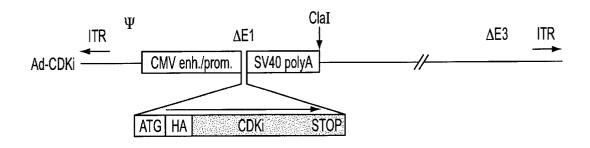
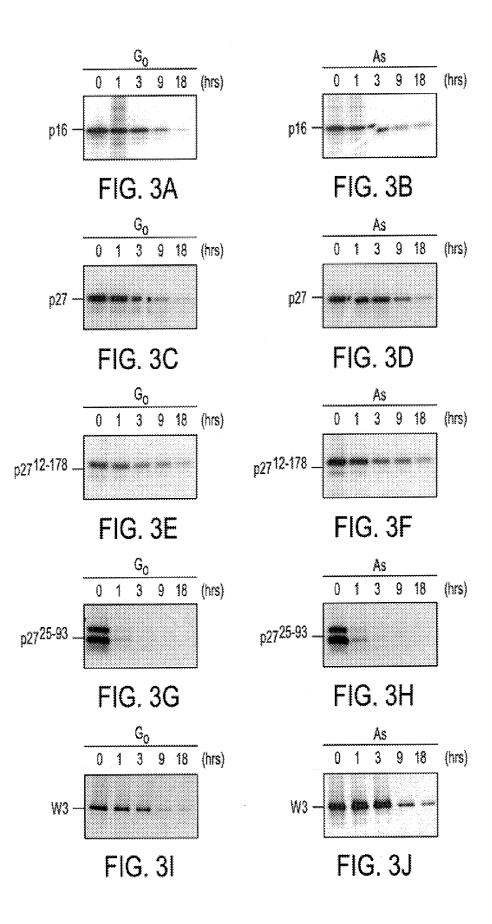
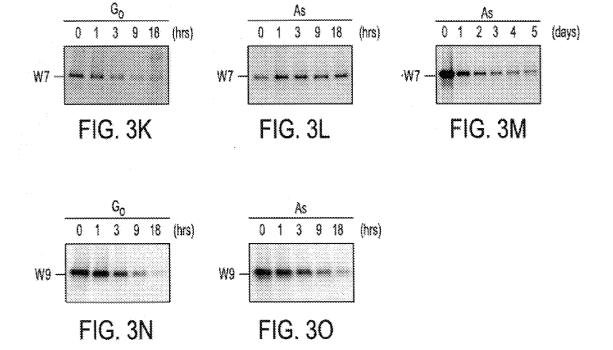
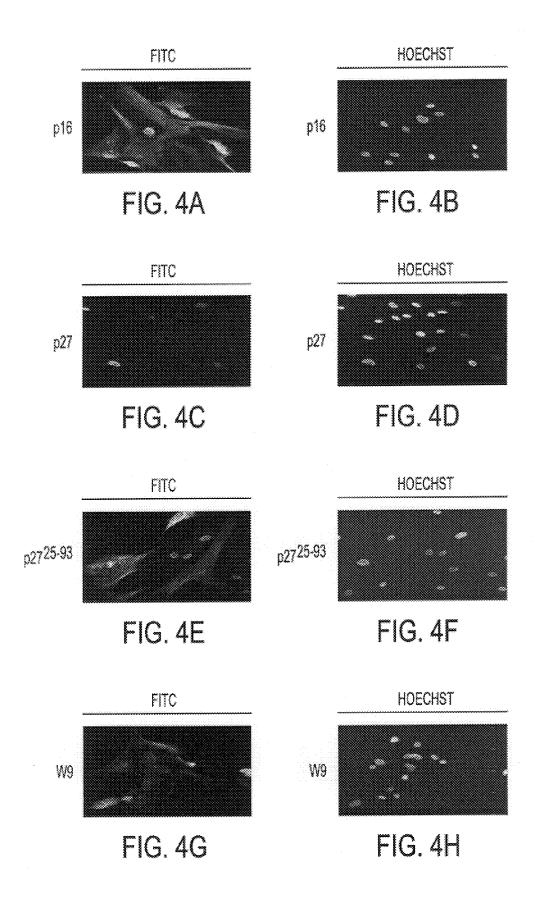





FIG. 2

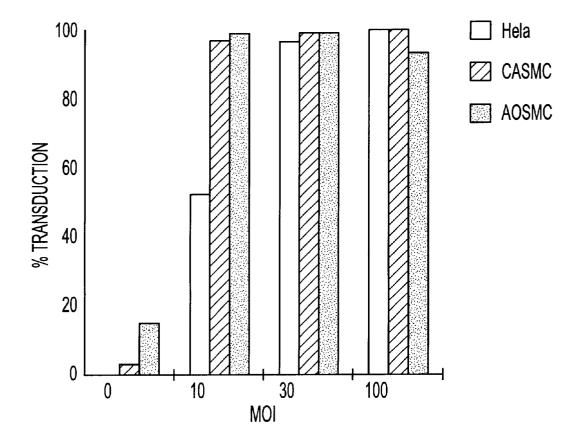
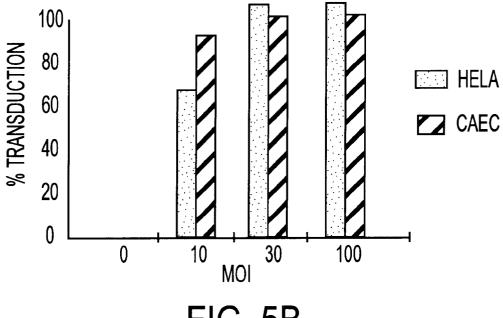
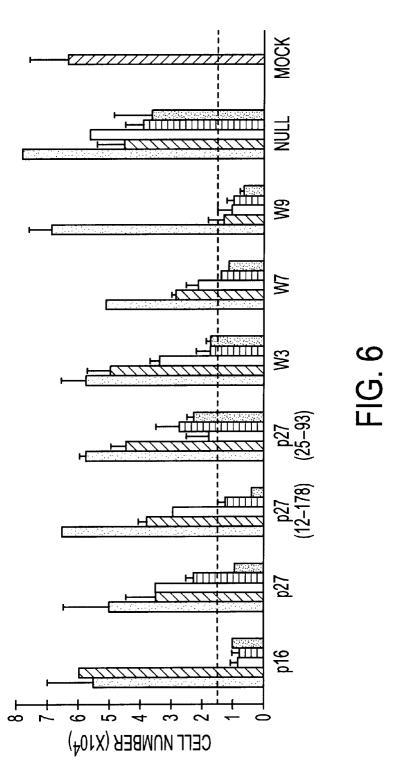
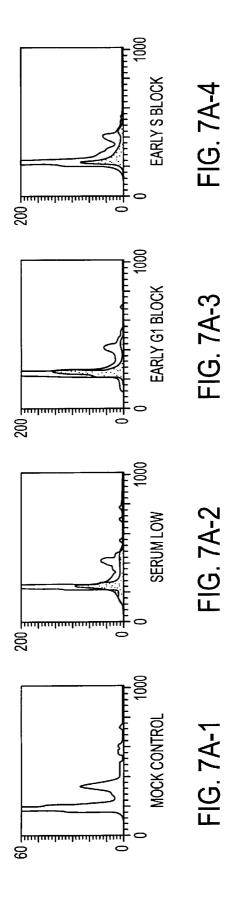
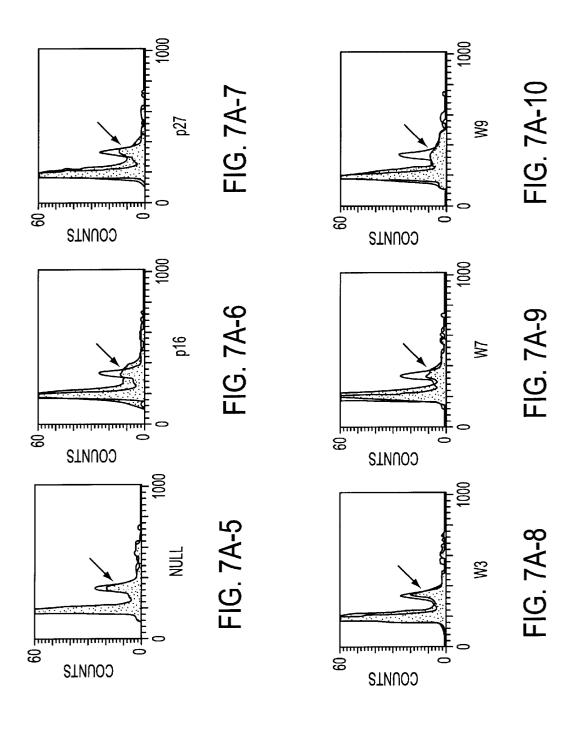


FIG. 5A


FIG. 5B

Jul. 2, 2002

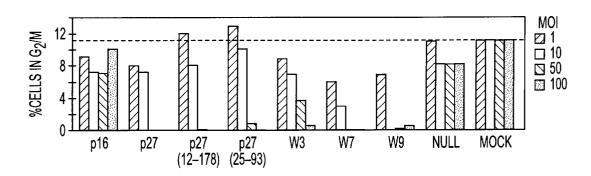


FIG. 7B-1

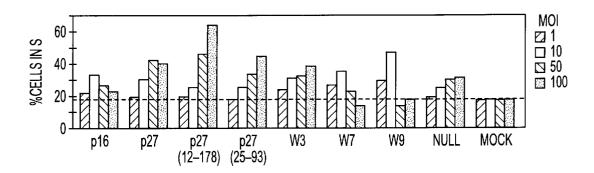


FIG. 7B-2

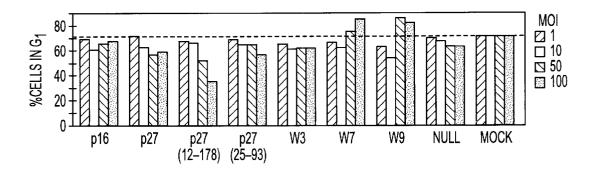
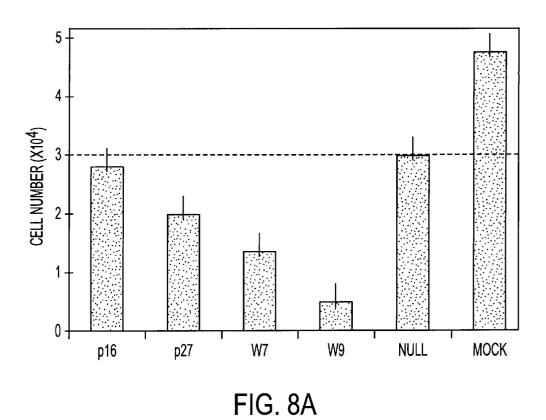
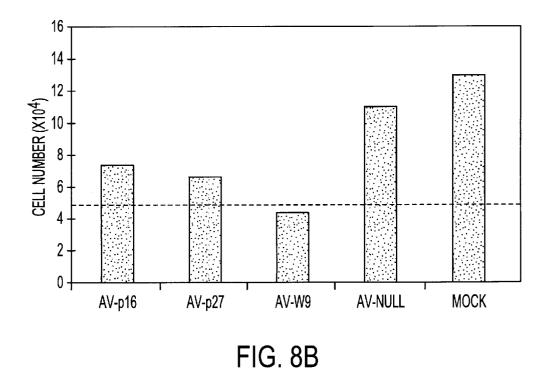
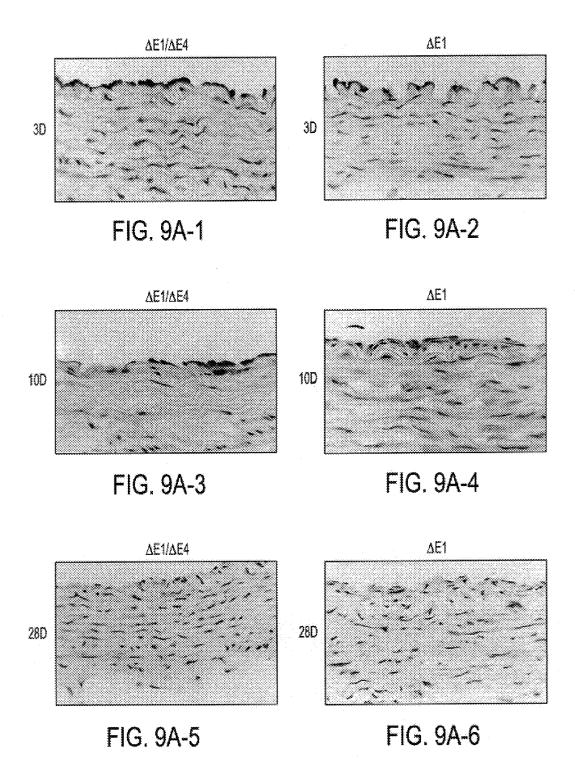
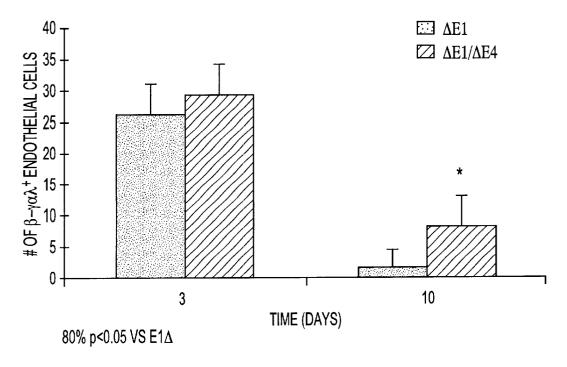
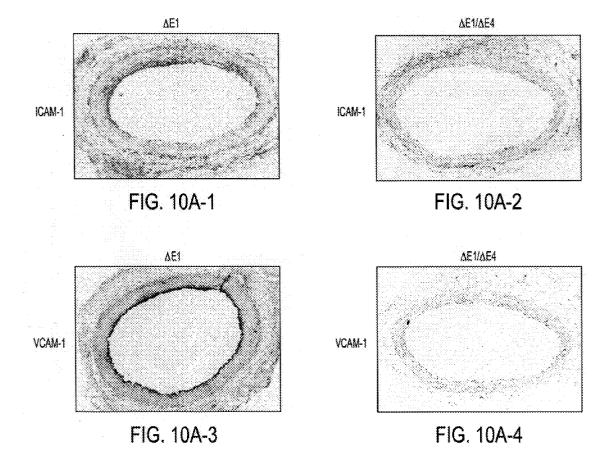
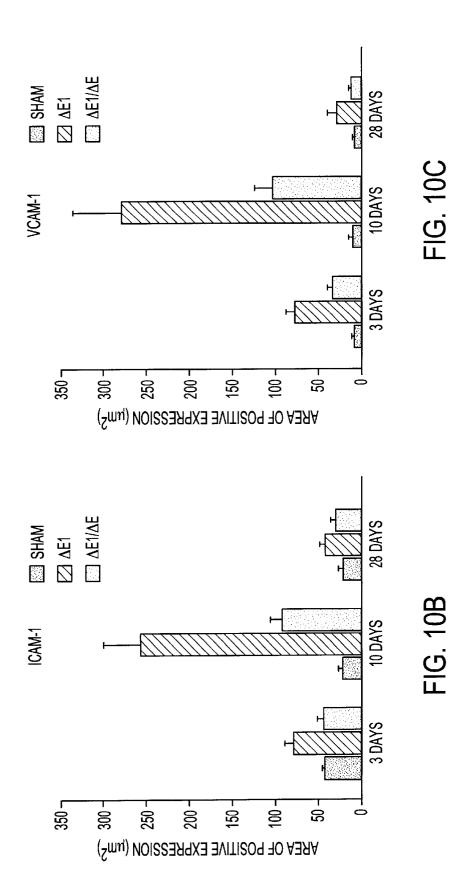
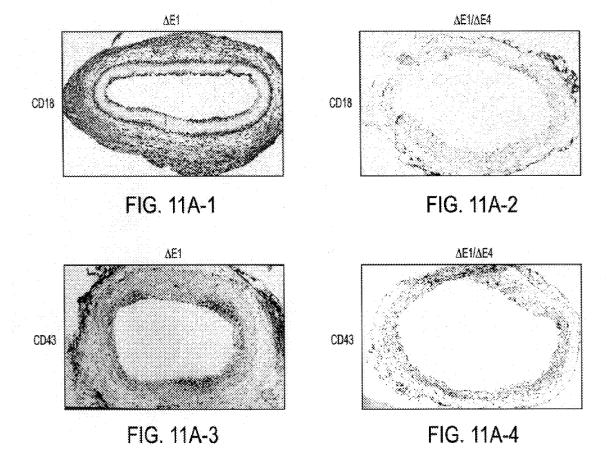
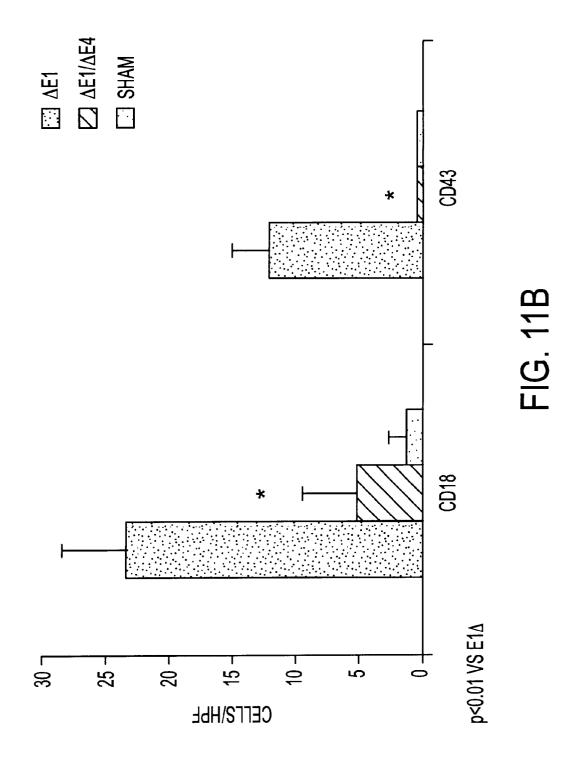
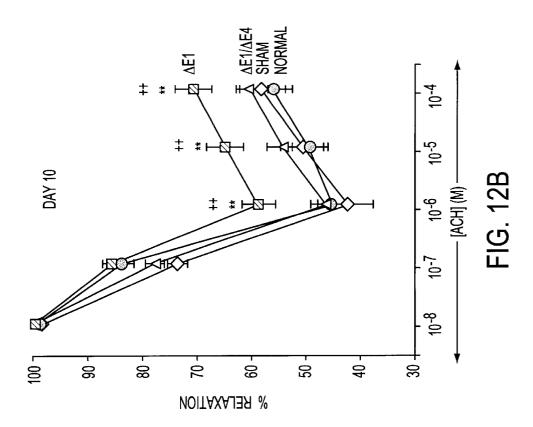
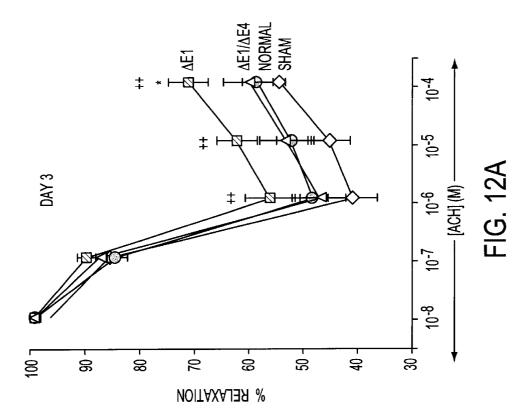





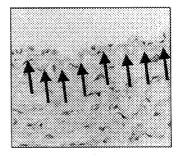
FIG. 7B-3

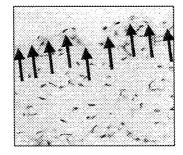
Jul. 2, 2002

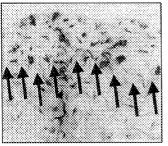







FIG. 9B



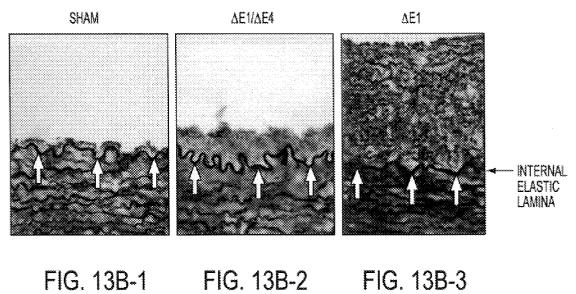


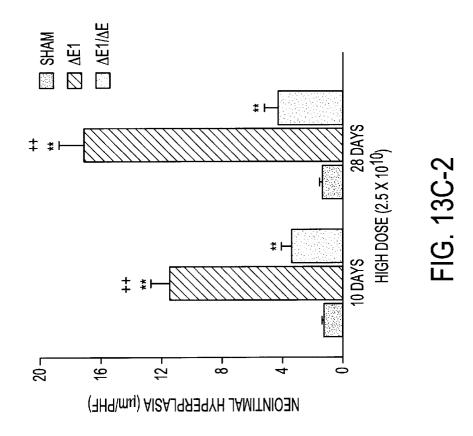


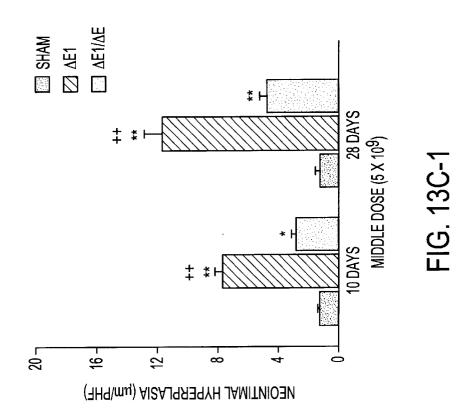


ΔΕ1/ΔΕ4

ΔΕ1




EL


FIG. 13A-1

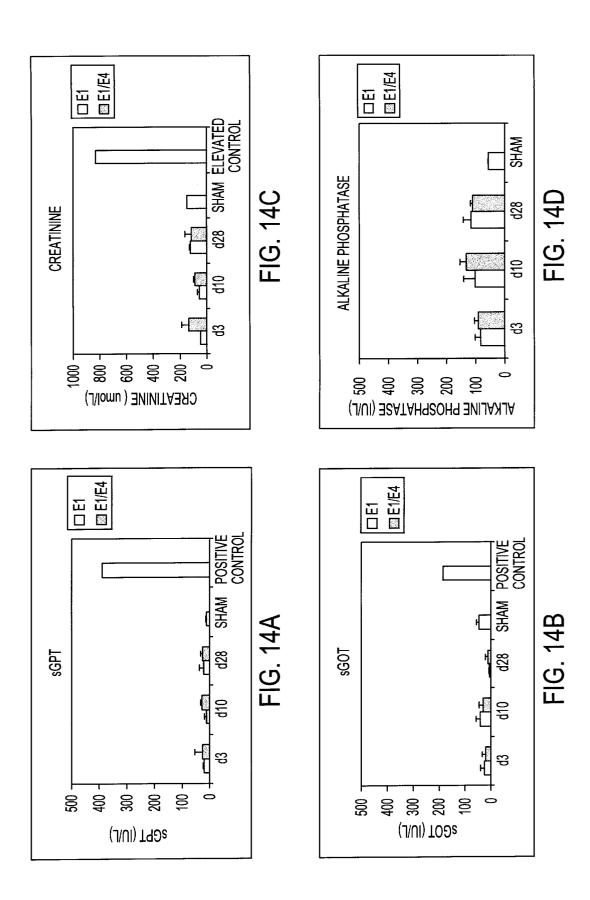

FIG. 13A-2

FIG. 13A-3

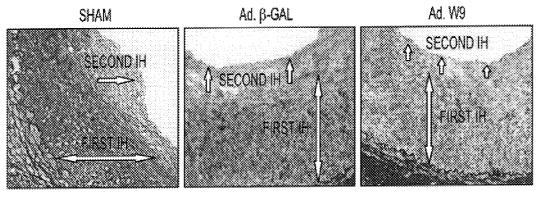


FIG. 15A-1 FIG. 15A-2 FIG. 15A-3

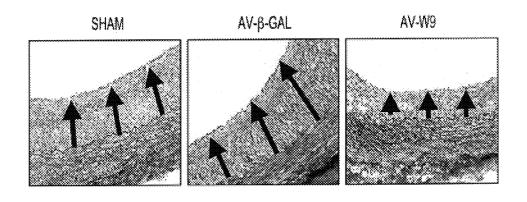


FIG. 16A-1 FIG. 16A-2 FIG. 16A-3

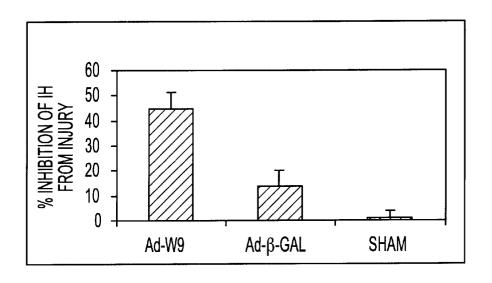


FIG. 15B

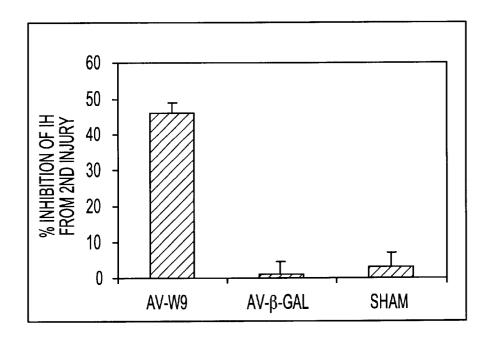


FIG. 16B

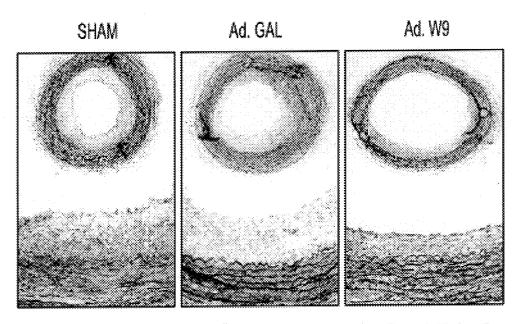


FIG. 17A-1 FIG. 17A-2 FIG. 17A-3

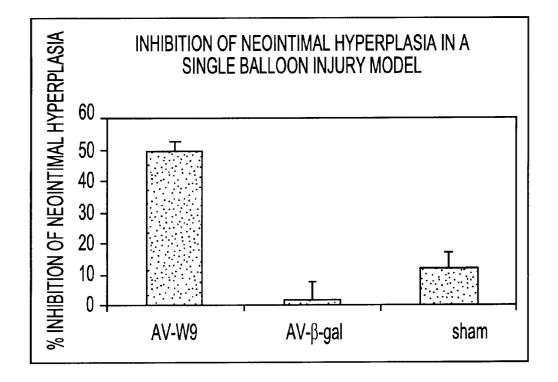
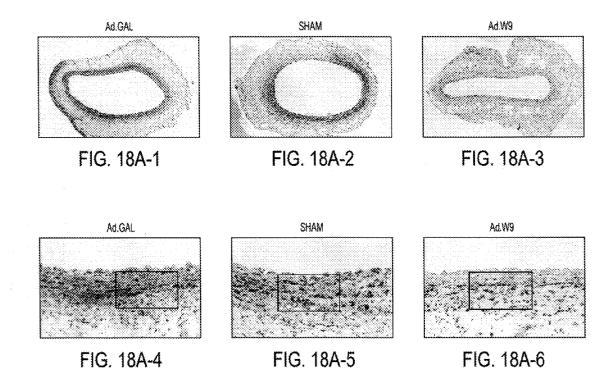
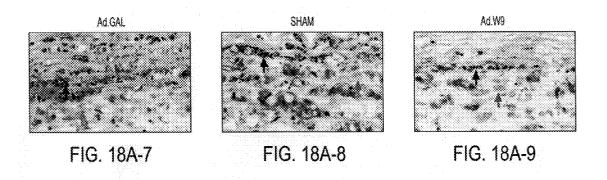
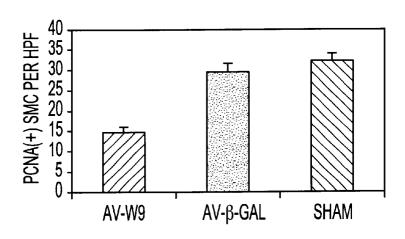
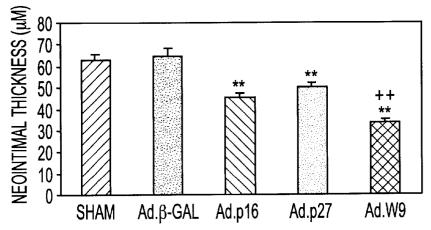





FIG. 17B



Jul. 2, 2002

FIG. 18B

DATA ARE MEAN \pm SE; **p<0.01 VS.SHAM CONTROL AND Ad. β -GAL; ++p<0.01 VS.Ad.p16 AND p27

FIG. 19

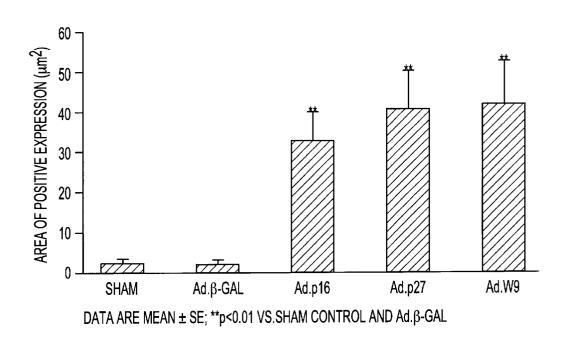


FIG. 20B

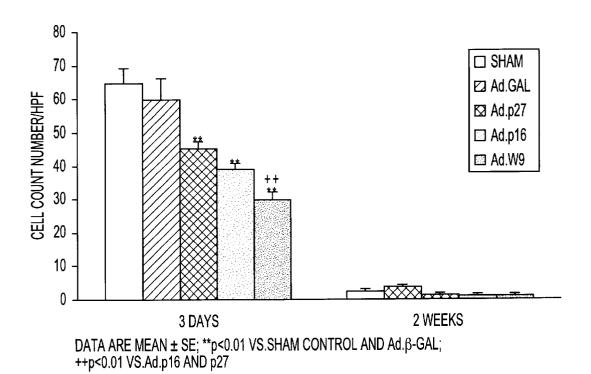


FIG. 21

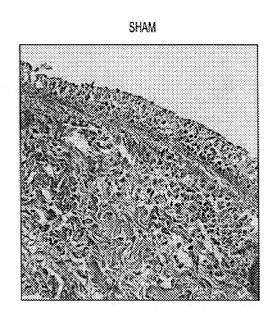


FIG. 22A-1

FIG. 22A-2

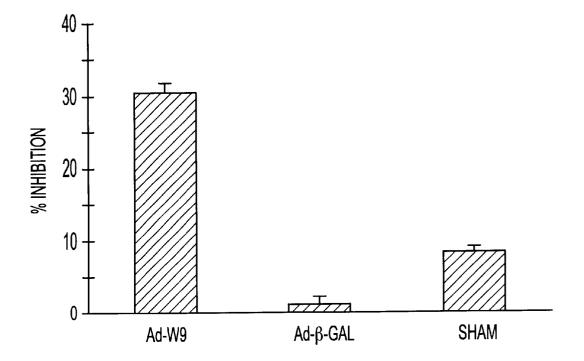
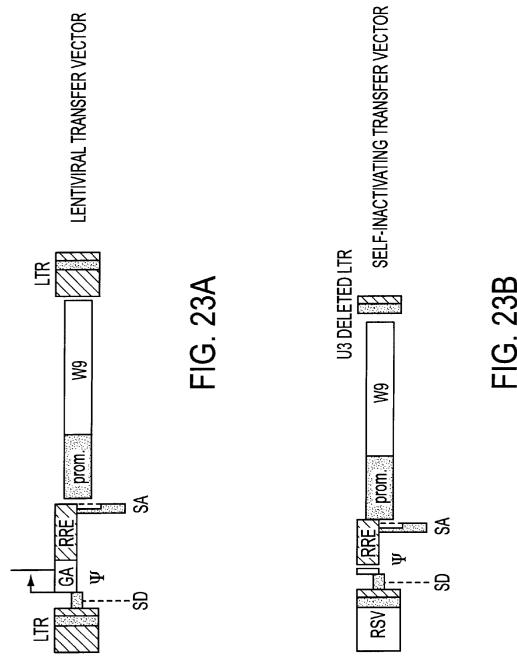



FIG. 22B

METHODS AND REAGENTS FOR INHIBITING PROLIFERATION OF SMOOTH MUSCLE CELLS

This application claims benefit of U.S. Ser. No. 60/122, 974 filed Mar. 1, 1999 and of U.S. Ser. No. 60/163,382 filed Nov. 5, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the inhibition of smooth muscle cell proliferation, particularly vascular smooth muscle cell proliferation following injury to a blood vessel from stenting of a blood vessel, angioplasty, or engraftment of a vein onto 15 the arterial system.

2. Summary of the Related Art

Several disease phenotypes, including cancer, rheumatoid arthritis, macular degeneration, and restenosis (e.g., restenosis induced by angioplasty), involve the hyper-proliferation 20 of cells. Cyclin-dependent kinase (CDK) complexes play a key role in the eukaryotic cell cycle (Draetta G. (1990) Trends Biochem. Sci. 15: 378-383; Sherr, C. J. (1993) Cell 73: 1059-1065). The CDK complex activity is regulated by mechanisms such as stimulatory or inhibitory phosphorylations, as well as the synthesis and degradation of the kinase and cyclin subunit themselves. While p21 Waf1/ cip1 and p27^{Kip1} inhibit all the CDK/cyclin complexes tested, p $16^{Ink4/MTS1}$, p15, p18, and p19 block exclusively the activity of the CDK4/cyclin D and CDK6/cyclin D com- 30 plexes in the early G₁ phase by either preventing the interaction of CDK4 and Cyclin D1, or indirectly preventing catalysis (Serrano et al. (1993) Nature 366: 704-707).

Gene therapy offers the opportunity to prevent the disease pathology. In patients with occlusion of the coronary and/or peripheral vasculature, one of the leading treatments is disassociation of the atherosclerotic plaque through angioplasty. In response to angioplasty, the normal vessel architecture is disrupted and a complex cascade of events takes place, concluding with the hyper-proliferation of the vascular smooth muscle cells and eventual reocclusion of the vessel in approximately 30% of patients (Lange et al. (1993) *Am. J. Med. Sci.* 306:265–275).

Vein grafts are also used as a conduit for peripheral and aurotocoronary bypass grafting. However, more than 50% of coronary veinous bypass grafts fail within 10 years of implantation, often due to restenosis and intimal hyperplasia, which results from undesired smooth muscle cell proliferation (Channon et al. (1997) *Cardiovascular Research* 35:505–513). Antiplatelet agents have had limited impact in reducing vein graft failure (Channon et al., supra).

Stent placement, a procedure for the prevention of immediate vessel closure or elastic rebound following angioplasty, where a stent is placed into a blood vessel, also causes injury to the blood vessel, which can promote restenosis

Several groups have demonstrated that over-expression of the p21^{Waf1/CiP1}, p27^{Kip1}, p53, or Rb genes, or cdc-2 and cdk-2 anti-sense genes in the cells at the site of vessel injury 60 will inhibit the hyper-proliferation of vascular smooth muscle cells induced by balloon injury (Chang et al. (1995) *J. Clin. Invest.* 96:2260–2268; Fukui et al. (1997) *Atherosclerosis* 132:53–59; Chen et al. (1997) *J. Clin. Invest.* 99:2334–2341; Chang et al. (1995) *Science* 267:518–522; 65 Yang et al (1996) *Proc. Natl. Acad. Sci.* (USA) 93:7905–7910; Yonemitsu et al. (1998) *Circ. Res.*

2

82:147–156; Kaneda et al. (1997) *Ann. N.Y. Acad. Sci.* 811:308–310; Suzuki et al. (1997) *Nat. Med.* 8:900–903). However, the efficiency of intra-vascular gene therapy in patients may limit over-expression of these cell cycle regulators.

Therefore, there still exists a need for very potent antiproliferative reagents to reduce undesired smooth muscle cell proliferation while overcoming the shortcomings of known cell proliferation-inhibiting reagents. Such novel reagents and methods for using them are useful for treating conditions associated with smooth muscle cell proliferation including, without limitation, restenosis due to angioplasty, stent placement, or vein engraftment.

BRIEF SUMMARY OF THE INVENTION

The invention provides methods and reagents for inhibiting hyperproliferation of smooth muscle cells. The invention provides treatments for vascular pathologies associated with smooth muscle cell hyperproliferation, including restenosis. Preferably, the invention provides methods and reagents for inhibiting vascular smooth muscle cell hyperproliferation in restenosis following angioplasty, stent placement, or vein engraftment.

It has been discovered that cyclin dependent kinase inhibitors (CDKi's) can inhibit smooth muscle cell proliferation. This discovery has been exploited to develop the present invention which, in a first aspect, provides a method for inhibiting smooth muscle cell hyperproliferation comprising transducing smooth muscle cells with an effective amount of a recombinant adenovirus that lacks a functional E4 region and a functional E1 region and that comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi), wherein hyperproliferation of the transduced smooth muscle cells is inhibited. In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is selected from the group consisting of a protein from the INK4 family or an active fragment thereof; a protein from the CIP/KIP family or an active fragment thereof; and a fusion protein comprising at least an active fragment of the protein from the INK4 family and at least an active fragment of the protein from the CIP/KIP family.

In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the CIP/KIP family of CDKi's. In certain embodiments, the CDKi is a human p27 protein (SEQ ID NO:26) or an active fragment thereof, such as an active fragment selected from the group consisting of amino acids 25–93 of p27 protein and amino acids 12–178 of p27 protein.

In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the INK4 family of CDKi's. In certain embodiments, the cyclin dependent kinase inhibitor is a human p16 protein (SEQ ID NO:28) or an active fragment thereof.

In certain preferred embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is derived from a mammal (e.g., a human).

In certain preferred embodiments of the first aspect of the invention, where the cyclin dependent kinase inhibitor is a fusion protein comprising at least an active fragment of a protein from the INK4 family of CDKi's and at least an active fragment of a protein from the CIP/KIP family of CDKi's, the protein from the INK4 family of CDKi's is human p16 and the protein from the CIP/KIP family of CDKi's is human p27. In other embodiments, the cyclin dependent kinase inhibitor a fusion protein comprising an active fragment of human p27 and an active fragment of

human p16, and is W3 (SEQ ID NO:4), W4 (SEQ ID NO:6), W5 (SEQ ID NO:8), W6 (SEQ ID NO:10), W7 (SEQ ID NO:14), W8 (SEQ ID NO16), W9 (SEQ ID NO:20), or W10 (SEQ ID NO:22). In preferred embodiments, the dependent kinase inhibitor is W7 or W9. In a particularly preferred embodiment, the cyclin dependent kinase inhibitor is W9. In a certain embodiment, the fusion protein comprises a linker positioned between the active fragment of the first cyclin dependent kinase inhibitor and the active fragment of the second cyclin dependent kinase inhibitor.

In various embodiments of the first aspect of the invention, the recombinant adenovirus additionally lacks a functional E2 region, or a functional E3 region. In preferred embodiments, the recombinant adenovirus is replication-

In some embodiments of the first aspect of the invention, the smooth muscle cells are cultured smooth muscle cells. In certain embodiments the smooth muscle cells are in a mammal. In certain embodiments, the smooth muscle cells were induced to hyperproliferate by vascular injury. In certain embodiments, the injury was induced by angioplasty, stent placement, or vein engraftment.

In a second aspect, the invention provides a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi). In certain embodiments, the cyclin dependent kinase inhibitor is selected from the group consisting of a protein from the INK4 family or an active fragment thereof; a protein from the CIP/KIP family or an active fragment thereof; and a fusion protein comprising at least an active fragment of the protein from the INK4 family and at least an active fragment of the protein from the CIP/KIP family.

In certain embodiments of the second aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the CIP/KIP family of CDKi's. In certain embodiments, the CDKi is a human p27 protein or an active fragment thereof, such as an active fragment selected from the group consisting of amino acids 25-93 of p27 protein and amino acids 12-178 of p27 protein.

In certain embodiments of the second aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the INK4 family of CDKi's. In certain embodiment, the cyclin dependent kinase inhibitor is a human p16 protein or an active fragment thereof.

In certain preferred embodiment of the second aspect of the invention, where the cyclin dependent kinase inhibitor is a fusion protein comprising at least an active fragment of a protein from the INK4 family of CDKi's and at least an active fragment of a protein from the CIP/KIP family of CDKi's, the protein from the INK4 family of CDKi's is human p16 and the protein from the CIP/KIP family of CDKi's is human p27. In other embodiments, the cyclin dependent kinase inhibitor a fusion protein comprising an human p16, and is W7 or W9. In a particularly preferred embodiment, the cyclin dependent kinase inhibitor is W9.

In preferred embodiments of the second aspect of the invention, the recombinant lentivirus is replication-deficient.

In a third aspect, the invention provides a therapeutic composition comprising a pharmaceutically acceptable carrier and a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor. In preferred embodiments, the recombinant lentivirus is replicationdeficient.

In a fourth aspect, the invention provides a method for treating a condition associated with smooth muscle cell

hyperproliferation comprising administering to a patient having or suspected of having the condition, a therapeutically effective amount of a therapeutic composition comprising a pharmaceutically acceptable carrier and a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor, wherein the condition is inhibited. In preferred embodiments, the recombinant lentivirus is replication-deficient.

In various embodiments of the fourth aspect of the 10 invention, the condition is restenosis. In certain embodiments, the restenosis is induced by injury. In certain embodiments, the injury is induced by angioplasty, stent placement, or vein engraftment.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects of the present invention, the various features thereof, as well as the invention itself may be more fully understood from the following description, when read together with the accompanying drawings in which:

FIG. 1 is a diagrammatic representation showing some recombinant CDK inhibitors of the invention tested in in vitro kinase assays, and the results of these assays. The p16 molecule is indicated by the open box; the p27 molecule and its derivatives are indicated by the hatched boxes; and the 15 amino acids long (Gly₄Ser)₃ linker between the p16 and p27 moieties is indicated by the black boxes. Above the schematic for each molecule is the corresponding 5' and 3' amino acid from the parental molecule. The table in the middle shows the IC50's (in nM) of the purified inhibitors as determined by in vitro kinase assays that utilized CDK4/ cyclin D1, CDK2/cyclin E, and CDC2/cyclin B kinases. At the right of FIG. 1 is listed the estimated half-life of the adenovirus expressed CDKi protein (in hours) as measured by pulse-chase experiments;

FIG. 2 is a schematic representation of the genomic structure of recombinant adenoviruses that express CDKi's. The expression of the inhibitors is regulated by the CMV enhancer and promoter and the SV40 poly A sequence. In the constructs depicted in this schematic diagram, every inhibitor is fused to the HA epitope tag. The ATG is in the context of the optimal Kozak sequence;

FIG. 3 is a photographic representation of a series of 45 autoradiographs depicting the turnover rate of adenovirusexpressed CDKi's (AV-CDKi's) in transduced asynchronously growing human coronary artery smooth muscle cells (CASMCs) (A_s; middle column) as compared to transduced quiescent CASMCs (G₀; left column). Twenty-four hours following infection at a MOI of 50, cells were labeled for 2 hours with 35S-methionine and then chased with "cold" medium for the times indicated. Equivalent amounts of total cell extract from the transduced asynchronous (As) and quiescent (G₀) cells were immunoprecipitated using antiactive fragment of human p27 and an active fragment of 55 bodies bound to protein A-Sepharose. With the exception of AV-p16, a p27 specific antibody was used for all immunoprecipitates of AV-CDKi-infected cells. For the immunoprecipitation of p16 from AV-p16 infected cells a p16 specific antibody was used. The precipitates were separated by SDS-PAGE, the gels vacuum dried and exposed to film. The far right column shows the results of a parallel experiment conducted with asynchronous (A_s) cells transduced with AV-W7 and harvested on days 1, 2,3,4, or 5, following a 2 hour pulse;

FIG. 4 is a representation of a series of photographs showing the comparison of the subcellular localization of various adenovirus-expressed CDK inhibitors in CASMCs.

Proliferating cells were transduced with the indicated AV-CDKi at MOI of 50. Forty-eight hours later, the cells were fixed and stained with HA epitope-specific antibody (12CA5, Boehringer) and FITC conjugated rabbit antimouse antibody. The left panels show FITC staining of the CDKi proteins in transduced cells; the middle panels show Hoechst staining of the nuclei of these transduced cells, which reveals all of the cells in the field; and the right panels are an overlay of the FITC stained and Hoechst stained images;

FIG. 5A is a graphic representation showing the transduction efficiency of smooth muscle cells with recombinant adenovirus expressing LacZ operably linked to the CMV promoter. Nonproliferating human aortic smooth muscle cells (AoSMC), CASMC, or HeLa cells were either mock treated or transduced with Ad-CMV-Lac-Z at MOI of 10,30 and 100. Five days later, the percentage β -gal positive cells were determined by flow cytometry following staining with FDG substrate (Sigma). Both AoSMC and CASMC showed greater than 95% transduction efficiency at all the MOI tested;

FIG. **5**B is a graphic representation showing the transduction efficiency of endothelial cells with recombinant adenovirus expressing LacZ operably linked to the CMV promoter. Nonproliferating human coronary artery endothelial cells (CAECs) or HeLa cells were either mock treated or transduced with AV-CMV-Lac-Z at MOI of 10, 30 and 100. Two days later, the percentage β -gal positive cells were determined by flow cytometry following staining with FDG substrate (Sigma). CAEC showed greater than 90% transduction efficiency at all the MOI tested;

FIG. 6 is a graphic representation showing the inhibition of cell growth of synchronously growing CASMCs by various AV-CDKi. CASMCs were made quiescent by incubation in low serum conditions and transduced with the indicated AV-CDKi's at MOI's of 1 to 250. The next day, cells were stimulated to enter the cell cycle by addition of 10% serum to the media. Cells were harvested 3 days after restimulation with serum-containing media and counted from duplicate wells. The dashed line represents starting cell number;

FIG. 7A is a graphic representation of a series of histograms comparing representative flow cytometric analyses of CASMC's transduced with recombinant adenovirus encoding the various indicated CDKi or Null (i.e., AV-CMV) at 50 MOI. Twenty-four hours after transduction, virus was removed, and the cells were restimulated with 10% FBS-containing media. Three days later, the cells were fixed and stained with propidum iodide, and then subjected to FAC-scan analysis. Cells that were kept in 0.05% FBS for 48 hours (Serum Low) as well as cells that were treated with nothing (Mock Control), n-butyrate (early G₁ block), or aphidicolin (early S block) were also analyzed for DNA content as control profiles;

FIG. 7B is a schematic representation of a series of bar 55 graphs comparing the cell cycle distributions (i.e., G_2/M phase, S phase, or G_1 phase) of the CASMCs transduced with 1,10,50, or 100 MOI of recombinant adenovirus encoding the indicated CDKi or Null (i.e., AV-CMV), or no adenovirus (Mock). The proportion of cells in the different cell cycle stages was determined for mock transduced and adenovirus transduced (1–100 MOI) CASMC. The upper panel shows the percentage of cells in G_2/M phase; the middle panel shows the percentage of cells in S phase; and the lower panel shows the percentage of cells in G_1 phase; G_2/M phase; G_3/M phase;

FIG. 8A is a graphic representation showing the inhibition of cell growth of synchronously growing CAECs by various

6

AV-CDKi. Quiescent CAECs were transduced with AV-CDKi at 10 MOI. The next day, virus was removed, and the cells were stimulated to enter the cell cycle by addition of 10% serum to the media. Cells were harvested 3 days later and counted. The dashed line represents starting cell number at time of infection;

FIG. 8B is a graphic representation showing the inhibition of cell growth of asynchronous CAEC by various AV-CDKi. CAECs were seeded in 6 well dishes and transduced the next day with indicated AV-CDKi at 10 MOI. Virus was removed on the following day, and the cells returned to full serum containing media. Cells were harvested 2 days later and counted. The dashed line represents starting cell number at the time of infection;

FIG. 9A is a representation of a series of photographs comparing the β -gal expression in rabbit carotid arteries 3, 10, or 28 days following treatment with ΔΕ1-AV- β -gal (right panels) or ΔΕ1/ΔΕ4-AV- β -gal (left panels), as determined by immunohistochemistry in which arterial cryosections were stained with lacZ;

FIG. **9**B is a graphic representation of quantitation by image analysis of β -gal expression in rabbit carotid arteries following 3 or 10 days of treatment with Δ E1-AV- β -gal (black bars) or Δ E1/ Δ E4-AV- β -gal (gray bars);

FIG. 10A is a representation of a series of photographs comparing ICAM-expression in rabbit carotid arteries 10 days following treatment with $\Delta E1$ -AV- β -gal (left panels) or $\Delta E1/\Delta E4$ -AV- β -gal (right panels), as determined by immunohistochemistry in which arterial cryosections were stained with anti-ICAM-1 specific antibodies;

FIG. 10B is a representation of a series of photographs comparing VCAM-1 expression in rabbit carotid arteries 10 days following treatment with $\Delta E1$ -AV- β -gal (left panels) or $\Delta E1/\Delta E4$ -AV- β -gal (right panels), as determined by immunohistochemistry in which arterial cryosections were stained with anti-VCAM-1-specific antibodies;

FIG. **10**C is a graphic representation of quantitation by image analysis of ICAM-1 and VCAM-1 expression in rabbit carotid arteries 3,10, or 28 days following treatment with sham (white bars), Δ E1-AV- β -gal (black bars) or Δ E1/ Δ E4-AV- β -gal (gray bars). For ICAM-1 (left panel), 5×10^9 ffu/ml virus was used for gene transfer. For VCAM-1 (right panel, 2.5×10^{10} focus forming units (ffu)/ml virus was used for gene transfer;

FIG. 11A is a representation of a series of photographs comparing CD18 and CD43 expression in rabbit carotid arteries 10 days following treatment with $\Delta E1$ -AV- β -gal (left panels) or $\Delta E1/\Delta E4$ -AV- β -gal (right panels), as determined by immunohistochemistry in which arterial cryosections were stained with anti-CD18 or anti-CD43 specific antibodies:

FIG. 11B is a graphic representation of quantitation by image analysis of the expression of CD18 (left panel) and CD43 (right panel) in rabbit carotid arteries 10 days following treatment with sham (white bars), $\Delta E1$ -AV- β -gal (black bars) or $\Delta E1/\Delta E4$ -AV- β -gal (gray bars) at $5\times10^{\circ}$ ffu/ml virus. Data are presented as mean+/-standard error; * equals p<0.05 versus sham control; ** equals p<0.01 versus sham control; + equals p<0.05 versus $\Delta E1/\Delta E4$ -AV;++p<0.01 versus $\Delta E1/\Delta E4$ -AV;

FIG. 12 is a graphic representation showing the endothelium-dependent vascular relaxation of arteries precontracted to 90% of maximal tension with phenylephrine, and then perfused with the indicated concentrations of acetylcholine ([Ach] (M)). Vasomotor function was evaluated 3 (left panel), 10 (middle panel), and 28 (right panel)

days following gene transfer for both middle titer and high titer-treated arteries. Data for the middle titer (8) are presented as mean+/-standard error; * equals p<0.05 versus sham control; ** equals p<0.01 versus sham control;+equals p<0.05 versus Δ E1/ Δ E4-AV;++p<0.01 versus Δ E1/ Δ E4-AV;

FIG. 13A is a representation of a series of photographs comparing neointimal hyperplasia 10 days following treatment of the vessels with sham (left panel), 5×10⁹ ffu/ml $\Delta E1/\Delta E4$ -AV (middle panel), and 5×10^9 ffu/ml $\Delta E1$ -AV (right panel). Arterial cryosections are stained with Voer- 10 hoff's stain. Arrows indicate the internal elastic lamina (IEL);

FIG. 13B is a representation of a series of photographs comparing neointimal hyperplasia 28 days following treatment of the vessels with $\Delta E1\text{-AV-}\beta\text{-gal}$ (black bars) or 15 $\Delta E1/\Delta E4\text{-AV-}\beta\text{-gal}$ (gray bars) at $5{\times}10^9$ ffu/ml virus (left panel) or 2.5×10¹⁰ ffu/ml virus (right panel). Data are presented as mean+/-standard error; * equals p<0.05 versus sham control; ** equals p<0.01 versus sham control;+ equals p<0.05 versus Δ E1/ Δ E4-AV;++p<0.01 versus Δ E1/ ΔE4-AV. Arterial cryosections are stained with Voerhoff's stain. Arrows indicate the internal elastic lamina (IEL);

FIG. 13C is a graphic representation of quantitation by image analysis of the neointimal hyperplasia of rabbit carotid arteries 10 or 28 days following treatment with 5×10⁹ ffu/ml(left panel), or 2.5×10¹⁰ ffu/ml (right panel) of either $\Delta E1$ -AV- β -gal (black bars) or $\Delta E1/\Delta E4$ -AV- β -gal (gray bars), with sham treatment shown as white bars. Neotintimal hyperplasia in sham-treated carotid arteries is denoted by white bars. Data are presented as mean+/standard error; * equals p<0.05 versus sham control; * equals p<0.01 versus sham control;+equals p<0.05 versus $\Delta E1/\Delta E4-AV;++p<0.01$ versus $\Delta E1/\Delta E4-A;$

FIGS. 14A–14D is a graphic representation of four panels showing the levels of glutamic pyruvic transaminase (sGPT; FIG. 14A) and glutamic oxalacetic transaminase (sGOT; FIG. 14B), creatinine (FIG. 14C), and alkaline phosphatase (FIG. 14D) in the serum of rabbits that were either shaminfected or transduced with either the $\Delta E1$ -AV (which contains the E3 region) or Δ E1/ Δ E4-AV at 3, 10, or 28 days after

FIG. 15A is a representation of three photographs comparing the neointimal hyperplasia observed in rabbit carotid artery segments in the Double Balloon Injury Model, where 45 the gene transfer occurred two weeks following the first injury and where gene transfer was a sham infection (left panel), transduction with a recombinant adenovirus expressing β -galactosidase (middle panel), or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a nonlimiting, representative CDKi of the invention, W9 (right panel);

FIG. 15B is a graphic representation of the percent inhibition of neointimal hyperplasia of rabbit carotid artery gene transfer occurred two weeks following the first injury and was a sham infection, transduction with a recombinant adenovirus expressing β -galactosidase, or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a nonlimiting, representative CDKi of the invention, W9;

FIG. 16A is a representation of three photographs comparing the neointimal hyperplasia observed in rabbit carotid artery segments in the Double Balloon Injury Model, where the gene transfer occurred one week following the first panel), transduction with a recombinant adenovirus expressing β-galactosidase (middle panel), or transduction with

 $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a nonlimiting, representative CDKi of the invention, W9 (right panel);

FIG. 16B is a graphic representation of the percent inhibition of neointimal hyperplasia of rabbit carotid artery segments in the Double Balloon Injury Model, where the gene transfer occurred one week following the first injury and was a sham infection, transduction with a recombinant adenovirus expressing β-galactosidase, or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a nonlimiting, representative CDKi of the invention, W9;

FIG. 17A is a representation of three photographs comparing the neointimal hyperplasia observed in rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and where gene transfer was a sham infection (left panel), transduction with a recombinant adenovirus expressing β-galactosidase (middle panel), or transduction with ΔΕ1/ΔE3-AV-W9, a ΔE1/ΔE3 adenovirus expressing a nonlimiting, representative CDKi of the invention, W9 (right panel);

FIG. 17B is a graphic representation of the percent inhibition of neointimal hyperplasia of rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and was a sham infection, transduction with a recombinant adenovirus expressing β -galactosidase, or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a nonlimiting, representative CDKi of the invention, W9;

FIG. 18A is a representation of nine photographs (A through I) comparing the PCNA expression observed in rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and where gene transfer was a sham infection (middle panels), transduction with a recombinant adenovirus expressing β -galactosidase (left panels), or transduction with Δ E1/ Δ E3-AV-W9, a Δ E1 / Δ E3 adenovirus expressing a non-limiting, representative CDKi of the invention, W9 (right panels). The black arrows show smooth muscle cells in the state of mitosis, yellow arrows show smooth muscle cells in the state of proliferation (i.e., positive for PCNA), and green arrows show smooth muscle cells which have changed from normal contractive to an abnormal secretory

FIG. 18B is a graphic representation of the PCNA expression in rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and was a sham infection, transduction with a recombinant adenovirus expressing β -galactosidase, or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a non-limiting, representative CDKi of the invention, W9;

FIG. 19 is a graphic representation of the percent inhibisegments in the Double Balloon Injury Model, where the 55 tion of neointimal hyperplasia of rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and was a sham infection, transduction with a recombinant adenovirus expressing β -galactosidase, or transduction with $\Delta E1/\Delta E3$ -AV-p16, Δ E1/ Δ E3-AV-p27, or Δ E1/ Δ E3-AV-W9, three Δ E1/ ΔE3 adenoviruses expressing non-limiting, representative CDKi's of the invention;

FIG. 20A is a representation of five photographs comparing the transgene expression observed in rabbit carotid injury and where gene transfer was a sham infection (left 65 artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and where gene transfer was a sham infection (bottom

panel), transduction with a recombinant adenovirus expressing β -galactosidase (fourth panel from the top), or transduction with $\Delta E1/\Delta E3$ -AV-p27 (third panel from top), $\Delta E1/\Delta E3$ -AV-p16 (second panel from top), or $\Delta E1/\Delta E3$ -AV-W9 (top panel), three $\Delta E1/\Delta E3$ adenoviruses expressing nonlimiting, representative CDKi's of the invention. The segments were stained with anti-HA antibody;

FIG. **20**B is a graphic representation of transgene expression in rabbit carotid artery segments in the Single Balloon Injury Model, where the gene transfer occurred three days following the injury and was a sham infection, transduction with a recombinant adenovirus expressing β -galactosidase, or transduction with Δ E1/ Δ E3-AV-p27, Δ E1/ Δ E3-AV-p16, or Δ E1/ Δ E3-AV-W9, three Δ E1/ Δ E3 adenoviruses expressing non-limiting, representative CDKi's of the invention. Data shown are Mean +/-SE; ** p<0.001 vs. sham control and Δ E1/ Δ E3-AV-p27;

FIG. 21 is a graphic representation showing the reduction in PCNA expression following transduction with $\Delta E1/\Delta E3$ AV-CDKi of the invention. Segments of rabbit carotid artery were stained for PCNA expression, which was quantitated, 3 days or 14 days following gene transfer in the Single Balloon Injury Model. Animals were treated with sham infection (white bars), $\Delta E1/\Delta E3$ -AV-p2a (cross-hatched bars), $\Delta E1/\Delta E3$ -AV-p16 (gray bars), or $\Delta E1/\Delta E3$ -AV-29 (black bars). Data shown are Mean+/-SE; ** p<0.01 vs. sham control and $\Delta E1/\Delta E3$ -AV-p3-gal;++p<0.05 vs. $\Delta E1/\Delta E3$ -AV-p16 and AV-p27;

FIG. 22A is a representation of two photographs comparing the adventitial hyperplasia of rabbit vein graft segments in the Rabbit Vein Graft Model ten days following a gene transfer which was sham infection (left panel) or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a non-limiting, representative CDKi of the invention, W9;

FIG. 22B is a graphic representation of the percent inhibition of adventitial hyperplasia of rabbit vein graft segments in the Rabbit Vein Graft Model, where the gene transfer was sham infection (left panel) or transduction with $\Delta E1/\Delta E3$ -AV-W9, a $\Delta E1/\Delta E3$ adenovirus expressing a non-limiting, representative CDKi of the invention, W9;

FIG. 23A is a schematic representation of a recombinant lentivirus vector, according to the invention, which contains a nucleic acid sequence encoding a secretable, internalizable form of a non-limiting representative CDKi of the invention, W9, operably linked to regulatory sequences and flanked by HIV LTRs; and

FIG. 23B is a schematic representation of a recombinant, 50 self-inactivating lentiviral vector according to the invention, which contains a nucleic acid sequence encoding a secretable, internalizable form of a non-limiting representative CDKi of the invention, W9, operably linked to regulatory sequences.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The patent and scientific literature referred to herein establishes knowledge that is available to those with skill in 60 the art. The issued patents, applications, and references, including GenBank database sequences, that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specification shall be resolved in favor of the latter. Likewise, any

10

conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.

The invention provides methods and reagents for inhibiting smooth muscle cell hyperproliferation. These methods and reagents allow the reduction or alleviation of symptoms resulting from a condition associated with smooth muscle cell hyperproliferation, such as restenosis following balloon angioplasty. In addition, therapeutic compositions for treating and/or alleviating the symptoms of a condition associated with smooth muscle cell hyperproliferation may be developed using the methods and reagents of the invention. Moreover, the process of smooth muscle cell proliferation can be better understood and studied using the methods and reagents of the invention. For example, the methods and reagents of the invention are useful for identifying particular characteristics of proliferating smooth muscle cells. In addition, the methods and reagents of the invention can be used to synchronize the growth of smooth muscle cells cultured in vitro.

Thus, the reagents according to the invention are useful as analytical tools and as therapeutic tools, including gene therapy tools. The invention also provides methods and compositions which may be manipulated and fine-tuned to fit the condition(s) to be treated while producing fewer side effects.

Accordingly, in a first aspect, the invention provides a method for inhibiting smooth muscle cell hyperproliferation comprising transducing smooth muscle cells with an effective amount of a recombinant adenovirus that lacks a functional E4 region, lacks a functional E1 region, and that comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi), wherein hyperproliferation of the transduced smooth muscle cell is inhibited.

Cyclin dependent kinase inhibitors (CDKi) are proteins which regulate the activity of cyclin-dependent kinase (CDK)/cyclin complexes which play a key role in the cell cycle. CDK/cyclin complexes are the association of a catalytic kinase subunit (such as cdc2, CDK2, CDK4, or CDK6) with one of a variety of regulatory cyclin subunits (such as cyclins A, B1, B2, D1, D2, D3, or E) which results in the assembly of functionally distinct CDK/cyclin complexes.

Thus, in accordance with the invention, by "cyclin dependent kinase inhibitor (CDKi)" is meant any protein which inhibits and/or regulates a CDK/cyclin complex. The definition includes, without limitation, proteins from the CIP/ KIP family of CDKi proteins which includes, without limitation, human p27^{kip1} (GenBank Accession No. 10906, Polyak et al. (1994) Cell 78: 56-66); murine p27kip1 (GenBank Accession No. 09968, Polyak et al. (1994) Cell 78: 56–66); rat p27^{kip1} (GenBank Accession Nos. D86924 and D83792, Nomura et al. (1997) Gene 191(2): 211-218); human p57^{KIP2} (GenBank Accession No. NM_000076, Matsuoka et al. (1995) Genes Dev. 9(6): 650-662); murine p57^{KIP2} (GenBank Accession No. U20553, Lee et al. (1995) Genes Dev. 9(6): 639–649); canine p21^{Waf1/CiP1} (GenBank Accession No. AF076469); and human $21^{Waf1/Cip1}$ (GenBank Accession No. L25610; Harper et al. (1993) Cell 75: 806-816, 1993); as well as proteins from the INK4 family of CDKi proteins which includes, without limitation, human p18^{CDKN2C} (GenBank Accession Nos. AF041248 and NM_001262, Blais et al. (1998) Biochem. Biophys. 65 Res. Commun. 247(1): 146-153); human Cdi1 (GenBank Accession No. NM_005192, Gyuris et al. (1993) *Cell* 75(4): 791–803); human p19^{INK4d} (GenBank Accession No.

NM 001800, Guan et al. (1996) Mol. Biol. Cell 7(1): 57-70); human p15 (GenBank Accession No. S75756, Jen et al. (1994) Cancer Res. 54(24): 6353-6358); murine p15^{lNK4b} (GenBank Accession Nos. U80415, U79634, and U79639); murine p16^{lnk4/MTS1} (GenBank Accession Nos. AF044336 and AF044335, Zhang et al. (1998) Proc. Natl. Acad. Sci. (USA) 95(5): 2429-2434); and human p16^{INK4} (GenBank Accession No. NM_000077; Serrano et al. (1993) Nature 366(6456): 704-707 and Okamoto et al. (1994) Proc. Natl. Acad. Sci. (USA) 91(23): 11045–11049). Exemplary CDKi of the invention are the fusion proteins described herein and described in PCT Publication No. WO99/06540 (hereby incorporated by reference).

By "proliferation of smooth muscle cells" is meant an increase in cell number or an increase in rate of cell division. By "hyperproliferation of smooth muscle cells" is meant proliferation of smooth muscle cells in a blood vessel that results in a a vascular pathology. One non-limiting example of smooth muscle cell hyperproliferation is restenosis, which is the hyperproliferation of vascular smooth muscle 20 cells following trauma or injury to the vessels due to, e.g., angioplasty. Preferred smooth muscle cells of the invention are vascular smooth muscle cells including, without limitation, arterial and venous smooth muscle cells.

By "an effective amount" of the agent is meant the $_{25}$ maximal tolerable dose or a dose sufficient to prevent clinical restenosis. By "clinical restenosis" is meant at least 50% occlusion of the vessel lumen resulting from smooth muscle cell proliferation.

By "inhibiting" smooth muscle cell proliferation is meant 30 a reduction in the amount of proliferation of smooth muscle cells. The reduction in growth of vascular smooth muscle cells can be determined experimentally using cultured smooth muscle cells in vitro, where the inhibition in smooth muscle cell proliferation following exposure to the CDKi agent is ascertained by counting the number of smooth muscle cells using a microscope or FACS based assay. The reduction in growth in this scenario would be minimally 25% and preferably greater than 80% comparing treated and untreated smooth muscle cell cultures. Alternatively, reduction in growth of vascular smooth muscle cells can be determined experimentally using animal models of arterial balloon injury, where the inhibition in smooth muscle cell proliferation following exposure to the CDKi agent is ascervessels for neointimal hyperplasia or staining the vessel for markers of cell proliferation, such as PCNA. The reduction in growth in this scenario would be minimally 10% and preferably greater than 40% comparing treated and untreated vessels. Alternatively, reduction in growth of vascular 50 enhancer). smooth muscle cells can be determined experimentally using animal models of vein graft failure, where the inhibition in smooth muscle cell hyperproliferation following exposure to the CDKi agent is ascertained by histological assessment of treated and untreated vessels for neointimal hyperplasia, 55 adventitial hyperplasia or staining the vessel for markers of cell proliferation, such as PCNA. The reduction in growth in this scenario would be minimally 10% and preferably greater than 40% comparing treated and untreated vessels.

In one embodiment where a transgene encoding a CDKi of the invention is introduced via a viral vector to smooth muscle cells in vitro, one with skill in the art will appreciate that an effective amount of the transgene may be readily determined by comparing the inhibition of proliferation of smooth muscle cells to which has been introduced the 65 acid sequence resulting in production of that protein. transgene, as compared to smooth muscle cells subjected to the same culture conditions, but to which the transgene has

not been introduced, and determining the viral dose required to achieve maximal inhibition of smooth muscle cell proliferation. Inhibition of smooth muscle cell proliferation can be measured, for example, by determining a change in the number of cells in a culture with a hemacytometer, or by

12

using a FACScan, or a Coulter Cell Counter.

Where a transgene encoding a CDKi of the invention is administered to a blood vessel, by administering a recombinant adenovirus containing a transgene encoding the CDKi, it will be understood that the "effective amount" of virus administered is clinically determined. For example, typically recombinant viral particles are highly concentrated, and as many particles as possible and safely tolerated are administered to the blood vessel. In another example, where, e.g., 10^{12} viral particles have been determined to result in inhibition of smooth muscle proliferation in a treated blood vessel following angioplasty (and so inhibiting restenosis of the blood vessel), a similar number of particles may be used in a blood vessel of similar size. Such clinical determinations are a matter of routine to those of skill in the art.

By "transducing" is meant the introduction of exogenous nucleic acid into a cell using a recombinant virus. A recombinant virus is made by introducing appropriate viral vector sequences encoding a protein of interest into a packaging cell line. By "introducing" nucleic acid is meant the introduction of exogenous nucleic acid into a cell by any means, including, without limitation, means known in the art as transfection, transduction, infection (introduction of exogenous nucleic acid with a virus), and transformation. For various techniques for manipulating mammalian cells, see Keown et al. (1990) Meth. Enzymol. 185: 527-537.

By "transgene" is meant a nucleic acid sequence encoding a desired protein or polypeptide fragment operably linked to one or more regulatory sequences such that the nucleic acid sequence is transcribed and translated when the transgene is introduced into a cell. Where the transgene is contained within a recombinant adenovirus (or other DNA viruses), the transgene typically comprises, in the following order, a 40 promoter/enhancer, a splice acceptor site/splice donor site, a protein-encoding nucleic acid sequence, and a polyA signal. Where the transgene is contained within an RNA virus (e.g., a lentivirus), the transgene typically comprises, in the following order, a promoter/enhancer, a protein-encoding tained by histological assessment of treated and untreated 45 nucleic acid sequence, and a polyA signal. It should be noted that where a recombinant virus is used to deliver the transgene encoding the CDKi of the invention, the inserted transgene may also use regulatory sequences the regulatory sequences endogenous to the virus (e.g., a viral promoter/

> A polycistronic transgene comprising two protein encoding nucleic acid sequences separated by an IRES sequence is also within the definition of a transgene. By "regulatory sequence" is meant nucleic acid sequences, such as initiation signals, polyadenylation (polyA) signals, promoters, and enhancers which control expression of protein coding sequences with which they are operably linked. By "operably linked" is meant that the nucleic acid sequence encoding a protein of interest and transcriptional regulatory sequences are connected in such a way as to permit expression of the nucleic acid sequence when introduced into a cell. By "expression" of a nucleic acid sequence encoding a protein is meant transcription of that nucleic acid sequence as mRNA and/or transcription and translation of that nucleic

> By "nucleic acid sequence" is meant a single-stranded or double-stranded chain of two or more nucleotide bases

including, without limitation, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), analogs of either DNA or RNA, mRNA, and cDNA.

By "engineered" is meant using standard molecular biology techniques to modify a nucleic acid sequence (and the resulting encoded protein) (see general laboratory manuals Maniatis et al., *Molecular Cloning: A Laboratory Manual* (2nd ed.), Cold Spring Harbor Press, 1989; and Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley & Sons, New York, N.Y., 1994). Engineered proteins and/or nucleic acids may be modified such that amino acid residues or nucleotide bases are added or subtracted, or even replaced with other amino acid residues or nucleotide bases.

In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is selected from the group consisting of a protein from the INK4 family or an active fragment thereof; a protein from the CIP/KIP family or an active fragment thereof; and a fusion protein comprising at least an active fragment of the protein from the INK4 family and at least an active fragment of the protein from the CIP/KIP family.

In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the CIP/KIP family of CDKi's. In certain embodiments, the CDKi is a human p2⁷ protein or is an active fragment of the human p27 protein, such as an active fragment selected from the group consisting of amino acids 25-93 of p27 protein and amino acids 12-178 of p27 protein. By "active fragment" is meant a polypeptide that encompasses at least the amino acid sequence required for inhibition of the appropriate cyclin dependent kinase which is targeted by the indicated CDKi (e.g., for human p27, see, Russo et. al. (1998) Nature 395:237-243). Methods for determining smooth muscle cell hyperproliferation and inhibition thereof are described below and include, without limitation, the rabbit balloon injury model. In a preferred embodiment, the cyclin dependent kinase inhibitor of the invention is a derived from a mammal, such as a a human.

In certain embodiments of the first aspect of the invention, the cyclin dependent kinase inhibitor is a protein from the INK4 family of CDKi's. In certain embodiment, the cyclin dependent kinase inhibitor is a human p16 protein or an active fragment thereof.

40 proteins encoded by these regions). The CDKi-encoding sequences more of the regions of the adenovirus genorated for the E1 region). Into this region mand/or enhancer sequences using standard enhancer sequences using standard enhancer.

In a certain preferred embodiment, the cyclin dependent 45 kinase inhibitor is a fusion protein comprising at least an active fragment of a first cyclin dependent kinase inhibitor and at least an active fragment of a second cyclin dependent kinase inhibitor. A "fusion protein" of the invention is a single polypeptide chain that comprises at least an active 50 fragment of a first protein and at least an active fragment of a second protein, wherein the two active fragment s are joined either directly or indirectly with a peptide bond. It will be understood that fusion protein of the invention may comprise more than two proteins (or an active fragments 55 thereof). Each an active fragment of a fusion protein may be from a separate CDKi, or may be from the same CDKi. For example, a fusion protein of the invention comprises an active fragment of the human p27 protein with the full length human p16 protein.

In a certain embodiment, the first cyclin dependent kinase inhibitor of a fusion CDKi of the invention is a protein from the CIP/KIP family of CDKi's, such as human p27. In a certain embodiment, the second cyclin dependent kinase inhibitor is a protein from the INK4 family of CDKi's, such 65 as human p16. Exemplary cyclin dependent kinase inhibitor fusion proteins of the invention include W3, W5, W6, W7,

14

W8, W9, and W10, each of which is described below. In preferred embodiments, the cyclin dependent kinase inhibitor is W7 or W9. Preferably, the cyclin dependent kinase inhibitor is W9.

Fusion proteins of the invention may also include a linker between the two joined active fragments. A "linker" is any chemical, synthetic, carbohydrate, lipid, polypeptide (or combination thereof) molecule positioned between and joined to two adjacent active fragments in a fusion protein. A preferred linker of the invention is a polypeptide chain consisting of one or more amino acid residues joined by amino acid bonds to the two active fragments. For example, a (Gly₄Ser)₃ linker may be positioned between the two active fragments in the fusion protein.

In accordance with the first aspect of the invention, the recombinant adenovirus employed to deliver the CDKi of the invention to a smooth muscle cell (by transducing that cell) lacks functional E1 and E4 regions. By "lacks a functional region" is meant that in a recombinant 20 adenovirus, the indicated region is deleted or the expression of any of the proteins and/or RNAs encoded by the indicated region is abrogated In certain embodiments of this aspect of the invention, the adenovirus may be of any serotype. Such adenoviruses lacking functional E1 and E4 regions, and methods for generating them, are disclosed in Wang et al., U.S. patent application Ser. No. 08/552,839, filed Nov. 3,1995 (hereby incorporated by reference). In a certain embodiment, the adenovirus is replication-deficient. By "replication-deficient" is meant a recombinant adenovirus that is unable to reproduce itself in a cell other than a packaging cell that complements the missing viral functional region(s). Thus, a smooth muscle cell transduced with a replication-defective adenovirus will not provide de novo adenoviral particles. In a certain embodiment, the adenovi-35 rus of the invention that lacks a functional E1 region (or expression of any E1 region-encoded proteins) and a functional E4 region (or expression of any E4 region-encoded proteins) also lacks a second essential viral protein encoded by viral genes, such as E2 or E3 (or expression of any

The CDKi-encoding sequences may replace one or more of the regions of the adenovirus genome (e.g., the E4 region or the E1 region). Into this region may be inserted promoter and/or enhancer sequences using standard molecular biology techniques (see, for example, Ausubel et al., supra). Such promoter/enhancer sequences may be constitutively active (e.g., the CMV promoter or the EF1 α promoter), cell-type specific (e.g., a promoter of a gene that is specifically expressed by smooth muscle cells such as the SM22\alpha gene promoter (described in PCT Publication No. WO98/ 15575 (PCT Application No. PCT/US97/16204) and in Solway et al. (1995) J. Biol. Chem. 270: 13460–13469), or inducible (eg., the cytokine-stimulated inducible nitric oxide synthase (iNOS) gene promoter). Numerous promoter/ enhancer sequences are well known and their sequences available, for example, in the GenBank database (National Center for Biotechnology Information, National Institutes of Health, Bethesda, Md.). The inserted promoter (e.g., the CMV promoter) may then be operably linked to the nucleic acid sequence encoding the CDKi protein, which may then be operably linked to a poly A signal sequence (from, e.g., SV40 virus) to create a CDKi-encoding transgene.

In a preferred embodiment, the adenovirus of the invention is replication-deficient, and lacks a functional E4 region (or expression of any E4 proteins) and a functional E1 region (or expression of any E1 proteins). Preferably, the adenovirus of the invention is replication-deficient. One non-

limiting way to make such a recombinant adenovirus expressing a CDKi protein is to replace the deleted E1 region sequences in a ΔE1/ΔE4 adenovirus vector with a CDKi-encoding transgene (e.g., a CDKi protein-encoding nucleic acid sequence operably linked to a CMV promoter/ enhancer and an SV40 poly A signal). The recombinant adenovirus vector containing the transgene is then packaged in 293-E4 cells to produce infectious recombinant adenovirus particles (see Wang et al., U.S. patent application Ser. No. 08/552,839 filed Nov. 3, 1995). Alternatively, the CDKiencoding transgene may replace deleted E4 and/or E3 regions.

The recombinant adenovirus encoding a CDKi of the invention may be used to transduce smooth muscle cells in vivo or in vitro. The amount of adenovirus used to transduce smooth muscle cells in vitro may be standardized by determining the multiplicity of infection (MOI) of the recombinant adenovirus, or by determining the actual number of viral particles based on the amount of viral DNA. Such standardization of viral particles is routine and is generally $_{20}$ described in Phillipson et al., Molecular Biology of Adenoviruses, Virology Monograph, Springer Verlag, New York, N.Y., 1975.

In certain embodiments of the first aspect of the invention, the smooth muscle cells are in a mammal. The recombinant $_{25}$ adenovirus comprising a transgene encoding a CDKi of the invention is administered to the mammal. In certain embodiments of the method of inhibiting hyperproliferation, the smooth muscle cells were induced to hyperproliferate by vascular injury. In certain embodiments, the injury was induced by angioplasty, stent placement, or vein engraftment. Preferably, the method is used in the case of restenosis induced by angioplasty.

Administration of a recombinant adenovirus in order to transduce smooth muscle cells in vitro or in vivo may be 35 risk for the condition, a therapeutically effective amount of accomplished by any suitable method. For example, compositions that comprise recombinant adenoviruses may be diluted in serum-free culture media and added to cells cultured in vitro. Similarly, for in vivo delivery, compositions comprising recombinant adenoviruses comprising 40 transgenes encoding the CDKi of the invention in a pharmaceutically acceptable carrier, such as buffered saline (see below), may be administered, e.g., to the smooth muscle cells at the blood vessel treatment site following angioplasty, by administration with a catheter. For example, the recom- 45 binant adenovirus of the invention is administered to a patient undergoing angioplasty or afflicted with restenosis within a previously treated blood vessel (or having a predisposition to develop restenosis).

To deliver the transgene encoding a CDKi of the invention 50 to smooth muscle cells, standard administration protocols may be employed. Where the injury is induced by angioplasty, for example, the recombinant adenovirus of the invention is administered to the smooth muscle cells at the site of the treated blood vessel. Any appropriate route of 55 administration may be employed, including, without limitation, intravenous and intra-arterial. Preferably, the recombinant adenovirus encoding a CDKi protein of the invention is administered locally to the affected area (e.g., directly into a blood vessel immediately following treatment 60 of the vessel with angioplasty), or may be administered to the blood stream directly upstream of the affected area. Preferably, recombinant viruses of the invention are administered locally to the site of the smooth muscle cells affected with hyperproliferation (e.g., to the site of the vessel fol- 65 lowing angioplasty treatment) by way of an infusion catheter or to the outside of the vessel (e.g., the adventitia) by way

16

of an arterial cuff. A recombinant adenovirus of the invention is preferably administered to an individual in a pharmaceutically-acceptable diluent, carrier, or excipient. One exemplary pharmaceutically-acceptable carrier is physiological saline. Other pharmaceutically-acceptable carriers and their formulations are well-known and generally described in, for example, Remington's Pharmaceutical Sciences (18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, Pa., 1990).

If desired, treatment of a patient with the smooth muscle cell hyperproliferation-inhibiting reagents and compositions of the invention may be combined with more traditional therapies or other smooth muscle cell proliferationinhibiting reagents.

In a second aspect, the invention provides a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi). Recombinant lentiviruses can be engineered to comprise a transgene encoding a CDKi of the invention according to standard techniques. For example, recombinant lentiviruses can be generated using the lentivirus vectors described below in Example XIV.

The CDKi according to the second aspect of the invention, are as described for the first aspect of the invention. In certain embodiments, the recombinant lentivirus is replication-deficient.

In a third aspect, the invention provides a therapeutic composition comprising a pharmaceutically acceptable carrier and a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor. Preferably, the recombinant lentivirus is replication-deficient.

In a fourth aspect, the invention provides a method for treating a condition associated with smooth muscle cell hyperproliferation comprising administering to a patient at a therapeutic composition comprising a pharmaceutically acceptable carrier and a recombinant lentivirus that comprises a transgene encoding a cyclin dependent kinase inhibitor, wherein the condition is inhibited. Preferably, the recombinant lentivirus is replication-deficient.

By "therapeutically effective amount" is meant the total amount of each active component of a therapeutic composition that is sufficient to show a meaningful patient benefit. When administered to an animal having a condition associated with smooth muscle cell hyperproliferation, a therapeutically effective amount is an amount sufficient to slow proliferation of a smooth muscle cell in the treated blood vessel to prevent or inhibit restenosis and/or vessel occlu-

In various embodiments of the fourth aspect of the invention, the condition is restenosis. In certain embodiments, the restenosis is induced by an injury, where the injury is induced by angioplasty, stent placement, or vein engraftment into the arterial system.

The invention now being generally described will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.

EXAMPLE I

Generation of p27/p16 Fusion Proteins

To create more potent anti-proliferative molecules that possess the activities of both the INK4 (p16) and CIP/KIP (p27) families, a number of recombinant CDKi's were

created that fused the parental human p16 and p27 molecules, or their derivatives. The engineered CDKi's included fusion proteins of p16 fused to 5' and 3' truncated p²7 molecules. These fusion proteins were designed to increase the protein's half-life and eliminate potential phosphorylation sites involved in the negative regulation of CDKi activity. The p27-p16 fusion proteins interacted with the CDK4/cyclinD, CDK2/cyclinA, and CDK2/cyclinE complexes and inhibited cell cycle progression at multiple points.

To generate the following non-limiting, representative CDKi fusion proteins of the present invention (and nucleic acid sequences encoding these proteins), the published sequences of the human p16 and p27 molecules were utilized. The nucleic acid (SEQ ID NO: 25) and amino acid (SEQ ID NO: 26) sequence of human p27 is available as GenBank Accession No. U10906 (Polyak et al. (1994) Cell 78: 56-66). The nucleic acid (SEQ ID NO: 27) and amino acid (SEQ ID NO: 28) sequence of human p16 is available as GenBank Accession No. L27211 (Serrano et al. (1993) Nature 366: 704-707; Okamoto et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11045-11049). To construct the representative, non-limiting CDKi fusion proteins of the invention, in general, PCR primers were used to insert a NdeI cloning site followed by sequence encoding 6xHis and an epitope tag from the influenza virus hemagglutinin protein (HA tag) at the 5' end of full length p27 or truncated p27₂₅₋₉₃ and p27₁₂₋₁₇₈. In each instance, the CDKi gene was followed by an amber stop codon with SalI cloning site. The NdeI-SalI fragments were amplified by Deep Vent polymerase (commercially available from New England Biolabs, Beverly, Mass.) and cloned into plasmid pT7-7 (commercially available from US Biological (USB), Swampscott, MA) to yield pT7-His6-HA-p27, pT7-His6- $\mathrm{HA}\text{-p27}_{25\text{-}93}$ and pT7-His6-HA-p27₁₂₋₁₇₈. To generate fragments without a stop codon and a (Gly₄Ser)₃ inker, an alternate set of 3' PCR primers were used to insert sequence coding for a (Gly₄Ser)₃ linker in place of the stop codon with Sall cloning site at the 3' end. These NdeI-Sall amplified fragments were then subcloned into a NdeI and XhoI digested pKS plasmid containing full length p16, with the initiating ATG removed, generating an open reading frame in which the various p27 derivatives and full length p16 are linked by (Gly₄Ser)₃, histidine, and aspartic acid. The representative, non-limiting CDKi proteins of this example are schematically depicted in FIG. 1, and were constructed as follows:

To construct the nucleic acid sequence encoding the p27-p16 fusion protein (i.e., N-terminal p27 and C-terminal p16) having a (Gly₄Ser)₃ hinge region between the p27 and p16 portions (W3), the p²⁷ coding sequence was first PCT ₅₀ amplified using the following primers:

N-terminal primer, which carries an NdeI site and 6 histidine codons that are inserted between the ATG and the second amino acid of p27 (SEQ ID NO: 1):

5'-GCGGCCGGTCATATGCACCACCATCACCATCA 55 CTCAAACGTGCGAGTGTCT-3'; and

C-terminal primer, which carries the (Gly₄Ser)₃repeat and EcoRI, SalI, and HindIII restriction sites and eliminates the stop codon of p27 (SEQ ID NO: 2):

5'-GCCGCCGGCGTCGACTCGGCCGAATTCGGATC 60 CACCCCGGCGGAACC-

GCCACCCCGCTGCCCCCGCCACCCGTTTGAC GTCTTCTGAGGCCAGG-3'.

The p27 PCR product was digested with Ndel and HindIII and inserted into pT7-7 linearized with NdeI and HindIII. The resulted construct was digested with EcoRI and SalI and a full length p16 PCR product was inserted as an EcoRI-

XhoI fragment. The position of the EcoRI site allows the in-frame insertion of p16. The rest of the hinge region between the p27 and p16 coding sequences is derived from the 5' end of the p16 cDNA. The nucleic acid and amino acid sequence of W3 are provided, respectively, in SEQ ID NO: 3 and SEQ ID NO: 4.

18

A nucleic acid sequence encoding a second p27-p16 fusion protein, W4, was generated, where the p27 and p16 portions were not separated by a $(Gly_4Ser)_3$ hinge region. The W4-encoding nucleic acid sequence construct includes a 5' EcoRI site, along with the coding sequence for a N-terminal HA tag, and a 3' NotI site. The nucleic acid and amino acid sequence of W4 are provided, respectively, in SEQ ID NO: 5 and SEQ ID NO: 6.

Two p16-p2⁷ fusion proteins (i.e., N-terminal p16 and C-terminal p27), W5 (having a (Gly₄Ser)₃ hinge region located between the p16 and p27 portions) and W6 (not having a (Gly₄Ser)₃ hinge region) were similarly generated. The nucleic acid and amino acid sequence of W5 are provided, respectively, in SEQ ID NO: 7 and SEQ ID NO: 8. The nucleic acid and amino acid sequence of W6 are provided, respectively, in SEQ ID NO: 9 and SEQ ID NO: 10.

In addition, a series of truncated versions of p27 designed to increase the protein half-life were fused to full-length p16 at the N-terminus. In one p27 truncation, p27¹²⁻¹⁷⁸, the first 12 N-terminal and the last 20 C-terminal amino acids were removed from full length p27 to remove a CDK consensus phosphorylation site (TPKK) at amino acids 187–190, two other potential phosphorylation sites for proline directed kinases, at amino acids 178-181 (SPN), and a weak CDK phosphorylation site (SP5L) at amino acids 10-13 (Sheaff et al. (1997) Genes & Dev. 11: 1464-1478; Morisaki et al. (1997) Biochem. Biophys. Res. Commun. 240: 386-390). The nucleic acid and amino acid sequences of this truncated p27 protein (12aa-178aa) are shown in SEQ ID NO: 11 and SEQ ID NO: 12, respectively, which provide a polypeptide of the formula EcoRI-ATG-HA epitope-p27 (12-178aa)-Stop-NotI.

W7 comprises amino acids 12-178 of p27 fused to full length p16, where the p27 and p16 portions are separated by a (Gly₄Ser)₃ hinge region. The nucleic acid and amino acid sequence of W7 are provided, respectively, in SEQ ID NO: 13 and SEQ ID NO: 14. W8 comprises amino acids 12–178 of p27 fused to full length p16, where the p²⁷ and p16 portions are not separated by a (Gly₄Ser)₃ hinge region. The nucleic acid and amino acid sequence of W8 are provided, respectively, in SEQ ID NO: 15 and SEQ ID NO: 16.

In a second truncation of p27, p27₂₅₋₉₃, only the CDK inhibitory domain of p27 (amino acids 25–93) was retained. This domain contacts both the CDK and cyclin binding subunits and is sufficient for kinase inhibition, while lacking the nuclear localization signal at amino acids 152–166 and the QT domain, a potential site for protein interactions, at amino acids 144–194 (Russo et al. (1998) *Nature* 395: 237–243). Thus, the p27₂₅₋₉₃CDKi was created to eliminate amino acid residues that may play a role in targeting the parental p27 molecule to the ubiquitin- proteosome degradation pathway or may play a role in p27 phosphorylation. The nucleic acid and amino acid sequences of this truncated p27 protein (25aa–93aa) are shown in SEQ ID NO. 17 and SEQ ID NO: 18, respectively, which provide a polypeptide of the formula EcoRI-ATG-HA epitope-p27 (25–93aa)-Stop-NotI.

The p27₂₅₋₉₃ fragment were fused to the N-terminus of p16 with (W10) or without (W9) the (Gly₄Ser)₃hinge (FIG. 1). The nucleic acid and amino acid sequence of W9 are provided, respectively, in SEQ ID NO: 19 and SEQ ID NO: 20. The nucleic acid and amino acid sequence of W10 are provided, respectively, in SEQ ID NO: 21 and SEQ ID NO: 22

W3, W8, and W10 were further subcloned into a modified pGEX4T-1 plasmid (Pharmacia Biotech, Uppsala, Sweden) (where a NdeI cloning site was inserted between the BamHI and EcoRI sites) as NdeI-NotI fragments to generate glutathione S-transferase (GST) tagged fusion proteins. A similar strategy was used to generate fusion proteins without the (Gly₄Ser)₃1inker (i.e., W4 (p2⁷-p16), W7 (p27₁₂₋₁₇₈-p16 fusion CDKi W9 (p27₂₅₋₉₃-p16)). The nucleic acid and amino acid sequences of the p27₂₅₋₉₃-p16 fusion CDKi, W9, without the HA tag and six histidine residues are provided in 10 SEQ ID NO: 23 and SEQ ID NO: 24, respectively.

p27, $p27_{25-93}$, and $p27_{12-178}$ proteins were expressed in E. coli BL21 strain using the pT7 plasmids described above. For protein expression, cells were grown in LB+50 mg/ml ampicillin at 37° C. to OD_{600} =0.8 and protein expression 15 was induced by IPTG (final; conc.: 2 mM) for 4 hours as 37° C. Cells were collected and the pellet was frozen at -80° C. The preparation of the cell lysate and binding to a Ni²⁺ charged sepharose resin (Invitrogen Corp, San Diego, Calif.; instruction (Invitrogen; see also Hochuli et al. (1987) J. Chromatography 411:177-184; Janknecht et al. (1991) Proc. Natl. Acad. Sci. USA 88: 8972-8976). The bound proteins were eluted with 50 mM, 200 mM, 350 mM, and 500 mM imidazol and the fractions were analyzed on SDS/PAGE. The 200 mM, 350 mM, and 500 mM imidazol fractions were collected, dialysed against 1×PBS (1 mM KH₂PO₄, 10 mM Na₂HPO₄, 137 mM NaCl, 2.7 mM KCl, pH 7.4)+10% glycerol and stored at -80° C. in aliquots. Approximately 25% of the prep was the protein.

p27₂₅₋₉₃ and p27₁₂₋₁₇₈ were further purified by gel filtration column chromatography using a Superdex 75 FPLC column equilibrated with 10% glycerol in PBS. Expression and purification of the GST-tagged W3, W4, W7, W8, W9, and W10 fusion proteins was essentially as described 35 (Gyuris et al. (1993) Cell 75: 791-803). The purified GSTfusion proteins were then buffer exchanged by dialysis into 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM CaCl₂. The GST domain was removed from the fusion proteins by enzymatic cleavage with 1 unit (USB units) of thrombin/mg of protein/hour (thrombin commercially available from USB). Following cleavage, the thrombin was inactivated with 2 fold molar excess of PPACK (USB). The cleaved GST moiety was then removed by passing the protein solution over a column of glutathione-Sepharose. Protein 45 concentration was determined using a protein assay (BioRad, Cambridge, Mass.) with bovine serum albumin (BSA) as a standard. In order to more accurately determine the concentration and purity of the specific proteins in each of the preparations, the protein samples were subjected to 50 SDS-PAGE, and stained with coomassie blue. The stained gels were analyzed using the Gel Doc 1000 image analysis system and Molecular Analyst software (BioRad).

The p27 and p16 CDKi's appear to fold correctly in all of the fusion protein CDKi's, as the biochemical data indicates 55 that the p27 moieties were functional and intra-cellular staining with anti-p16 antibodies indicate that at least at a gross level, the p16 molecules were folded correctly.

EXAMPLE II

in vitro Kinase-Inhibiting Activities of the CDKi Proteins

The natural substrates for p2⁷ and p16 CDKi's are cyclindependent kinase (CDK) complexes that are formed via the association of different catalytic CDK and regulatory cyclin subunits. The CDK4/cyclin D and CDK6/cyclin D com20

plexes regulate progression through G1, phase, the CDK2/ cyclin E kinase regulates the G₁ /S transition, the CDK2/ cyclin A complex drives the cells through S-phase, and the entry and exit from mitosis is controlled by the CDC2/cyclin B complex (Sherr, C. J. (1996) Science 274: 1672-1677). CDKi's regulate the activity of the CDK complexes through a combination of phosphorylation events and physical association (Morgan, M. (1995) Nature 374: 131-134). The redistribution of CDKi's between the different CDK/cyclin complexes during the cell cycle coordinates the timing of activation and de-activation of their kinase activity (Sherr and Roberts (1995) Genes and Dev. 9: 1149-1163).

To determine the ability of the CDKi proteins of the invention, their abilities to inhibit the in vitro kinase activity of CDK4/cyclin D1, CDK2/cyclin E, and CDC2/cyclin B complexes was determined. The purity of the various p27p16 fusion proteins, p27, and p16 preparations were normalized using p16 and p27 specific antibodies.

Active CDK4/cyclin D1, CDK2/cyclin E, and CDC2/ Catalog no. R801) was done according to the manufacturer's 20 cyclin B complexes were obtained from Sf9 insect cells transfected with baculoviruses expressing recombinant cyclins and CDK's. Briefly, the assay employed Sf9 cell extracts that were made from cells that were coinfected with the proper CDK and cyclin expression constructs. Typically, 44 mg of Sf9 extract in 50 ml of 50 mM Tris-HCl pH 7.6, 10 mM MgCl₂, 1 mM DTT, 25 mM ATP, 10 mCi ³²P-γ-ATP was used in the absence of the presence of the particular inhibitor (inhibitor concentration was between 25 nM to 1 mM). Partial purification of CDK4/cydin D1 was achieved by a 20-40% ammonium sulfate preparation of the cell lysate and was used in the assays. CDK2/cyclin E was purified to greater than 90% and pretreated with CDKactivating kinase (CAK) (Morgan, M., supra) for full activation. CDC2/cyclin B was expressed as a GST fusion protein (CDC2/GST-cyclin B) and purified on glutathione-Sepharose column, cleaved by thrombin, and followed by another glutathione-Sepharose separation for the removal of the cleaved GST. GST-fused Rb (glutathione S-transferase fusion with amino acids 379-928 from the C terminus of pRB; GST-Rb) was used as a substrate for the CDK4/cyclin D1 and CDK2/cyclin E assays; histone H1 was the substrate for CDC2/cyclin B. The reaction was carried out at 30° C. for 30 minutes using 2 mg of substrate. These assays were carried out in 96 well plates (Nunc, Naperville, Ill.) and monitored by γ-³²P-ATP incorporation.

> The reactions were initiated by addition of the insect cell-produced CDK (e.g., CDC2/cyclin B) and the E. coliproduced CDKi (e.g., p27 and W9). The concentrations of GST-Rb and histone H1 were 4.4 mM and 19 mM, respectively, and the concentration of ATP was 50-60 mM. The reaction mixtures contained 50 mM Tris-Cl pH 7.5, 10 mM MgCl₂, and 1 mM DTT in a total volume of 50 or 100 μ l. After incubation at 30 ° C. for 10-20 minutes, the reaction was terminated by the addition of a stop solution containing EDTA. The phosphorylated substrates were captured either by GST-Sepharose or TCA precipitation and then monitored for radioactivity (Microplate Scintillation Counter, Packard, Meriden, Conn.).

The concentration of CDKi protein at which 50% of the 60 kinase activity was blocked (IC50) was calculated for various cyclin/CDK pairs. The results are indicated in Table I (below) and in FIG. 1 (three columns labeled CDK4/cyclin D1 (nM), CDK2/cyclin E (nM), and CDK2/cyclin B (nM)). Moreover, the inhibition constant, K, for the inhibition of CDK4/cyclin D1 by p27/p16 fusion protein was determined to be 23 nM, compared to a K_i of 75 nM for p16 inhibition of the same CDK4 complex.

TABLE I

		clin Dependent K 27-p16 Fusion Pr		by —
inhib- itor	CDK4/cyclinD1	CDK2/cyclinE	CDK2/cyclinA	cdc2/ cyclinB
p27-p16	25 nM	30 nM	25 nM	15 nM
p27	63 nM	52 nM	65 nM	20 nM
p16	250 nM	>500 nM	>500 n M	>500 nM

nM = nanomolar

As shown in Table I and FIG. 1, p16 was a potent inhibitor of the CDK4/cyclin D1 kinase. In contrast, p27 was a powerful inhibitor of all three kinase complexes. The various p27 modifications did not positively impact the monomeric or fusion protein CDKi's inhibitory activity in vitro (see FIG. 1). In general, the order of the p16 and p27 CDK in the fusion CDKi does not appear to impact the activity of the fusion CDKi. Moreover, the (Gly₄Ser)₃ hinge region is not necessary to retain p2⁷ function in the fusion CDKi.

Thus, in vitro kinase inhibition experiments indicated that the potency of the purified p27₁₂₋₁₇₈, p27₂₅₋₉₃ or the fusion p27/p16 proteins (W3, W4, W7, W8, W9, and W10) were not appreciably different from that of full-length p27 or an equimolar mixture of p16 and p27. The activity of the CDK4/cyclin D1 complex was inhibited by both p16 and p27.

EXAMPLE III

Construction of Recombinant Adenoviruses Expressing CDKi Proteins

Based on the in vitro kinase data, a representative of each 35 of the CDKi species was selected for further analysis. The genes encoding p16, p27 and its derivatives, W3, W7, or W9 CDKi were introduced into the E1 region of a replication deficient, E1 and E3 deleted (ΔΕ1/ΔΕ3) recombinant adenovirus (FIG. 2). The adenovirus vector system used for the 40 construction of replication deficient, E1 region- and E3 region-deleted, E4 region-containing adenovirus 5 (Ad5) recombinants was purchased from Microbix Biosystems Inc. (Toronto, Ontario, Canada). The six-his residue, HA-tagged CDKI's were expressed under the control of the CMV promoter/enhancer and the SV40 polyA signal (FIG. 2). It should be noted, however, that the presence or absence of either the his tag and/or the hemaggluginin (HA) tag does not appear to affect the smooth muscle cell proliferationinhibiting activities of any of the CDKi of the invention. 50 Accordingly, the CDKi of the invention may be used as smooth muscle cell proliferation-inhibiting agents with or without the his tag and/or the hemaggluginin (HA) tag.

The ΔΕ1/ΔΕ3 adenovirus encoding p²⁷ (ΔΕ1/ΔΕ3-AV-p27, or simply AV-p27) was constructed by in vivo recombination in 293 cells following the manufacturer's instructions (Microbix). 293 cells, a human embryonic kidney cell line which contains the E1 region of the adenovirus and, therefore, provides the E1 region gene products lacking in the E1-deleted recombinant adenoviruses, are commercially available from the American Type Culture Collection, Manassas, VA (ATCC No. CRL 1573) (Graham et al. (1977) J. Gen. Virol. 36: 59–72). ΔΕ1/ΔΕ3-AV-p27 DNA was isolated from the amplified virus and digested with ClaI. This digest removed the p27 expression cassette (i.e., 65 nucleic acid sequence encoding p27 operably linked to regulatory sequences) and the left inverted terminal repeat

(ITR) and packaging signals of Ad5 (see FIG. 2). HA-tagged p16, p27₂₅₋₉₃, p27₁₂₋₁₇₈, W3, W7, and W9 molecules were cloned into a plasmid, pKS-ITR-CMV, which contains the expression cassette as well as the left ITR and packaging signals with flanking EcoRV and Clal restriction sites. The order of the functional elements is the following from 5' to 3': EcoRV-left ITR-packaging signal-CMV enhancer/promoter-CDKi insert-SV40 polyA-ClaI. The EcoRV-ClaI fragments containing the CDKi inserts were ligated to the deleted, large Ad5 DNA in vitro and the ligated DNA was transfected into 293 cells.

Infectious, recombinant virus particles were rescued from 293 cells. The unligated, large Ad5 fragment was unable to generate infectious viruses alone because of the lack of the left ITR and packaging signal that are essential for virus replication. Infectious recombinants formed only when the small EcoRV-ClaI fragment containing the left ITR, packaging signal, the expression cassette and the CDKi insert was ligated to the ClaI digested end of the Ad5 DNA re-creating an infectious Ad5 recombinant virus DNA.

EXAMPLE IV

Stability of CDKi Proteins Delivered by Recombinant Adenovirus

To determine the half-life of the various CDKi in CASMC's, pulse-chase experiments were performed using growth arrested and proliferating CASMC's transduced with the adenoviruses lacking functional E1 and E3 regions, containing the entire E4 region, and expressing the various CDKi (ΔΕ1/ΔΕ3-ΑV-CDKi's, or simply AV-CDKi's).

Human coronary artery smooth muscle cells (CASMCs) were obtained from Clonetics (Walkersville, Md.). Low passage CASMC (less than passage 10) were plated at 3500 cells/cm² in complete SMC media (Clonetics, plus 5% FBS and growth factors) and allowed to recover overnight. For proliferating cells, cultures were maintained throughout in complete SMC media. For quiescent cells, cultures were serum starved for 48 hours in low serum media (SMC media with 0.05% FBS and 1:100 growth factors).

Growth arrested (G_0) and proliferating (A_s) CASMC were transduced at an MOI of 50 with the various recombinant adenoviruses expressing CDKi's. Twenty-four hours later, the cells were radiolabeled ("pulsed") for 2 hours in media containing ³⁵S-methionine. The ³⁵S-methionine containing media was then removed and replaced with media containing an excess of non-radiolabeled amino acids, and the cells "chased" for 0, 1, 3, 9, 18 hours and 0, 1, 2, 3, 4, and 5 days. Cell pellets were lysed in 50 mM Tris-Cl pH 7.5, 250 mM NaCl, 0.5% NP-40, 50 mM NaF, 5mM EDTA, 1 mM PMSF, 1 mM Sodium Vanadate, and protease inhibitors. Protein concentrations were determined using a protein assay (Biorad) with bovine serum albumin (BSA) as a standard. Equivalent amounts of total protein from the cells were then immunoprecipitated using antibodies bound to protein A-sepharose. The antibodies used were p27 (Kip1, commercially available from Transduction Laboratories, Lexington, Ky.), and p16-C20 (commercially available from Santa Cruz Biotech., Santa Cruz, Calif.). The immunoprecipitates were separated by SDS-PAGE, and the gels vacuum dried and exposed to film. Estimated half life was determined from the radiolabeled proteins on the autoradiographs, which were analyzed using the Gel Doc 1000 image analysis system and Molecular Analysts software (Biorad).

The observed molecular weights of the expressed, HA epitope tagged proteins corresponded to the expected sizes:

p27, approximately 30 kD; p27 $_{12\text{-}178}$, approximately 28 kD; p27₂₅₋₉₃, approximately 10 kD; p16, approximately 19 kD; W3, approximately 48 kD; W7, approximately 46 kD; and W9, approximately 30 kD (FIG. 3). Interestingly, in AV-p27₂₅₋₉₃ infected cells, a protein band with the apparent molecular weight of approximately 24 kD was observed. The band was recognized by both p27 and HA epitope specific antibodies suggesting that it might be a stable dimer of two $p27_{25-93}$ molecules.

CDKi's was assessed by autoradiography at specific timepoints (FIG. 3 and summarized in FIG. 1, two far right columns labeled "Half-Life (hrs)"). The half-life of the CDKi's was estimated as the time-point at which half the original CDKi protein signal remained. The half-lives of 15 adenovirus expressed p^{27} and p16 were similar, approximately 3 hours in quiescent cells. The half-lives of the truncated p27 derivatives were reduced compares to the full-length p27 molecule. The half-life of p27₁₂₋₁₇₈ was approximately 2 hours in quiescent cells and approximately 1 hour in proliferating cells. The p27₂₅₋₉₃ was extremely unstable with a half-life of less than 1 hour in CASMC's. The half-lives of the fusion protein CDKi, W3 and W9, were similar to the p27 molecule: approximately 2 hours in quiescent cells (G₀ cells) and approximately 6.5 and 4.5 hours, respectively, in proliferating cells. While the half-life of the W7 fusion protein was similar to the other CDKi in growth arrested SMC, it demonstrated a strikingly longer half live in proliferating cells (approximately 20 hours; see FIG. 3, far right panel). This represented an increase of at 30 least 6-times and 20-times in stability over the contributing p16 and p27₁₂₋₁₇₈ molecules, respectively.

In quiescent CASMC (G₀ cells), the p16, p27, W3, W7, and W9 proteins all had half-lives of 2 to 3 hours (see FIG. 1). In proliferating cells(A_s), the W7 protein demonstrated a half-life of 20 hours.

EXAMPLE V

Adenovirus Delivered p16 p27₂₅₋₉₃, and W9 CDKi Localized to Both the Nucleus and the Cytoplasm of Transduced Cells

To determine if the various CDKi's demonstrate differential subcellular localization, the adenovirus expressed CDKi's were examined by immunofluorescent staining of proliferating CASMC's using HA epitope specific antibodies. These studies revealed a very profound dichotomy in the localization of these proteins. The p 27, p27₁₂₋₁₂₈, W3, and W7 proteins predominantly localize to the nucleus (FIG. 4 and data not shown), although a small fraction (less than 5%) of $\Delta E1/\Delta E3$ AV-p27 and $\Delta E1/\Delta E3$ AV-W3 transduced cells were observed in which the protein localized to both the nucleus and the cytoplasm. In contrast, the p16, p27₂₅₋₉₃, and W9 CDKi proteins were present both in the nucleus and the cytoplasm (FIG. 4). Thus, W9 localized to both the nucleus and the cytoplasm, while W7 and W3 were found predominantly in the nucleus.

EXAMPLE VI

Efficacy of Recombinant Adenviruses Encoding CDKi in Transducing Cells of the Vasculature

To evaluate transduction efficiency of cells of the vasculature by Δ E1, Δ E3 deleted adenovirus, cultures of quiescent 65 primary coronary artery smooth muscle cells (CASMC), aortic smooth muscle cells (AoSMC), coronary artery endot24

helial cells (CAEEC), and control HeLa cells were incubated with increasing does of a Δ E1, Δ E3 adenovirus encoding the β-gal transgene. Human coronary artery smooth muscle cells (CASMC) and aortic smooth muscle cells (AoSMC) were obtained from Clonetics Walkersville, Md.) and maintained in SMC media (Clonetics) supplemented with 5% fetal bovine serum (FBS). Human coronary artery endothelial cells (CAEC) were obtained from Clonetics (Walkersville, Md.) and maintained in EBM media supple-The kinetics of signal decay from the immunoprecipitated 10 mented with 5% bovine serum and growth factor supplements recommended by Clonetics. HeLa cells were maintained in DMEM containing 10% FBS.

> Quiescent CASMC, AoSMC, CAEC or HeLa cells were seeded at confluency in the appropriate media containing 5% FBS and the cells were infected 24 hours later with $\Delta E1/\Delta E3$ AV-CMV-Lac-Z at MOI of 10, 30 and 100. The next day, virus was removed and replaced with fresh media. The cells were harvested 4 days later, and the β -gal positive cells were detected using fluorescein di-β-D-galactopyranoside (FDG) substrate (Sigma, St. Louis, Mo.) and quantified by FACS analysis.

> Non-proliferating human CASMC, AoSMC and CAEC were readily transduced with transduction efficiencies approaching 100% at an MOI of 10 as shown in FIGS. 5A and 5B. Similar results were obtained with proliferating CASMC, AoSMC and CAEC.

EXAMPLE VII

Inhibition of Smooth Muscle Cell Growth by CDK Inhibitors

For the growth inhibition studies with growth arrested (i.e., synchronously growing) cells, CASMC's were seeded at 1.3 or 3×10^4 cells/well in 24 well plates in the appropriate media supplemented with 5% FBS. Twenty-four hours later, the media was changed to low serum conditions (media with 0.05% FBS) to growth arrest the cells. After 48 hours, cells were infected in low serum conditions with adenoviruses encoding the CDK inhibitor (ΔΕ1/ΔΕ3-AV-CKI) transgene or transgene encoding no protein (ΔΕ1/ΔΕ3-AV-CMV, or simply AV-CMV, which contains only the CMV promoter) at MOI's of 1, 10, 50, 100 and 250 in duplicate wells. After 24 hours, virus was removed and fresh media containing 10% FBS was added back. The cells were harvested three days later and counted to determine cell recovery, or evaluated for DNA content. Apoptosis was assessed by TdT assay (Phoenix Flow Systems, San Diego, Calif.) and annexin binding assay (R&D Systems, Minneapolis, Minn.).

Uninfected synchronized CASMC underwent approximately a 6-fold expansion in a three day period (FIG. 6). $\Delta E1/\Delta E3$ -AV-W9, encoding the p27₂₅₋₉₃-p16 fusion protein, was the most potent inhibitor of vascular smooth muscle cells, and demonstrated complete CASMC growth arrest at an MOI of 10, which coincided with the MOI sufficient to achieve complete adenovirus transduction of a population of CASMC (FIG. 6). Δ E1/ Δ E3-AV-W7, which encodes the p27₁₂₋₁₇₈-p16 fusion protein, demonstrated complete inhibition of synchronized CASMC at a 5 to 10 fold higher MOI. The extent of inhibition with $\Delta E1/\Delta E3$ -AV-p27, $\Delta E1/\Delta E3$ -AV-p27 $_{12-178}$, and $\Delta E1/\Delta E3$ -AV-p27 $_{25-93}$ was similar to that observed with $\Delta E1/\Delta E3$ -AV-W3.

At an MOI of 50, transduction with Δ E1/E3-AV-p16 resulted in a complete blockade of CASMC proliferation (FIG. 6). There was, however, some variability in relative activities of p16 and p27 from CASMC donor to donor. This inhibition profile may indicate the existence of a threshold

mechanism of p16 inhibition that is operative in vivo. In all experiments involving CASMC, ΔΕ1/ΔΕ3-AV-W9 was the most active anti-proliferative agent. In this experiment, E1/ΔE3-AV-p16 showed an inhibitory effect at MOI of 50 (FIG. 6). $\Delta E1/\Delta E3$ -AV-W7, which encodes the p27₁₂₋₁₇₈p16 fusion protein, demonstrated complete inhibition at 100 MOI. ΔΕ1/ΔΕ3-AV-W9 had the strongest effect in blocking cell growth following infection in quiescent CASMC. The virus particle to plaque forming units for Δ E1/ Δ E3-AV-p16, Δ E1/ Δ E3-AV-p27, Δ E1/ Δ E3-AV-W7 and Δ E1/ Δ E3-AV-W9 were similar (305 vp/pfu, 267 vp/pfu, 141 vp/pfu and 197 vp/pfu respectively). The primacy of AV-W9 was observed in three independent experiments in which CASMC from three different donors were tested (data from one experiment is shown in FIG. 6). Some variation was observed from 15 donor to donor in the relative strength of inhibition by Δ E1/ Δ E3-AV-p16 or Δ E1/ Δ E3-AV-p27 alone. In all donors, however, $\Delta E1/\Delta E3$ -AV-W9, $\Delta E1/\Delta E3$ -AV-W7, and $\Delta E1/\Delta E3$ -AV-W7 ΔE3-AV-W3 had inhibitory effects. Importantly, the effect of ΔE1/ΔE3-AV-W9 was clearly cytostatic and not cytocidal 20 since CDKi induction of SMC apoptosis was not observed as assayed by annexin and propidium iodide staining and analyzed by FACS.

EXAMPLE VIII

 Δ E1/ Δ E3 AV-W9 transduction Induces a Blockage of Smooth Muscle Cells in G₁, Phase and a Loss of Cells in S Phase

The point in the cell cycle in which the $\Delta E1/\Delta E3$ -AV-CDKi's transduced CASMC were growth arrested was determined by quantification of the cellular DNA content by FACS analysis. CASMC were transduced with $\Delta E1/\Delta E3$ -AV-CDKi. Three days after restimulation, cells were washed once with PBS and fixed in 70% EtOH for at least 4 hours. Cells were then washed once with PBS and treated with 0.1% triton X-100, 200 $\mu g/ml$ RNase A and 50 $\mu g/ml$ propidium iodide in PBS at 37 ° C. for 15 minutes. Cells were analyzed on FACscan using Cell Quest software (Becton Dickinson, Santa Clara, Calif.). Cell cycle analyses were performed using ModFit LT software (Verity, Topsham, Me.). As controls for cell cycle analysis, cells were treated with n-butyrate or aphidicolin, which arrest cells in early G₁ (Darzynkiewicz et al. (1981) Exp. Cell. Res. 136(2): 279-293) or early S phase (Sorscher and 45 Cordeiro-Stone (1991) Biochemistry 30(4): 1086-1090), respectively. 5 mM n-butyrate or 5 mg/ml aphidicolin was added to SMC at the time of restimulation, and cells were collected 36 hours later for analysis of DNA content.

Following incubation in low serum conditions, greater 50 than 98% of SMC were synchronized in the G_0/G_1 phase (FIG. 7A, top panel, Serum Low). This block was similar to cells treated with n-butyrate, which blocks cell cycle progression in the early G_1 phase and entry into S phase of the cell cycle (Kruh, J. (1982) *Mol Cell Biochem* 42: 65–82) 55 (FIG. 7A, top panel, Early G_1 Block). Upon stimulation of the synchronized CASMC with complete media, the normal profile of cells in G_0/G_1 phase, S phase and G_2/M phase was observed; 71%, 18% and 11%, respectively (FIG. 7A, top panel, Mock Control).

As predicted from the experiments shown in FIG. 6, transduction with $\Delta E1/\Delta E3$ -AV-W9 had a profound effect on the cell cycle of CASMC. CASMC transduced with the $\Delta E1/\Delta E3$ -AV-W9 at MOI of 10 showed complete block of entry into the G_2/M phase; >1% for $\Delta E1/\Delta E3$ -AV-W9 as 65 compared to 11% in Mock (FIG. 7A; W9, compared gray FACS to mock control solid line overlay). At lower MOI,

26

transduction with ΔΕ1/ΔΕ3-AV-W9 initially induced an increase in the population of cells in S phase (47%) (FIG. 7B, middle panel), similar to that observed with the aphidicolin treatment which blocks cells in early S phase (FIG. 7A, top panel, Early S Block). At higher MOI of 50 and 100, however, the percentage of cells in S phase decreased and the fraction of CASMC arrested in Go/Gl phase increased to over 80% (FIG. 7B, lower panel). A similar pattern of growth arrest was observed with the $\Delta E1/\Delta E3$ -AV-W7 trans-10 duced cells but at 5 fold higher MOI. Transduction with "empty" adenovirus, which demonstrated only modest inhibition of CASMC proliferation (FIG. 7A, Null), similarly had little effect on reducing the population of cells in G₂/M even at MOI of greater than 100 (FIGS. 7A and 7B, $\Delta E3AV\text{-}p27_{25\text{-}93}\text{,}$ and $\Delta E1/\Delta E3\text{-}AV\text{-}W3$ induced a depletion of the G₂/M population and a corresponding increase in the percentage of cells in S phase, although at MOI's 10 to 100 fold higher than necessary for ΔE1/ΔE3-AV-W9.

Thus, as might be expected from the anti-proliferative activity data, the W9 and W7 CDKi's were readily distinguished in analysis of their impact on CASMC cell cycle progression. Transduction of CASMC with any of the ΔE1/ Δ E3-AV-p27-p16 fusion CDKi's as well as Δ E1/ Δ E3-AV- $^{25}\,$ p27 and $\Delta E1/\Delta E3\text{-AV-p27}$ derivatives lead to blockade of cells in S phase and loss of the cells in G₂/M phase. Transduction with AV-W9, however, led to blockade of cells in G₁ phase and loss of the cells in S phase. At higher MOI's, $\Delta E1/\Delta E3$ -AV-W7 produced a similar effect. This raises the possibility that at lower concentrations W9 and W7 primarily block CDK's whose activity is required for S-phase progression (CDK2/cyclin E or CDK2/cyclin A) and at higher concentrations, block the activity of CDK's whose activity is required in G₁ and at G₁/S (Cdk4,6/cyclin D and 35 Cdk2/cyclin E).

As cell hyper-proliferation is at the center of many human pathologies, including angioplasty associated restenosis, controlling cell proliferation is a critical therapeutic target. Prevention of the SMC proliferation that leads to vessel restenosis through gene therapy with CDKi's at the time of angioplasty, would offer a local-regional therapy with minimal systemic toxicity. While several groups have shown that various CDKi's and other cell cycle regulators do prevent restenosis in animal models, the creation of novel CDKi proteins with increased potency increases the likelihood of success of a CDKi vascular gene therapy strategy. By combining the activity of multiple CDKi, and eliminating regions that potentially limit their activity, regulators of the cell cycle with improved biological activity have been created.

EXAMPLE IX

Inhibition of Endothelial Cell Growth by CDK Inhibitors

For the growth inhibition studies with growth arrested (i.e., synchronized) cells, CAEC's were seeded at 1.3 or 3×10⁴ cells/well in 24 well plates in the appropriate media supplemented with 5% FBS. Twenty-four hours later, the media was changed to low serum conditions (media with 0.05% FBS) to growth arrest the cells. After 48 hours, cells were infected in low serum conditions with ΔΕ1, ΔΕ3 recombinant adenoviruses encoding the CDK inhibitor (ΔΕ1/ΔΕ3-AV-CDKi), or simply AV-CDKi transgene or transgene encoding no protein (ΔΕ1/ΔΕ3-AV-CMV; "AV-Null") at MOI's of 1, 10, 50,100 and 250 in duplicate wells. After 24 hours, virus was removed and fresh media con-

taining 10% FBS was added back. The cells were harvested 3 days later and counted to determine cell recovery, or evaluated for DNA content.

For growth inhibition studies with proliferating (i.e., asynchronous) cells, CAEC were plated at 5×10⁴ per well in 5 six-well plates. After 24 hours, cells were infected with 10 MOI ΔΕ1/ΔΕ3-AV-CDKi or ΔΕ1/ΔΕ3-AV-CMV. Cells were harvested 2 days later and counted to determine cell growth. Apoptosis was assessed by TdT assay (Phoenix Flow Systems, San Diego, Calif.) and annexin binding assay ¹⁰ (R&D Systems, Minneapolis, Minn.).

 $\Delta E1/\Delta E3$ -AV-W9 was observed to be the most potent inhibitor of endothelial cell proliferation using primary CAEC that had been growth arrested following serum deprivation (FIG. 8A). In these experiments however, $\Delta E1/\Delta E3$ -AV-W9 not only inhibited cell proliferation, but also resulted in cell loss. The empty adenoviral vector (Null) induced less significant cell losses. When the experiment was repeated with proliferating endothelial cells that had not been growth arrested, W9 inhibited CAEC proliferation, while the $\Delta E1/\Delta E3$ -AV-p16 and $\Delta E1/\Delta E3$ -AV-CMV viruses had little effect (FIG. 8B). As observed with the SMC, there was not evidence of apoptosis following infection in either synchronized or proliferating EC as determined by Tunnel staining of DNA fragments or by annexin binding. Similar results were obtained with human aortic endothelial cells.

EXAMPLE X

Rabbit Liver Toxicity and Transgene Expression Studies of Recombinant Adenoviruses Lacking the E1Region or Lacking Both the E1 and the E4 Regions

A replication-defective recombinant adenovirus lacking both the E1 and the E4 regions has recently been described (see Wang et al., U.S. patent application Ser. No. 08/552, 829, filed Nov. 3, 1995, the entirety of which is hereby incorporated by reference). This adenovirus results in reduced pathologic effects and prolonged expression of the transgene. Moreover, the Δ E1/ Δ E4 adenovirus can accommodate large transgene(s) than the singly deleted (i.e., Δ E1) adenovirus.

A \(\Delta \text{E} \) / A \(\Delta \text{

In order to study the toxicity of of the $\Delta E1/\Delta E4$ adenovirus, a comparison was made between the $\Delta E1/\Delta E4$ Adenovirus and $\Delta E1$ Adenovirus delivery in the rabbit carotid artery using the vascular occlusive disease model. Thus, a $\Delta E1/\Delta E4$ adenovirus encoding the *E. coli* β -galactosidase gene (β -gal) under the control of the mouse phosphoglycerate kinase (PGK) promoter was generated. A $\Delta E1$ adenovirus encoding β -gal was similarly generated. Viral stocks were purified by double cesium chloride gradient centrifugation and dialyzed against PBS. The stocks were stored in PBS containing 10% glycerol and 50 mg/ml human serum albumin. Infectious virus titer was determined by titration on 293 cells (see Wang et al. (1995) *Gene Ther*. 2: 775–783; Wang et al. (1997) *Gene Ther*. 4: 393–400).

28

To do this, male New Zealand white rabbits (2–2.5 kg) were maintained on a normal diet. Anesthesia was induced in Ketamine and Xylazine subcutaneously.

Rabbits underwent gene transfer to both carotid arteries via arteriotomy. Purified virus preparations were diluted with Dulbecco's modified Eagle's medium (DME)/virus storage medium to ensure equal composition of virus solutions at different viral titers. Sham infections were carried out using DMV/virus storage medium alone. Approximately 200 μ l of virus solution was infused per vessel, which is sufficient to expand the vessel to physiologic dimensions. The solution was allowed to dwell for 15 minutes, then removed. The artery was then flushed with DME/virus storage medium and the arteriotomy closed.

Vessels were harvested at various time points. Briefly, the animals were anesthetized, heparinized (700 IU i.v.), and the carotid arteries dissected free. Animals were then killed with 100 mg/kg IV pentobarbitol. Vessels were immediately excised and washed in phosphate buffered saline (PBS). Segments from all vessels were 1) immediately frozen at -80° C. for protein extraction, 2) rapidly processed for frozen sections and immunohistochemistry, or 3) were hung without delay in organ baths for vasomotor studies.

For the immunohistochemistry studies, arterial frozen sections and paraffin-embedded sections were prepared. Immunohistochemistry for lymphocytes or macrophages was performed using antibodies directed against rabbit CD18 (Serotec, Oxford, UK) 18, rabbit CD43 (TII/1 35, Serotec)II or rabbit RAM 11 18 (Dako, Carpenteria, Calif.), respectively. Vascular cell adhesion molecule—I antibodies were raised against rabbit VCAM-1 and ICAM-1. Immunostaining of smooth muscle cells (HHF 35, Dako, Carpenterial Calif.) and endothelial cells (anti-von Willebrand's factor was also performed. Briefly, frozen sections were dried at room temperature, then equilibrated in PBS. Blocking solution (1.5% horse serum in PBS) was applied for 1 hour at room temperature or overnight at 4° C. Antibodies were diluted in blocking solution at the manufacturer's recommended concentration and were applied to issue sections for 1 hour. Endothelial inflammatory cell infiltration was assessed by counting the total number of CD18+, CD43+, or RM11+ leukocytes adherent to the lumenal surface. In addition, staining intensity was quantified with and image analysis system (Olympus IX70 inverted microscope, Optronics DE1-750 image capturing hardware, Adobe Premiere, and NIH Image 1.61 software).

For vasomotor studies, 5 mm arterial rings were mounted in 30 ml organ baths containing oxygenated (95% O_2 , 5% CO_2) Krebs-Henseleit buffer at 37° C. and used in isometric tension studies. Briefly, cumulative does-response curves to phenylephrine (PE; 10^{-9} to 10^{-4} M) were established; vessels were then submaximally precontracted with PE (usually 3×10^4 M), and endothelial function was evaluated by vascular relaxation in response to acetylcholine (Ach, 10^{-8} to 10^{-4} M). The arteries were then washed, submaximally precontracted with PE, and endothelium-independent relaxation responses to sodium nitroprusside (SNP-, 10^{-8} to 10^{-4} M) were determined. Statistical significance was assessed by ANOVA.

For systemic toxicological analyses in the adenovirus delivery studies, serum was collected from rabbits that were either sham infected of transduced with either the Δ E1-AV or Δ E1/ Δ E4-AV at 3, 10, or 28 days after transduction were tested for levels of liver transaminases (glutamic pyruvic transaminase (sGPT) and glutamic oxalacetic transaminase (sGOT), creatinine, and alkaline phosphatase. All test

reagents were obtained from Sigma (St. Louis, Mo.). Serum from a mouse that received partial hepatectomy (induced liver damage) served as positive controls for sGPT/sGOT assays. The positive control for the creatinine assay was obtained from Sigma (St. Louis, Mo.).

As shown in FIGS. 9A and 9B, the Δ E1/ Δ E4-AV- β -gal transduced rabbit carotid arteries showed significantly improved transgene (i.e., β -gal) expression as compared to rabbit carotid arteries transduced with Δ E1-AV- β -gal. The Δ E1/ Δ E4-AV- β -gal and the Δ E1-AV- β -gal were identical except that the former lacked the E4 region. Viral preparations from each were both carefully matched for lacZ-forming units in vitro, and were within 10% of one another in viral particle number.

In uninjured rabbit carotid arteries, both $\Delta E1/\Delta E4$ -AV- β -gal and the $\Delta E1$ -AV- β -gal were effective in transducing vascular endothelium (FIGS. 9A and 9B). With both viruses, at least 80% of the endothelial cells were lacZ positive three days following gene transfer (FIGS. 9A and 9B). No medial transfer was observed with either virus, and no lacZ positive cells were seen in any sham-treated artery.

By 10 days after gene transfer, the number of β -gal positive endothelial cells had declined considerably. However, there was a clear difference between $\Delta E1/\Delta E4$ -AV- β -gal and the $\Delta E1$ -AV- β -gal treated arteries, with about 30% of the endothelial cells transduced with $\Delta E1/\Delta E4$ -AV- β -gal still lacZ positive after 10 days as compared to only 5% of endothelial cells transduced with $\Delta E1$ -AV- β -gal (FIG. 9B). At 28 days after gene transfer, β -gal expression was no longer detectable in any artery (FIG. 9A).

To further quantify β -gal expression an ELISA was performed on whole vessel lysates. β -gal expression was compared at low dose, middle dose, and high dose at 3, 10, and 28 days after gene transfer with Δ E1/ Δ E4-AV- β -gal or Δ E1-AV- β -gal. While there was an increase in transgene expression with increasing dose of virus, the effect was surprisingly relatively modest. For both the Δ E1/ Δ E4-AV- β -gal and the Δ E1-AV- β -gal, a 25-fold increase in viral dose produced only a 2-fold dose increase in β -gal expression. In spite of this, there appeared to be little difference in gene expression between the two vectors, which confirmed that the titers and transduction conditions were essentially equal between Δ E1/ Δ E4-AV- β -gal and the Δ E-AV- β -gal.

Differences in the durability of transgene expression was also observed between $\Delta E1/\Delta E4$ -AV- β -gal and $\Delta E1$ -AV- β -gal. Although transgene expression and the number of β -gal positive cells decreased from day 3 to day 10, β -gal expression at the interim time point of 10 days was significantly higher in the $\Delta E1/\Delta E4$ -AV- β -gal-treated vessels at all virus doses tested. For the middle dose of 5×10^9 ffu/ml there was a greater than 4 fold difference in β -gal protein between the $\Delta E1/\Delta E4$ -AV- β -gal and the $\Delta E1$ -AV- β -gal-treated vessels. At the highest dose of $2.5\times10_{10}$ ffu/ml, the difference was only 1.5 fold. by day 28, β -gal staining and protein expression was negligible in vessels treated with either $\Delta E1/\Delta E4$ -AV- β -gal or $\Delta E1$ -AV- β -gal (see FIG. 9A). Thus, transgene expression with the $\Delta E1/\Delta E4$ -AV- β -gal virus was prolonged as compared to that observed with the $\Delta E1$ -AV- β -gal virus.

To compared the degree of endothelial activation induced 60 by $\Delta E1/\Delta E4$ -AV- β -gal and $\Delta E1$ -AV- β -gal, arterial cryosections were compared for expression of adhesion molecules, ICAM and VCAM, by immunohistochemistry (FIGS. 10A). In middle dose-treated arteries 10 days following gene transfer, clear differences were observable between sham 65 treated, $\Delta E1/\Delta E4$ -AV- β -gal-treated, and $\Delta E1$ -AV- β -gal-treated arteries. The same relationships were apparent at 3

30

days post-gene transfer (FIG. 10B). FIGS. 10B–C shows the quantitation of ICAM and VCAM expression using image analysis. The intensity of ICAM and VCAM staining induced by the $\Delta E1\text{-}AV\text{-}\beta\text{-}gal$ virus was between 3–8 times the staining of the $\Delta E1\text{-}\Delta V\text{-}\beta\text{-}gal$ -treated arteries. These differences were statistically significant (FIGS. 10B–C; p<0.01). Although substantially lower than the $\Delta E1\text{-}\Delta V\text{-}\beta\text{-}gal$ -treated arteries showed higher adhesion molecule expression than sham treated arteries (FIGS. 10B–C).

Since first generation recombinant adenoviruses have been shown to induce titer-dependent infiltration of neutrophils, leukocytes, and monocytes (REF), we evaluated cellular infiltration by immunohistochemistry staining for two white blood cell markers, CD18 and CD43 to determine whether the $\Delta E1/\Delta E4$ -AV- β -gal virus induced less vascular inflammation than the $\Delta E1$ -AV- β -gal virus. As shown in FIG. 11A, substantially fewer CD18 and CD43 positive cells were present in $\Delta E1/\Delta E4$ -AV- β -gal-treated arteries as compared to arteries treated with ΔE1-AV-β-gal virus. This difference was quantitated both by cell counting (data not shown) and image analysis (FIG. 11B). As was the case for adhesion molecule expression (FIGS. 10A–C), the Δ E1/ ΔE4-AV-β-gal virus induced significantly greater inflammatory cell infiltration than did sham-treatment, but induced significantly less inflammatory cell infiltration than the ΔE1-V-β-gal virus. This pattern was also observed with RAM 11 stained arteries (data not shown).

Recombinant first generation adenovirus (ΔE1-AV) impairs endothelium-dependent relaxation in a titerdependent manner that corresponds closely to the degree of inflammation (REF); however, there is no effect on vascular smooth muscle cell contraction or sodium nitroprussideinduced relaxation. To determine whether the $\Delta E1/\Delta E4$ -AV virus produced less function endothelial impairment, the vasomotor function of carotid arteries in organ baths at 3, 10, and 28 days following gene transfer was evaluated. Phenylephrine-induced contraction and SNP-induced relaxation were the same in all vessels, regardless of treatment (data not shown). However, the Δ E1-AV virus significantly impaired endothelium-dependent relaxation at all time points (FIG. 12). In contrast, as shown in FIG. 12, the ΔE1/ΔE4-AV virus had little impact on endotheliumdependent relaxation. Only at high titer was there any significant impairment observed, and even then, only at the 10 day time point.

In $\Delta E1$ -AV treated vessels receiving the middle dose, intimal hyperplasia was readily apparent as early as 10 days following gene transfer (FIG. 13A), and progressed to nearly double the 10-day thickness by 28 days after gene transfer (FIG. 13B). Intimal hyperplasia in $\Delta E1/\Delta E4$ -AV-treated arteries was reduced by a factor of three relative to the $\Delta E1$ -AV-treated arteries (see FIG. 13C). All arteries receiving either middle or high-titer adenovirus doses showed significantly greater intimal hyperplasia than sham-treated arteries at both 10 and 28 days (FIGS. 13A, 13B, and 13C).

FIGS. 14A–14D show the results of the systemic toxicological analyses in the adenovirus delivery studies, which indicated that the serum enzymes did not significantly change following virus delivery to the carotid artery at any of the time points, where d3 indicates 3 days after transduction; dlO indicates 10 days after transduction.; and d28 indicates 28 days after transduction. Furthermore, there were no differences between Δ E1-AV and Δ E1/ Δ E4-AV. Thus, in spite of the observed increases in vessel inflammatory cell infiltrates (FIGS. 11A and 11B), there was no apparent increase in the serum levels of liver transaminases, sGPT

and SGOT, or creatinine or alkaline phosphatase in either the $\Delta E1/\Delta E4$ -AV- β -gal or the $\Delta E1$ -AV- β -gal-treated vessels, suggesting the absence of any broad systemic toxicity following vascular delivery with either $\Delta E1$ -AV and $\Delta E1/\Delta E4$ -AV. These results indicated that liver and renal functions were normal and support the absence of systemic toxicity due to either $\Delta E1$ -AV and $\Delta E1/\Delta E4$ -AV virus.

EXAMPLE XI

A Recombinant Adenovirus Lacking the E1 and E3 Regions and Expressing the W9 Fusion Protein has Smooth Muscle Cell Proliferation-Inhibiting Activity In Vivo

 Δ E1/ Δ E3 AV-W9 was delivered to balloon-injured rabbit carotid arteries to determine efficacy of the CDKi chimeric molecule for the prevention of restenosis. To do this, male New Zealand white rabbits (2–2.5 kg) were maintained on a normal diet. Anesthesia was induced in Ketamine and Xylazine subcutaneously. Prior to balloon injury, rabbits were fed a 1% cholesterol diet for six weeks. Three to four animals were tested in each treatment group (sham, control virus or test virus).

For in vivo gene transfer to injured artery, rabbits were placed under appropriate anesthesia. A midline incisions was made and the external carotid artery was exposed. An arteriotomy was performed, and a 2F Fogarty balloon catheter was inserted and inflated (50-60 μ l saline to fill the balloon) and passed 5x. The catheter was then removed and the animals were recovered. Three days later, rabbits underwent gene transfer (by transduction with recombinant retrovirus) to both carotid arteries via arteriotomy. The vessel was clamped and an arteriotomy performed. Approximately $100 \,\mu l$ of virus solution was infused per vessel, which is sufficient to expand the vessel to physiologic dimensions. The solution was allowed to dwell for 15 minutes then removed. The artery was then flushed with DME/virus storage medium and the arteriotomy closed. The clamps were removed and circulation restored.

High titer viral stock was diluted with Dulbecco's modified Eagle's medium (DME)/virus storage medium at 1:1 ratio (final viral particle titer 2.5×10¹² vp/ml) to ensure equal composition of virus solutions at different viral titers. Sham infections were carried out using DMV/virus storage 45 medium alone.

Vessels were harvested at 14 days after gene transfer. Briefly, animals were anesthetized, heparinized (700 IU i.v.), and the carotid arteries dissected free. Animals were then euthanized with 100 mg/kg IV pentobarbitol. Vessels were 50 immediately excised and washed in phosphate buffered saline (PBS). The excised segments were approximately 2.0–2.5 cm total and were cut into six segments. Segments were snap frozen for DNA or protein for PCR or Western blot analyses. The first and third segments were processed 55 for histology and immunohistochemistry.

For immunohistochemistry, arterial frozen sections and paraffin-embedded sections were prepared. Immunostaining was performed on sections to detect for transgene expression using the HA antibody (the CDKi transgenes in these viruses contain an HA tag at the N terminal of the protein) from Babco and for PCNA expression (Dako). Briefly, frozen sections were dried at room temperature, then equilibrated in PBS. Blocking solution (1.5% horse serum in PBS) was applied for 1 hour at room temperature or overnight at 4° C. Antibodies were diluted in blocking solution at the manufacturer's recommended concentration and were applied to

32

tissue sections for 1 hour. The extent of neointimal hyperplasia was visualized following Voerhoff's stain or Masson Accustain Kit (Sigma).

Neointimal thicknesses and immunostaining intensity was quantified with and image analysis system (Olympus IX70 inverted microscope, Optronics DE1-750 image capturing hardware, Adobe Premiere and NIH Image 1.61 software). The results were quantified either by cell count or image analysis. For the analyses, 2 vessels per rabbit were treated. From each vessel, 2–3 sections were stained. Four to six views per section (20X) and 2–3 points per view taken for measurements. The extent of neointimal proliferation following the second balloon injury and viral infection was determined by measuring the neointimal thickness (µm) per HPF (high power field).

Three different strategies were tested using this example. For all three studies, the rabbits were given a 1% cholesterol diet for six weeks. Vessels were harvested two weeks after gene transfer. The first two rabbit studies were to test efficacy of $\Delta E1/\Delta E3$ -AV-W9 in a double balloon injury model. The third study was to test efficacy in a single balloon injury model. Table II shows a summary of the experimental strategies in the rabbit carotid artery balloon injury model of this example.

TABLE II

Rabbit Study 1 1st Balloon injury, wait 2 weeks, 2nd balloon injury plus gene transfer
Rabbit Study 2 1st Balloon injury, wait 1 week, 2nd balloon injury plus gene transfer
Rabbit Study 3 1 balloon injury followed by gene transfer 3 days later

From these studies, the following results were obtained:

RABBIT STUDY 1

Double Balloon Injury Model with Second Balloon Injury Plus Gene Transfer 2 Weeks After First Balloon Injury ΔE1/ΔE3 AV-W9 was delivered to balloon-injured rabbit carotid arteries to as an initial study to determine efficacy of the CDKi chimeric molecule for the prevention of restenosis. A first balloon injury was performed to the rabbit carotid artery to induce smooth muscle cell proliferation. A second balloon injury and delivery of 1×10° pfu (plaque forming units) ΔE1/ΔE3-AV-W9 was performed two weeks after the first injury. The vessels were harvested 14 days later. The extent of neointimal proliferation following the second balloon injury and viral transduction was determined by measuring the neointimal thickness (μ m) per HPF (high power field). The results shown in FIGS. 15A and 15B demonstrated that there was a 40-50% inhibition of neointimal hyperplasia when ΔE1/ΔE3-AV-W9 was used to transduce the cells as compared to cells that had been shaminfected. These results are positive at a low dose of p27/p16 fusion in the first generation adenovirus (i.e., the $\Delta E1/\Delta E3$ -AV).

RABBIT STUDY 2

Double Balloon Injury Model with Second Balloon Injury Plus Gene Transfer 1 Week After First Balloon Injury

FIG. 16A shows sections of the carotid artery that were either untreated or treated with $\Delta E1/\Delta E3$ -AV-β-gal control virus or $\Delta E1/\Delta E3$ -AV-W9. Approximately 2.5×10^{11} viral particles were introduced to the carotid artery and used to transduce the smooth muscle cells of this artery after the second balloon injury. The arrows in FIG. 16A indicate the extent of neointimal hyperplasia. The graph is a quantification of the percentage of reduction in neointimal hyperplasia following $\Delta E1/\Delta E3$ -AV-W9 infection compared to control.

RABBIT STUDY 3

Single Balloon Injury Model with Gene Transfer Three Days After Balloon Injury

FIGS. 17A and 17B show the results from the third study which indicated a 50% reduction in intimal hyperplasia 5 when approximately 2.5×10^{11} viral particles of $\Delta E1/\Delta E3$ -AV-W9 was delivered just 3 days following the first balloon injury, as compared to sham-infection.

Taken together, the results shown in FIGS. 15A–17B from all three studies indicate that the p27/p16 fusion is efficacious for reducing neointimal formation in the rabbit balloon injury model. Thus, results from the first and second studies (i.e., the Double Balloon Injury Models) showed that intimal hyperplasia was reduced by 45% following the second balloon injury and gene transfer compared with sham or 15 control virus treated arteries (p<0.001). In the third study (i.e., the Single Balloon Injury Model), intimal hyperplasia was reduced by 50% following a single balloon injury.

In addition, in the third rabbit study (i.e., the Single Balloon Injury Model), the impact of $\Delta E1/\Delta E3$ -AV-W9 on 20 PCNA (a maker of cell proliferation) was also evaluated. Below are the results following immunohistostaining of vessels with anti-PCNA antibody (commercially available from Dako). Cells were counterstained with hematoxylin to visualize nuclei.

FIG. 18A shows that the number of PCNA positive cells was significantly reduced in vessels that received $\Delta E1/\Delta E3$ -AV-W9. Quantification of this staining (by cell count) indicated a 50% reduction in PCNA positive cells (see FIG. 18B). This correlated with the 50% reduction in neointimal 30 proliferation (see, eg., FIG. 17B), further supporting an inhibition of SMC growth following balloon injury.

EXAMPLE XII

Comparison of Δ E1/ Δ E3-AV-W9 with Δ E1/ Δ E3-AV-p16 and Δ E1/ Δ E3-AV-p27

The efficacy of $\Delta E1/\Delta E3$ -AV-W9 was compared with the $\Delta E1/\Delta E3$ -AV-p16 and $\Delta E1/\Delta E3$ AV-p27 which encode the individual parental molecules. Rabbits were treated the same as described for the Single Balloon Injury Model described in Example XI. Three days following the single balloon injury, vessels received equivalent viral particles (2.5×10¹¹ v.p.) of $\Delta E1/\Delta E3$ -AV-W9, $\Delta E1/\Delta E3$ -AV-p16, or $\Delta E1/\Delta E3$ AV-p27. Vessels were harvested either 3 days or 2 weeks after gene transfer. Arterial sections were analyzed for neointimal proliferation, transgene expression, and PCNA expression.

FIG. 19 shows the results of quantification of neointimal proliferation in carotid artery segments. The results show that transduction with $\Delta E1/\Delta E3$ -AV-W9, which reduced neointimal proliferation by 50%, was significantly more potent than $\Delta E1/\Delta E3$ -AV-p16 or $\Delta E1/\Delta E3$ -AV-p27 alone (FIG. 19). $\Delta E1/\Delta E3$ -AV-p16 or $\Delta E1/\Delta E3$ -AV-p27 alone demonstrated 20–30% inhibition in neointimal hyperplasia compared to sham or control virus treated vessels (FIG. 19).

The carotid artery vessels were also analyzed for transgene expression by staining with an anti-HA antibody (Babco), since the Δ E1/ Δ E3-AV-CDKi adenoviruses used in these studies encode the CDKi proteins p16, p27 or W9 (p27/p16) fused to an HA (hemagglutinin peptide) tag (see Example III). Therefore, transgene expression can be detected by the HA antibody. Immunostaining was performed on vessels taken three days after gene transfer.

As shown in FIG. 20A, segments taken from animals which received with Δ E1/ Δ E3-AV-W9, Δ E1/ Δ E3-AV-p16,

34

or $\Delta E1/\Delta E3$ -AV-p27 stained positive for the hemagglutinin tag, indicating the smooth muscle cells of these animals were indeed transduced and expressed W9, p16, and p27, respectively.

FIG. **20**B shows the quantification of the transgene expression. The amount of transgene expression was quantified by image analyses. Positive cells were detected with the HA-antibody.

The level of PCNA expression was examined in rabbit artery at both 3 days and 2 weeks after gene transfer. PCNA expression decreased in vessels that received ΔΕ1/ΔΕ3-AV-p16, ΔΕ1/ΔΕ3-AV-p27, and ΔΕ1/ΔΕ3-AV-W9 (FIG. 21). Thus, PCNA expression was reduced in injured carotid arteries treated with ΔΕ1/ΔΕ3-AV-CDKi. As shown in FIG. 21, ΔΕ1/ΔΕ3-AV-W9 (black bars) had a significant reduction in PCNA expression as compared to ΔΕ1/ΔΕ3-AV-p16 (gray bars) or ΔΕ1/ΔΕ3-AV-p27 (cross-hatched bars) alone. The levels of PCNA expression were down in all vessels by 2 weeks after gene transfer indicating that the SMC proliferation that occurs in response to injury was nearly finished.

EXAMPLE XIII

Efficacy of Recombinant Adenovirus Delivery of W9 in a Rabbit Vein Graft Model

Efficacy of $\Delta E1/\Delta E3$ -AV-W9 was also tested in a vein graft model. In this experiment, the external jugular vein was excised and grafted onto the carotid artery. The vessel was clamped at both ends and virus solution was delivered to the grafted vein for 15 minutes. Virus was then removed and clamps released and circulation restored. The vein graft was harvested 10 days following gene transfer and analyzed for the extent of adventitial hyperplasia and morphological changes. Adventitial thickening was assessed by weight gain of the vein graft. As shown in FIGS. 22A and 22B, transduction with approximately 1×10^9 pfu of AV-W9 resulted in 30% inhibition of adventitial hyperplasia. In addition, the overall cellularity and integrity of the vessel were better preserved following transduction with $\Delta E1/\Delta E3$ -AV-W9.

EXAMPLE XIV

Smooth Muscle Cell Proliferation-Inhibiting Activity of Recombinant Lentiviruses Expressing CDKi Proteins

A second virus-based delivery vehicle for the CDKi proteins of the invention was generated. Here, a lentivirus vector previously described (see Dull et al. (1998) *J. Virol.* 72: 8463–8471) was used to generate recombinant lentiviruses encoding W9, W7, p16, and p27. Transgenes similar to those described in Example III (i.e., a transgene consisting of CMV enhancer/promoter-CDKi insert-SV40 polyA) were inserted into the lentivirus transfer vector, pRRL.sin-18, between the splice acceptor cite and the 3' LTR (Dull et al., supra). It should be noted, however, that these lentivirus-expressed CDKi did not have the 6 His, HA tag.

The recombinant lentiviruses were packaged essentially as described in Dull et al., supra. The recombinant lentiviruses are used to transduce smooth muscle cells and are administered to rabbit blood vessels following angioplasty in the Single and Double Balloon Injury Models according to the methods generally described above for the recombinant adenoviruses.

In a slight modification, a second form of recombinant lentivirus is generated encoding CDKi fusion proteins of the invention. FIG. 23A illustrates a representative recombinant

lentivirus vector containing a W9 expression cassette (i.e., W9-encoding nucleic acid sequence operably linked to regulatory sequences) flanked by HIV LTRS. Downstream of the 5' LTR, the vector contains the HIV leader sequence, the major 5' splice donor site (SD), the packaging sequence 5 (Ψ) , the first 43 bps of the HIV gag gene, the HIV Rev Response Element (RRE), and the splice accepter sites (SA) of the second exon of HIV tat and HIV rev. This vector may be packaged according to standard techniques to generate a nant lentiviral vector is shown on FIG. 23B. This selfinactivating lentiviral vector contains a W9 expression cassette flanked by a 5' HIV LTR having a substituted U3 region and a 3' HIV LTR, or a 5' HIV LTR and a deleted 3' HIV LTR. This vector further contains downstream from the 5'

36

LTR and HIV leader sequence, the major 5' SD, Ψ, the first 43 bps of the gag gene, the RRE, and the SA of the second exon at tat and rev.

EQUIVALENTS

As will be apparent to those skilled in the art to which the invention pertains, the present invention may be embodied in forms other than those specifically disclosed above withrecombinant lentivirus that encodes W9. Another recombi- 10 out departing from the spirit or essential characteristics of the invention. The particular embodiments of the invention described above, are, therefore, to be considered as illustrative and not restrictive. The scope of the invention is as set forth in the appended claims rather than being limited to the examples contained in the foregoing description.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 28
<210> SEO ID NO 1
<211> LENGTH: 51
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: synthetic
      oligonucleotide
<400> SEOUENCE: 1
qcqqccqqtc atatqcacca ccatcaccat cactcaaacq tqcqaqtqtc t
                                                                       51
<210> SEO ID NO 2
<211> LENGTH: 96
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: synthetic
     oligonucleotide
<400> SEQUENCE: 2
gccgccggcg tcgactcggc cgaattcgga tccacccccg ccggaaccgc cacccccgct
                                                                       60
gcccccqcca cccqtttqac qtcttctqaq qccaqq
                                                                       96
<210> SEQ ID NO 3
<211> LENGTH: 1420
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3
catatgcacc accatcacca tcactcaaac gtgcgagtgt ctaacgggag ccctagcctg
                                                                       60
gagcggatgg acgccaggca ggcggagcac cccaagccct cggcctgcag gaacctcttc
                                                                       120
qqcccqqtqq accacqaaqa qttaacccqq qacttqqaqa aqcactqcaq aqacatqqaa
                                                                       180
qaqqcqaqcc aqcqcaaqtq qaatttcqat tttcaqaatc acaaacccct aqaqqqcaaq
                                                                       240
tacgagtggc aagaggtgga gaagggcagc ttgcccgagt tctactacag acccccgcgg
                                                                       300
cccccaaag gtgcctgcaa ggtgccggcg caggagagcc aggatgtcag cgggagccgc
                                                                       360
ccggcggcgc ctttaattgg ggctccggct aactctgagg acacgcattt ggtggaccca
                                                                       420
aagactgatc cgtcggacag ccagacgggg ttagcggagc aatgcgcagg aataaggaag
                                                                       480
cgacctgcaa ccgacgattc ttctactcaa aacaaaagag ccaacagaac agaagaaaat
                                                                       540
gtttcagacg gttccccaaa tgccggttct gtggagcaga cgcccaagaa gcctggcctc
                                                                       600
```

-continued

agaagacgtc aaacgggtgg cgggggcagc gggggtggcg gttccggcgg	gggtggatcc 660
gaattetgeg geegegegtg egeteggegg etgeggagag gggagageat	gcagcgggcg 720
geggggagea geatggagee tteggetgae tggetggeea eggeegegge	ccggggtcgg 780
gtagaggagg tgcgggcgct gctggaggcg gtggcgctgc ccaacgcacc	gaatagttac 840
ggtcggaggc cgatccaggt catgatgatg ggcagcgccc gagtggcgga	gctgctgctg 900
ctccacggcg cggagcccaa ctgcgccgac cccgccactc tcacccgacc	cgtgcacgac 960
gctgcccggg agggcttcct ggacacgctg gtggtgctgc accgggccgg	ggcgcggctg 1020
gacgtgcgcg atgcctgggg ccgtctgccc gtggacctgg ctgaggagct	gggccatcgc 1080
gatgtogcac ggtacctgcg cgcggctgcg gggggcacca gaggcagtaa	ccatgcccgc 1140
atagatgccg cggaaggtcc ctcagacatc cccgattgaa agaaccagag	aggctctgag 1200
aaacctcggg aaacttagat catcagtcac cgaaggtcct acagggccac	aactgccccc 1260
gccacaaccc accccgcttt cgtagttttc atttagaaaa tagagctttt	aaaaatgtcc 1320
tgccttttaa cgtagatata agccttcccc cactaccgta aatgtccatt	tatatcattt 1380
tttatatatt cttataaaaa tgtaaaaaag aaaactcgag	1420
<210> SEQ ID NO 4 <211> LENGTH: 391 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 4	
Met His His His His His Ser Asn Val Arg Val Ser As $1 \hspace{1cm} 5 \hspace{1cm} 10$	n Gl y Ser 15
Pro Ser Leu Glu Arg Met Asp Ala Arg Gln Ala Glu His Pr 20 25 3	_
Ser Ala Cys Arg Asn Leu Phe Gly Pro Val Asp His Glu Gl $_{35}$ $_{40}$ $_{45}$	u Leu Thr
Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu Glu Ala Se 50 55 60	r Gln Arg
Lys Trp Asn Phe Asp Phe Gln Asn His Lys Pro Leu Glu Gl 65 70 75	y Lys Tyr 80
Glu Trp Gln Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Ty $85 \hspace{1cm} 90 \hspace{1cm}$	r Tyr Arg 95
Pro Pro Arg Pro Pro Lys Gly Ala Cys Lys Val Pro Ala Gl 100 105 11	
Gln Asp Val Ser Gly Ser Arg Pro Ala Ala Pro Leu Ile Gl 115 120 125	y Ala Pro
Ala Asn Ser Glu Asp Thr His Leu Val Asp Pro Lys Thr As	p Pro Ser
Asp Ser Gln Thr Gly Leu Ala Glu Gln Cys Ala Gly Ile Ar 145 150 155	g L y s A rg 160
Pro Ala Thr Asp Asp Ser Ser Thr Gln Asn Lys Arg Ala As $165 \\ 00000000000000000000000000000000000$	n Arg Thr 175
Glu Glu Asn Val Ser Asp Gly Ser Pro Asn Ala Gly Ser Va 180 185 19	
Thr Pro Lys Lys Pro Gly Leu Arg Arg Arg Gln Thr Gly Gl 195 200 205	y Gly Gly

Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Glu Phe Cys Gly Arg 210 $\,$ 215 $\,$ 220 $\,$

-continued

Ala Cys Ala Arg Arg Leu Arg Arg Gly Glu Ser Met Gln Arg Ala Ala Gly Ser Ser Met Glu Pro Ser Ala Asp Trp Leu Ala Thr Ala Ala Ala Arg Gly Arg Val Glu Glu Val Arg Ala Leu Leu Glu Ala Val Ala Leu Pro Asn Ala Pro Asn Ser Tyr Gly Arg Arg Pro Ile Gln Val Met Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala Arg Ile Asp Ala Ala Glu Gly Pro Ser Asp Ile Pro Asp <210> SEQ ID NO 5 <211> LENGTH: 1121

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 5

gaattcgccg ccaccatggg atacccttat gatgtgccag attatgcctc aaacgtgcga gtgtctaacg ggcgccctag cctggagcgg atggacgcca ggcaggcgga gcaccccaag 120 ccctcggcct gcaggaacct cttcggcccg gtggaccacg aagagttaac ccgggacttg 180 gagaagcact gcagagacat ggaagaggcg agccagcgca agtggaattt cgattttcag 240 aatcacaaac ccctagaggg caagtacgag tggcaagagg tggagaaggg cagcttgccc 300 qaqttctact acaqaccccc qcqqcccccc aaaqqtqcct qcaaqqtqcc qqcqcaqqaq 360 agccaggatg tcagcgggag ccgcccggcg gcgcctttaa ttggggctcc ggctaactct gaggacacgc atttggtgga cccaaagact gatccgtcgg agagccagac ggggttagcg gagcaatgcg caggaataag gaagcgacct gcaaccgacg attcttctac tcaaaacaaa 540 agagccaaca gaacagaaga aaatgtttca gacggttccc caaatgccgg ttctgtggag 600 cagacgccca agaagcctgg cctcagaaga cgtcaaacgg tcgaggatcc ggcggcgggg 660 agcaqcatqq agccttcqqc tqactqqctq qccacqqccq cqqcccqqqq tcqqqtaqaq 720 gaggtgcggg cgctgctgga ggcgggggc ctgcccaacg caccgaatag ttacggtcgg 780 aggccgatcc aggtcatgat gatgggcagc gcccgagtgg cggagctgct gctgctccac 900 ggcgcggagc ccaactgcgc cgaccccgcc actctcaccc gacccgtgca cgacgctgcc cgggagggct tcctggacac gctggtggtg ctgcaccggg ccgggggggg gctggacgtg 960 cgcgatgcct ggggccgtct gcccgtggac ctggctgagg agctgggcca tcgcgatgtc 1020 gcacggtacc tgcgcgcgc tgcgggggc accagaggca gtaaccatgc ccgcatagat 1080 1121 gccgcggaag gtccctcaga catccccgat tgagcggccg c

-continued

<211 <212	l> LE 2> TY	EQ II ENGTH PE:	I: 36 PRT		sar	oiens	5								
<400)> SE	QUEN	ICE:	6											
Met 1	Gly	Tyr	Pro	Tyr 5	Asp	Val	Pro	Asp	Tyr 10	Ala	Ser	Asn	Val	Pro 15	Val
Ser	Asn	Gly	Arg 20	Pro	Ser	Leu	Glu	Arg 25	Met	Asp	Ala	Arg	Gln 30	Ala	Glu
His	Pro	L y s 35	Pro	Ser	Ala	Сув	Arg 40	Asn	Leu	Phe	Gly	Pro 45	Val	Asp	His
Glu	Glu 50	Leu	Thr	Arg	Asp	Leu 55	Glu	Lys	His	Суѕ	Arg 60	Asp	Met	Glu	Glu
Ala 65	Ser	Gln	Arg	Lys	Trp 70	Asn	Phe	Asp	Phe	Gln 75	Asn	His	Lys	Pro	Leu 80
Glu	Gly	Lys	Tyr	Glu 85	Trp	Gln	Glu	Val	Glu 90	Lys	Gly	Ser	Leu	Pro 95	Glu
Phe	Tyr	Tyr	Arg 100	Pro	Pro	Arg	Pro	Pro 105	Lys	Gly	Ala	Cys	Lys 110	Val	Pro
Ala	Gln	Glu 115	Ser	Gln	Asp	Val	Ser 120	Gly	Ser	Arg	Pro	Ala 125	Ala	Pro	Leu
Ile	Gly 130	Ala	Pro	Ala	Asn	Ser 135	Glu	Asp	Thr	His	Leu 140	Val	Asp	Pro	Lys
Thr 145	Asp	Pro	Ser	Asp	Ser 150	Gln	Thr	Gly	Leu	Ala 155	Glu	Gln	Cys	Ala	Gl y 160
Ile	Arg	Lys	Arg	Pro 165	Ala	Thr	Asp	Asp	Ser 170	Ser	Thr	Gln	Asn	L y s 175	Arg
Ala	Asn	Arg	Thr 180	Glu	Glu	Asn	Val	Ser 185	Asp	Gly	Ser	Pro	Asn 190	Ala	Gly
Ser	Val	Glu 195	Gln	Thr	Pro	Lys	L y s 200	Pro	Gly	Leu	Arg	Arg 205	Arg	Gln	Thr
Val	Glu 210	Asp	Pro	Ala	Ala	Gly 215	Ser	Ser	Met	Glu	Pro 220	Ser	Ala	Asp	Trp
Leu 225	Ala	Thr	Ala	Ala	Ala 230	Arg	Gly	Arg	Val	Glu 235	Glu	Val	Arg	Ala	Leu 240
Leu	Glu	Ala	Gly	Ala 245	Leu	Pro	Asn	Ala	Pro 250	Asn	Ser	Tyr	Gly	Arg 255	Arg
Pro	Ile	Gln	Val 260	Met	Met	Met	Gly	Ser 265	Ala	Arg	Val	Ala	Glu 270	Leu	Leu
Leu	Leu	His 275	Gly	Ala	Glu	Pro	Asn 280	Cys	Ala	Asp	Pro	Ala 285	Thr	Leu	Thr
Arg	Pro 290	Val	His	Asp	Ala	Ala 295	Arg	Glu	Gly	Phe	Leu 300	Asp	Thr	Leu	Val
Val 305	Leu	His	Arg	Ala	Gl y 310	Ala	Arg	Leu	Asp	Val 315	Arg	Asp	Ala	Trp	Gl y 320
Arg	Leu	Pro	Val	Asp 325	Leu	Ala	Glu	Glu	Leu 330	Gly	His	Arg	Asp	Val 335	Ala
Arg	Tyr	Leu	Arg 340	Ala	Ala	Ala	Gly	Gly 345	Thr	Arg	Gly	Ser	Asn 350	His	Ala
Arg	Ile	Asp 355	Ala	Ala	Glu	Gly	Pro 360	Ser	Asp	Ile	Pro	Asp 365			

-continued

<212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 7 atgggatacc cttatgatgt gccagattat gccgatccgg cggcggggag cagcatggag 60 ccttcqqctq actqqctqqc cacqqccqcq qcccqqqqtc qqqtaqaqqa qqtqcqqqcq 120 ctgctggagg cggggggct gcccaacgca ccgaatagtt acggtcggag gccgatccag qtcatqatqa tqqqcaqcqc ccqaqtqqcq qaqctqctqc tqctccacqq cqcqqaqccc aactgcgccg accccgccac tctcacccga cccgtgcacg acgctgcccg ggagggcttc ctggacacgc tggtggtgct gcaccgggcc ggggcgcggc tggacgtgcg cgatgcctgg 360 ggccgtctgc ccgtggacct ggctgaggag ctgggccatc gcgatgtcgc acggtacctg 420 cgcgcggctg cggggggcac cagaggcagt aaccatgccc gcatagatgc cgcggaaggt 480 ccctcagaca tccccgatgg tggcggggc agcggggtg gcggttccgg cgggggtgga 540 600 tccqtcqaqt caaacqtqcq aqtqtctaac qqqcqccta qcctqqaqcq qatqqacqcc aggcaggcgg agcaccccaa gccctcggcc tgcaggaacc tcttcggccc ggtggaccac 720 gaagagttaa cccgggactt ggagaagcac tgcagagaca tggaagaggc gagccagcgc aagtggaatt tcgattttca gaatcacaaa cccctagagg gcaagtacga gtggcaagag 780 gtggagaagg gcagcttgcc cgagttctac tacagacccc cgcggccccc caaaggtgcc 840 tgcaaggtgc cggcgcagga gagccaggat gtcagcggga gccgcccggc ggcgccttta 900 attggggctc cggctaactc tgaggacacg catttggtgg acccaaagac tgatccgtcg 960 qacaqccaqa cqqqqttaqc qqaqcaatqc qcaqqaataa qqaaqcqacc tqcaaccqac 1020 gattcttcta ctcaaaacaa aagagccaac agaacagaag aaaatgtttc agacggttcc ccaaatgccg gttctgtgga gcagacgccc aagaagcctg gcctcagaag acgtcaaacg 1143 <210> SEO ID NO 8 <211> LENGTH: 380 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 8 Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Asp Pro Ala Ala Gly Ser Ser Met Glu Pro Ser Ala Asp Trp Leu Ala Thr Ala Ala Ala Arg Gly Arg Val Glu Glu Val Arg Ala Leu Leu Glu Ala Gly Ala Leu Pro Asn Ala Pro Asn Ser Tyr Gly Arg Arg Pro Ile Gln Val Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Ala Ala

<211> LENGTH: 1143

-continued

1	130					135					140				
Gly 0	Gly	Thr	Arg	Gly	Ser 150	Asn	His	Ala	Arg	Ile 155	Asp	Ala	Ala	Glu	Gly 160
Pro S	Ser	Asp	Ile	Pro 165	Asp	Gly	Gly	Gly	Gl y 170	Ser	Gly	Gly	Gly	Gly 175	Ser
Gly G	3ly	Gly	Gly 180	Ser	Val	Glu	Ser	Asn 185	Val	Arg	Val	Ser	Asn 190	Gly	Arg
Pro S	Ser	Leu 195	Glu	Arg	Met	Asp	Ala 200	Arg	Gln	Ala	Glu	His 205	Pro	Lys	Pro
Ser A	Ala 210	Cys	Arg	Asn	Leu	Phe 215	Gly	Pro	Val	Asp	His 220	Glu	Glu	Leu	Thr
Arg A	Asp	Leu	Glu	Lys	His 230	Сув	Arg	Asp	Met	Glu 235	Glu	Ala	Ser	Gln	Arg 240
Lys T	rp	Asn	Phe	Asp 245	Phe	Gln	Asn	His	Lys 250	Pro	Leu	Glu	Gly	L y s 255	Tyr
Glu T	rp	Gln	Glu 260	Val	Glu	Lys	Gly	Ser 265	Leu	Pro	Glu	Phe	Tyr 270	Tyr	Arg
Pro F	?ro	Arg 275	Pro	Pro	Lys	Gly	Ala 280	Cys	Lys	Val	Pro	Ala 285	Gln	Glu	Ser
Gln A	Asp 290	Val	Ser	Gly	Ser	Arg 295	Pro	Ala	Ala	Pro	Leu 300	Ile	Gly	Ala	Pro
Ala A	Asn	Ser	Glu	Asp	Thr 310	His	Leu	Val	Asp	Pro 315	Lys	Thr	Asp	Pro	Ser 320
Asp S	Ser	Gln	Thr	Gly 325	Leu	Ala	Glu	Gln	C y s 330	Ala	Gly	Ile	Arg	Lys 335	Arg
Pro A	Ala	Thr	Asp 340	Asp	Ser	Ser	Thr	Gln 345	Asn	Lys	Arg	Ala	Asn 350	Arg	Thr
Glu G	Glu	Asn 355	Val	Ser	Asp	Gly	Ser 360	Pro	Asn	Ala	Gly	Ser 365	Val	Glu	Gln
Thr F	Pro 370	Lys	Lys	Pro	Gly	Leu 375	Arg	Arg	Arg	Gln	Thr 380				
<210><211><211><212><213>	· LE	NGTH PE:	: 10	98	sap	oiens	5								
<400>	SE	QUEN	ICE:	9											
atggg	gata	icc o	ttat	gate	gt go	ccaga	attai	geo	gato	ccgg	cgg	eggg	gag o	cagca	atggag

atgggatacc	cttatgatgt	gccagattat	gccgatccgg	cggcggggag	cagcatggag	60
ccttcggctg	actggctggc	cacggccgcg	gcccggggtc	gggtagagga	ggtgcgggcg	120
ctgctggagg	cgggggcgct	gcccaacgca	ccgaatagtt	acggtcggag	gccgatccag	180
gtcatgatga	tgggcagcgc	ccgagtggcg	gagctgctgc	tgctccacgg	cgcggagccc	240
aactgcgccg	accccgccac	tctcacccga	cccgtgcacg	acgctgcccg	ggagggcttc	300
ctggacacgc	tggtggtgct	gcaccgggcc	ggggcgcggc	tggacgtgcg	cgatgcctgg	360
ggccgtctgc	ccgtggacct	ggctgaggag	ctgggccatc	gcgatgtcgc	acggtacctg	420
cgcgcggctg	cggggggcac	cagaggcagt	aaccatgccc	gcatagatgc	cgcggaaggt	480
ccctcagaca	tccccgatgt	cgagtcaaac	gtgcgagtgt	ctaacgggcg	ccctagcctg	540
gagcggatgg	acgccaggca	ggcggagcac	cccaagccct	cggcctgcag	gaacctcttc	600
ggcccggtgg	accacgaaga	gttaacccgg	gacttggaga	agcactgcag	agacatggaa	660
gaggcgagcc	agcgcaagtg	gaatttcgat	tttcagaatc	acaaacccct	agagggcaag	720

-continued

											_	COII	C 111	ucu		
tac	gagto	ggc a	aagaq	ggtg	ga ga	aagg	gcago	ttq	lacad	gagt	tcta	acta	cag a	accc	ccgcgg	780
ccc	cccaa	aag q	gtgc	ctgca	aa g	gtgc	cggc	g cag	ggaga	agcc	agga	atgt	cag o	eggg	agccgc	840
ccg	gegge	ege (cttta	aatt	aa a	gata	egget	aac	ctct	gagg	acad	cgca	ttt (ggtg	gaccca	900
aag	actga	atc o	egte	ggaca	ag co	cagao	gggg	g tta	ageg	gagc	aat	gege	agg a	aataa	aggaag	960
cga	cctgo	caa o	ccgad	gatt	tc ti	tctad	ctcaa	a aac	caaaa	agag	ccaa	acaga	aac a	agaaq	gaaaat	1020
gtt	caga	acg (gttco	cccaa	aa t	geeg	gttct	gto	ggago	caga	cgc	ccaa	gaa q	geet	ggcctc	1080
aga	agaco	gtc a	aaac	gtaa												1098
<212)> SE l> LE 2> TY 3> OF	ENGTH	H: 36	55	sar	oiens	3									
<400)> SE	EQUE	ICE:	10												
Met 1	Gly	Tyr	Pro	Tyr 5	Asp	Val	Pro	Asp	Ty r	Ala	Asp	Pro	Ala	Ala 15	Gly	
Ser	Ser	Met	Glu 20	Pro	Ser	Ala	Asp	Trp 25	Leu	Ala	Thr	Ala	Ala 30	Ala	Arg	
Gly	Arg	Val 35	Glu	Glu	Val	Arg	Ala 40	Leu	Leu	Glu	Ala	Gly 45	Ala	Leu	Pro	
Asn	Ala 50	Pro	Asn	Ser	Tyr	Gl y 55	Arg	Arg	Pro	Ile	Gln 60	Val	Met	Met	Met	
Gl y 65	Ser	Ala	Arg	Val	Ala 70	Glu	Leu	Leu	Leu	Leu 75	His	Gly	Ala	Glu	Pro 80	
Asn	Cys	Ala	Asp	Pro 85	Ala	Thr	Leu	Thr	Arg 90	Pro	Val	His	Asp	Ala 95	Ala	
Arg	Glu	Gly	Phe 100	Leu	Asp	Thr	Leu	Val 105	Val	Leu	His	Arg	Ala 110	Gly	Ala	
Arg	Leu	Asp 115	Val	Arg	Asp	Ala	Trp 120	Gly	Arg	Leu	Pro	Val 125	Asp	Leu	Ala	
Glu	Glu 130	Leu	Gly	His	Arg	Asp 135	Val	Ala	Arg	Tyr	Leu 140	Arg	Ala	Ala	Ala	
Gly 145	Gly	Thr	Arg	Gly	Ser 150	Asn	His	Ala	Arg	Ile 155	Asp	Ala	Ala	Glu	Gl y 160	
Pro	Ser	Asp	Ile	Pro 165	Asp	Val	Glu	Ser	Asn 170	Val	Arg	Val	Ser	Asn 175	Gly	
Arg	Pro	Ser	Leu 180	Glu	Arg	Met	Asp	Ala 185	Arg	Gln	Ala	Glu	His 190	Pro	Lys	
Pro	Ser	Ala 195	Cys	Arg	Asn	Leu	Phe 200	Gly	Pro	Val	Asp	His 205	Glu	Glu	Leu	
Thr	Arg 210	Asp	Leu	Glu	Lys	His 215	Сув	Arg	Asp	Met	Glu 220	Glu	Ala	Ser	Gln	
Arg 225	Lys	Trp	Asn	Phe	Asp 230	Phe	Gln	Asn	His	L y s 235	Pro	Leu	Glu	Gly	Lys 240	
Tyr	Glu	Trp	Gln	Glu 245	Val	Glu	Lys	Gly	Ser 250	Leu	Pro	Glu	Phe	Ty r 255	Tyr	
Arg	Pro	Pro	Arg 260	Pro	Pro	Lys	Gly	Ala 265	Суѕ	Lys	Val	Pro	Ala 270	Gln	Glu	
Ser	Gln	Asp 275	Val	Ser	Gly	Ser	Arg 280	Pro	Ala	Ala	Pro	Leu 285	Ile	Gly	Ala	
Pro	Ala 290	Asn	Ser	Glu	Asp	Thr 295	His	Leu	Val	Asp	Pro 300	Lys	Thr	Asp	Pro	

-continued

Ser Asp Ser Gln Thr Gly Leu Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Ala Thr Asp Asp Ser Ser Thr Gln Asn Lys Arg Ala Asn Arg 330 Thr Glu Glu Asn Val Ser Asp Gly Ser Pro Asn Ala Gly Ser Val Glu 345 Gln Thr Pro Lys Lys Pro Gly Leu Arg Arg Arg Gln Thr <210> SEQ ID NO 11 <211> LENGTH: 557 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 11 60 gaattegeeg ccaccatggg ataccettat gatgtgeeag attatgeeag cetggagegg atggacgcca ggcaggcgga gcaccccaag ccctcggcct gcaggaacct cttcggcccg 120 qtqqaccacq aaqaqttaac ccqqqacttq qaqaaqcact qcaqaqacat qqaaqaqqcq 180 agccagcgca agtggaattt cgattttcag aatcacaaac ccctagaggg caagtacgag 300 tggcaagagg tggagaaggg cagcttgccc gagttctact acagaccccc gcggcccccc aaaggtgcct gcaaggtgcc ggcgcaggag agccaggatg tcagcgggag ccgcccggcg 360 gegeetttaa ttggggetee ggetaactet gaggacaege atttggtgga eecaaagaet 420 gatccgtcgg acagccagac ggggttagcg gagcaatgcg caggaataag gaagcgacct 480 540 gcaaccgacg attettetac teaaaacaaa agagecaaca gaacagaaga aaatgtttea qacqqttaqq cqqccqc <210> SEQ ID NO 12 <211> LENGTH: 177 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 12 Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Glu Arg Met Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Ala Cys Arg Asn Leu $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Pro Pro Lys Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln Asp Val Ser Gly Ser Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala Asn Ser Glu Asp Thr His Leu Val Asp Pro Lys Thr Asp Pro Ser Asp Ser Gln Thr Gly Leu Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Ala Thr Asp Asp Ser 145 155 Ser Thr Gln Asn Lys Arg Ala Asn Arg Thr Glu Glu Asn Val Ser Asp

-continued

170 175 Gly <210> SEQ ID NO 13 <211> LENGTH: 1073 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 13 gaattcgccg ccaccatggg atacccttat gatgtgccag attatgccag cctggagcgg atggacgcca ggcaggcgga gcaccccaag ccctcggcct gcaggaacct cttcggcccg gtggaccacg aagagttaac ccgggacttg gagaagcact gcagagacat ggaagaggcg 180 agccagcgca agtggaattt cgattttcag aatcacaaac ccctagaggg caagtacgag 240 tggcaagagg tggagaaggg cagcttgccc gagttctact acagaccccc gcggcccccc 300 aaaqqtqcct qcaaqqtqcc qqcqcaqqaq aqccaqqatq tcaqcqqqaq ccqcccqqcq 360 420 gcgcctttaa ttggggctcc ggctaactct gaggacacgc atttggtgga cccaaagact qatccqtcqq acaqccaqac qqqqttaqcq qaqcaatqcq caqqaataaq qaaqcqacct 540 gcaaccgacg attcttctac tcaaaacaaa agagccaaca gaacagaaga aaatgtttca gacggtggtg gcgggggcag cgggggtggc ggttccggcg ggggtggatc cgtcgaggat 600 ccggcggcgg ggagcagcat ggagccttcg gctgactggc tggccacggc cgcggcccgg 660 ggtcgggtag aggaggtgcg ggcgctgctg gaggcggggg cgctgcccaa cgcaccgaat 720 780 agttacggtc ggaggccgat ccaggtcatg atgatgggca gcgcccgagt ggcggagctg 840 ctgctgctcc acggcgcgga gcccaactgc gccgaccccg ccactctcac ccgacccgtg cacgacgctg cccgggaggg cttcctggac acgctggtgg tgctgcaccg ggccggggcg cggctggacg tgcgcgatgc ctggggccgt ctgcccgtgg acctggctga ggagctgggc catcgcgatg tcgcacggta cctgcgcgcg gctgcggggg gcaccagagg cagtaaccat 1020 gcccgcatag atgccgcgga aggtccctca gacatccccg attgagcggc cgc 1073 <210> SEO ID NO 14 <211> LENGTH: 348 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 14 Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Glu Arg Met Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Ala Cys Arg Asn Leu Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe 50 60Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Pro Pro Lys Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln Asp Val Ser Gly Ser 105

Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala Asn Ser Glu Asp Thr

-continued

His	Leu 130	Val	Asp	Pro	Lys	Thr 135	Asp	Pro	Ser	Asp	Ser 140	Gln	Thr	Gly	Leu
Ala 145	Glu	Gln	Cys	Ala	Gl y 150	Ile	Arg	Lys	Arg	Pro 155	Ala	Thr	Asp	Asp	Ser 160
Ser	Thr	Gln	Asn	L y s 165	Arg	Ala	Asn	Arg	Thr 170	Glu	Glu	Asn	Val	Ser 175	Asp
Gly	Gly	Gly	Gly 180	Gly	Ser	Gly	Gly	Gly 185	Gly	Ser	Gly	Gly	Gly 190	Gly	Ser
Val	Glu	Asp 195	Pro	Ala	Ala	Gly	Ser 200	Ser	Met	Glu	Pro	Ser 205	Ala	Asp	Trp
Leu	Ala 210	Thr	Ala	Ala	Ala	Arg 215	Gly	Arg	Val	Glu	Glu 220	Val	Arg	Ala	Leu
Leu 225	Glu	Ala	Gly	Ala	Leu 230	Pro	Asn	Ala	Pro	Asn 235	Ser	Tyr	Gly	Arg	Arg 240
Pro	Ile	Gln	Val	Met 245	Met	Met	Gly	Ser	Ala 250	Arg	Val	Ala	Glu	Leu 255	Leu
Leu	Leu	His	Gly 260	Ala	Glu	Pro	Asn	C y s 265	Ala	Asp	Pro	Ala	Thr 270	Leu	Thr
Arg	Pro	Val 275	His	Asp	Ala	Ala	Arg 280	Glu	Gly	Phe	Leu	Asp 285	Thr	Leu	Val
Val	Leu 290	His	Arg	Ala	Gly	Ala 295	Arg	Leu	Asp	Val	Arg 300	Asp	Ala	Trp	Gly
Leu 305	Pro	Val	Asp	Leu	Ala 310	Glu	Glu	Leu	Gly	His 315	Arg	Asp	Val	Ala	Arg 320
Tyr	Leu	Arg	Ala	Ala 325	Ala	Gly	Gly	Thr	Arg 330	Gly	Ser	Asn	His	Ala 335	Arg
Ile	Asp	Ala	Ala 340	Glu	Gly	Pro	Ser	Asp 345	Ile	Pro	Asp				
<21	0> SE	EQ II	NO NO	15											

<210> SEQ ID NO 15 <211> LENGTH: 1028

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 15

gaattcgccg ccaccatggg atacccttat gatgtgccag attatgccag cctggagcgg 60 atggacgcca ggcaggcgga gcaccccaag ccctcggcct gcaggaacct cttcggcccg gtggaccacg aagagttaac ccgggacttg gagaagcact gcagagacat ggaagaggcg 180 agccagcgca agtggaattt cgattttcag aatcacaaac ccctagaggg caagtacgag 240 300 tggcaagagg tggagaaggg cagcttgccc gagttctact acagaccccc gcggcccccc 360 aaaggtgcct gcaaggtgcc ggcgcaggag agccaggatg tcagcgggag ccgcccggcg gcgcctttaa ttggggctcc ggctaactct gaggacacgc atttggtgga cccaaagact 420 gatccgtcgg acagccagac ggggttagcg gagcaatgcg caggaataag gaagcgacct 480 gcaaccgacg attcttctac tcaaaacaaa agagccaaca gaacagaaga aaatgtttca gacggtgtcg aggatccggc ggcggggagc agcatggagc cttcggctga ctggctgcc 600 acggccgcgg cccggggtcg ggtagaggag gtgcgggcgc tgctggaggc ggggggcgctg 660 cccaacgcac cgaatagtta cggtcggagg ccgatccagg tcatgatgat gggcagcgcc 720 cgagtggcgg agctgctgct gctccacggc gcggagccca actgcgccga ccccgccact 780 ctcacccgac ccgtgcacga cgctgcccgg gagggcttcc tggacacgct ggtggtgctg 840

-continued

								-	con	tin	ued		
caccgggccg	gggcg	gegget g	gacgt	gege	c gat	gcct	ggg	gaaq	jtct	gcc (cgtg	gacctg	900
gctgaggagc	tgggc	catcg c	gatgt	:cgca	a cg	gtaco	etgc	gcg	ggct	tgc (3333	ggcacc	960
agaggcagta	accat	gcccg c	ataga	tgc	g gcg	ggaag	gtc	ccto	agad	cat (cccc	gattga	1020
geggeege													1028
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	TH: 33 : PRT	4	piens										
<400> SEQU	ENCE:	16											
Met Gly Ty 1	r Pro	Tyr Asp 5	Val	Pro	Asp	Tyr 10	Ala	Ser	Leu	Glu	Arg 15	Met	
Asp Ala Ar	g Gln 20	Ala Glu	His	Pro	Lys 25	Pro	Ser	Ala	Cys	Arg 30	Asn	Leu	
Phe Gly Pr 3		Asp His	Glu	Glu 40	Leu	Thr	Arg	Asp	Leu 45	Glu	Lys	His	
Cys Arg As 50	p Met	Glu Glu	Ala 55	Ser	Gln	Arg	Lys	Trp 60	Asn	Phe	Asp	Phe	
Gln Asn Hi 65	s Lys	Pro Leu 70	Glu	Gly	Lys	Tyr	Glu 75	Trp	Gln	Glu	Val	Glu 80	
Lys Gly Se	r Leu	Pro Glu 85	Phe	Tyr	Tyr	Arg 90	Pro	Pro	Arg	Pro	Pro 95	Lys	
Gly Ala Cy	s Lys 100	Val Pro	Ala	Gln	Glu 105	Ser	Gln	Asp	Val	Ser 110	Gly	Ser	
Arg Pro Al 11		Pro Leu	Ile	Gly 120	Ala	Pro	Ala	Asn	Ser 125	Glu	Asp	Thr	
His Leu Va 130	l Asp	Pro L y s	Thr 135	Asp	Pro	Ser	Asp	Ser 140	Gln	Thr	Gly	Leu	
Ala Glu Gl 145	n Cys	Ala Gly 150	Ile	Arg	Lys	Arg	Pro 155	Ala	Thr	Asp	Asp	Ser 160	
Ser Thr Gl	n Asn	L y s Arg 165	Ala	Asn	Arg	Thr 170	Glu	Glu	Asn	Val	Ser 175	Asp	
Gly Val Gl	u Asp 180	Pro Ala	Ala	Gly	Ser 185	Ser	Met	Glu	Pro	Ser 190	Ala	Asp	
Trp Leu Al 19		Ala Ala	Ala	Arg 200	Gly	Arg	Val	Glu	Glu 205	Val	Arg	Ala	
Leu Leu Gl 210	u Ala	Gly Ala	Leu 215	Pro	Asn	Ala	Pro	Asn 220	Ser	Tyr	Gly	Arg	
Arg Pro Il 225	e Gln	Val Met 230	Met	Met	Gly	Ser	Ala 235	Arg	Val	Ala	Glu	Leu 240	
Leu Leu Le		Gly Ala 245	Glu	Pro	Asn	C y s 250	Ala	Asp	Pro	Ala	Thr 255	Leu	
Thr Arg Pr	o Val 260	His Asp	Ala	Ala	Arg 265	Glu	Gly	Phe	Leu	Asp 270	Thr	Leu	
Val Val Le 27		Arg Ala	Gly	Ala 280	Arg	Leu	Asp	Val	Arg 285	Asp	Ala	Trp	
Gly Arg Le 290	u Pro	Val Asp	Leu 295	Ala	Glu	Glu	Leu	Gly 300	His	Arg	Asp	Val	
Ala Arg Ty 305	r Leu	Arg Ala 310	Ala	Ala	Gly	Gly	Thr 315	Arg	Gly	Ser	Asn	His 320	
Ala Arg Il	e Asp	Ala Ala 325	Glu	Gly	Pro	Ser 330	Asp	Ile	Pro	Asp			

-continued

<210> SEQ ID NO 17 <211> LENGTH: 266 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 17 60 quattoqccq ccaccatqqq atacccttat qatqtqccaq attatqccaa qccctcqqcc tgcaggaacc tcttcggccc ggtggaccac gaagagttaa cccgggactt ggagaagcac 120 tgcagagaca tggaagaggc gagccagcgc aagtggaatt tcgattttca gaatcacaaa cccctagagg gcaagtacga gtggcaagag gtggagaagg gcagcttgcc cgagttctac tacagacccc cgcggtaggc ggccgc 266 <210> SEQ ID NO 18 <211> LENGTH: 80 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 18 Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Lys Pro Ser Ala Cys Arg Asn Leu Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg <210> SEQ ID NO 19 <211> LENGTH: 737 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 19 gaattegeeg ccaccatggg ataccettat gatgtgeeag attatgeeaa geeeteggee 60 tgcaggaacc tcttcggccc ggtggaccac gaagagttaa cccgggactt ggagaagcac 120 tgcagagaca tggaagaggc gagccagcgc aagtggaatt tcgattttca gaatcacaaa cccctagagg gcaagtacga gtggcaagag gtggagaagg gcagcttgcc cgagttctac tacagacccc cgcgggtcga ggatccggcg gcggggagca gcatggagcc ttcggctgac 300 tggctggcca cggccgcggc ccggggtcgg gtagaggagg tgcgggcgct gctggaggcg 360 ggggcgctgc ccaacgcacc gaatagttac ggtcggaggc cgatccaggt catgatgatg 420 qqcaqcqccc qaqtqqcqqa qctqctqctq ctccacqqcq cqqaqcccaa ctqcqccqac 480 cccgccactc tcacccgacc cgtgcacgac gctgcccggg agggcttcct ggacacgcta 540 gtggtgctgc accgggccgg ggcgcggctg gacgtgcgcg atgcctgggg ccgtctgccc gtggacctgg ctgaggagct gggccatcgc gatgtcgcac ggtacctgcg cgcggctgcg 660 gggggcacca gaggcagtaa ccatgcccgc atagatgccg cggaaggtcc ctcagacatc 720 cccgattgag cggccgc 737 <210> SEO ID NO 20 <211> LENGTH: 237 <212> TYPE: PRT

-continued

<213> ORGANISM: Homo sapiens <400> SEQUENCE: 20 Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Lys Pro Ser Ala Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Arg Asn Leu Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Val Glu Asp Pro Ala Ala Gly Ser Ser Met Glu Pro Ser Ala Asp Trp 85 90 95 Leu Ala Thr Ala Ala Ala Arg Gly Arg Val Glu Val Arg Ala Leu $100 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ Leu Glu Ala Gly Ala Leu Pro Asn Ala Pro Asn Ser Tyr Gly Arg Arg Pro Ile Gln Val Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala Arg Ile Asp Ala Ala Glu Gly Pro Ser Asp Ile Pro Asp 230 <210> SEQ ID NO 21 <211> LENGTH: 782 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 gaattcgccg ccaccatggg atacccttat gatgtgccag attatgccaa gccctcggcc 60 tgcaggaacc tcttcggccc ggtggaccac gaagagttaa cccgggactt ggagaagcac 120 tgcagagaca tggaagaggc gagccagcgc aagtggaatt tcgattttca gaatcacaaa 180 cccctagagg gcaagtacga gtggcaagag gtggagaagg gcagcttgcc cgagttctac 240 tacagacccc cgcggggtgg cgggggcagc ggggtggcg gttccggcgg gggtggatcc 300 gtcgaggatc cggcggcggg gagcagcatg gagccttcgg ctgactggct ggccacggcc gcggcccggg gtcgggtaga ggaggtgcgg gcgctgctgg aggcgggggc gctgcccaac 420 gcaccgaata gttacggtcg gaggccgatc caggtcatga tgatgggcag cgcccgagtg 480 geggagetge tgetgeteca eggegeggag cecaactgeg eegaceeege eacteteace 540 cgacccgtgc acgacgctgc ccgggagggc ttcctggaca cgctggtggt gctgcaccgg 600 geoggggege ggetggaegt gegegatgee tggggeegte tgeeegtgga eetggetgag 660

-continued

gagetgggee ategegatgt egeaeggtae etgegegegg etgegggggg caccagagge	720
agtaaccatg cccgcataga tgccgcggaa ggtccctcag acatccccga ttgagcggcc	780
gc	782
<210> SEQ ID NO 22 <211> LENGTH: 252 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 22	
Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Lys Pro Ser Ala Cys 1 5 10 15	
Arg Asn Leu Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu 20 25 30	
Glu Lys His Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn 35 40 45	
Phe Asp Phe Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln 50 55 60	
Glu Val Glu Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg 65 70 75 80	
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Val	
Glu Asp Pro Ala Ala Gly Ser Ser Met Glu Pro Ser Ala Asp Trp Leu 100 105 110	
Ala Thr Ala Ala Ala Arg Gly Arg Val Glu Glu Val Arg Ala Leu Leu 115 120 125	
Glu Ala Gly Ala Leu Pro Asn Ala Pro Asn Ser Tyr Gly Arg Arg Pro 130 135 140	
Ile Gln Val Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu 145 150 155 160	
Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg 165 170 175	
Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val	
Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg 195 200 205	
Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg 210 215 220	
Tyr Leu Arg Ala Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala Arg 225 230 235 240	
Ile Asp Ala Ala Glu Gly Pro Ser Asp Ile Pro Asp 245 250	
<210> SEQ ID NO 23 <211> LENGTH: 687 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 23	
atggccaagc cctcggcctg caggaacctc ttcggcccgg tggaccacga agagttaacc	60
cgggacttgg agaagcactg cagagacatg gaagaggcga gccagcgcaa gtggaatttc	120
gattttcaga atcacaaacc cctagagggc aagtacgagt ggcaagaggt ggagaagggc	180
agettgeeeg agttetaeta cagaceeeeg egggtegagg ateeggegge ggggageage	240
atggagcctt cggctgactg gctggccacg gccgcggccc ggggtcgggt agaggaggtg	300

-continued

-continued	
cgggcgctgc tggaggcggg ggcgctgccc aacgcaccga atagttacgg tcgga	iggccg 360
atccaggtca tgatgatggg cagegecega gtggeggage tgetgetget ecaeg	ggcgcg 420
gageceaact gegeegacee egecactete accegaceeg tgeaegaege tgee	gggag 480
ggcttcctgg acacgctggt ggtgctgcac cgggccgggg cgcggctgga cgtgc	gcgat 540
gcctggggcc gtctgcccgt ggacctggct gaggagctgg gccatcgcga tgtcg	cacgg 600
tacctgcgcg cggctgcggg gggcaccaga ggcagtaacc atgcccgcat agatg	jeegeg 660
gaaggtccct cagacatccc cgattga	687
<210> SEQ ID NO 24 <211> LENGTH: 228 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 24	TT: -
Met Ala Lys Pro Ser Ala Cys Arg Asn Leu Phe Gly Pro Val Asp 1 5 10 15	HIS
Glu Glu Leu Thr Arg Asp Leu Glu Lys His Cys Arg Asp Met Glu 20 25 30	Glu
Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe Gln Asn His Lys Pro 35 40 45	Leu
Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu Lys Gly Ser Leu Pro 50 55 60	Glu
Phe Tyr Tyr Arg Pro Pro Arg Val Glu Asp Pro Ala Ala Gly Ser 65 70 75	Ser 80
Met Glu Pro Ser Ala Asp Trp Leu Ala Thr Ala Ala Ala Arg Gly 85 90 95	Arg
Val Glu Glu Val Arg Ala Leu Leu Glu Ala Gly Ala Leu Pro Asn 100 105 110	Ala
Pro Asn Ser Tyr Gly Arg Arg Pro Ile Gln Val Met Met Gly 115 120 125	Ser
Ala Arg Val Ala Glu Leu Leu Leu His Gly Ala Glu Pro Asn 130 135 140	Суѕ
Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg	Glu 160
Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala Arg 165 170 175	Leu
Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu 180 185 190	Glu
Leu Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Ala Ala Gly	Gly
Thr Arg Gly Ser Asn His Ala Arg Ile Asp Ala Ala Glu Gly Pro	Ser
Asp Ile Pro Asp 225	
<210> SEQ ID NO 25 <211> LENGTH: 597 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 25	
atgtcaaacg tgcgagtgtc taacgggagc cctagcctgg agcggatgga cgcca	iggcag 60
geggageace ceaagecete ggeetgeagg aacetetteg geeeggtgga ceaeg	gaagag 120

-continued

ttaacccggg acttggagaa gcactgcaga gacatggaag ag	ggcgagcca gcgcaagtgg	180
aatttcgatt ttcagaatca caaaccccta gagggcaagt ac	.cgagtggca agaggtggag	240
aagggcaget tgcccgagtt ctactacaga cccccgcggc co	ccccaaagg tgcctgcaag	300
gtgccggcgc aggagagcca ggatgtcagc gggagccgcc cg	ggcggcgcc tttaattggg	360
gctccggcta actctgagga cacgcatttg gtggacccaa ac	gactgatcc gtcggacagc	420
cagacggggt tagcggagca atgcgcagga ataaggaagc ga	acctgcaac cgacgattct	480
tctactcaaa acaaaagagc caacagaaca gaagaaaatg tt	ttcagacgg ttccccaaat	540
gccggttctg tggagcagac gcccaagaag cctggcctca ga	aagacgtca aacgtaa	597
<210> SEQ ID NO 26 <211> LENGTH: 198 <212> TYPE: PRT <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 26		
Met Ser Asn Val Arg Val Ser Asn Gly Ser Pro Set 1 5 10	er Leu Glu Arg Met 15	
Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Al	la C y s Arg Asn Leu 30	
Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg As	sp Leu Glu Lys His 45	
Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Tr 50 55	rp Asn Phe Asp Phe 60	
Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Tr 65 70 75	rp Gln Glu Val Glu 80	
Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pr 85 90	ro Arg Pro Pro Lys 95	
Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln As	sp Val Ser Gl y Ser 110	
Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala As	sn Ser Glu Asp Thr 125	
His Leu Val Asp Pro Lys Thr Asp Pro Ser Asp Ser 130 135 14	er Gln Thr Gly Leu 40	
Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Al 145 150 155	la Thr Asp Asp Ser 160	
Ser Thr Gln Asn Lys Arg Ala Asn Arg Thr Glu Gl 165 170	lu Asn Val Ser Asp 175	
Gly Ser Pro Asn Ala Gly Ser Val Glu Gln Thr Pr	ro Lys Lys Pro Gly 190	
Leu Arg Arg Gln Thr 195		
<210> SEQ ID NO 27 <211> LENGTH: 987 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 27		
cggagagggg gagaacagac aacgggcggc ggggagcagc at	tggagccgg cggcggggag	60
cagcatggag cetteggetg actggetgge caeggeegeg ge	cccggggtc gggtagagga	120
ggtgcgggcg ctgctggagg cggggggcgct gcccaacgca cc	cgaatagtt acggtcggag	180

gccgatccag gtcatgatga tgggcagcgc ccgagtggcg gagctgctgc tgctccacgg

240

68

-continued

cgcggagccc aactgcgccg accccgccac tctcacccga cccgtgcacg acgctgcccg	300
ggagggette etggaeaege tggtggtget geaeegggee ggggegegge tggaegtgeg	360
cgatgcctgg ggccgtctgc ccgtggacct ggctgaggag ctgggccatc gcgatgtcgc	420
acggtacctg cgcgcggctg cggggggcac cagaggcagt aaccatgccc gcatagatgc	480
cgcggaaggt ccctcagaca tccccgattg aaagaaccag agaggctctg agaaacctcg	540
ggaaacttag atcatcagtc accgaaggtc ctacagggcc acaactgccc ccgccacaac	600
ccaccccgct ttcgtagttt tcatttagaa aatagagctt ttaaaaatgt cctgcctttt	660
aacgtagata taagccttcc cccactaccg taaatgtcca tttatatcat tttttatata	720
ttcttataaa aatgtaaaaa agaaaaacac cgcttctgcc ttttcactgt gttggagttt	780
tctggagtga gcactcacgc cctaagcgca cattcatgtg ggcatttctt gcgagcctcg	840
cagoctoogg aagotgtoga ottoatgaca agoattttgt gaactaggga agotoagggg	900
ggttactggc ttctcttgag tcacactgct agcaaatggc agaaccaaag ctcaaataaa	960
aataaaataa ttttcattca ttcactc	987
<210> SEQ ID NO 28 <211> LENGTH: 156 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 28	
Met Glu Pro Ala Ala Gly Ser Ser Met Glu Pro Ser Ala Asp Trp Leu	
1 5 10 15	
Ala Thr Ala Ala Ala Arg Gly Arg Val Glu Glu Val Arg Ala Leu Leu 20 25 30	
Glu Ala Gly Ala Leu Pro Asn Ala Pro Asn Ser Tyr Gly Arg Arg Pro 35 40 45	
Ile Gln Val Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu 50 55 60	
Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg	
65 70 75 80	
Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val 85 90 95	
Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg	
Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg	
115 120 125 Ing 100 Ing	
Tyr Leu Arg Ala Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala Arg 130 135 140	
Ile Asp Ala Ala Glu Gly Pro Ser Asp Ile Pro Asp	
145 150 155	

What is claimed is:

- 1. A method for inhibiting smooth muscle hyperproliferation, comprising:
 - (a) transducing smooth muscle cells with an effective 60 amount of a replication-deficient adenovirus that lacks a functional E1 region and comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi) and
 - (b) wherein the said replication-deficient adenovirus is 65 administered in vitro to cultivated cells, in vivo site specifically, or by vessel infusion at the time of surgery,
- expressing said transgene in the smooth muscle cells resulting in generation of transduced smooth muscle cells, wherein said transduced smooth muscle cells exhibit a decrease in hyperproliferation and said cyclin dependent kinase inhibitor is a fusion protein consisting of amino acids 25–93 of p27 fused to p16 (SEQ ID NO:14) or a fusion protein consisting of amino acids 12–178 of p27 fused to p16 (SEQ ID NO:20).
- 2. The method according to claim 1 wherein the fusion protein consists of amino acids 25–93 of p27 fused to p16.

- 3. The method according to claim 1 wherein the fusion protein consists of amino acids 12–178 of p27 fused to p16.
- 4. The method of claim 2 or 3 wherein the fusion protein comprises a linker positioned between the p27 and p 16 components.
- 5. The method according to claim 1 wherein the hyperproliferation was induced by injury.
- 6. The method according to claim 5 wherein the injury was induced by angioplasty.
- 7. The method according to claim 1 wherein the 10 replication-deficient adenovirus further lacks a functional E4 region.
- 8. The method according to claim 7 wherein the hyperproliferation was induced by injury.
- 9. The method according to claim 8 wherein the injury 15 was induced by angioplasty.
- 10. The method according to claim 7 wherein the fusion protein consists of amino acids 25–93 of p27 fused to p16.
- 11. The method according to claim 7 wherein the fusion protein consists of amino acids 12–178 of p27 fused to p16. 20
- 12. The method of claim 10 or 11 wherein the fusion protein comprises a linker positioned between the p27 and p 16 components.
- 13. The method according to claim 1 wherein the replication-deficient adenovirus further lacks a functional 25 E3 region.
- 14. The method according to claim 13 wherein the hyperproliferation was induced by injury.
- 15. The method according to claim 14 wherein the injury was induced by angioplasty.
- 16. The method according to claim 13 wherein the fusion protein consists of amino acids 25–93 of p27 fused to p16.
- 17. The method according to claim 13 wherein the fusion protein consists of amino acids 12–178 of p27 fused to p16.
- 18. The method of claim 16 or 13 wherein the fusion 35 and p16 components. protein comprises a linker positioned between the p27 and p16 components.

- 19. The method according to claim 7 wherein the replication-deficient adenovirus further lacks a functional E3 region.
- **20**. The method according to claim **19** wherein the fusion protein consists of amino acids 25–93 of p27 fused to p16.
- 21. The method according to claim 19 wherein the fusion protein consists of amino acids 12–178 of p27 fused to p16.
- 22. The method of claim 20 or 21 wherein the fusion protein comprises a linker positioned between the p27 and p16 components.
- 23. A method for inhibiting smooth muscle hyperproliferation, comprising:
 - (a) transducing smooth muscle cells with an effective amount of a replication-deficient lentivirus, wherein said lentivirus comprises a transgene encoding a cyclin dependent kinase inhibitor (CDKi) and
 - (b) wherein the said replication-deficient adenovirus is administered in vitro to cultivated cells, in vivo site specifically, or by vessel infusion at the time of surgery, expressing said transgene in the smooth muscle cells resulting in generation of transduced smooth muscle cells, wherein said transduced smooth muscle cells exhibit a decrease in hyperproliferation and said cyclin dependent kinase inhibitor is a fusion protein consisting of amino acids 25–93 of p27 fused to p16 or a fusion protein consisting of amino acids 12–178 of p27 fused to p16.
- 24. The method according to claim 23 wherein the fusion protein consists of amino acids 25–93 of p27 fused to p16.
 - 25. The method according to claim 23 wherein the fusion protein consists of amino acids 12–178 of p27 fused to p16.
 - **26**. The method according to claim **24** or **25** wherein the fusion protein comprises a linker positioned between the p27 and p16 components.

* * * * *