
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date
13 November 2014 (13.11.2014)

WO 2014/182310 Al
P O P C T

(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
H04L 1/18 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

PCT/US20 13/040524 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,

10 May 2013 (10.05.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(25) Filing Language: English ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

(71) Applicant: HEWLETT-PACKARD DEVELOPMENT kind of regional protection available): ARIPO (BW, GH,

COMPANY, L.P. [US/US]; Hewlett-Packard Develop GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

ment Company, L.P., 11445 Compaq Center Drive West, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

Houston, Texas 77070 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(72) Inventors: HSU, Meichun; 1501 Page Mill Road, Palo MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Alto, California 94304 (US). CHEN, Qiming; 1501 Page TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Mill Road, Palo Alto, California 94304 (US). CASTEL- ML, MR, NE, SN, TD, TG).
LANOS, Maria Guadalupe; 1501 Page Mill Road, Palo
Alto, California 94304 (US). Declarations under Rule 4.17 :

— as to the identity of the inventor (Rule 4.1 7(Ϊ))
(74) Agents: FERGUSON, Christopher W. et al; Hew

lett-Packard Company, Intellectual Property Administra — as to applicant's entitlement to apply for and be granted a
tion, 3404 East Harmony Road, Mail Stop 35, Fort Collins, patent (Rule 4.1 7(H))

Colorado 80528 (US). Published:
(81) Designated States (unless otherwise indicated, for every — with international search report (Art. 21(3))

kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(54) Title: TUPLE RECOVERY

<
©

(57) Abstract: A technique for recovering tuples can include sending or receiving a request to resend a tuple.
o
o



TUPLE RECOVERY

Background

[0001] Data can be sent and/or received as a data stream. A data stream can

include a continuous stream of data that can be sent tuple by tuple. A data stream of

tuples can be processed in a particular order.

Brief Description of the Drawings

[0002] Figure 1 is an illustration of an example of a system for tuple recovery

according to the present disclosure.

[0003] Figure 2 is an illustration of an example of a flow chart for tuple

recovery according to the present disclosure.

[0004] Figure 3 is an illustration of an example of a flow chart for tuple

recovery according to the present disclosure.

[0005] Figure 4 is an illustration of an example of a processing resource and

memory resource for tuple recovery according to the present disclosure.

[0006] Figure 5 is a flow chart of an example of a method for tuple recovery

according to the present disclosure.

[0007] Figure 6 is a flow chart of an example of a method for tuple recovery

according to the present disclosure.



Detailed Description

[0008] A data system can include a continuous stream of data (e.g., a

streaming system). An example streaming system can include a distributed

streaming system which can perform parallel processing (e.g., perform processing of

portions of a data stream simultaneously). The sequence and/or order of

communicating the data stream from a particular source to a particular destination

(e.g., the dataflow) can be represented as a graph structure having nodes and

edges. A node can include an electronic device and/or computer readable

instructions that are capable of sending, receiving and/or forwarding a data stream

over a streaming system. In some examples, an electronic device can include a

plurality of nodes.

[0009] The data stream can include a sequence of data events (e.g., tuples).

The tuples can be sent in a particular order from one node to another. Each node

can include a task (e.g., an instance) that receives and sends tuples. A data stream

can include an operation. An operation can include computer readable instructions

to perform a particular function. The execution of an operation can be divided into a

number of intervals (e.g., states). An operation can include multiple tasks running in

parallel to perform a function.

[001 0] The task can monitor the flow of tuples in and out of the task at the

node. A task can be upstream or downstream depending on the flow of the data.

For example, a first task (e.g., an upstream task) can receive a first tuple. The first

task (e.g., upstream task, source task) can process the first tuple and send the first

tuple to a second task (e.g., a downstream task, target task). The second task (e.g.,

downstream task, target task) can then become an upstream task to a third task that

is downstream from the second task. A task can include a cycle wherein each cycle

includes a number of operations. The operations can include receiving a tuple,

processing the received tuple, updating an execution state, and emitting a resulting

tuple to a downstream task.



[001 1] A task can process a tuple in a data stream tuple by tuple. A tuple may

need to be processed by a task once. Tuples can be processed sequentially and a

tuple prior in a sequence may need to be processed by a task before a subsequent

tuple can be sent to the task. A task can save a record of the tuples received and

sent. Some data streams can treat the whole streaming process as a single

operation. This approach can experience the loss of intermediate results if a failure

occurs.

[0012] Some data streams can have a downstream task send an

acknowledgment to an upstream task that a tuple has been received. In such data

streams, a subsequent tuple may not be sent until the acknowledgment is received.

If a first tuple is never received, the second tuple may not be sent. If the

acknowledgment is never received, the second tuple may not be sent. The

acknowledgment approach can create latencies in the data stream.

[0013] In contrast, examples of the present disclosure can include sending a

tuple from an upstream node to a downstream node. The state of a node (e.g., what

tuples have been sent and/or received) can be recorded (e.g., checkpointed) when a

tuple is sent and/or received. Maintaining a record of the last sent and/or received

tuple can allow for a recovery at smaller intervals (e.g., a recovery of intermediate

results without recovery of the whole streaming process) in the case of a node

failure. In addition, the tuple can be sent from an upstream node to a downstream

node without waiting for acknowledgment that a sequentially previous tuple has been

received at the downstream node. For example, a first tuple can be sent from an

upstream node to a downstream node. A second tuple can be sent from the

upstream node to the downstream without the upstream node receiving an

acknowledgment that the first tuple was received at the downstream node.

[0014] The streaming of data can avoid latencies in the system by sending

data without first receiving an acknowledgment to proceed. Since failures are less

frequent, acknowledgments are not necessary for each sent tuple. When a failure

does occur, a process of asking an upstream node to resend a missing tuple can

avoid loss of tuples that were not initially received.

[0015] Figure 1 is an illustration of an example of a system 00 for tuple

recovery according to the present disclosure. The system 00 can include an

upstream task 02 (e.g., an upstream node) sending data (e.g., a tuple) over a data

channel 04 to a downstream task 06 (e.g., a downstream node). A data channel



104 can include a communication link between an upstream node and a downstream

node. The data channel 04 can be used to send tuples from the data stream in

sequential order. The downstream task 106 can include a queue 108 (e.g., a buffer,

a data storage) to store data received from the upstream task 102.

[0016] The downstream task 106 can send a message over a messaging

channel 1 to the upstream task 102. A messaging channel 0 can include a

communication link between an upstream node and a downstream node. The

messaging channel 0 can be used to send a request to resend a tuple, to send an

acknowledgment that a tuple was received, and to resend the requested tuple. The

messaging channel can be used to send a tuple that is out of order based on the

request to resend the tuple. The message can include a request ("ASK") to resend

missing data (e.g., a tuple). The upstream task 102 can resend the requested

missing data over the messaging channel 110 to the downstream task 106. When a

downstream task 06 receives data over a data channel 104 and/or a messaging

channel 110 , the downstream task can send an acknowledgment ("ACK") over the

messaging channel 1 0 indicating the data was received.

[0017] Data sent over a messaging channel 110 can be tracked logically by

using the messaging channel as a virtual channel. A virtual channel can allow a task

to be identified by a task alias (e.g., a task identifier). The task alias can be used in

reasoning, tracking, and communicating the channel information logically.

[0018] The data (e.g., tuples) can be sent from the upstream task 102 to the

downstream task 106 over the data channel 1 4 in a sequential order. For example,

a first tuple can be sent first and a second tuple can be sent second. The data (e.g.,

tuples) can include message identifiers. The message identifiers can include

sequence information. The sequence information can indicate an order of the data

(e.g., the tuples). For example, a first message identifier associated with a first tuple

can indicate that the first tuple should be sent first and/or processed first. In addition,

a second message identifier associated with a second tuple can indicate that the

second tuple should be sent second and/or processed second.

[0019] A sequence of data (e.g., tuples) can indicate missing data when data

is out of sequence. For example, a sequentially first tuple can be sent from an

upstream task 102 (e.g., associated with an upstream node) to a downstream task

106 (e.g., associated with a downstream node). In some examples, a task can be

associated with a node. In some examples, a number of tasks can be associated



with a node. A sequentially third tuple can be sent from the upstream task 102 to the

downstream task 106. If the downstream task 06 did not receive a sequentially

second tuple after the first tuple and before the third tuple, a missing tuple can be

identified. An identified missing tuple can be requested over a messaging channel

1 0 by sending a request from a downstream task to an upstream task to resend the

missing tuple.

[0020] Figure 2 is an illustration of an example of a flow chart 201 for tuple

recovery according to the present disclosure. A flow chart 201 is an example of how

a task can process (e.g., perform an execution loop and/or operation for) a cycle of a

tuple. A task can de-queue tuple input, at 220 (e.g., as illustrated by queue 108 in

Figure 1). A sequential order of the tuple can be checked, at 222. If the tuple is a

duplicate tuple (e g., the information in the received tuple has already been sent in a

previous tuple), the tuple is not processed (e.g., ignored) and an acknowledgment

("ACK") can be sent over a messaging channel (e.g., 10 in Figure 1) to an upstream

task, at 226. The acknowledgment can indicate to an upstream task (e.g., 102 in

Figure 1) that the upstream task can release data associated with the duplicate tuple

from the queue.

[0021] If the tuple sent to a downstream task is out of order 228 (e.g., an

additional tuple should have been sent before the received tuple and is therefore

missing), the downstream task can send a request (an "ASK") and the re-sent tuple

can be processed, at 230. The processing of the re-sent tuple can include going

through the operation of execution (e.g., flowchart 201) by returning (e.g., dotted

arrow) to the first operation of de-queuing the input (e.g., at 220). For a re-sent tuple

or a tuple that was sent in sequential order, an input channel (e.g., the channel that

sent the tuple) can be recorded, at 232. An input channel (e.g., a data channel) can

include the channel that the tuple was received through. The recorded input channel

can allow the downstream task to determine what upstream task the tuple came

from. A sequence number associated with the received tuple can also be recorded,

at 232. A sequence number can include an indication of where in a sequence of

tuples a tuple should be sent and received in a dataflow of tuples. A sequence

identifier associated with the tuple can indicate the sequence number. A sequence

number can indicate where in the dataflow stream a tuple should be sent. For

example, a sequence number can indicate a tuple should be sent third in a flow of

tuples.



[0022] The received tuple can be processed and output data based on the

input tuple can b derived, at 234. Output data can include tuples sent from a task

based on the tuples received. For example, a received tuple can indicate additional

tuples and/or data to send along with the received tuple. The output data can reflect

that indication. The output data can include the same data that was received. An

output channel for the derived output can be determined (e.g., reasoned), at 236. An

output channel can include a channel that the output data is sent through to a further

downstream task. The output channel can be recorded and a sequence number

associated with the derived output, at 238. A state of the task (e.g., current status of

input tuples and output tuples) can be determined at a checkpoint 240. For example,

a state of a task can include a number of tuples that were received and a number of

tuples that are to be sent further downstream. At 242, an acknowledgment that a

received tuple has been processed can be sent to an upstream task. The derived

output can be emitted, at 244. An output tuple (e.g., derived output) can be stored

until an acknowledgment is received indicating the emitted output has been received

(e.g., acknowledged (ACKed)) at a downstream task.

[0023] Figure 3 is an illustration of an example of a flow chart 303 for tuple

recovery according to the present disclosure. The flow chart 303 can be an example

of a process that runs before processing input tuples. A task can perform an

initiating operation that can include initiating a static state, at 350. An initiating

operation can be performed to use a second node when a first node experiences a

failure. A static state can include an indication of how many tuples have been

received, processed, and sent along with input channel and output channel data.

The static state can determine what tuple the task should receive next and what

tuple to send next. A task can check a status of the task, at 352. A status can

include that the node is being used to process tuples as a new task for that node. A

status can include that the node has experienced a failure and is restoring a previous

state of the node. During a first-time initiation, a new dynamic state can be initiated,

at 356. For example, a first node can experience a failure. A second node can be

used to replace the first node. A first time initiation of the second node can include

initiating a new dynamic state for the second node so the second node can process

tuples for the task. The new dynamic state can include setting up the node to

operate a task and process tuples. The task including a new dynamic state can

proceed through an execution loop, at 358 (e.g., the process in Figure 2).



[0024] The process illustrated by the flowchart 303 can be used to recover

from a failure of a task (e.g., a node). If a status check of the task indicates that the

task has recovered from a failure, the process can include recovering a latest

dynamic state, at 362. A latest dynamic state can include a state of the task when

the task failed. The task can recover a latest dynamic state by restoring the latest

state of the task at the time of failure, at 364. The latest state can determine which

tuples to re-emit. The latest output tuples can be re-emitted to a downstream task

(e.g., a target task of the recovered task), at 366. The process can include sending

a request (an "ASK") to an upstream task (e.g., a source task) to resend an input

tuple, at 368. The process can proceed to an execution loop, at 358 (e.g., the

process illustrated in Figure 2).

[0025] Figure 4 is an illustration of an example of a system 405 for tuple

recovery accordirig to the present disclosure. The system 405 can include software,

hardware, firmware, and/or logic to perform a number of functions.

[0026] The system 405 can include any combination of hardware and program

instructions configured to recover a tuple in a data stream. The hardware, for

example can include a processing resource 470, and/or a memory resource 474

(e.g., computer-readable medium (CRM), machine readable medium (MRM),

database, etc.) A processing resource 470, as used herein, can include any number

of processors capable of executing instructions stored by a memory resource 474.

Processing resource 470 may be integrated in a single device or distributed across

devices. The program instructions (e.g., computer-readable instructions (CRI)) can

include instructions stored on the memory resource 474 and executable by the

processing resource 470 to implement a desired function (e.g., determine a plurality

of attributes for a plurality of tuples, etc.).

[0027] The memory resource 474 can be in communication with a processing

resource 470. The memory resource 474 can be in communication with the

processing resource 470 via a communication path 472. The communication path

472 can be local or remote to a machine (e.g., a computing device) associated with

the processing resource 470. Examples of a local communication path 472 can

include an electronic bus internal to a machine (e.g., a computing device) where the

memory resource 474 is one of volatile, non-volatile, fixed, and/or removable storage

medium in communication with the processing resource 470 via the electronic bus.



[0028] The communication path 472 can be such that the memory resource

474 is remote from the processing resource (e.g., 470), such as in a network

connection between the memory resource 474 and the processing resource (e.g.,

470). That is, the communication path 472 can be a network connection. Examples

of such a network connection can include a local area network (LAN), wide area

network (WAN), personal area network (PAN), and the Internet, among others. In

such examples, the memory resource 474 can be associated with a first computing

device and the processing resource 470 can be associated with a second computing

device (e.g., a Java® server).

[0029] A memory resource 474, as used herein, can include any number of

memory components capable of storing instructions that can be executed by

processing resource 470. Such memory resource 474 can be a non-transitory CRM.

Memory resource 474 may be integrated in a single device or distributed across

devices. Further, memory resource 474 may be fully or partially integrated in the

same device as processing resource 470 or it may be separate but accessible to that

device and processing resource 470. Thus, it is noted that the system 405 may be

implemented on a user and/or a client device, on a server device and/or a collection

of server devices, and/or on a combination of the user device and the server device

and/or devices.

[0030] The processing resource 470 can be in communication 472 with a

memory resource 474 storing a set of CRI executable by the processing resource

470, as described herein. The CRI can also be stored in remote memory managed

by a server and represent an installation package that can be downloaded, installed,

and executed. The system 405 can include memory resource 474, and the

processing resource 470 can be coupled to the memory resource 474.

[0031] Processing resource 470 can execute CRI that can be stored on an

internal or external memory resource 474. The processing resource 470 can

execute CRI to perform various functions, including the functions described with

respect to Figures 1-3, and 5-6. For example, the processing resource 470 can

execute CRI to send a request to resend a tuple.

[0032] The CRI can include a number of modules 476, 478, 480. The number

of modules 476, 478, 480 can include CRI that when executed by the processing

resource 470 can perform a number of functions. In a number of examples, the

number of modules 476, 478, 480 can include logic. As used herein, "logic" is an



alternative or additional processing resource to execute the actions and/or functions,

etc., described herein, which includes hardware (e.g., various forms of transistor

logic, application specific integrated circuits (ASICs), etc.), as opposed to computer

executable instructions (e.g., software, firmware, etc.) stored in memory and

executable by a processor.

[0033] The number of modules 476, 478, 480 can be sub-modules of other

modules. For example, the receiving module 476 and the determining module 478

can be sub-modules and/or contained within the same computing device. In another

example, the number of modules 476, 478, 480 can comprise individual modules at

separate and distinct locations (e.g., CRM, etc.).

[0034] An receiving module 476 can include CRI that when executed by the

processing resource 470 can provide a number of receiving functions. The receiving

module 476 can receive a first tuple and a second tuple at a downstream node.

[0035] A determining module 478 can include CR! that when executed by the

processing resource 470 can perform a number of determining functions. The

determining module 478 can determine a third tuple was not received that should

have been received after the first tuple and before the second tuple. The

determining module 478 can determine the third tuple should have been received

based on sequence identifiers associated with the first and second tuples, for

example.

[0036] A sending module 480 can include CRI that when executed by the

processing resource 470 can perform a number of sending functions. The sending

module 480 can send a request over a messaging channel (e.g., as illustrated by

1 0 in Figure 1) to resend a missing tuple. The messaging channel can be a

different channel than a data channel (e.g., 104 in Figure 1). For instance, the

messaging channel can send acknowledgments that a tuple was received. The

messaging channel can send requests to resend a tuple that is missing. The

messaging channel can send the missing tuple in response to a request to resend

the missing tuple.

[0037] A memory resource 474, as used herein, can include volatile and/or

non-volatile memory. Volatile memory can include memory that depends upon

power to store information, such as various types of dynamic random access

memory (DRAM), among others. Non-volatile memory can include memory that

does not depend upon power to store information.



[0038] The memory resource 474 can be integral, or communicatively

coupled, to a computing device, in a wired and/or a wireless manner. For example,

the memory resource 474 can be an interna! memory, a portable memory, a portable

disk, or a memory associated with another computing resource (e.g., enabling CRIs

to be transferred and/or executed across a network such as the Internet).

[0039] For example, a processing resource 470 can be in communication with

a memory resource 474, wherein the memory resource 474 includes a set of

instructions and wherein the processing resource 470 is designed to carry out the set

of instructions.

[0040] Figure 5 is a flow chart illustrating an example of a method 507 for

tuple recovery according to the present disclosure. At 582, the method can include

sending a first tuple from an upstream node. The first tuple can be a sequentially

first tuple. That is, the first tuple can be sent first in an order of tuples.

[0041] At 584, the method 507 can include sending a second tuple from the

upstream node without receiving an acknowledgment for the first tuple. The second

tuple can be a sequentially third tuple. That is, the second tuple should be sent third

in an order of tuples. If the second tuple is sent after the first tuple, the third tuple

(e.g., a tuple that should be sent second) can be missing. The third tuple can be lost

while sending the tuples from an upstream node to a downstream node. The third

tuple can be lost due to a failure of the downstream node. For example, a first tuple

can be sent to the downstream node. The downstream node can experience a

failure while the upstream node is sending a sequentially second tuple. The

downstream node can receive a sequentially third tuple after the first tuple and can

be missing the sequentially second tuple.

[0042] At 586, the method 507 can include receiving a request to resend a

tuple for recovering a downstream node. The request to resend a tuple can include

sending a request over a messaging channel.

[0043] Figure 6 is a flow chart illustrating an example of a method 609

according to the present disclosure. At 688, the method 609 can include sending a

first tuple from an upstream node. The first tuple can be a sequentially first tuple.

That is, the first tuple can be sent first in an order of tuples. At 690, the method 609

can include sending a second tuple from the upstream node without receiving an

acknowledgment for the first tuple.



[0044] At 692, the method 609 can include receiving a request using a

messaging channel to resend a tuple for a recovering downstream node. The

messaging channel can transfer a request to resend a tuple from a downstream

node to an upstream node. The messaging channel can transfer an

acknowledgment that indicates a downstream node received a sent tuple from an

upstream node.

[0045] At 694, the method 609 can include identifying a sequence of the

tuples sent from the upstream node using sequence identifiers. The sequence

identifiers can be recorded during an execution loop (e.g., as illustrated by flow chart

201 in Figure 2). The sequence number associated with the sequence identifier can

be recorded when the tuple input is received (e.g., 232 of Figure 2). The sequence

number associated with the sequence identifier can be recorded when the tuple

output is sent (e.g., 238 in Figure 2).

[0046] At 696, the method 609 can include performing a checkpoint to record

a state of a task, wherein the task comprises a number of tuples. The checkpoint

can consist of a list of objects (e.g., a list of inputs, outputs, etc.). When a check-in is

performed, the list is serialized into a byte-array to write to a binary file. When a

check-out is performed, the byte-array obtained from reading the file is de-serialized

to the list of objects representing the state.

[0047] At 698, the method 609 can include emptying a tuple from a buffer

when an acknowledgment associated with the tuple is received at the upstream

node. The buffer of an upstream node can store a tuple that has already been sent

to a downstream node. The buffer can store the tuple in case a request is received

at the upstream node to resend the tuple. An acknowledgment that the tuple has

been received at the downstream node can indicate that the upstream node buffer

can empty the buffer of the received tuple.

[0048] in the detailed description of the present disclosure, reference is made

to the accompanying drawings that form a part hereof, and in which is shown by way

of illustration how examples of the disclosure may be practiced. These examples

are described in sufficient detail to enable those of ordinary skill in the art to practice

the examples of this disclosure, and it is to be understood that other examples may

be used and the process, electrical, and/or structural changes may be made without

departing from the scope of the present disclosure.



[0049] The specification examples provide a description of the applications

and use of the system and method of the present disclosure. Since many examples

can be made with out departing from the spirit and scope of the system and method

of the present disclosure, this specification sets forth some of the many possible

example configurations and implementations.



What is claimed:

1. A method for tuple recovery, comprising:

sending a first tuple from an upstream node;

sending a second tuple from the upstream node without receiving an

acknowledgment for the first tuple; and

receiving a request to resend a tuple for a recovering downstream node.

2 . The method of claim 1, comprising identifying a sequence of the tuples sent

from the upstream node using sequence identifiers.

3 . The method of claim 1, wherein receiving the request includes receiving the

request using a messaging channel.

4 . The method of claim 1, comprising performing a checkpoint to record a state

of a task, wherein the task comprises a number of tuples.

5 . The method of claim , comprising emptying a tuple from a buffer when an

acknowledgment associated with the tuple is received at the upstream node.

6 . A system for tuple recovery, the system comprising:

a processing resource;

a memory resource coupled to the processing resource to implement:

a receiving module to receive a first tuple and a second tuple at a

downstream node;

a determining module to determine a third tuple was not received that

should have been received after the first tuple and before the second tuple; and

a sending module to send a request over a messaging channel to

resend the third tuple.

7. The system of claim 6, comprising receiving the third tuple over the

messaging channel.



8 . The system of claim 6 , comprising a checkpointing module to checkpoint a

state of a task comprising sequence information associated with the received first

and second tuples.

9 . The system of claim 6 , comprising an acknowledging module to send an

acknowledgment of a received duplicate tuple of an already received tuple at the

downstream node, wherein the downstream node does not process the duplicate

tuple.

0 . The system of claim 6 , wherein the third tuple was not received due to a

failure of the downstream node.

11. A non-transitory computer-readable medium storing a set of instructions

executable by a processing resource to cause a computer to:

check a status of a recovered downstream node;

restore a state of the recovered downstream node;

send a request over a messaging channel to send a tuple; and

receive the tuple over the messaging channel.

12. The medium of claim , comprising instructions executable by a processing

resource to cause a computer to receive a sequentially second tuple over a data

channel without the downstream node sending an acknowledgment indicating the

downstream node has received a sequentially first tuple.

3 . The medium of claim 11, comprising instructions executable by a processing

resource to cause a computer to emit output tuples.

14. The medium of claim 11, comprising instructions executable by a processing

resource to cause a computer to record a sequence number of the tuple.

15 . The medium of claim , comprising instructions executable by a processing

resource to cause a computer to store data in a buffer associated with sent tuples

until an acknowledgment is received indicating the sent tuples were received.















A. CLASSIFICATION OF SUBJECT MATTER

H04L l/18(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04L 1/18; G06F 15/16; G06F 11/07; H04B 7/216; H04L 12/28; G01R 3 1/08; G06F 9/45; H04J 3/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: acknowledgment, sequence, recovery, tuple, checkpoint, buffer

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2010-0161824 Al (PASCAL VIGE e t a l . ) 24 June 2010 1
See paragraphs 14, 48 ; c l aims 1 , 8 ; and f i gure 1 .

2-15

US 7835273 B2 ( J IN-HYUN SIN) 16 November 2010 6-10
See co lumn 2 , l ine 4 ; co lumn 5 , l ines 61-63 ; co lumn 6 , l ines 2-4 ; c l aim V, an
d f i gure 4 .

US 2010-0293532 Al (HENRIQUE ANDRADE e t a l . ) 18 November 2010 4 , 8 , 11-15
See abst ract ; paragraph 27 ; c l aims 10, 19 ; and f igures 2A-2B .

US 2003-0202500 Al (SANG-HYUCK HA e t a l . ) 30 Oct ober 2003 2-3 , 5 , 14-15
See paragraphs 15, 49-52 ; c l aim and f i gure 2 .

US 7965698 B2 ( JAE-GYU JUNG) 21 June 2011
See abst ract ; co lumn 5 , l ines 20-29 ; c l aim V, and f i gures 3-4.

I IFurther documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to b e of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot b e

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot b e
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

11 February 2014 ( 11.02.2014) 12 February 2014 (12.02.2014)

Name and mailing address of the ISA/KR Authorized officer ·

Korean Intellectual Property Office

-i Cheongsa-ro, Seo-gu, Daej eon Metropolitan City, KANG, Hee Gok ¾ ¾
fl 302-701, Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8264 , . '

Form PCT/ISA/210 (second sheet) (July 2009)



Information on patent family members PCT/US2013/040524

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2010-0161824 Al 24/06/2010 FR 2939994 Al 18/06/2010
FR 2939994 Bl 17/12/2010

US 7835273 B2 16/11/2010 CN 1700629 A 23/11/2005
CN 1700629 C 16/04/2008

R 10-0533686 Bl 05/12/2005
R 10-2005-0111194 A 24/11/2005

US 2005-0259577 Al 24/11/2005

US 2010-0293532 Al 18/11/2010 None

US 2003-0202500 Al 30/10/2003 AU 2003-224464 Al 10/11/2003
AU 2003-224464 B2 25/08/2005
BR 0304554 A 19/10/2004
CA 2452268 Al 06/11/2003
CA 2452268 C 12/07/2011
CN 1288872 C 06/12/2006
CN 1537372 A 13/10/2004
CN 1537372 C 06/12/2006
DE 60328148 Dl 13/08/2009
EP 1357695 A2 29/10/2003
EP 1357695 A3 16/05/2007
EP 1357695 Bl 01/07/2009
JP 03967355 B2 29/08/2007
JP 2005-523669 A 04/08/2005
KR 10-0547892 Bl 31/01/2006
KR 10-2003-0084735 A 01/11/2003
RU 2003137005 A 27/05/2005
RU 2267225 C2 27/12/2005
US 7447968 B2 04/11/2008
WO 03-092213 Al 06/11/2003

US 7965698 B2 21/06/2011 CN 1822532 A 23/08/2006
DE 602006000721 Dl 30/04/2008
EP 1694010 Al 23/08/2006
EP 1694010 Bl 19/03/2008
JP 04256395 B2 22/04/2009
JP 2006-229955 A 31/08/2006
KR 10-0597425 Bl 29/06/2006
US 2006-0184664 Al 17/08/2006

FormPCT/ISA/210 (patent family annex) ( y 2009)


	abstract
	description
	claims
	drawings
	wo-search-report

