(12) STANDARD PATENT (11) Application No. AU 2010201718 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)

(43)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Method, system and apparatus for identifying a cache line

International Patent Classification(s)
GO6F 12/12 (2006.01)

Application No: 2010201718 (22) Date of Filing:  2010.04.29

Publication Date: 2011.11.17
Publication Journal Date: 2011.11.17
Accepted Journal Date: 2012.08.23

Applicant(s)
Canon Kabushiki Kaisha

Inventor(s)
Ross, David Charles

Agent / Attorney
Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000

Related Art
US 5682500 A
US 2002/0040421 A1




29 Apr 2010

2010201718

15

Abstract
METHOD, SYSTEM AND APPARATUS FOR IDENTIFYING A CACHE LINE

A method of identifying a cache line of a cache memory (180) for replacement, is
disclosed. Each cache line in the cache memory has a stored sequence number and a stored
transaction data stream identifying label. A request (e.g., 400) associated with a label
identifying a transaction data stream is received. The label corresponds to the stored
transaction data stream identifying label of the cache line. The stored sequence number of the
cache line is compared with a response sequence number. The response sequence number is
associated with the stored transaction data stream identifying label of the cache line. The

cache line is identified for replacement based on the comparison.

2670875v1 (934360 _Final)



29 Apr 2010

2010201718

-3/22- {2670819v1) 2670819 _1

G o [

~ h

201 202
(\—/ Tagsleiillg,c le,
207

203 204

205

Fig. 2




29 Apr 2010

2010201718

S&F Ref: 934360
AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

FOR A STANDARD PATENT

Name and Address
of Applicant :

Actual Inventor(s):

Address for Service:

Invention Title:

Canon Kabushiki Kaisha, of 30-2, Shimomaruko 3-
chome, Ohta-ku, Tokyo, 146, Japan

David Charles Ross

Spruson & Ferguson

St Martins Tower Level 35
31 Market Street

Sydney NSW 2000

(CCN 3710000177)

Method, system and apparatus for identifying a cache
line

The following statement is a full description of this invention, including the best method of

performing it known to me/us:

5845¢(2675141_1)




29 Apr 2010

2010201718

20

30

-1-

METHOD, SYSTEM AND APPARATUS FOR IDENTIFYING A CACHE LINE

FIELD OF INVENTION
The present invention relates to cache line replacement and, in particular, to a method
and apparatus for replacing data stored within a cache line of a cache memory. The present
invention also relates to a computer program product including a computer readable medium
having recorded thereon a computer program for replacing data stored within a cache line of a

cache memory.

DESCRIPTION OF BACKGROUND ART

Conventional computer systems often include on-chip or off-chip cache memories (or
caches) that are used to speed up accesses to system memory (or main memory). In a shared
memory multiprocessor system, a cache memory (or cache) may also be shared. Typically,
such a cache is referred to as a level-two cache, where dedicated level-one cache memories
may be assigned to individual processors. The level-two cache memory commonly sits
between the level-one cache memories and main memory. A level-one cache memory
provides relatively low capacity, but fast access to an associated dedicated processor. A level-
two cache memory services level-one cache misses (i.c., a failed attempt to read or write a
piece of data in the cache) with somewhat increased latency, but offers substantially more
capacily. Main memory, on the other hand, provides mass storage at the expense of greatly
extended latency.

When a level-one cache memory misses, the associated dedicated processor may stall.
From a system-level perspective such a stall may be tolerable since not all processors are idle
for the duration of an idle period. However, stalls in a level-two cache memory have a bigger
impact on system-level performance because all processors may be affected. Therefore
measures may be taken to avoid, or minimise, conditions leading to a level-two cache memory
stall. For example, when a cache miss occurs, the level-two cache memory may be configured
to access main memory to fill a cache line. If a subsequent cache hit occurs (i.€., a successful
attempt to read or write a piece of data in the cache) to the same cache line, the cache memory
has no way to process the hit until the cache line is filled. To avoid stalling, the cache memory
may buffer the hit until such time as the cache line is filled thereby allowing subsequent

accesses to be processed.

2670875v1 (934360_Final)




29 Apr 2010

10

2010201718

15

20

25

30

.

A cache memory is subdivided into sets of cache lines. When each set contains just
one cache line, each main memory line may be stored in just one location within the cache
memory. Such a cache memory is referred to as a direct mapped cache memory. More
typically, each set contains a number of cache lines. Each main memory line maps to a set and
may therefore be stored in any of the cache lines (or ways) within the set. The method used
for deciding which line in the set is to be replaced after a cache miss is called a “replacement
policy”. One known method is to identify a least-recently-used cache line as the replacement,
or “victim”, cache line. However, because a cache memory may buffer transactions that
cannot be processed immediately, simple replacement methods may be inadequate. Steps need
to be taken to ensure that any outstanding accesses to victim cache lines are completed before
the victim cache line is replaced.

Thus a need clearly exists for an improved method of replacing data stored within a
cache line, which avoids stalling dedicated processors.

SUMMARY OF THE INVENTION

It is an object of the present invention to substantially overcome, or at least ameliorate,
one or more disadvantages of existing arrangements.

According to one aspect of the present disclosure there is provided a method of
identifying a cache line of a cache memory for replacement, each cache line in the cache
memory having a stored sequence number and a stored transaction data stream identifying
label, said method comprising:

receiving a request associated with a label identifying a transaction data stream, the label
corresponding to the stored transaction data stream identifying label of the cache line;

comparing the stored sequence number of the cache line with a response sequence
number, said response sequence number being associated with the stored transaction data
stream identifying label of the cache line; and

identifying the cache line for replacement, based on the comparison.

According to another aspect of the present disclosure there is provided an apparatus for
identifying a cache line of a cache memory for replacement, each cache line in the cache
memory having a stored sequence number and a stored transaction data stream identifying
label, said apparatus comprising:

means for receiving a request associated with a label identifying a transaction data
stream, the label corresponding to the stored transaction data stream identifying label of the

cache ling;
2670875v1 (934360_Final)

o




29 Apr 2010

10

2010201718

15

20

25

30

23

means for comparing the stored sequence number of the cache line with a response
sequence number, said response sequence number being associated with the stored transaction
data stream identifying label of the cache line; and

means for identifying a cache line of said set for replacement, the identified cache line
having a stored sequence number which is less than the compared response sequence number.

According to still another aspect of the present disclosure there is provided a system for
identifying a cache line of a cache memory for replacement, each cache line in the cache
memory having a stored sequence number and a stored transaction data stream identifying
label, said system comprising;

a memory storing data and a computer program; and

a processor coupled to said memory for executing said computer program, said
computer program comprising instructions for:

receiving a request associated with a label identifying a transaction data stream,
the label corresponding to the stored transaction data stream identifying label of the
cache line;
comparing the stored sequence number of the cache line with a response
sequence number, said response sequence number being associated with the stored
transaction data stream identifying label of the cache ling;
identifying the cache line of said set for replacement, wherein the identified
cache line has a stored sequence number which is less than the compared response
sequence number.

According to still another aspect of the present disclosure a computer readable medium
having a computer program recorded thereon for identifying a cache line of a cache memory
for replacement, each cache line in the cache memory having a stored sequence number and a
stored transaction data stream identifying label, said program comprising:

code for receiving a request associated with a label identitying a transaction data stream,
the label corresponding to the stored transaction data stream identifying label of the cache
line;

code for comparing the stored sequence number of the cache line from the set of cache
lines with a response sequence number, said response sequence number being associated with

the stored transaction data stream identifying label of the cache line;

2670875v1 (934360_Final)




29 Apr 2010

2010201718

10

15

20

25

30

-4 -

code for identifying the cache line of said set for replacement, wherein the identified cache

line has a stored sequence number which is less than the compared response sequence
number.

Other aspects of the invention are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the invention will now be described with reference to the
following drawings, in which:

Figs. 1A is a schematic block diagram of a general purpose computer system upon
which arrangements described can be practiced;

Fig. 1B shows the processors of Fig 1A according to one data processing example;

Fig. 2 shows an example architecture for a cache memory;

Fig. 3 is a flow diagram showing a method of replacing data stored within a cache line
of the cache memory of Fig. 2;

Fig. 4 is a schematic block diagram of the cache memory of Fig. 2 showing a cache
miss example;

Fig. 5 is a schematic block diagram showing the state of the cache memory of Fig. 2
after request R[n] has been issued to main memory;,

Fig. 6 is a schematic block diagram showing the cache memory of Fig. 2 after a second
request R[n+1] from transaction data stream R;

Fig. 7 is a schematic block diagram showing the cache memory of Fig. 2 after request
R[n+1] of Fig. 6 has been stored in cache controller of the cache memory;

Fig. 8 is a schematic block diagram showing the cache memory of Fig. 2 after a third
request R[n+2] from transaction data stream R has been stored in the cache controller;

Fig. 9 is a schematic block diagram showing the state of the cache memory of Fig. 2
after request R[n+2] has been stored in the cache controller;

Fig. 10 is a schematic block diagram showing the cache memory of Fig. 2 after another
request W[m] from a new transaction stream W;

Fig. 11 is a schematic block diagram showing the state of the cache memory after
request W[m] has been issued to main memory,

Fig. 12 is a schematic block diagram showing the cache memory of Fig. 2 after another
request Y[p] from transaction data stream Y,

Fig. 13 is a schematic block diagram showing the state of the cache memory after

request Y[p] has been issued to main memory;
2670875v1 (934360 Final)




29 Apr 2010

10

2010201718

15

20

30

-5-

Fig. 14 is a schematic block diagram showing the cache memory of Fig. 2 after a
request from transaction data stream Z;

Fig. 15 is a schematic block diagram showing a response received on the main
memory interface of the cache memory of Fig. 4;

Fig. 16 is a schematic block diagram showing the cache memory of Fig. 2 during
processing of request R[n+1];

Fig. 17 is a schematic block diagram showing the cache memory of Fig. 2 after
processing of request R[n+2] where a response is sent to the request/response interface;

Fig. 18 is a schematic block diagram showing the cache memory of Fig. 2 during
processing of request Z[r];

Fig. 19 is a schematic block diagram showing the cache memory of Fig. 2 after
dispatching the request Z[r};

Fig. 20 is a flow diagram showing a method of determining if a cache line is
replaceable; and

Fig. 21 is a flow diagram showing another method of determining if a cache line is

replaceable.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Where reference is made in any one or more of the accompanying drawings to steps
and/or features, which have the same reference numerals, those steps and/or features have for
the purposes of this description the same function(s) or operation(s), unless the contrary
intention appears.

A method 300 of replacing data stored within a cache line of a cache memory will be
described in detail below with reference to Figs. 1 to 19. As described in detail below, the
cache line is identified for replacement, from a set of cache lines, based on a comparison of
sequence numbers associated with the cache lines. The method 300 is particularly
advantageous for a cache memory shared by multiple processors.

Fig. 1A shows a general-purpose computer system 100, upon which the various
arrangements described can be practiced. As seen in Fig. 1A, the computer system 100
includes: a computer module 101; input devices such as a keyboard 102, a mouse pointer
device 103, a scanner 126, a camera 127, and a microphone 180; and output devices including
a printer 115, a display device 114 and loudspeakers 117.  An external Modulator-

Demodulator (Modem) transceiver device 116 may be used by the computer module 101 for
2670875v1 (934360_Final)




29 Apr 2010

2010201718

10

15

20

25

30

-6 -

communicating to and from a communications network 120 via a connection 121. The
communications network 120 may be a wide-area network (WAN), such as the Internet, a
cellular telecommunications network, or a private WAN. Where the connection 121 is a
telephone line, the modem 116 may be a traditional “dial-up” modem. Alternatively, where
the connection 121 is a high capacity (e.g., cable) connection, the modem 116 may be a
broadband modem. A wireless modem may also be used for wircless connection to the
communications network 120.

The computer module 101 typically includes processor units 105A, 105B and 105C,
and a memory unit 106. For example, the memory unit 106 may have semiconductor random
access memory (RAM) and semiconductor read only memory (ROM). The computer
module 101 also includes a number of input/output (1/O) interfaces including: an audio-video
interface 107 that couples to the video display 114, loudspeakers 117 and microphone 180; an
1/0 interface 113 that couples to the keyboard 102, mouse 103, scanner 126, camera 127 and
optionally a joystick or other human interface device (not illustrated); and an interface 108 for
the external modem 116 and printer 115. In some implementations, the modem 116 may be
incorporated within the computer module 101, for example within the interface 108. The
computer module 101 also has a local network interface 111, which permits coupling of the
computer system 100 via a connection 123 to a local-area communications network 122,
known as a Local Area Network (LAN). As illustrated in Fig. 1A, the local communications
network 122 may also couple to the wide network 120 via a connection 124, which would
typically include a so-called “firewall” device or device of similar functionality. The local
network interface 111 may comprise an Ethernet™ circuit card, a Bluetooth™ wireless
arrangement or an IEEE 802.11 wircless arrangement; however, numerous other types of
interfaces may be practiced for the interface 111.

The 1/O interfaces 108 and 113 may afford either or both of serial and parallel
connectivity, the former typically being implemented according to the Universal Serial Bus
(USB) standards and having corresponding USB connectors (not illustrated).  Storage
devices 109 are provided and typically include a hard disk drive (HDD) 110. Other storage
devices such as a floppy disk drive and a magnetic tape drive (not illustrated) may also be
used. An optical disk drive 112 is typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g., CD-ROM, DVD, Blu-ray Disc™), USB-
RAM, portable, external hard drives, and floppy disks, for example, may be used as

appropriate sources of data to the system 100.
2670875v1 (934360_Final)




29 Apr 2010

2010201718

10

15

20

25

30

7.

The components 105A, 105B and 105C to 113 of the computer module 101 typically
communicate via an interconnected bus 104 and in a manner that results in a conventional
mode of operation of the computer system 100 known to those in the relevant art. For
example, the processors 105A, 105B and 105C are coupled to the system bus 104 using
connections (e.g., 118). Likewise, the memory 106 and optical disk drive 112 are coupled to
the system bus 104 by connections 119. Examples of computers on which the described
arrangements can be practised include IBM-PC’s and compatibles, Sun Sparcstations, Apple
Mac™ or like computer systems. ‘

The method 300 may be implemented using the computer system 100 wherein the
processes of Figs. 2 to 18 to be described, may be implemented as one or more software
application programs 133 executable within the computer system 100. In particular, the steps
of the method 300 are effected by instructions in the software 133 that are carried out within
the computer system 100. The software instructions may be formed as one or more code
modules, each for performing one or more particular tasks. The software may also be divided
into two separate parts, in which a first part and the corresponding code modules performs the
method 300 and a second part and the corresponding code modules manage a user interface
between the first part and the user.

The software may be stored in a computer readable medium, including the storage
devices described below, for example. The software is loaded into the computer system 100
from the computer readable medium, and then executed by the computer system 100. Thus,
for example, the software 133 may be stored on an optically readable disk storage medium
(e.g., CD-ROM) 125 that is read by the optical disk drive 112. A computer readable medium
having such software or computer program recorded on the computer readable medium is a
computer program product. The use of the computer program product in the computer system
100 preferably effects an advantageous apparatus for implementing the method 300.

In some instances, the application programs 133 may be supplied to the user encoded
on one or more CD-ROMs 125 and read via the corresponding drive 112, or alternatively may
be read by the user from the networks 120 or 122. Still further, the software can also be
loaded into the computer system 100 from other computer readable media. Computer
readable storage media refers to any storage medium that provides recorded instructions
and/or data to the computer system 100 for execution and/or processing. Examples of such
storage media include floppy disks, magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard disk

drive, a ROM or integrated circuit, USB memory, a magneto-optical disk, or a computer
2670875v1 (934360 Final)




29 Apr 2010

2010201718

10

15

20

25

30

-8-

readable card such as a PCMCIA card and the like, whether or not such devices are internal or
external of the computer module 101, Examples of computer readable transmission media
that may also participate in the provision of software, application programs, instructions
and/or data to the computer module 101 include radio or infra-red transmission channels as
well as a network connection to another computer or networked device, and the Internet or
Intranets including e-mail transmissions and information recorded on Websites and the like.

The second part of the application programs 133 and the corresponding code modules
mentioned above may be executed to implement one or more graphical user interfaces (GUls)
to be rendered or otherwise represented upon the display 114. Through manipulation of
typically the keyboard 102 and the mousc 103, a user of the computer system 100 and the
application may manipulate the interface in a functionally adaptable manner to provide
controlling commands and/or input to the applications associated with the GUI(s). Other
forms of functionally adaptable user interfaces may also be implemented, such as an audio
interface utilizing speech prompts output via the loudspeakers 117 and user voice commands
input via the microphone 180.The method 300 may alternatively be implemented in dedicated
hardware such as one or more integrated circuits performing the functions or sub functions of
the method 300. Such dedicated hardware may include graphic processors, digital signal
processors, or one or more microprocessors and associated memories.

Fig. 1B shows the processors 105A, 105B, 105C in further detail. Each processor
10SA, 105B and 105C may be engaged in one or more processes or threads (e.g., 177). Each
thread (e.g., 177) may communicate with a cache memory 180, configured within a portion of
the memory 106, via one-or-more memory transaction data streams (e.g., 178). In one
example, each of the transaction data streams 178 is physically separated and multiplexed by
multiplexer 179 into request ports of cache memory 180. Alternatively, transactions data
streams may be logically differentiated by an identifier referred to as a SourcelD (e.g., 199),
which is a transaction data strecam identifying label.

The SourcelDs may be attached to transaction data streams by a respective initiating
thread (e.g., 177), or by their host processor 105A, 105B or 105C. However, in the example
of Fig. 1B, the SourcelDs are attached to cach transaction data stream by the multiplexer 179
.As such, the processors 105A to 105C need not be concerned with attaching the SourcelDs to
transaction data streams and thus the cache memory 180 is intecroperable with other

configurations of the computer system 100.

2670875v1 (934360_Final)




29 Apr 2010

2010201718

15

20

25

30

-9.

Fig. 2 shows an example architecture for the cache memory 180. The cache memory
180 as shown in Fig. 2 is a two-way associative cache. As seen in Fig. 2, the cache memory
180 comprises a request/response interface 200. The cache memory 180 receives requests for
memory access from the processors 105A, 105B and 105C on the interface 200. The cache
memory 180 services requests received on the request/response interface 200 rcturning
requested data in a response on the request/response interface 200. A request may be defined
as a single transaction within a transaction data stream (e.g., 178) serviced by the cache
memory 180. A response may similarly be defined as a single transaction within a transaction
data stream returned from the cache memory 180 to the processors 105A, 105B or 105C.

Two sequence number arrays 201, 202 maintain data pertaining to position of each
request/response within a transaction data stream (e.g., 178). The sequence number arrays
201, 202 are indexed by a transaction data stream identitying label or SourcelD 199. For
example, the SourcelD 199 is “4”. Thercfore, cach transaction data stream has a dedicated
pair of sequence numbers indexed by the transaction data stream SourcelD.

The request sequence number array 202 is associated with requests sent by the
processors 105A, 105B or 105C and received by the cache memory 180. The response
sequence number array 201 is associated with transactions returned from the cache memory
180 to the processors 105A, 105B or 105C. As each request is processed, the sequence
number within the request sequence number array 202, indexed by the SourcelD of the
request, is incremented. As cach response is processed, the sequence number within the
response sequence number array 201, indexed by the transaction data stream identifying label
or SourcelD (e.g., 199) of the response, is incremented.

The cache memory 180 comprises a registry 203 containing status data elements
pertaining to each cache line within the cache memory 180. Each status data element of the
registry 203 is associated with a cache line. Cache lines, in turn, are elements of cache line
array 205. The status data held in each status data element of the registry 203 comprises the
following items:

e atag;

e transaction data stream identifying label or SourcelD of a last request to access the

associated cache line;

e sequence number (SeqNo) of the last request to access the associated cache line;

and

2670875v] {934360_Final)




29 Apr 2010

10

2010201718

15

20

25

30

210 -

e age (L) of the cache line within the set.

A main memory interface 206 is used by the cache memory 180 to access data from
another portion of the memory 106/134 and/or from the hard disk drive 110. The portion of
the memory 106 not containing the cache memory 180 may be referred to as “main memory™.
Similarly, the hard disk drive 110 may be referred to as “‘main memory™.

A cache controller 204, under execution of one or more of the processors 105A, 105B
or 105C (the cache controller can also operate independently of the processors), coordinates
operation of the components 201 to 205 of the cache memory 180. Each of the components
201 to 205 of the cache memory 180 may be implemented as one or more software modules
resident on the hard disk drive 110 and being controlled in their execution by one or more of
the processors 105A, 105B and 105C. The components 201 to 205 of the cache memory 180
may alternatively be implemented in dedicated hardware such as one or more integrated
circuits performing the functions or sub functions of the components 201 to 205. In the
exemplary embodiment of the invention, the cache is implemented as a core resident on a
System-On-Chip (SOC).

The cache memory 180 of Fig. 2 is organised as a two-way associative cache.
Therefore, indexing into the registry 203, using cache index I, returns two cache lines (or
ways) collectively referred to as a “set”. The age (L) of each cache line within a set (i.e., a set
of cache lines) may assume one of two values, as follows:

e 0 - youngest (or most-recently-used) cache line within the set.

e | — oldest (or least-recently used) cache line within the set.

The method 300 of replacing data stored within a cache line of a cache memory will
now be described in detail with reference to Fig. 3. The method 300 will be described with
reference to the cache memory 180. The method 300 may be implemented as software
resident on the hard disk drive 110 and being controlled in its execution by the cache
controller 204. As described above, the cache controller 204 may be under execution of one
or more of the processors 105A, 105B and/or 105C. The cache line is identified for
replacement, from a set of cache lines, based on a comparison of sequence numbers associated
with the cache lines.

The method 300 begins at step 301, when the cache controller 204 performs the step of

receiving a request on the request/response interface 200. The request comprises an address A

2670875v1 (934360_Final)




29 Apr 2010

2010201718

25

30

-11 -

of a location within the memory 106 or the hard disk drive 110 to be accessed. The request is
also contains a transaction stream identifying label or SourcelD 199.

At the next step 302, the cache controller 204 decomposes the address, A, into two
components, or slices; namely a tag T and cache index I. Typically, the tag, T, comprises an
upper portion of the address, A, and the cache index, I, comprises a lower portion of the
address, A.

At step 303, the cache controller 204 performs the step of determining a set S of cache
lines associated with the request. The set, S, is determined by indexing into the registry 203
using the cache index, 1. Each of the cache lines of the set, S, has a tag, a stored sequence
number and a stored transaction data stream identifying label.

Then at step 304, the cache controller 204 comparcs a tag stored in each cache line of
the set, S, with the tag, T, of the request received at step 301. If any of the tags in the set, S,
match the tag, T, in the received request, then data associated with the request is present in the
cache memory 180 and the request is said to be a hit (HIT). As the request is a hit, the method
300 proceeds to step 305. Otherwise, the request is said to miss (MISS) and the method 300
proceeds to step 306.

If the request is a miss (MISS), the cache controller 204 needs to perform the step of
allocating a cache line to the request. Generally, the allocation of the cache line may be
performed by evicting an existing cache line from the cache memory 180. However, cache
lines that have outstanding unprocessed requests cannot be safely evicted from the cache
memory 180. In the method 300, the cache controller 204 identifies those cache lines that do
not have outstanding unprocessed requests and makes the cache lines available for
replacement. The method 300 prevents any cache lines that do have outstanding unprocessed
requests from being victimised.

At identifying step 306, the cache controller 204 performs the step of comparing the
stored sequence number of at least one cache line from the set, S, with a response sequence
number. The response sequence number is associated with the stored transaction data stream
identifying label of the cache line. In particular, a subset V of the selected set, S, is identified
by the cache controller 204. The set V being the subset of S whose stored sequence numbers
are less than their corresponding response sequence numbers. From the subset V, the cache
controller 204 is used for identifying the Least Recently Used cache line, for replacement. In
particular, the cache controller 204 identifies a cache line of the set, S, having a stored

sequence number which is less than the compared response sequence number. For each cache
2670875v1 (934360 Final)




29 Apr 2010

2010201718

10

15

20

25

30

212 -

line within the selected set, S, of the registry 203, the transaction data stream identifying label
or SourcelD status data element associated with the cache line is used to index the response
sequence number array 201 in order to determine a response sequence number. If the
response sequence number returned from the response sequence number array 201, is greater
than the sequence number stored in the registry 203, then the cache line is added to the subset,
V.

At the next step 307, if the subset, V, of the selected set, S, is not empty 307, then the
method 300 proceeds to step 309. Otherwise, the method 300 proceeds to step 308 where the
cache controller 204 waits for an update to the sequence number arrays 201, 202.

At step 309, the cache controller 204 identifies the oldest cache line in the subset, V, by
identifying which cache line has been least recently used. The oldest cache line in the subset,
V, corresponds to a “victim” cache line. Also at step 309, the cache controller 204 performs
the step of assigning the sequence number and transaction stream identitying label (or
SourcelD) of the request received at step 301 to a corresponding status element within the
registry 203 associated with the identified victim cache line. The sequence number and
transaction stream identifying label may then be used to replace the data stored in the
identified victim cache line.

At step 305, the cache controller 204 performs the step of determining a request
sequence number for the request received at step 301. In particular, for the two-way
associative cache memory 180 as seen in Fig. 2, the age of the cache line within the selected
set, S, containing a tag matching the tag, T, of the request is assigned the value zero. Further,
the age of the cache line within the selected set, S, not containing a tag matching tag, T, is
assigned the value one.

Step 309 may be extended to cache memories with higher associability. In the case of a
hit, HIT, the request sequence number held in the request sequence number array 202 indexed
by the request SourcelD is copied to the cache line within the selected set, S, containing the
tag matching the tag, T. In the case of a miss, MISS, the request sequence number held in the
request sequence number array 202 is copied to the victim cache line.

Also at step 305, as the request received at step 301 can be processed, the cache
controller 204 performs the step of incrementing the request sequence number held in the
request sequence number array 202 indexed by the request SourcelD. In one embodiment, the
request sequence number is compared to the response sequence number. If the response

sequence number returned from the response sequence number array 201, is equal to the
2670875v1 (934360 Final)




29 Apr 2010

2010201718

10

15

20

25

30

- 13-

request sequence number returned from the request sequence number array 202, then the
cache line i1s added to the subset, V.

The method 300 concludes at next step 312, where the request may be dispatched
downstream and the cache line array 205 may return requested data for the identified cache
line of the set, S. Alternatively, the main memory (i.e., a portion of the memory 106 or the
hard disk drive 110) may be accessed by the cache controller 204 to fetch data for the
identified cache line of the set, S.

The method 300 may be executed again upon the cache controller 204 receiving a
further request on the request/response interface 200, as at step 301. The further request may
be processed in accordance with the method 300 for assigning the further request to a new
sequence number and determining a further cache line that contains data associated with the
further request. In accordance with the method 300, the cache controller 304 performs the
step of assigning a new request sequence number to the further cache line. Upon such a
further request being processed in accordance with the method 300, the further request may be
dispatched downstream where the cache line array 205 may be used for returning data
associated with the further request. The cache controller 204 may perform the step of
incrementing the new sequence number upon retumning the data associated with the further
request.

The method 300 will now be described in more detail by way of example with
reference to Figs. 410 19.

Fig. 4 shows the cache memory 180, according to the architecture of Fig. 2. In Fig. 4,
the cache memory 180 has been annotated to illustrate the behaviour of the cache memory 180
during a cache miss example (i.e., MISS). In the example ot Fig. 4, the cache memory 180 is
responding to a memory access request R[n] 400 received by the cache controller 204 (as at
step 301). In a current state, as shown in Fig. 4, the cache memory 180 has no outstanding
requests. As such, at all relevant indices, the active sequence number pairs currently contained
within the request sequence number array 202 and the response sequence number array 201
are equal, indicating that for every request there has been a corresponding response. The
registry 203 currently contains two status data clements 410A and 411A at cache index 406
equal to zero (0) (i.e., Index = 0). As seen in Fig. 4, the status data elements 410A and 411A
within the registry 203 correspond to the cache lines 410 and 411, respectively, stored within

the cache line array 205. The cache line array 205 may be configured within the memory 106.

2670875v1 (934360_Final)




29 Apr 2010

10

2010201718

15

20

25

30

- 14 -

The two status data elements 410A and 411A contain active status data for the two cache lines
410 and cache line 411, respectively.

The request Rn 400 has a tag of Tx, a cache index of zero (0), and a transaction stream
identifying label or SourcelD of one (1) (i.e., SourcelD=1) as seen in Fig. 4. As seen at 403 of
Fig. 4, the SourcelD of the request 400 is used to index the request sequence number array
202 to look-up a request sequence number for transaction stream R. The request sequence
number array 202 returns a value, twelve (12). The returned value is attached to the request
400 as seen in Fig. 4. The request 400 is processed by the cache controller 204. The cache
controller 204 uses cache index 406 (i.e., Index 0) to look-up the registry 203. The registry
203 returns status data for the set of cache lines at cache index 406 equal to zero (Index 0).
The status element 410A, corresponding to cache line 410, contains a tag, Tag=T1. Further,
the status element 41 1A, corresponding cache line 411, contains a tag, Tag=T2, as seen in Fig.
4,

In the example of Fig. 4, neither of the tags T1 or T2 matches the tag Tx in the request
400. The cache controller 204 then applies steps 306 to 309 of the method 300 described in
Fig. 3. Using the SourcelDs (i.¢., SourcelD = A and SourcelD =B) for each of cache line 410
and cache line 411 in the set at cache index 406 equal to zero (0) (i.e., Index 0), the cache
controller 204 determines that both cache lines 410 and 411 are replaceable.

The status data element 411A of the registry 203 corresponding to cache line 411 in
set 0 contains SourcelD=A. The cache controller 204 uses the value SourcelD=A to index into
the request sequence number array 202 and the response sequence number array 201 which
reveals that the stored sequence number (9) is less than the indexed response sequence
number (10). Similarly, the status element 411A of the registry 203 corresponding to cache
line 411 contains the SourcelD=B. Indexing the sequence number arrays 201 and 202 with the
value SourcelD=B reveals that the stored sequence number (14) is less than the indexed
response sequence number (15). Therefore, the subset V of Set 0 is identical to Set 0, so both
cache line 410 and cache line 411 are replaceable.

In the example of Fig. 4, the least recently used cache line is cache line 410 and cache
line 410 is thus identified as the replacement “victim”. Finally, in Fig. 4 the cache controller
204 performs the step of issuing a main memory access request 400 to the main memory (i.e.,
memory 106 and/or the hard disk drive 110) via the main memory interface 206 to fetch data

for the identified cache line 410.

2670875v1 (934360_Final)




29 Apr 2010

2010201718

10

15

20

25

30

=15 -

Fig. 5 shows the state of the cache memory 180 after the memory access request R[n]
400 has been issued to main memory (i.e., the memory 106 and/or the hard disk drive). The
status data within the status data element 410A, corresponding to the victim cache line (i.e,,
cache line 410), in the registry 203 has been replaced by the status data of request R[n] 400.
As seen in the request sequence number array 202 of Fig. S, the request sequence number
corresponding to the SourcelD 403 of request R[n] 400 has been incremented from twelve
(12) to thirteen (13). As also seen in Fig. 5, the sequence numbers (i.e., SeqNo) in the status
data elements 410A and 411A corresponding to the transaction data stream R now differ
since, as yet, there has been no response to the memory access request R[n] 400.

Fig. 6 shows the cache memory 180 annotated to illustrate processing of a second
request 600, R[n+1), from transaction data stream R following the request 400. The request
600 has the same tag value (i.e., Tag=Tx) as the request 400 in Fig. 4. Therefore, the request
600 is attempting to access the same cache line (i.e., cache line 410) as request R[n] 400.
However, the cache line (i.e., cache line 410) has not yet been filled from memory 106 and/or
the hard disk drive 110. Request R[n] 400 is still “in-flight”. Therefore, request R[n+1] 600
hits in the cache memory 180, but a responsc cannot be issued. As a response cannot be
issued, the request R[n+1] 600 is stored in the cache controller 204 as response R[13] for later
processing.

Fig. 7 shows the state of the cache memory 180 after the request R[n+1] 600 has been
stored in the cache controller 204. As seen at 603 of Fig. 7, the request sequence number
corresponding to the SourcelD of request R[n+1] 600 (i.e., SourcelD=1) has been incremented
from thirteen (13) to fourteen (14). The sequence number in the status data element 410A of
the registry 203 corresponding to the accessed cache line (i.e., cache line 410) has also been
incremented from twelve (12) to thirteen (13) as seen in Fig. 7.

Fig. 8 shows the cache memory 180 annotated to illustrate processing of a third
request 800, R(n+2]. The request 800 also has the same tag value, Tx, as the previous two
requests 400, 600. Again, the request 800 is attempting to access the same cache line (i.e.,
cache line 410) as the request R[n] 400. Since the cache line 410 has not been filled from
main memory (i.e., memory 106 and/or the hard drive 110), the request R[n+2] 800 is also
stored in the cache controller 204, as shown in Fig. 8, for later processing.

Fig. 9 shows the cache memory 180 after request R[n+2] 800 has been stored in the
cache controller 204. Again, as shown at 903 of Fig. 9, the request sequence number

corresponding to transaction data stream R identified by SourcelD (i.e., SourcelD=1) has been
2670875v1 (934360 Final)




2010201718

29 Apr 2010

25

30

216 -

incremented as has the sequence number (i.e., SeqgNo=14) in status clement 410A of the
registry 203 corresponding to the accessed cache line 410.

Fig. 10 shows the cache memory 180 annotated to illustrate processing of another
request 1000 from another transaction data stream W. As seen at 1003 of Fig. 10, the
SourcelD of request W[m] 1000 indexes a last entry in the request sequence number array 202
which returns a value fifty six (56). The sequence number (SeqNo. = 56) is attached to the
request 1000. As seen at 1006, the cache index (i.e., Index j) for request W[m] 1000 indexes
the last set of status elements 1010A and 1011A in the registry 203. The status elements
1010A and 1011A correspond, respectively, to cache lines 1010 and 1011 in the cache line
array 205. Both cache lines 1010 and 1011 in the set are not allocated therefore, request
W[m] 1000 is a cache miss. Finally, the request 1000 is issued to fetch the requested data
from main memory.

Fig. 11 shows the state of the cache memory 180 afier the request W[m] 1000 has been
issued to main memory (i.c., the memory 106 and/or hard disk drive 110). As seen in Fig. 11,
the registry 203 has been loaded with status data rclating to the request W[m] 1000. Further,
as seen at 1003, the request sequence number (i.e., SeqNo = 56) corresponding to the
SourcelD of the request W[m] 1000 (i.e., SourcelD=k) has been incremented in the request
sequence number array 202.

Fig. 12 shows the cache memory 180 annotated to illustrate processing of another
request 1200 from another transaction data stream Y. As seen at 1203, the SourcelD of the
request Y[p] 1200 (i.e., SourcelD=A) indexes entry A in the request sequence number array
202 which returns the value ten (10). The sequence number value ten (10) 1s attached to the
request 1200 as seen in Fig. 12. As in the example described in Fig. 4, neither tag Tx or T2
held in status data elements 410A and 411A, respectively, of the registry 203 matches tag, Tq,
of the request 1200. Therefore, the request 1200 is a cache miss.

Both cache lines (i.e., cache line 410 and cache line 411) are allocated and therefore,
one of the cache lines 410 or 411 needs to be evicted (or victimised). The status element 410A
corresponding to the first cache line 410 in the set contains a sequence number of fourteen
(14) (1.e., SeqNo=14). Indexing into the response sequence number array 201 using the
SourcelD of the first cache line 410 (i.e., SourcelD=1) returns a sequence number value of
twelve (12). The sequence number, twelve (12), from the response sequence number array
201 is compared with the sequence number of the first cache line (i.e., SeqNo=14), which is

fourteen (14) in the example of Fig. 12, as shown in status element 410A. The sequence
2670875v1 (934360 Final)




29 Apr 2010

2010201718

15

20

25

30

-17-

number of the first cache line 410 is not less than, , the corresponding sequence number in the
response sequence number array 202. As such, the first cache line 410 in the set is non-
replaceable. The status data element 411A of the registry 203 corresponding to the second
cache line 411 in the set contains a sequence number of fifteen (15) (i.e., SeqNo=15).

Indexing into the response sequence number array 201 using the SourcelD of the
second cache line 411 (i.e., SourcelD=B) returns a sequence number value of fifteen (15). The
sequence number, fifteen (15), from the response sequence number array 201 is compared
with the sequence number value (i.e,, SeqNo=14) as shown in status element 411A, in the
example of Fig. 12. Thus, the sequence number of the second cache line 411 is less than the
corresponding sequence number in the response sequence number array 201. Therefore, the
cache line 411 is identified as the “victim™ cache hne. The sequence number and the
transaction data stream identifying label of the request 1200 are thercfore assigned to the
victim cache line 411. Finally, the request 1200 is issued to fetch the requested data from the
main memory.

Fig. 13 shows the state of the cache memory 180 after request Y[p] 1200 has been
issued to main memory (i.e., the memory 106 and/or hard disk drive 110). As seen in Fig. 13,
the status data element 411A of the registry 203, corresponding to the second cache line 411,
has been loaded with status data relating to request Y[p] 1200. As seen at 1203, the request
sequence number corresponding to the SourcelD (i.e., SourcelD = A) of the request Y[p] 1200
has been incremented to eleven (11) in the request sequence number array 202.

Fig. 14 shows the cache memory 180 annotated to illustrate processing of another
request 1400 from transaction data stream Z. As seen at 1403, SourcelD of request Z[r] 1400
indexes entry one (1) in the request sequence number array 202 which returns value fifteen
(15). The sequence number (i.e., SeqNo. = 15) is attached to the request 1400 as seen in Fig,
14. As in the example described in Figs. 4 and 12, neither tag Tx or Tq held in the registry 203
matches the tag (i.e., Tag=Ts) of the request Ts 1400. Therefore, again, the request 1400 is a
cache miss.

Again, in the example of Fig. 14, both cache lines 410 and 411 are allocated and
therefore, one of the cache lines 410 and 411 needs to be evicted. However, the status element
410A of the first cache line 410 in the set contains a sequence number of fourteen (14) (i.e,,
SeqNo.=14). Indexing into the response sequence number array 201 using the transaction

stream identifying label or SourcelD of the status data element 410A of the first cache line

410 returns a sequence number value of twelve (12) as seen in the response sequence number
2670875v1 (934360 Final)




29 Apr 2010

2010201718

10

15

20

25

30

218 -

array 201. The number twelve (12) from the response sequence number array 201 is
compared with the sequence number value for the first cache line 410, which is fourteen (14)
in the example of Fig. 14. That is, the sequence number of the first cache line 410 is not less
thanthe corresponding sequence number in the response sequence number array 201. This
condition renders the first cache line 410 in the set non-replaceable. The status data element
411A corresponding to the second cache line 411 in the set contains a scquence number of ten
(10). Indexing into the response sequence number array 201 using the SourcelD (i.e,
SourcelD=A) in the status element 41 1A corresponding to the second cache line 411 returns a
sequence number value of eleven (11). That is, the sequence number (i.€., eleven (11)) of the
second cache line 411 is also not less thanthe corresponding sequence number (1.¢., ten (10))
in the response sequence number array 201. This condition renders both cache lines 410 and
411 in the set non-replaceable. Therefore, the request Y[p] 1400 cannot be processed at this
time and the cache memory 180 needs to stall. In the examples described with reference to
Fig. 2 to 19, the cache memory 180 is two-way associative. By increasing the associativity of
the cache 180, the number of cache lines per set is increased and the frequency of the stall
condition may be reduced.

Fig. 15 shows the response 400 received on the main memory interface 206 associated
with the miss (MISS) example described above with reference to Fig. 4. In the example of
Fig. 15, the first cache line 410 in the first set in the cache line array 205 is filled, and a
response 1512 is sent via the request/response interface 200. As seen at 1403, the response
sequence number array 201 is also updated by incrementing the sequence number indexed by
the SourcelD associated with the cache line 410 in the registry 203 from twelve (12) to
thirteen (13). In the example of Fig. 15, the request Z[r] 1400 remains stalled since no cache
lines in the set are yet available.

Continuing the example of Fig. 15, having filled their associated cache line, requests
R[n+1] 600 and 800 can now be processed as seen in Fig. 16. Request R[n+1] 600 1s
processed first and a response D[n+1] 1612 is sent to the request/response interface 200. The
response sequence number array 201 is also further updated by incrementing the sequence
number indexed by the SourcelD, as seen at 1403, associated with the status element 410A in
the registry 203 from thirteen (13) to fourteen (14). The request Z[r] 1400 remains stalled
since no cache lines in the set are yet available.

Continuing the example of Fig. 15, as seen in Fig. 17, request R[n+2] 800 is

subsequently processed and a response 1712 is sent to the request/response interface 200. The
2670875v1 (934360_Final)




29 Apr 2010

2010201718

10

15

20

25

30

- 19-

response sequence number array 201 is, again, further updated by incrementing the sequence
number indexed by the SourcelD, as seen at 1403, associated with the cache line 410 in the
registry 203 from fourteen (14) to fifteen (15). Note that the sequence number (i.€.,
SeqNo=14) in the cache line status data element 410A of the registry 203 is now less than the
corresponding sequence number in the response sequence number array 201. Therefore, the
first cache linc 410 in the first set of cache lines 1s now available for replacement. The
sequence number and the transaction data stream identifying label of the request 800 are then
assigned to the victim cache line 410.

Fig. 18 shows the cache memory 180 during processing of request Z[r] 1400. In Fig.
18, the cache line 410 is available to process the request Z[r] 1400. The victim cache line is
identified as the first cache line 410 corresponding to the status element 410A in the first set
of the registry 203.

Fig. 19 shows the state of the cache memory 180 after dispatching the request Z[r]
1400 to main memory (i.e., the memory 106 and/or the hard disk drive 110). As seen in Fig.
19, the status element 410A of the registry 203, corresponding to the first cache line 410, has
been loaded with status data relating to request Z[r] 1400. As seen at 1403 of Fig. 18, the
request sequence number corresponding to the SourcelD (i.e., SourcelD = 1) of the request
Z[r] 1400 has been incremented to sixteen (16) in the request sequence number array 202.

A method 2000 of determining if a cache line is replaceable, will now be described
with reference to Fig. 20. The method 2000 may be implemented as software resident on the
hard disk drive 110 and being controlled in its execution by the cache controller 204. As
described above, the cache controller 204 may be under execution of one or more of the
processors 105A, 105B and/or 105C. The method 2000 will be described with reference to
the cache memory 180 of Fig. 2.

The method 2000 begins at determining step 2001, where the cache controller 204
determines a response sequence number by indexing the response sequence number array 201
with a SourcelD, stored in a status element (e.g., 410A) of the registry 203, corresponding to a
candidate cache line.

At the next step 2003, the cache controller 204 determines a request sequence number
by indexing the request sequence number array 202 with the SourcelD, stored in a status
element of the registry 203, corresponding to a candidate cache line.

Then at the next step 2005, the cache controller 204 performs the step of determining

if the cache line is replaceable by comparing the response sequence number with the request
2670875v1 (934360 Final)




29 Apr 2010

2010201718

15

20

25

30

-20 -

sequence number. If the response sequence number and the request sequence number have
equal values, then the cache line is determined to be replaceable. However, if the response
sequence number and the request sequence number do not have equal values, then the cache
line is determined to be not replaceable.

A method 2100 of determining if a cache line is replaceable, will now be described
with reference to Fig. 21. The method 2100 may be implemented as software resident on the
hard disk drive 110 and being controlled in its execution by the cache controller 204. As
described above, the cache controller 204 may be under exccution of one or more of the
processors 105A, 105B and/or 105C. The method 2100 will be described with reference to
the cache memory 180 of Fig. 2.

The method 2100 begins at determining step 2101, where the cache controller 204
determines a response sequence number by indexing the response sequence number array 201
with a SourcelD, stored in a status element (e. g., 410A) of the registry 203, corresponding to
a candidate cache line.

At the next determining step 2103, the cache controller 204 determines the stored
sequence number of the candidate cache line. Then, at step 2105, the cache controller 204
compares the stored sequence number and the indexed response sequence number to
determine if the cache line is replaceable. The cache line is replaccable if the stored sequence

number is less than the index response sequence number.

Industrial Applicability

The arrangements described are applicable to the computer and data processing
industries and particularly for the data processing.

The foregoing describes only some embodiments of the present invention, and
modifications and/or changes can be made thereto without departing from the scope and spirit
of the invention, the embodiments being illustrative and not restrictive.

In the context of this specification, the word ‘“comprising” means “‘including
principally but not necessarily solely” or “having” or “including”, and not “consisting only
of’. Variations of the word "comprising", such as ‘“‘comprise” and ‘“‘comprises” have

correspondingly varied meanings.

2670875v1 (934360 _Final)




18 Jul 2012

2010201718

21

The claims defining the invention are as follows:
1. A method of identifying a cache line of a cache memory for replacement, each
cache line in the cache memory having a stored sequence number and a stored
transaction data stream identifying label, said method comprising:

receiving a request associated with a label identifying a transaction data stream,
the label corresponding to the stored transaction data stream identifying label of the
cache line;

comparing the stored sequence number of the cache line with a response
sequence number, said response sequence number being associated with the stored
transaction data stream identifying label of the cache line; and

identifying the cache line for replacement, based on the comparison.

2. The method according to claim 1, wherein the identified cache line has a stored

sequence number which is less than the compared response sequence number.

3. The method according to claim 1, wherein the response sequence number is
compared with a request sequence number, the request sequence number being

associated with the stored transaction data stream identifying label of the cache line

4. The method according to claim 3, further comprising identifying the cache line

for replacement if the request sequence number is equal to the response sequence

number.

5. The method according to claim 1, further comprising assigning the stored
sequence number and the transaction data stream identifying label of the request to

the identified cache line for use in replacing the data stored within the identified cache

line.

6.  The method according to claim 1, further comprising incrementing the stored

sequence number if the request can be processed.

7. The method according to claim 1, further comprising issuing a main memory

access to fetch data for the identified cache line.

6484295-1




29 Apr 2010

2010201718

10

15

20

25

30

-22-

8.  The method according to claim 1, said method comprising:
receiving a further request and assigning the further request to a new sequence number;
determining a further cache line that contains data associated with the further request;
and

assigning a new request sequence number to the further cache line.

9. The method according to claims 8, said method comprising:
returning the data associated with the further request; and

incrementing the response sequence number.

10.  An apparatus for identifying a cache line of a cache memory for replacement, each cache
line in the cache memory having a stored sequence number and a stored transaction data
stream identifying label, said apparatus comprising:

means for receiving a request associated with a label identifying a transaction data
stream, the label corresponding to the stored transaction data stream identifying label of the
cache line;

means for comparing the stored sequence number of the cache line with a response
sequence number, said response sequence number being associated with the stored transaction
data stream identifying label of the cache line; and

means for identifying a cache line of said set for replacement, the identified cache line

having a stored sequence number which is less than the compared response sequence number.

11. The apparatus according to claim 10, wherein said means for comparing compares the
response sequence number with a request sequence number, the request sequence number

being associated with the stored transaction data stream identifying label of the cache line.

12.  The apparatus according to claim 11, further comprising means for identifying the cache

line for replacement if the request sequence number if equal to the response sequence number.

13. A system for identifying a cache linc of a cache memory for replacement, each cache
line in the cache memory having a stored sequence number and a stored transaction data

stream identifying label, said system comprising:

a memory storing data and a computer program; and
2670875v1 (934360_Final)




29 Apr 2010

2010201718

15

20

25

30

223 -

a processor coupled to said memory for executing said computer program, said
computer program comprising instructions for:
receiving a request associated with a label identifying a transaction data stream,
the label corresponding to the stored transaction data stream identifying label of the
cache line;

comparing the stored sequence number of the cache line with a response
sequence number, said response sequence number being associated with the stored

transaction data stream identifying label of the cache line;
identifying the cache line of said set for replacement, wherein the identified
cache line has a stored sequence number which is less than the compared response

sequence number.

14. A computer readable medium having a computer program recorded thereon for
identifying a cache line of a cache memory for replacement, each cache line in the cache
memory having a stored sequence number and a stored transaction data stream identifying
label, said program comprising:

code for receiving a request associated with a label identitying a transaction data stream,
the label corresponding to the stored transaction data stream identifying label of the cache
line;

code for comparing the stored sequence number of the cache line from the set of cache
lines with a response sequence number, said response sequence number being associated with
the stored transaction data stream identifying label of the cache line;

code for identifying the cache linc of said set for replacement, wherein the identified
cache line has a stored sequence number which is less than the compared response sequence

number.

15. A method of identifying a cache linc of a cache memory for replacement, each cache
line in the cache memory having a stored sequence number and a stored transaction data
stream identifying label, said method being substantially as herein before described with
reference to any one of the embodiments as that embodiment is shown in the accompanying

drawings.

2670875v1 (934360_Final)




v

18 Jul 2012

2010201718

24

16.  An apparatus for identifying a cache line of a cache memory for replacement,
each cache line in the cache memory having a stored sequence number and a stored
transaction data stream identifying label, said apparatus being substantially as
hereinbefore described with reference to any one of the embodiments as that

embodiment is shown in the accompanying drawings.

17. A system for identifying a cache line of a cache memory for replacement, each
cache line in the cache memory having a stored sequence number and a stored
transaction data stream identifying label, said apparatus being substantially as
hereinbefore described with reference to any one of the embodiments as that

embodiment is shown in the accompanying drawings.

Dated 18 July, 2012
CANON KABUSHIKI KAISHA
Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

6484295-1




- -1/22- (2670819v1) 2670819 _|
< _
-
Q\
—
Q-‘ am—
< 7/ N7 N
o 7 ~
Q\ (Wide-Area) (
) Communications
e N Network 120 -
— Printer 115 < / T
: \ - _ » _ r\j\\\
) 8 Microphone v 4 124 AN
/
=) 140 J121 ~ N3
— ¢ - \_
8 117 'f\/ (Local-Area) )
{ + Communications
Network 122
MEgt. 123 } _
IH oagem , L -
EU 116 \/\" 100

: T

Audio-Video ||1/O Interfaces|| Local Net. App:é';fog gtorage
Interface 107 108 l/face 111 — evices
HDD 110 | 109

- i i i o
S N S

I/0 Interface Memory Optical Disk
113 106 Drive 112

i }

1t \
/ 7 ~

1053/ Keyboard 102 \

105C | Scanner 126 Disk Storage
103 Medium 125

Camera 127

Processor
105A

Fig. 1A




178

29 Apr 2010

199

2010201718
"
C

(2670819v1) 2670819 _1

i~ b

1058

134




-3/22- {2670819v1) 2670819 _1

G o [

29 Apr 2010

~ h

201 202

2010201718

Tag, SourcelD,

(\—/ SeqNo, A

207

203 204

205

Fig. 2




29 Apr 2010

2010201718

-4/22-

308

'

Wait for an update to the
sequence number arrays

~_"

'

Identify the subset,
(V), of set, S, whose
Sourceld indexes a
response sequence
number that is greater
than the stored
sequence number

307

MISS

Identify the oldest
cache lineinV

T~

309

(2670819v1) 2670819 _1

300

J/

[\;06

Receive a request for
data from a memory
address (A)

v

Decompose address
A into Tag (T) and
Cache Index (l)
components

h 4

Determine a set S in
the registry indexed
by cache index, |

HIT

312

Send request,
selected cache line,
and hit/miss status

to cache line

processor

v
( End )

|

Increment request
sequence number. For
each cache line W in
the set S, update LRU
status

Fig. 3

301

~

302

303

305




29 Apr 2010

2010201718

5722 (2670819v1) 2670819 _1
Request R[n]
ah 180
' et 1N 400 f
q ) Sourcelp
1 2 Sourceld =~1.A 1 2 frecsccccvnead ----.\
! : \“
: ] 411A \
10 403 10 v
(\/ 1:6 1=6 3 ReTqaugezstTi:l[n]
' ' " "**1 Sourceld=1
4108 201 | 202 i Seqmi
index 0 | 729=T1.SeqNo=8, | Tag= T2. SeqNo=14
Sour‘celd=A. L=1 Sourceld=:3, L=0 400
8 el T 2
: ...': ----- -e w
406 ' : > o
> N,
203 410 411 204/ N

Request R[n]

\/

pid
o
4
e T 0
'0
206 e
'O
*®
L4
[ 4
- 'O
V2

/400




29 Apr 2010

2010201718

R

-6/22-

(2670819v1) 2670819 _1

12 Sourceld = 1 13 | --

f1 80

i E 411A
o EE 15
(I 202 |
56 56
- Tag= Tx, SeqNo=12, Tag= T2, SeqNo=14
Sourceld=1, L=0 Sourceld=B, L=1
\ _
[} T T 5
' B a
' b LT LY PR Q
: : &
>
410 411 204
h

Qo
. i
i Request R[n] :
400 J\ .'




29 Apr 2010

2010201718

201

1 2 Sourceld =:

10 603 10
(\~’1§ 15

; 202 ;

56 56

Index O

-7/22-

Request R[n+1]
Tag= Tx,
Index =0

N\

Sourceld=1

(2670819v1) 2670819 1

600

‘ 13- -------------

‘{—480

Request R[n+1]

9 Sourceld=1

Tag= Tx,

SeqNo =13

L

""" -i#jgaﬂl

600

Tag= Tx, SeqNo=12, Tag= T2, SeqNo=14
Sourceld=1, L=0 Sourceld=B, L=1
A Y
. [N
‘“s. ‘s.
T L. .... 1] ..-V
' ...‘....
' ' == =P
] ]
] '
' ¢ _eeePeT""]
! b
e b
'0 "'
y 4 L4
i o’
r' [ 4
’ .
410 s 411

Request R[n]

400~/f\




29 Apr 2010

2010201718

o S

410A 201

Index O

203

1 2 Sourceld =1 14

-8/22-

(2670819v1) 2670819_1

10 603 10

(\J 15 15
; 202 :
56 56
Tag= Tx, SegNo=13, Tag= T2, SeqNo£14
Sourceld=1, L=0 Sourceld=B, L=1
‘..
410

411

411A

180

-

alepdn

| R[nﬂl

>
204

205

Fig. 7

1

Request R[n]




29 Apr 2010

-9/22- (2670819v1) 2670819 _1

Request R[n+2]
sl | 800 fwo

Sourceld=1

2010201718

—— [
)
L}
‘\
...A oeeoveseovocoe ey - - e
12 Sourceld = 1 14 "s‘
*
Y
1 ’ [}
' ' ]
1 O 1 O R X?[ +2]
equest R[n
(\) 15 15 Tag=Tx,
' M & <"1 Sourceld=1
201 L 202 ' 'o' SeqNo = 14
56 56 'y L
Y
Tag= Tx, SeqNo=13, Tag= T2. SeqNo=14
Index 0 aSgour;(eldi?. f=0 aSgowceld:’:l;, E=1 800
‘~ “
¥ T T = "'ﬁ T
‘ “teeea. - - - -
' ' ‘
i ‘:",v-.:::_.1 ------- ‘ R[n+2)
o Rin+1)
A ’ . ~
[‘\_/ "' " 5
Sy 204 L—
203 410 [ 411

Request R[n]

Fig. 8 400 |




S

-
p—
-
N
S
o
<
‘ @)
o\
o0
p—
~ 0
5 !
10
I
g (\/ 1.5
S 201 ;

56

1 2 Sourceld = 1 1 5

-10/22-

(2670819v1) 2670819 _1

903 10
15

202 :
56

Index 0

Tag= Tx, SeqNo=14,
Sourceld=1, L=0

Tag= T2, SegNo=14
Sourceld=8B, L=1

411

alepdn

180

r

R[n+2]
R[n+1]

V]

204

~..
e
[\./
410
->

[

203
i

[ 205
|

|

——

Fig. 9

400~/

Request R[n]




29 Apr 2010

2010201718

11722 (2670819v1) 2670819 1
Request W[m]
| s 1000 f1 60
q , Sourceld=k
12 :'. 202 15 o
10 ‘ 0] A
—15] 1003%, 15| e
' . . ’ 4 °"1 Ssourceld=k
201 ' ‘\ ! l' " eqNo =
56 Sourceld = k & 56 ! :‘ —
WL
fr ot il I et "l 1000
{1l
1006 ; .. =
S E e E o" =i @
Index j L=0 ;i/ .
10? 0A ' =
1011A 204 ‘.
410 411 ‘,‘
/\/\/\ /\/\/\ \
<> — :
L,
e 0 ;
m \/—\/—\/ "
1010 1011

——

Fig. 10

0~/\ Request W|m)
100

Request R{n]




29 Apr 2010

| 12
o0
p— 0
'l: 120
o
S 201(\/ T
p— ]
o
Q 56

1006

Index |

203

[ 8]
~

(2670819v1) 2670819 _1

{

202 10

10

1003 15
Sourceld = k 57

Tag= Tx, SeqNo=14,
Sourceld=A, L=1

Tag= T2, SeqNo=14
Sourceld=B. L=0

pboocoos o

-
"
L4

L=1

Sourceld=k,

Tag=Tz, SeqNo=56

L=0

410

//“\\,/A\_,/"\\

411

//’\\\,/\\,//"\\

R{n+2]
R[n+1]
C
©
Q.
=
(]
204
h

v

/

.

.

Fig. 11

//‘// | -
S

180

1000/\

Request W|m]

400'v/P\

Request R[n]




29 Apr 2010

2010201718

410A 201

N\

(2670819v1) 2670819 _1

‘{,480

/" 1200

Index 0

~Tag= Tx, SeqNo=14,
Sourceld=1, L=0

Tag= T2, SeqNo=14
Sourceld=8B, L=1

.

.

203

N -,
] e [)
M o wn e cemw
' ' =9
] '
] ]
[ '
] ]
A 4
Tag=Tz, SeqNo=56
Sourceld=k, L=0
410

411

’
’

-13/722-
Request Y[p]
Tag=Tq.
Index =0
Source/ld:/i\)
12] 1203, 15
1l0 Sourceld = A\ 10 ”
15 (\\/ 15
56 202 56

-9
-

Rin+2)} 1200

R[n+1}

SSIN

Request Y([p)
Tag=Ta,.
Sourceld=1
SeqNo =10

< L~

204

Request Y[p]

Request W[m}

Request R[n}




29 Apr 2010

2010201718

S

-14/22-

(2670819v1) 2670819_1

‘{—480

12 120 15
: : 411A
10 Sourceld = A 11
(““/ 15 (‘\_/ 15
201 ; :
410/\\_ =5 202 [z6 &
Index 0| 129= Tx. SeqNo=14, Tag= Tq, SeqNo=10 R(n+2]
Sourceld=1, L=1 Sourceld=A, L=0 —
» c
T T v e
' (] ) CTO Q.
' ' .o )
a s :
’ Tag=Tz, Se.qNo=56
Sourceld=k, L=0 Z
203 410 411 204
0 ﬁ
2 [ 4
W 7775,
/
205

Reguest Y([p)

Request W[m]

Request R[n)]




29 Apr 2010

2010201718

-
Sourceld =1 ]

! Request Z[r] i

T | /N 1400

) Index=0
[ Sourceld=1 |

-

(2670819v1) 2670819_1

-

180

L4

-

203

Tag=Tz, SeqNo=56
Sourceld=k, L=0

1 2 1 5 .......... ‘~~
: 81 403 [
10 11 I
1 5 1 5 Rec;ut:st f[r] .
201(\) i (\J E L Sl SZu?celEﬁ '
41 OA 56 202 56 ." . _S_egN__o_ =15
w L
N i R 2] 1400
~ R Rn+1]
5 —=ea v T i §
: R S %
1406 ; : bt R

204

VW %

Fig. 14

l// |
S

Request R[n]

400 </ )

Request Y{p]

Request W[m]




-16/22- (2670819v1) 2670819_1

Request Z[r]
Tag=Ts,
Index =0

Response

1512 ) /N 1400

29 Apr 2010

2010201718

206/\%;:\\4‘

D[n]

Sourceld=1

L

f1 80

.------.---.-.
(]
]
: .--> 13 Sourceld = 1 15
]
(]
' : 1403 |}
. 10 11
15

E 201(\/1‘5 G
E 56 202 56
; \
' Tag= Tx, SeqNo=14, | Tag=Tq. SeqNo=10, R[n+2)
' Sourceld=1, L=1 Sourceld=A, L=0
] R(n+1]
(]
0
(] T T
' ] ]
. ’ ’
- : :
' : :
: Tag=Tz, SeqNo=56
| Sourceld=k, L=0
; <
E 203 410 411 204
[ ]
]
s === D) [opn+11| Din+2 [on+3] %
: h
i
: i
" 7,,,//
5-- L X N N N N N N N N

]

205

Request Y[p)

S

‘/\ Response R[n]
400

Request W[m]

Fig. 15




-17/122- (2670819v1)2670819_1

1612~/ Response ] |5 |\ 00
D[n+1] —1 Index=0 '80

Sourceld=1
200&‘\ B f

29 Apr 2010

'

2 --_» 14 Sourceld = 1 15
c~

p—

) ] 1403 [
S 10 11
oy 15 15
-] . .
N 201(\/ : — ;

56 202

56 ‘+
Tag= Tx, SeqNo=14, | Tag=Tq, SeqNo=10. R[n+2}
Sourceld=1, L=1 Sourceld=A. L=0

T T
’ '
[] ! eceofrmmmmtena. R[n+1)
: Y 2 ':‘
' ».*° '
. ® '
A " A
e Tag=Tz. SeqNo=56
Pig Sourceld=k, L=0
[\/ 7 Z
’
'c
203 N 204
[

D[n+2 |D[n+3] %

[
]
ey
=
=
=
3
+
—_

Request W[m]

Request Y(p]




- 18722 -

(2670819v1) 2670819 _1

1712 /) Response

Request Z[r)
Tag=Ts,

D[n+2] —] Index =0

29 Apr 2010

Sourceld=1
200/\C\‘\_/|

0

o0
‘l:‘ -® ® > 15 Sourceld =1
—
& ; 1403
— 10
g 1;5

201 5.6 202

(\/ 1'5

180
|\ 1400 f

-

15

11

56

Sourcel

Tag= Tx, SeqNo=14,

Tag= Tq. SeqNo=10,

d=1, L=1 Sourceld=A, L=0

"
[ d

---------- RIn+2)

LY

o'Tag=Tz, SeqNo=56

’ Sourceld=k, L=0

203

‘-.
]
()
dhay
o
=

D[n+1]

D[n+2 |D[n+3]

204

%

i

i> 1 ZOOJ\ Request Y[p)

1 OOO J\ Request W[m])




29 Apr 2010

2010201718

-19/22- (2670819v1) 2670819 _1

 RequestZir

Tag=Ts. 1/ N\ 1400

- o

— -
¥
L)

15 Sourceld =‘1~.‘L 15 p=v==ccccen.. -~
: 1403 [ 1
10 11 ETNCRE
15 15 . eguists‘r
201(\-/ ' (\/ ' 'a"“" Szu?cerdﬂ
' ! ’ SegNo =15
56 202 [Bg ; + _Lg
\
moeco | TogTx Seanozia. | Tage Ta Seate 0 1400
' ‘.Q.._' — : \.. --' g
s A i B
* Tag=Tz, Se.qNo=56
Sourceld=k, L=0 Z
203 410 411 204
D[n] |D[n+1)|D[n+2|D[n+3]
<> <
Y,
W72

, -
- <|\:1> 1200~/ | "

Request Z[r] Request W[m]
a00) 1000/ |

Fig. 18

\/




29 Apr 2010

2010201718

(2670819v1) 2670819 1

20/22

Sourceld = 1 16
1403 [ 1

11

(\/ 15

202 [Bg

15
10
(\/ 15
201 ;
56
Index O

Tag= Ts, SeqNo=15,
Sourceld=1, L=0

Tag= Tq, SeqNo=10,
Sourceld=A, L=1

\ R

L J

Ty r

Tag=Tz, SeqNo=56
Sourceld=k, L=0

203

204

alepdn

—

J/1 80

Request Z|r]

Request Y[p)

Request W[m]




29 Apr 2010

2010201718

-21/22- (2670819v1) 2670819 _1

2000

J

2001

Determine a response
sequence number

l 2003
~_

Determine a request
sequence number

2005

Determine if cache f\/

line is replaceable

End

Fig. 20




29 Apr 2010

2010201718

-22/22 - (2670819v1) 2670819 _1

2100

J

2101

Determine a response
sequence number

l 2103
—~_

Determine a stored
sequence number of
the cache line

l 2105

Determine if cache f\/

line is replaceable

End

Fig. 21




	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

