Office de la Propriete Canadian CA 2954510 A1 2016/07/28

Intellectuelle Intellectual Property
du Canada Office (21) 2 954 51 0
(Lj’,[‘ng[%?rfi“esgaena i mjgtf;‘éyaﬁ; i 12y DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2015/08/11 (51) Cl.Int./Int.Cl. GO6F 21/656 (2013.01),

GO6F 12/14 (2006.01), GO6F 9/455 (2006.01),
HO4L 29/06 (2006.01)

(71) Demandeur/Applicant:

(87) Date publication PCT/PCT Publication Date: 2016/07/28
(85) Entree phase nationale/National Entry: 201//01/06

(86) N° demande PCT/PCT Application No.: RO 2015/050008 BITDEFENDER IPR MANAGEMENT LTD, CY
(87) N° publication PCT/PCT Publication No.: 2016/118032 (72) Inventeurs/Inventors:
(30) Priorités/Priorities: 2014/08/18 (US62/038,476); LUKACS, SANDOR, RO;

2014/09/18 (US14/489,801) LUTAS, ANDREI-VLAD, RO

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : SYSTEMES ET PROCEDES D'EXPOSITION D'UNE INSTRUCTION DE PROCESSEUR DE COURANT LORS DE LA
SORTIE D'UNE MACHINE VIRTUELLE

(54) Title: SYSTEMS AND METHODS FOR EXPOSING A CURRENT PROCESSOR INSTRUCTION UPON EXITING A VIRTUAL
MACHINE

QR R -? ,I'}

g

Processor
-
16 . | 18
i nput devices Conrroller
e : T huhy \
2l . _ Nework | N
STorage devices R e 22
- addapter(s; N
[~
Haost svstem j
10
WYY TR .
Fidy 1
(57) Abrege/Abstract:

Described systems and methods enable a host system to efficiently perform computer security activities, when operating In a
hardware visualization configuration. A processor Is configured to generate a VM suspend event (e.g., a VM exit or a virtualization
exception) when software executing within a guest VM performs a memory access violation. In some embodiments, the processor

SoaoRRE f /[

TN o TN

AR =0y g s ¥, '1."
s v

I*I) . Prven, B
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 2%% ;g

i SRR OERRIA » JO SV SN AN
OPIC - CIPO 191 .

CA 2954510 A1 2016/07/28

ey 2 954 510
(13) A1

(57) Abrege(suite)/Abstract(continued):

Is further configured to save disassembly data determined for the processor instruction which triggered the VM suspend event to a

special location (e.g., a specific processor register) before generating the event. Saved disassembly data may include the contents

of Individual Instruction encoding fields, such as Prefix, Opcode, Mod R/M, SIB, Displacement, and Immediate fields on Intel®
platforms.

w0 20167118032 A8 | [N RW V00 010 0 A 0 0

(43) International Publication Date

CA 02954510 2017-01-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

N

(19) World Intellectual Property
Organization
International Bureau

S /

(10) International Publication Number

WO 2016/118032 A8

28 July 2016 (28.07.2016) WIPO I PCT
(51) International Patent Classification: (74) Agent: TULUCA, Doina; Bd. Lacul Te1 56, bl. 19, sc. B,
GO6F 12/08 (2006.01) GO6F 21/56 (2013.01) ap. 52, sector 2, 020392 Bucuresti (RO).
GO6F 12/1027 (2016.01) - GO6K 21753 (203”?)'07) (81) Designated States (unless otherwise indicated, for every
GO6F 12/109 (2016.01) GO6F 21/55 (2013.01) , , , ,
GO6F 12/14 (2006.01) HO4L 29/06 (2006.01) kind of national protection available). AE, AG, AL, AM,
GO6F 9/455 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
' BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
PCT/RO2015/050008 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
. - | KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(22) International Flllllg Date: A 015 (11 08 2015 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
ugust 2015 (11.08.2015) PA. PE, PG, PH, PL, PT, QA, RO, RS, RU, RW., SA. SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English
o (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARTPO (BW, GH,
62/038,476 18 August 2014 (18.08.2014) us GM, KE, LR, LS, MW. MZ. NA, RW, SD, SL. ST, SZ,
14/489,801 18 September 2014 (18.09.2014) us TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(71) Applicant: BITDEFENDER IPR MANAGEMENT TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
LTD [CY/CY]; Kreontos 12, Nicosia, 1076 (CY). DK, EE, ES, FL, IR, GB, GR, HR, HU, IE, 15,11, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(72) Inventors: LUKACS, Sandor; Bld. Cetatea Fetei bl. B et. SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

3, Sat Floresti, Com. Floresti, Judetul Cluj (RO). LUTAS,
Andrei-Vlad; Bld. Closcanr. 111, Judetul Satu Mare, Satu
Mare (RO).

GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR EXPOSING A CURRENT PROCESSOR INSTRUCTION UPON EXITING A VIR -
TUAL MACHINE

Processor

LG . .
Inpur devices

20)

Storage devices |

WAt T

{_onrotler
hiub

o P i \
Nerwnrk
I
adapeer(s) { -

3
]
3
-
[—————_-—— o S et

Flost svstem

M asre

(57) Abstract: Described systems and methods enable a host system to etficiently perform computer security activities, when operat -
ing i a hardware visualization configuration. A processor 1s configured to generate a VM suspend event (e.g., a VM exit or a virtu -
alization exception) when software executing within a guest VM performs a memory access violation. In some embodiments, the

processor 1s Turther configured to save disassembly data determined for the processor mstruction which triggered the VM suspend

event to a special location (e.g., a specific processor register) before generating the event. Saved disassembly data may include the
contents of mdividual mstruction encoding fields, such as Prefix, Opcode, Mod R/M, SIB, Displacement, and Immediate fields on
Intel® platforms.

CA 02954510 2017-01-06

WO 2016/118032 A8 M0N0 000 AN 0 R0

Declarations under Rule 4.17: (88) Date of publication of the international search report:

— as to applicant's entitlement to apply for and be granted I3 October 2016

a patent (Rule 4.17(ii)) (48) Date of publication of this corrected version:

— as to the applicant’s entitlement to claim the priority of 5> January 2017
the earlier application (Rule 4.17(iii)) (15) Information about Correction:

Published: see Notice of 5 January 2017

— with international search report (Art. 21(3))

o

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

Systems And Methods for Exposing A Current Processor Instruction

Upon Exiting A Virtual Machine

RELATED APPLICATIONS
[0001] This application claims the benetit of the filing date of U.S. provisional patent application
No. 62/038,476. filed on Aug. 18, 2014, entitied “Svstems And Methods for Exposing A Current
Processor Instruction Upon Exiting A Virtual Machine”, the entire contents of which are

incorporated by reference herein.

BACKGROUND
[0002] The invention relates to computer security, and in particular to performing computer

security operations in hardware virtualization configurations.

[0003] Malicious software, also known as malware, affects a great number of computer systems
worldwide. In its many forms such as computer viruses, worms, rootkits, and spyware, malware
presents a serious risk to millions of computer users, making them vulnerable to loss of data and

sensitive information, identity theft, and loss of productivity, among others.

[0004] Modern computing applications often employ ‘hardware virtualization technology to
create simulated computer environments known as virtual machines (VM), which behave in
many ways as physical computer systems. In applications such as server consolidation and
infrastructure-as-a-service, several virtual machines may run simultaneously on the same
computer system, sharing the hardware resources among themn, thus reducing investment and
operating costs. Each virtual machine may run its own operating system and/or software,
separately from other virtual machines. Due to the steady proliferation of computer security

threats such as malware and spyware, each such virtual machine potentially requires protection.

[0005] Some security solutions protect a virtual machine by monitoring the manner in which
guest processes executing within the protected VM access memory, to identify potential
malicious activity. In one example, a computer security program may conligure the processor to
generatc an intcrnal event (e.g., an exception or a VM exit event) when an attempt 18 made 10
write to, or execute code from, a specific region of memory, ¢.g. a region of memory used by a
guest process. Such processor events typically suspend the execution of the current thread and

1

10

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

switch the processor to executing an event handler routine, which may form part of the computer
security program. The computer security program may thus detect an attempt to access memory
in a manner which may be indicative of malware. After analyzing the event, the computer
security program may emulate the processor instruction which was under execution when the

event occurred, and may return execution to the original thread. Such methods are generically

known in the art as trap-and-emulate.

[0006] Conventional trap-and-emulate methods may place a substantial computational burden on
the host computer system, potentially impacting user experience and productivity. Therefore,
there is considerable interest in developing efficient computer security systems and methods

suitable for virtualization environments.

SUMMARY
[0007] According to one aspect, a host system comprises at least one hardware processor
configured to execute a virtual machine and a computer secunty program. The at least one
processor is further configured to determine whether executing a guest istruction within the
virtual machine causes a violation of a memory access permission. In response, when executing
the guest instruction causes the violation, the at least one hardware processor 15 further
configured to write a part of a machine code representation of the guest instruction to a
predetermined location accessible to the computer security program, to suspend the execution of
the guest instruction, and in response to suspending the execution of the guest instruction, switch
to executing the computer security program, wherein the computer security program IS

configured to determine whether the violation is indicative of a computer security threat.

[0008] According to another aspect, a method of protecting a host system from computer
security threats, the method comprises, in response to receiving a guest instruction for execution,
employing at least one hardware processor of the host system to determine whether executing the
guest instruction causes a violation of a memory access permission, wherein the guest instruction
executes within a virtual machine exposed by the host system. The method further comprises, L0
response to determining whether the guest instruction causes the violation, when executing the
guest instruction causes the violation, employing the at least one hardware processor to write a

part of a machine code representation of the guest instruction to a predetermined location

10

15

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

accessible to the computer security program, and employing the at least one hardware processor
to suspend the execution of the guest instruction. The method further comprises, in response to
suspending the execution of the guest nstruction, switching to executing a computer security
program configured to determine whether the violation is indicative of a computer security

threat.

[0009] According to another aspect, at least one hardware processor of a host system IS
configurable, in response to receiving a guest insiruction for execution, to determine whether
executing the guest instruction causes a violation of a memory access permission, wherein the
guest mstruction executes within a guest virtual machine exposed by the host system. The at
least one hardware processor is further configurable, in response to determining whether the
guest instruction causes the violation, when executing the guest instruction causes the violation,
to write a part of a machine code representation of the guest instruction to a predetermined
location accessible to the computer security program, to suspend the execution of the guest
instruction, and in response to suspending the execution of the guest instruction, to switch to
executing a computer security program, wherein the computer security program 18 configured to

determine whether the violation is indicative of a computer security threat.

[0010] According to another aspect, a non-transitory computer-readable medium stores
instructions which, when execuated by at least one hardware processor of a host svstem, cause the
host system to form a computer security program configured to determine whether a violation ot
a memory access permission is indicative of a computer security threat. The at least one
hardware processor is configurable, in response to receiving a guest instruction for execution, to
determine whether executing the guest instruction causes the violation, wheremn the guest
instruction executes within a virtual machine exposed by the host system. The at least one
hardware processor is further configurable, in response to determining whether the guest
instruction causes the violation, when executing the guest instruction causes the violation, to
w'rite a part of a machine code representation of the guest instruction to a predetermined location
accessible to the computer security program, to suspend the execution of the guest mstruction,
and in response to suspending the execution of the guest instruction, to switch to executing the

computer security program.

s

10

20

CA 02954510 2017-01-06

WO 2016/118032 | PCT/R0O2015/050008

BRIEY DESCRIPTION OF THE DRAWINGS
[0011] The foregomg aspects and advantages of the present invention will become better
understood upon reading the following detailed description and upon reference to the drawings

where:

[0012] Fig. 1 shows an exemplary hardware configuration of a host computer system according

to some embodiments of the present invention.

[0013] Fig. 2-A shows an exemplary set of virtual machines exposed by a hypervisor executing
on the host system, and a computer security module (CSM) protecting the set of virtual machines

according to some embodiments of the present invention.

[0014] Fig. 2-B shows an alternative embodiment of the present invention, wherein a CSM
executes below a virtual machine, and wherein an excepuon handler executes within the

protected virtual machine.

[0015] Fig. 2-C shows yet another embodiment of the present invention, wherein both the CSM

and the exception handler execute within the protccted virtual machine.

[0016] Fig. 3 shows an exemplary configuration of virtualized hardware exposed as a guest

virtual machine according to some embodiments of the present invention.

[0017] Fig. 4 shows a set of exemplary memory address translations in a hardware virtualization

configuration as shown 1n Fig. 2-A, according to some embodiments of the present mvention.

[0018] Fig. 5 shows exemplary components of a processor according to some embodiments of

the present invention.

[0019] Fig. 6 shows an exemplary suspend event register of the processor according to some

embodiments of the present invention.

[0020] Fig. 7 shows an assembly language representation of an exemplary processor instruction

of the x86 instruction set, and its corresponding machine code representation.

N

10

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0021] Fig. 8 shows an exemplary sequence of steps performed by the processor to execute a

processor instruction according to some embodiments of the present invention.

[0022] Fig. 9 illustrates an exemplary sequence of steps performed by a computer security
module to protect a guest virtual machine according to some embodiments of the present

invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0023]) In the following description, it 18 understood that all recited connections between
structures can be direct operative connections or indirect operative connections through
intermediary structures. A set of elements includes one or more elements. Any recitation of an
element is understood to refer to at least one element. A plurality of elements includes at least
two elements. Unless otherwise required, any described method steps need not be necessarily
performed in a particular illustrated order. A first element (e.g. data) derived from a second
element encompasses a first element equal to the second elemeiit, as well as a first element
generated by processing the second element and optionally other data. Making a determinaton
or decision according to a parameter encompasses making the detérmination or decision
according to the parameter and optionally according to other data. Unless otherwise specitied,
an indicator of some quantity/data may be the quantity/data itself, or an indicator different from
the quantity/data itself. A computer program is a sequence of processor instructions carrying out
a task. Computer programs described in some embodiments of the present invention may be
stand-alone software entities or sub-entities (e.g., subroutines, hibraries) ot other computer
programs. Unless otherwise specified, a computer security program 1$ a computer program that
protects equipment and data against unintended or unauthorized access, modification or
destruction. Unless otherwise specified, a process is an instance of a computer program, such as
an application or a part of an operating system, and is characterized by having at least an
execution thread and a virtual memory space assigned (o if, wherein a content of the respective

virtual memory space includes executable code. Unless otherwise specified, a page represents

the smallest unit of virtual memory that can be individuaily mapped to a physical memory of a

host system. The term “logic” encompasses hardware circuitry having a fixed or a
reconfigurable functionality (e.g., field-programmable gate array circuits), but does not

encompass software emulating such functionality on a general-purpose computer. Unless

S

N

10

20)

25

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

otherwise specified, 4 register represents a storage component integrated with or forming part ot
a processor, and distinct from random-access memory (RAM). Computer readable media
encompass non-transitory media such as magnefic, optic, and semiconductor storage media (€.g.
hard drives, optical disks, flash memory, DRAM), as well as communication hnks such as
conductive cables and fiber optic links. According to some embodiments, the present mvention
provides, inter alia, computer systems comprnsing hardware (e.g. one oOr more pProcessors)
programmed to perform the methods described herein, as well as computer-readable media

encoding instructions to perform the methods described herein.

[0024] The following description illustirates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0025] Fig. 1 shows an exemplary hardware configuration of a host system 18 according to some
embodiments of the present invention. Host systemn 10 may represent a corporate computing
device such as an enterprise server, or an end-user device such as a personal computer, tablet
computer, or smartphone. Other exemplary host systems include TVs, game consoles, wearable
computing devices, or any other electronic device haifi,ng a 'm.emor,y and a processor. Host
system 10 may be used to execute a set of software applications, such as a browser, a word
processing application, and an electronic communication (e.g., email, instant messaging)
application, among others. In some embodiments, host system 10 is configured to support

hardware virtualization and to expose a set of virtual machines, as shown below.

[0026] Fig. 1 illustrates a computer system; the hardware configuration of other host systems,
such as smartphones and tablet computers, may differ. System 10 comprises a set of physical
devices, including a processor 12. a memory unit 14, a set of input devices 16, a set of output
devices 18, a set of storage devices 20, and a set of network adapters 22, all connected by 4
controller hub 24. In some embodiments, processor 12 comprises a physical device (e.g. multi-
core integrated circuit formed on a semiconductor substrate) configured to execute

computational and/or logical operations with a set of signals and/or data. In some embodiments,

such logical operations are delivered to processor 12 in the form of a sequence of processor
instructions {e.g. machine code or other type of software). Some embodiments of the present

invention introduce changes to the structure and functionality of a conventional processor, the

N

10

15

20

~2
4

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

respective changes enabling processor 12 to operate more efficiently in hardware virtualization

configurations.

[0027] Memory unit 14 may comprise volatile computer-readable media (e.g. RAM) storing
data/signals accessed or generated by processor 12 in the course of carrying out instructions.
Input devices 16 may include computer keyboards, mice, and microphones, among others,
including the respective hardware interfaces and/or adapters allowing a user to mtroduce data
and/or instructions into host system 10, Output devices 18 may include display devices such as
monitors and speakers, among others, as well as hardware interfaces/adapters such as graphic
cards, allowing host system 10 to communicate data to a user. In some embodiments, input
devices 16 and output devices 18 may share a common piece of hardware, as in the case of
touch-screen devices. Storage devices 20 include computer-readable media enabling the non-
volatile storage, reading, and writing of processor instructions and/or data. Exemplary storage
devices 20 include magnetic and optical disks and flash memory devices, as well as removable
media such as CD and/or DVD disks and drives. The set of network adapters 22 enables host
system 10 to connect to a computer network and/ot to other devices/computer systems.
Controller hub 24 generically represents the plurality of system, peripheral, and/or chipset buses,
and/or all other circuitry enabling the communication between processor 12 and devices 14, 16,
18, 20 and 22. For instance, controller hub 24 may include a memory management unit (MMU),
an input/output (1/0) controller, and an interrupt controller, among others. In another example,
controller hub 24 may comprise a northbridge connecting processor 12 to memory 14 and/or a
southbridge connecting processor 12 to devices 16, 18, 20, and 22. In some embodiments, parts
of controller hub (such as the MMU) may be integrated with processor 12, 1.e., may share a

common substrate with processor 12.

[0028] Fig. 2-A shows an exemplary functional configuration according to some embodiments
of the present invention, wherein host system 10 uses hardware virtualization technology to
operate a set of guest virtual machines 52a-b exposed by a hypervisor 58. Such configurations
are common in applications such as cloud computing and server consolidation, among others. A
virtual machine (VM) is known in the art as an abstraction, e.g., a software emulation, of an
actual physical machine/computer system, the VM capable of running an operating system and

other software. In some embodiments, hypervisor 8¢ includes software configured to create or

7

I

10

~J
thn

30

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

enable a plurality of virtualized devices, such as a virtual processor and a virtual controlier hub,
and to present such virtualized devices to software in place of the real, physicai devices of host
system 10. Such operations of hypervisor 50 are commonly known in the art as exposing a
virtual machine. In some embodiments, hypervisor 58 allows a multiplexing (sharing) by
multiple virtual machines of hardware resources of host system 10. Hypervisor 50 may further
manage such multiplexing so that each guest VM 52a-b operates independently and is unaware
of other VMs executing concurrently executing on host system 10. Examples of popular
hypervisors include the VMware vSphere™ from VMware Inc. and the open-source Xen

hypervisor, among others.

10029] Each VM 352a-b may execute a guest operating system (O8) 54a-b, respectively. A set of
exemplary applications S6a-d genérieally represent any software application, such as word
processing, image processing, media player, database, calendar, personal contact management,
browser, gaming, voice communication, data communication, and anfi-malware applications,
among others. Operating systems 54a-b may comprise anv widely available operating system
such as Microsoft Windows®, MacOS®, Linux®, i0OS®, or Android™. among others. btach
OS 54a-b provides an intertace between applications execuiing within the respective VM and the
virtualized hardware devices of the respective VM. In the following description, software
executing on a virtual processor of a virtual machine is said to execute within the respective
virtual machine. For instance, in the example of Fig. 2-A, applications 56a-b are said to execute
within guest VM §2a, while applications 56¢-d are said to execute within guest VM 32b. In

contrast, hypervisor 50 1s said to execute outside, or below, guest VMs 5Za-b.

[0030] Fig. 3 shows an exemplary configuration of a virtual machine 32, as exposed by
hypervisor 50. VM 52 may represent any of VMs §2a-b of g 2-A. VM 52 includes a
virtualized processor 112, a virtualized memory unit 114, virtualized input devices 116,
virtualized output devices 118, virtualized storage 120, virtualized network adapters 122, and a
virtualized controller hub 124. Virtualized processor 112 comprises an emulation of at least
some of the functionality of processor 12, and is configured ¢ receive for execution processor
instructions forming part of software such as an operating system and other applications.
Software using processor 112 for execution 1s deemed to execute within virtual machine 52. In

some embodiments, virtualized memory unit 114 comprises addressable spaces for storing and

8

Lh

10

20

D
N

30

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

retrieving data used by virtualized processor 112, Other virtualized devices (e.g., virtualized
input, output, storage, etc.) emulate at least some of the functionality of the respective physical
devices of host system 10. Virtualized processor £12 may be configured to interact with such
virtualized devices as it would with the corresponding physical devices. For instance, software
executing within VM 52 may send and/or receive network traffic via virtualized network
adapter(s) 122. In some embodiments, hypervisor 50 may expose only a subset of virtualized
devices to VM 52 (for instance, only virtualized processor 112, virtualized memory 114, and
parts of hub 124). Hypervisor 30 may aiso give a selected VM exclusive use of some hardware
devices of host system 10. In one such example, VM 52a (Fig. 2-A) may have exclusive use of
input devices 16 and output devices 18, but lack a virtualized network adapter. Meanwhile,
VM 52b may have exclusive use of network adapter{s)22. Such configurations may be

implemented, for instance, using VT-d® technology from Intel®.

[0031] Modern processors implement a hierarchy of processor privilege levels, also known n
the art as protection rings. Each such rning or level 18 characterized by a set of actions and/or
processor instructions that software executing within the respective ring s allowed to carry out.
Exemplary privilege levels/rings include user mode (ring 3) and kernel mode (ring 0). Some
host systems configured to support hardware virtualizatior may include an additional ring with
the highest processor privileges (e.g., ring -1, root mode, or VMXroot on Intel® platforms). In
some embodiments, hypervisor 50 takes control of processor 12 at the most privileged level (ring
-1), thus creating a hardware virtualization platform exposed as a virtual machine to other
software executing on host system 10. An operating system, such as guest OS 54a in Fig. 2-A,
executes within the virtual environment of the respective VM, typicallv with lesser processor
privilege than hypervisor 50 (c.g., in ring 0 or kernel mode). Common user applications, such as
56a-b, typically execute at lesser processor privilege than OS 34a (e.g., 1n ring 3 or user mode).
Some parts of applications 56a-b may execute at kernel privilege level, while some parts of
OS 34a may execute in user mode (ring 3). When a software object attempts 1o execute an
action or instruction requiring processor privileges higher than allowed by 1ts assigned protection
ring, the attempt typically generates a processor event, such as an exception or a fault, which
transfers control of processor 12 to an entity (e.g., handler routine) executing in a ring with

enough privileges to carry out the respective action.

‘N

10

N
N

30

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0032] In particular, an attempt to perform certain actions or to execute certain nstructions from
within a guest VM may trigger a special category of processor events, herein generically termed
VM suspend events. in some embodiments, a VM suspend event suspends execution of the
current thread within a guest VM and switches processor 12 to executing a handler routine.
Exemplary VM suspend events include, among others, a VM exit event (e.g., VMExit on Intel®
platforms) and a virtualization exception (e.¢. #VE on Intel® platforms). VM exit events switch
processor 12 to executing a handler routine outside the respective guest VM, typically at the
level of hypervisor 50. Virtualization exception mayv swiich processor 12 {0 executing a handler

routine within the respective guest VM, instead of exiting the respective VM.

[0033] Exemplary instructions trigegering a VM suspend event include VMCALL on Intel®
platforms. VM suspend events may aiso be triggered by other events, such a8 memory access
violations. In one such example, when a software object executing within a VM attempts 1o
write 10 a section of memory marked as non-writable, or to execute code from a section of

memory marked as non-executable, processor 12 may generate a VM exit event. Such VM-

switching mechanisms allow, for example, a computer security program (o protect a virtual

machine from outside the respective VM. The computer security program may intercept VM
exit events occurring in response to certain actions performed by software running inside the
VM, actions which may be indicative of a security threat. The computer security program may
then block and/or further analyze such actions, potentially without the knowledge of in-VM

software. Such configurations may substantially strengthen computer securnty.

[0034) In some embodiments (e.g., Fig. 2-A), hvpervisor 8O includes a computer security
module (CSM) 60, configured to perform such computer security operations, among others.
Module 60 may be incorporated into hypervisor 58 (for instance as a library)., or may be
delivered as a computer program distinct and independent from hypervisor 30, but executing at
the privilege level of hypervisor 530. A single module 68 may be configured to protect multiple
euest VMs executing on host system 18. Security operations carried out by module 60 may
include detecting an action performed by a process executing within a guest VM (e.g., calling
certain functions of the OS, accessing a registry of the OS, downloading a file from a remote
location, writing data to a file, etc.). Other security operations of module 60 may comprise

determining an address of a memory section containing a part ot & software object executing

19

vy

10

135

25

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

within a guest VM, accessing the respective memory section, and analyzing a content stored
within the respective memory section. Other examples of security operations include
intercepting and/or restricting access to such memory sections, e.g., preventing the over-wrifing
of code or data belonging to a protected process. and preventing the execution of code stored 1n
certain memory pages. In some cmbodiments, CSM 60 includes a VM exit event handler 61
configured to intercept VM exit events occurring within guest VMs 32a-b. In an alternative
embodiment, handler 61 may be a distinct module (e.g.. a library) of hypervisor 50, separate
from CSM 60, which intercepts VM exit events and selectively transters control to CSM 60 after

determining a reason and/or a type of each VM exit that occurred.

[0035] Fig. 2-B illustrates an alternative embodiment wherein computer security module 60
protects a guest VM 52¢ from outside the respective VM. In such embodiments, processor 12
may be configured to generate a virtualization exceptfen (instead of a VM exit event, as
described above in relation to Fig. 2-A) when a memory access violation occurs. In the
exemplary embodiment of Fig. 2-B, a virtualization exception handler 63 executes within
VM 82¢, for instance at the privilege level of an operating system 54¢, and is configured to

intercept virtualization exceptions and interface with CSM 60.

[0036] Communication between handler 63 and CSM 68 may proceed according to any inter-
process communication method known in the art. To transmit data from within the protected
VM to the level of hypervisor 50, some embodiments of handler 63 use a specialized instruction
(e.2.. VMCALL on Intel® platforms) to transfer control of processor 12 from the respective VM
to hypervisor 50. The data being transmitted may be placed by exception handler 63 n a
predetermined section of memory shared with CSM 60. To transmit data to handler 63, some
embodiments of CSM 60 may inject an interrupt into VM 52¢, the imterrupt handled by
handler 63. The respective data may be transferred again through the shared memory section

described above.

[0037] In vet another embodiment, illustrated 1n Fig. 2-C, both CSM 60 and handler 63 execute
within the protected VM, for instance in kernel mode (ning 0). Such embodiments may also
employ virtualization exceptions to detect memory access violations. Deciding between

configurations 2-A-B-C may comprise evaluating a trade-off between performance and security.

1i

1

|

20)

i3
L

N

0

5

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

VM exit events are relatively costly in terms of computation, typically requiring loading and/or
unloading of large data structures into/from memory with each exit and re-enfry cycle. Hence,
configurations such as 2-A may require more computation to intercept an event than
configurations such as 2-B-C. On the other hand, keeping critical security components such as
CSM 60 and handlers 61-63 outside the protected VM (as in examples 2-A-B) may strengthen

security, since it may be more difficult for malware executing within the respective VM 1o

mnterfere with the operation of such components.

[0038] To be able to protect a guest VM in a configuration as illustrated in Figs. 2-A-B (1.e.,
from outside the respective VM), some embodiments of CSM 60 employ address translation data
structures and/or address translation mechanisms of processor 12. Virtual machines typically
operate with a virtualized physical memory (see. e.g., memory 114 in Fig. 3), also known in the
art as guest-physical memory. Virtualized physical memory comprises an absiract representation
of the actual physical memory 14, for instance as a contiguous space of addresses, commonly
termed guest-physical addresses (GPA). Each such address space 1s uniquely attached to a guest
VM, with parts of said address space mapped to sections of physical memory 14 and/or physical
storage devices 20. In systems configured to support virtualization, such mapping is typically
achieved using hardwarc-accelerated, dedicated data structures and mechanisms controlled by
Processor '1.2; known as second level address translation (SLAT). Popular SLAT
implementations include extended page tables (EPT) on Intel® platforms, and rapid
virtualization indexing (RVI)/nested page tables (NPT) on AMD® platforms. in such systems,
virtualized physical memory may be partitioned in units known ia the art as pages, a page
representing the smallest unit of virtualized physical memory individually mapped to physical
memory via mechanisms such as EPT/NPT, i.c., mapping between physical and virtualized
physical memory is performed with page granularity. All pages iypically have a predetermined
size, e.g., 4 kilobytes, 2 megabytes, ectc. The partitioning of virtualized physical memory into
pages is usually configured by hypervisor 50. In some embodiments, hypervisor 38 also
configures the SLAT structures, and therefore configures address translation between physical
memory and virtualized phyvsical memory. Such address franslations are known i the art as

guest-physical to host-physical (GPA-to-HPA) transiations.

10

15

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0039] In some embodiments, the operating system executing within a VM sets up a virtual
memory space for each process executing within the respective VM, said virtual memory space
representing an abstraction of physical memory. Process virtual memory typically comprises a
contiguous space ot addresses, commonly known in the art as guest-virtual addresses (GVA) or
guest-linear addresses (GLA). In some embodiments, process virtual memory spaces are also
partitioned 1nto pages, such pages representing the smallest unit of virtual memory individually
mapped by the OS to the virtualized physical memory of the respective VM, ie., virtual to
virtualized-physical memory mapping 18 performed with page granularity. The OS may
configure a dedicated data structure, such as a page table, used by the virtualized processor of the
respective VM to perform guest virtual to guest physical, or GVA-10-GPA address translations.

[0040] Fig. 4 illustrates an exemplary memory address translation in the embodiment of Fig. 2-
A. Following exposure by hypervisor 30, guest VM 52a sees a virtualized physical memory
space 114a as 1ts own physical memory space. A process executing within guest VM 52a 18

assigned a virtual memory space 214a by guest OS 54a. When the process attempts to access

“memory at a guest-virtual address 62, GVA 62 is translated by the (virtualized) MMU of guest

VM 52a into a guest-physical address 64 within virtualized physical memory space 114a. GVA-
to-GPA translation 70a may proceed, for instance, according to page tables configured and
controlled by guest OS 34a. GPA 64 is further mapped by the MMU to a host-physical address
(HPA) 66 within physical memory 14 of host system 10. GPA-to-HPA translation 70b may

proceed, for instance, according to SLAT structures configured by hypervisor 50.

[0041] Each process executing below guest VMSs 52a-b is typically assigned a virtual memory
space addressable via what is known in the art as host-virtual addresses (HVA). In the example
of Fig. 4, hypervisor 50 sets up a virtual memory space 214b for computer security module 60.
CSM 60 may then reference HPA 66 via a HVA 68. When module 60 1s itegrated within
hypervisor 50, for instance as a library, memory space 214b may coincide with the virtual
memory space of hypervisor 50. To manage such spaces, hypervisor 58 may contigure dedicated
data structures and mechanisms (e.g. page tables) used by the MMU fto perform HVA-to-HPA

translations such as transiation 70c.

(N

10

15

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0042] In some embodiments, hypervisor 50 and/or CSM 60 may set access permissions for each
of a subset of physical memory pages. Such memory pages may be used, for instance, by certain
critical guest processes executing within a protected VM, such as processes of the OS and/or
anti-malware routines. Access permissions indicate, for instance, whether the respective page
may be read from and written to, and whether software is allowed to execute code from the
respective page. Access permissions may be indicated, for instance. as a part of the SLAT eniry
representing the respective memory page. Some host systems may allow setting access

permissions with sub-page eranularity.

[0043] Hypervisor 50 and/or CSM 60 may further configure processor 12 (o generate a VM
suspend event when software executing within a guest VM attempts 10 access memory in a
manner that violates access permissions (e.g., to write to a memory page marked as non-
writable). Such an attempt is hereby termed memory access violation. The respective VM
suspend event may be a VM exit event in configurations such as Fig. 2-A, and a virtualization

exception tn configurations such as Fig. 2-B-C.

[0044] Some embodiments of the present invention introduce changes to the structure and
functionality of a conventional hardware processor, to enable the processor to function more
efficiently in hardware wvirtualization configurations. Fig. 5 shows exemplary hardware
components of processor 12 according to some embodiments of the present invention. The
llustrated components are meant as generic devices performing the described functionality;
structural details may vary substantially among implementations. For instance, each illustrated
component may comprise muliiple interconnecied subsystems, not necessarily in physical
proximity to each other. The illustrated components are not exhaustive: processor 12 may
include many other components (e.g., scheduler, interrupt controller, various caches, etc.), which

were omitted from Fig. § to simplity presentation.

[0045] Processor 12 may include logic/circuitry configured to carry out various stages of a
processor pipeline. For instance, an instruction decoder 3§ performs instruction decoding
operations, which may include translating each processor instruction nto a set of elementary

processor operations and;or micro-ops. A set of execution units 36 connected to decoder 30 may

14

hn

10

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

perform the execution stage of the pipeline. Exemplary execution unit(s) 36 include, among

others, an arithmetic logic unit {ALU) and a tloating-pomnt unit (FPU).

[0046] In some embodiments, the execution stage of the pipeline for an instruction comprises
determining a result of applying an operator of the respective instruction to an operand of the

respective instruction. Such results may comprise, among others, a memory address, a value to

be committed to a memory address or to a processor register {e.g.. 10 a general purpose register

such as AX, a model-specific register - MSR, a control register such as EFLAGS, or a hidden
register such as the hidden part of an x86 segment register, also known as a descriptor cache), a

value of the instruction pointer (e.g., RIP), and a value of the stack pointer (e.g., RSP).

[0047] The operand(s) of an instruction may be explicit in the statement of the nstruction, or
may be implicit. An exempiary x86 instruction with implicit operands 18 the STC nstruction,
which sets the carry flag of the EFLAGS control register of the processor to 1. In some
embodiments, the register EFLAGS and the value 1 are interpreted as (implicit) operands,

although they do not appear explicitly in the statement of the STC 1nstruction.

[0048] A commit unit 38 may perform the commit stage of the pipeline, L.e., 10 store the output
of execution unit(s) 36 in memory 14 and/or to update the contents of certain processor registers
to reflect changes/results produced by the execution stage. Commit unit 38 may comprise logic

modules known 1a the art as refirement units.

[0049] A memory access module 34 connected to decoder 30 and execution unit(s) 36 includes
logic configured to interface with memory 14, e.g., to ferch instructions trom memory, to load
data from memory, and to store results of exccution of processor instructions to memory. In
some embodiments, memory access module comprises an MMU configured to perform the

virtual-to-physical address translations necessary for memory access.

(0050] Modern processors typically support out-of-order and/or speculative execution ot
processor instructions. In such systems, multiple instructions are concurrently fetched, decoded,
and executed by the same execution unit(s) 36. Results of such executions arc then committed
in-order, to preserve the intended flow of the respective computer program. Such configurations

are used, for instance. in conjunction with branch prediction algorithms, to enhance the

b

15

t»h

10

20

i\
AN

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

performance of processor 12. In some embodiments configured for out-of-order execution,
processor 12 may further comprise a dispatcher unit 32 coupled to decoder 30 and to execution
units 36, and a register tile 40 coupled to execution unit(s) 36 and commit unit 38. Dispatcher
unit 36 may schedule individual micro-ops for execution, and maintain a mapping associating
cach micro-op with it§ respective wnstruction, to control the order of execution and commit.
Register file 40 comprises an array of internal processor registers, organized, for instance, as a
reorder buffer. Register file 4§ may further comprise logic enabling dispatcher unit 36 10
associate a row of registers of file 40 to cach scheduled micro-op, an operation known in the art
as register renaming. In such configurations, each such row of registers may hold, for instance,
the values of the general purpose and/or status registers of processor 12, said values

corresponding to an intermediate stage of execution of a certain processor nstruction,

[0051] Processor 12 may further include a virtual machine control unit 38 configured to manage
virtual machine state data. In some embodiments, a virtual machine state object (VMSO)
comprises a data structure used internally by processor 12 to represent the current state of each
virtualized processor exposed on host system 10. Exemplary VMSOs include the virtual
machine control structure (VMUCS) on Intel® platforms, and the virtual machine control block
(VMCB) on AMD® platforms. VMSOs are typically set up by hypervisor S0 as part of
exposing each virtual machine. In some embodiments, processor 12 associates a region in

memory with each VMSQO, so that software may reference a specific VMSQO using a memory

address or pointer {(e.g.. VMCS pointer on Intel® platforms).

[0052] Each VMSO may comprise a guest state area and a host state area, the guest state arca
holding the CPU state of the respective guest VM, and the host state area storing the current state
of hypervisor 50. [n some embodiments, the guest-state area of the VMSO includes contents of
the control registers (e.g.., CRO, CR3, etc.), instruction pointer {(e.g., RIP), gencral-purpose
registers (e.g.. EAX, ECX, etc.), and status registers (e.g.. EFLAGS) of the virtual processor of
the respective guest VM, among others. The host state area of the VMSO may include a pointer
(e.g., an EPT pointer on Intel® platforms) to a SLLAT data structure configured for GPA-to-HPA

address translations for the respective guest VM.

16

N

10

20

25

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0053] In some embodiments, processor 12 may store a part of a VMSO within dedicated
internal registers/caches, while other parts of the respective VMSO may reside in memory. At
any given time, at most one VMSO (herein termed the current VMSO) may be loaded onto the
processor, tdentifying the virtual machine currently having control of processor 12. Modern
processors are typically configured for multithreading. In such configurations, physical
processor 12 may operate a plurahty ol cores, each core further comprising multiple logical
processors, wherein each logical processor may process an execution thread tndependently of,
and concurrently with, other fogical processors. Multiple logical processors may share some
hardwaré resources, for instance, a common MMU. In a mulisthreaded embodiment, a distinct

VMSO may be loaded onto each distinct logical processor.

[0054] When processor 12 switches from executing the respective VM to exccuting
hypervisor 50 (e.g., upon a VM exit), processor 12 may save the state of the respective VM 10
the guest state area of the current VMSO. When processor 12 switches from executing a first
VM to executing a second VM, the VMSO associated to the first VM is unloaded, and the
VMSO associated to the second VM is loaded onto the processor, the second VMSO becoming
the current VMSO. In some embodiments, such loading/unloading of VMSO data to/from
processor 12 18 pertormed by vi.rtual‘ machine conirol module 38. Module 38 may further carry

out the retrieval and/or saving of VMSO data from/to memory 14.

[0055] In some embodiments, processor 12 further comprises a suspend event register 44
connected to execution unit(s) 36 and/or to commit unit 38, and configured to store instruction-
specific data associated with a guest instruction, wherein execution of said guest instructions has
caused a VM suspend event (e.g., a VM exit or a virtualization exception). In some
embodiments, suspend event register 44 is an exposed register, accessible to software executing
on host system 19, i.e., data stored in register 44 may be readable by software such as security
module 60. [n one such example, suspend event register 44 includes a model-specilic register
(MSR) of processor 12. Some embodiments may restrict access o register 44 to a subset of
software objects, selected according to a criterion such as processor privilege (e.g., only ring -1
or root mode) or object type (e.g., only drivers). Some embodiments may restrict software

access to register 44 only to a subset of operations (e.g., read only).

17

N

10

20

23

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0056] Fig. 6 shows an exemplary set of fields of suspend event register 44 according to some
embodiments of the present invention. Register 44 may include a disassembly field 46a and an
execution result field 46b. Disassembly field 46a may store data resulting from disassembling

the respective guest instruction.

[(0057) Fig. 7 shows an assembly language representation 45 of an exemplary Intel® x86
processor instruction. The illustrated nstruction mstructs the processor to increment the content
register AX. The respective instruction is represented in memory as a machine code 47; the
translation between representations 45 and 47 s typically done by a compiler or assembler.
Machine code representation 47 has a generic form 48, comprising a sequence of encoding
fields 49a-f, which are specific to each ISA and/or to each family of processors. On Intel®

processors, such encoding fields include Prefix, Opcode, Mod R/M, SIB. Displacement, and

Immediate fields. Fig. 7 shows the instance of each encoding field for the given exemplary x86

instruction. In some ISAs, machine code representation 47 may have variable length, for
instance, some encoding fields may appear in the machine code representation of certam
instructions, but may not appear in the representation of other instructions. In the example of

Fig. 7, répresentation 47 lacks an Immediate encoding held.

[0058] In some embodiments, disassembling an instruction comprises parsing the machine code
representation of the instruction to identify individual instruction encoding fields, such as
fields 49a-f in Fig. 7. Disassembling may further comprise cxtracting the content of individual
encoding ficlds, and/or using such content to determine a set of semantic elements of the guest
instruction. Such semantic elements may include an operator (e.g., MOV, ADD, etc.) and an
operand (e.g., AX, [EBX+4"ECX+0x02]) of the instruction, among others. Instruction
disassembly may be carried out, at least in part, by instruction decoder 30 and/or by execution

unit(s) 36.

. -— g : i i - . i = .) . . . ; o i "._‘, v

[0059] In the example of Fig. 7, disassembling the 1Hustrated instruction may include identifying
the ADD operator and/or determining according to machine code 47 that the respective
instruction has two operands, that one of the operands is the content of the AX register, that the

second operand is a content of memory, and determining an expression (e.g.,

18

10

15

20

3w
> §

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

EBX+4*ECX+0x02) of the respective memory address. In some embodiments, disassembling

the instruction further comprises computing a memory address indicated by an operand of the

respective instruction (e.g., the value of the expression EBX+4*ECX+0x02). In another
example, wherein the guest instruction is a relative jump instruction (e.g., JMP $+10 on x86
platforms, represented in machine code as OXEB 0x08), disassembling the guest instruction may
comprise calculating an absolute memory address of the destination according to the address of

the guest instruction, to the length of the guest instruction, and/or to the size ot the relative jump.

* .

[0060] In some embodiments, disassembly field 46a of regisier 44 (Fig. 6) 18 contigured to store
a content of individual instruction encoding fields of the guest instruction, such as the Opcode,
Mod R/M, and SIB fields. Other exemplary content of field 46a includes an operator identifier
indicating the operator of the respective instruction, and an indicator of an operand of the
respective instruction. The operand indicator may further include an identitier of a processor
register (e.g., AX), and a flag indicating, for instance, whether the respective operand is the
content of a register or a content of memory. Disassembly field 46a may turther comprise a
fnemory address (e.g., GVA, GPA, and/or HPA) indicated by an operand. The structure of

disassembile field 46a may be ISA and/or plattorm-spectiic.

[0061] In some embodiments, execution resuit field 46b of suspend event register 44 may store
data indicative of a result of executing the respective processor nstruction. Such results may
include a value of a status register (e.g., FLAGS), a value of an mstruction pointer (¢.g., RIP),
and a value of a general purpose register (e.g.., EAX) resulting from executing the respective
instruction. Field 46b may further comprise a vaiue to be committed to memory as a result of
executing the respective instruction, a size of the respective value {e.g., byte, word, etc.) and/or a

memory address where the respective value 1s to be commutted.

[0062] In some embodiments, execution unit{s) 36 and/or commit unit 38 may be configured to
determine whether execution of a guest instruction causes a VM processor event (such as a VM
exit of virtualization exception), dnd when yes, to save instruction disassembly data to suspend
event register 44 before generating the respective event. Processor 12 may be turther configured
to delay the generation of the processor event until completion of the execution stage of the

respective guest instruction, and to save a result of executing the respective instruction to event

1Y

4

10

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

register 44 instead of committing such results to memory and/or {0 a general purpose register of
processor 12. To avoid committing results of such instructions, processor 12 may be configured
to generate the VM processor event before the commit stage of the pipeline for the respective

instruction. Such functionality will be further detailed below.

[0063] Fig. 8 shows a detailed, exemplary sequence of steps performed by processor 12 to
execute a guest instruction according to some embodiments of the present invention. Fig. 8
shows an embodiment, wherein processor 12 s configured to generatc a VM exit event 1n
response f0 a memory access violation. A skilled artisan will appreciate that the present
description may easily be moditied to cover an embodiment, which generates other VM suspend
events (such as a virtualization exception) instead of a VM exit event. “Guest instruction” 18 a
term used herein to denote a processor instructions forming part of a computer program

executing within a guest VM, such as VMs 52a-b in Fig. 2-A.

[0064] A step 302 attempts to fetch the guest instruction. When the fetch attempt fails, a
step 303 may determine w‘hether the failure is caused by a memory access violation (for instance,
when the guest instruction resides in a memory page marked as non-executable in a SLAT
structure of the guest VM), When no, in a step 306, processor 12 generaies a VM exit event and
transfers execution to an event handler, such as handler 61 in Fig. 2-A. When f{ailure to fetch the
guest instruction is caused by a memory access violation, such a failure may be indicative of 4
security program (e.g., anti-malware module) trying to protect a content of the respective
memory page. One exemplary memory section typically protected from execution in this
manner stores an execution stack of a guest process. Marking the stack as non-executable may
protect the guest process, for instance, from a stack exploit. In such situations, some
embodiments may re-attempt to fetch the guest nstruction, ignoring the respective memory
access permissions (step 305). In a step 307, the fetched guest instruction is marked with a
dedicated flag, to indicate that the respective instruction was “torce-fetched”, 1.e.. was fetched

while breaking memory access permissions. Processor 12 may then proceed to a step 308.

[0065] Following the fetch stage, siep 308 decodes and dispatches the guest instruction. In a
step 310, the guest instruction is launched into execution. When executing the guest instruction

satisfies a criterion for VM exit, wherein the criternion i1s not related to memory access,

20

10

1

20

N
w4

5

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

processor 12 proceeds to a step 322 detailed below. Such VM exits may be triggered in a variety
of situations. For instance, the guest instruction may be a specialized instruction, such as
VMCALL, which automatically tngger a VM exit event when called from within a guest VM.
Another exemplary reason for VM exit, which 1s not related to memory access, 18 the occurrence

of a hardware event (e.g.. an interrupt) during execution of the guest instruction.

[0066] When executing the guest instruction causes a memory access violation (for instance,

when the guest instruction instructs the processor t¢ write a result to @ memory page marked as

flushes the processor pipeline(s) and generates a VM suspend event (e.g. VMEXit). In contrast,
in some embodiments of the present invention, execution of the guest instruction 1s not
suspended. Instead, in a step 318, the VM exit event 1s delayed until the executton stage of the
pipeline for the guest instruction finishes. However, in some embodiments, the results of the
completed execution stage are not committed, as would happen in conventional systems.
Instead, in a step 320, processor 12 may instruct commit unit 38 to store the results of the
completed execution stage of the guest instruction in suspend event register 44. Such
functionality may be achieved, for instance, using an activation signal to switch commit unit 38
from committing results to memory and/or general purpose registers of processor 12, to storing
results in register 44 when a memory access violation has occurred. The control signal may
indicate whether execution of the guest instruction has caused a memory access violation.
Commit unit 38 may receive such a signal, for instance, from the MMU via memory access
module 34. In some embodiments, step 320 comprises commit unit 38 retrieving a result of

executing the guest instruction from register file 44,

[0067] In an alternative embodiment, instead of saving execution results of the guest instruction
to register 44, step 320 may save such resuits to a dedicated memory region, such as the guest
state area of the VMSO of the respective guest VM. In yet another embodunent, processor 12

may transmit such results to VM exit handler 61 upon executing the VM exit (step 306).

[0068] In a step 322, processor 12 may store data resulting from disassembling the guest
instruction to suspend event register 44 (and/or to memory as described above). In some

embodiments, step 322 includes writing a content of an individual encoding field of the guest

4

10

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

instruction to register 44, Instruction disassembly data may be produced by instruction
decoder 30 and/or execution unit(s) 36 in the process of decoding and/or executing the guest
instruction; step 322 mayv include retrieving such data from the respective processor module.
After storing execution results and/or disassembly data for the guest instruction, processor 12

may generate a VM exit event (step 306).

[0069] When execution of the current guest instruction proceeds without causing memory access
violations (step 314) and without non-memory related reasons for a VM exit (step 312), a
step 315 may determine whether the current guest instruction was force-fetched (see steps 305-
307 above). When no, a step 316 commits results of the execution to memory and/or {0 general
purpose processor registers. When the current guest instruction is force-fetched, some
embodiments may treat the respective instruction as an mstruction Causing & memory access
violation, i.e., by waiting for the respective instruction to complete the execution stage of the
pipeline, storing results and/or instruction disassembly data to register 44, before generating a

VM exit event (see steps 318-320-322-306 above).

[0070] Fig. 9 shows an exemplary sequence of steps performed by a guest VM and/or by
computer security module 60 (Figs. 2-A-B) according to some embodiments of the present
invention related to computer security. A guest process, such as an application (e.g.. 36a in
Fig. 2-A) or a process of the operating system (c.g., guest OS 34a in Fig. 2-A) may execute
within the guest VM, advancing stepwise through a sequence of guest instructions (step 332).
Execution of the guest process continues until a VM exit is generated, according, for instance, 10
a scenario described above in relation to Fig. 8. A skilled artisan may appreciate how the
description may be adapted to a system wherein processor 12 generates a virtualization exception
instead of a VM exit event, and wherein an exception handler executing within the guest VM

(e.g., handler 63 in Fig. 2-B) is configured to intercept the respective exception.

[0071] In a step 336, handler 61 intercepts the VM exit event, which 18 analyzed for evidence of
a security threat. When the event indicates a security threat (e.g., an operation executed with

malicious intent), in a step 340, CSM 60 may take protective action against the guest process

and/or against the guest VM. Such action may include, among others, blocking the execution of

b
i~

1

dot

b
2\

\W)Y

0

0

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

the guest process, returning an error message or a set of dummy results to the guest process, and

alerting an administrator of the host system.

[0072] When the VM exit event is not indicative of a security threat, a step 342 determines
whether the results of executing the guest instruction are available (either in event register 44 of
processor 12 or in memory). When no, CSM 60 advances to a step 348 detailed below. When
yes, a step 344 retrieves the respective results from register 44 and/or memory {(e.g., guest state
area of the VMSO of the respective guest VM). In a step 346, CSM 60 may apply the results of
executing the current guest instruction. In some embodiments, step 346 comprises a set of
operations carried out in conventional systems at the commit stage. For instance, step 346 may
include updating values of general purpose, control, and status processor registers of the
virtualized processor of the respective guest VM. In some embodiments, such regisiers are
accessible within the guest state area of the VMSO of the respective guest VM. Step 346 may
further include saving some results to memory addresses indicated by an operand of the current
guest instruction. Step 346 may further include incrementing the instruction pointer (e.g., RIP in

x86 platforms), to show that execution of the current guest instruction 1s complete.

[0073] Some embodiments of the present invention add a dedicated instruction to the current
instruction set architecture (ESA) of processor 12, the new instruction instructing processor 12 to
apply a result of execution of a guest instruction directly, from below the guest VM execuung
the respective guest instruction. The new instruction (an exemplary mnemonic is VMAPPLY)
may carry out operations of step 346 (Fig. 9), e.g., copy contents from suspend event register 44

to virtual registers of the virtualized processor of the respective guest VM and/or to memory.

[0074) In some embodiments, step 346 may further verify whether the current guest instruction

is an atomic instruction {e.g., as indicated by a LOCK prefix). When yes, nstead of applying

results directly to registers of the guest and/or to memory, step 346 may force a re-execution of

the current guest instruction upon returning to guest VM (see step 336 below).

[0075] When execution results of the current guest instruction are not available (for instance,
when the current VM exit was caused by a privileged instruction such as VMCALL), n a
step 348, computer security module 60 determines whether disassembly data is available for the
current guest instruction. When yes, in a step 338, CSM 60 may retrieve such data, for instance

23

10

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

from disassembly field 46a of register 44 (see e.g., Fig. 6). CSM 68 may then proceed to

emulate the current guest instruction according to the retrieved disassembly data (step 354).

[0076] When no disassembly data is available, a step 352 may disassemble the current guest
instruction before proceeding with emulation. In a step 386, CSM 60 may re-launch the
respective guest VM (e.g., by issuing a VMRESUME instruction on Intel® platforms). In some
embodiments wherein step 346 includes a modification of the instruction pointer, execution ot
the guest process will start with the processor instruction immediately foliowing the current
guest nstruction, or with a processor instruction indicated by the current guest instruction (e.g,.,

in the case of control flow-changing instructions such as JMP, CALL, etc.).

[0077] The exemplary systems and methods described above allow a host system, such as a
computer or a smartphone, to efficiently carry out computer security tasks when operating in a
hardware virtualization configuration. Security tasks may include, among others, protecting the
host system against malware such as computer viruses and spyware. In some embodiments, the
host system is configured to execute an operating system and a set of software applications
within a virtual machine. A security module may execute outside the respective virtual machine,
for instance at the level of a hypervisor, and may protect the respective virtual machine against

malware.

[0078] In some embodiments, the security module identifies a section of memory (e.g. a set of
memory pages) containing code and/or data which is critical 1o the security of the protected VM,

and configures access permissions for the respective section of memory. Such access

permissions may indicate, tfor instance, that the respective section of memory is non-writable

and/or non-executable. The security module may further configure the processor of the host
system to generate a VM suspend event (such as a VM exit or a virtualization exception) in
response to a memory access violation, e.g., when software execuling within the protected VM
attempts to write to a section of memory marked as non-writable, or 10 execute code trom a
section of memory marked as non-executable. The security module may then mtercept such
processor events via an event handler, and may determine whether such events are indicative ot a

computer security threat. In configurations wherein the security module executes outside the

‘AN

10

20

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

protected VM, the activity of the security module 1s potentially invisible (o software executing

within the protected VM, including malware.

[0079] In conventional systems, intercepting VM suspend events proceeds according to methods
generically known in the art as “trap-and-emulate”™. In one example of a conventional technique,
after determining which instruction caused the respective event (e.g., a VM exit). the anti-
malware program emulates the respective instruction before returning execution to the protected
VM, and modifies the instruction pointer to indicate that the respective instruction has already
been executed. Without the emulation step, returning execution to the protected VM would

typically re-trigger the VM exit, thus creating an infinite loop.

[0080] Conventional trap-and-emulate systems and methods may therefore require the anti-
malware program to 1nclude an instruction disassembler and/or an instruction emulator. Such
componenis may be complex to develop and maintain and may not be portable, for instance,
from one processor to another. Moreover, in conventional systems, the disassembly and/or

o a4 considerabie

&

emulation steps are typically carried out for every VM suspend event, placin
computational burden onto the host system. In contrast, some embodiments of the present
invention eliminate the nced for a disassembler and/or an emulator, substantially accelerating

computer security operations.

[0081] Some embodiments of the present invention introduce changes to the configuration and
operation of conventional processors, enabling such processors to operate more efficiently in

hardware virtualization configurations.

[0082] In some embodiments, the processor 18 configured to, in response {0 determining that a
condition for generating a VM suspend event is satisfied, to save disassembly data determined
for the currently executing guest instruction to a predetermined location, such as a specific
processor register or a specific memory area (e.g., the guest state area of a virtual machine state
object used by the hypervisor to manage execution of the protected VM). Such disassembly data
may include, for instance, indicators of an operator and an operand of the current guest
instruction. In one exemplary embodiment, disassembly data comprises contents of individual
encoding fields of the guest instruction, such as the opcode, mod R/M, and SIB tields, among

others.

o
1

Nh

10

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

[0083] Such improvements may be especially beneficial for computer security applications,
facilitating an efficient protection of a virtual machine from outside, ¢.g., from the level of a
hypervisor exposing the respective VM. When cempared to a conventional computer security
solution, some embodiments of the present invention allow a substantial reduction in
computation, by eliminating the instruction disassembly stage from the operation of security

software contigured to intercept and analyze VM exit events.

[0084] It will be clear to a skilled artisan that the above embodiments may be altered in many
ways without departing from the scope of the invention. Accordingly, the scope of the invention

should be determined by the following claims and their legal equivalents.

b

(2

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

CLAIMS

What is claimed is:

1. A host system comprising at least one hardware processor contigured to execute a virtual
machine and a computer security program, wherewmn the at least one processor 18 further
configured to:
determine whether executing a guest instruction within the virtual machine causes a

violation of a memory access permission; and

in response, when executing the guest instruction causes the violation:

write a part of a machine code representation of the guest instruction to a
predetermined location accessible to the computer security program:

suspend the execution of the guest instruction; and

1n responsé to suspending the execution of the guest instruction, switch to
executing the computer security program, wherein the computer security
program is configured to determine whether the violation 1s indicative of a

computer security threat.

2. The host system of claim 1, wherein the machine code representation comprises a
sequence of encoding fields, and wherein the part comprises a content of an

individual encoding field of the guest instruction.

3. The host system of claim 2, wherein the individual encoding field 18 selected
from a group consisting of a prefix field, an opcode 'field; a mod R/M field, a
SIB field, a displacement field, and an immediate ficld of the machine code
representation.
4. The host system of claim 1, wherein the part 18 indicative ot an operator ot the guest
Instruction.

27

(8

[

S

AW

8

AN

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

10.

11.

The host system of claim 1, wherein the part 1s indicative of an operand of the guest

instruction.

The host system of claim 1, wherein the at least one hardware processor is further
configured to, in response to determining whether executing the guest struction
causes the violation, when executing the guest instruction causes the violation, write a

memory address indicated by the guest instruction to the predetermined location.

7. The host system of claim 6, wherein the memory address 1S a guest-physical
address (GPA) located within a memory space of the virfual machine, the
GPA determined by translating a virtual address indicated by the machine

code representation.

8. The host system of claim 6, wherein the memory address 18 a host-phvsical
address (HPA) located within a physical memory of the host system, the HPA
determined by translating a virtual address indicated by the machine code

representation.

9. The host system of claum 6. wherein the memory address 1s determined

according to a memory location of the guest instruction.

The host system of claim 1, wherein the at least one hardware processor is further
configured to, in response to determining whether executing the guest instruction
causes the violation, when executing the guest instruction causes the violation, write a
indicator of a processor register to the predetermined location, the register indicated

by the guest instruction.

The host system of claim 1, wherein the computer security program executes within

the virtual machine.

28

O

I

9

10

i1

12

14
15

16

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

12. The host system of claim 1, wherein the computer security program executes outside
the virtual machine.

13, The host system of claim 1, wherein the predetermined location comprises a
predetermned register of the at least one hardware processor.
14. The host system of claim 13, wherein the predetermined register is a model-

specific register (MSR) of the at least one hardware processor.

15. The host system of claim 1, wherein the predetermined location comprises a
predetermined section of a memory of the host system.

16. The host system of claim 1, wherein the predetermined location comprises a data

17.

structure indicative of a current state of the virtual machine.

A method of protecting a host system {rom computer security threats, the method
comprising:
in response to receiving a guest insiruction for execution, employing at least one
hardware processor of the host system to determine whether executing the guest
instruction causes a violation of a memory access permission, wherein the guest
instruction executes within a virtual machine exposed by the host system; and
in response to determining whether the guest instruction causes the violation, when
execufing the guest instruction causes the violation:
employing the at least one hardware processor to write a part of a machine code
representation of the guest struction to a predetermined location
accessible to the computer security program;
employing the at least one hardware processor to suspend the execution of the
ouest instruction; and
in response to suspending the execution of the guest instruction, switching to
executing a computer security program configured to determine whether

the violation 18 indicative of a computer security threat.

29

17

2

e

15
16

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008
18. The method of claim 17, wherein the machine code representation comprises a

19.

20).

sequence Of encoding fields, and wherein the part comprises a content of an

individual encoding field of the guest instruction.

The method of claim 17, wherein the part is indicative of an operator of the guest

instruction.

The method of claim 17, wherein the part i indicative of an operand of the guest

instruction.

The method of claim 17, wherein the predetermined location comprises a

predetermined register of the at least one hardware processor.

At least one hardware processor of a host system, the at least one hardware processor

configurable to:

in response to receiving a guest instruction for execution, determine whether executing
the guest instruction causes a violation of a memory access permission, wherein
the guest instruction executes within a guest virtual machine exposed by the host
system: and |
in response to determining whether the guest instruction causes the violation, when
executing the guest instruction causes the violation:
write a part of a machine code representation of the guest instruction to a
predetermined location accessible to the computer security program;
suspend the execution of the guest instruction; and
in response to suspending the execution of the guest instruction, Switch to
executing a computer security program, wherein the computer Security
program is configured to determine whether the violation 1s indicative of a

computer security threat.

9
10
11
12
13

14

16

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

23.

A non-transitory computer-readable medium storing instructions which, when exccuted
by at least one hardware processor of a host system, cause the host system to form a
computer security program configured 1o determine whether a violation of a memory

access permission 1s indicative of a computer security threat, and wherein the at least one

hardware processor 18 configurable to:

in response to receiving a guest instruction for exccution, determine whether executing
the guest mnstruction causes the violation, wherein the guest mstruction executes

within a virtual machine exposed by the host system; and

in response to determining whether the guest mstruction causes the violation, when

executing the guest instruction causes the violation:

write a part of a machine code representation of the guest instruction to a
predetermined location accessible to the computer security program;

suspend the execution of the guest instruction: and

in response to suspending the execution of the guest instruction, switch to

executing the computer securtty program.

31

CA 02954510 2017-01-06

WO 2016/118032 | PCT/R0O2015/050008

1/8

A A - pp '? !)

- ¢
A

Processor

16

Comroller

Inpurt devices
| bty

Ve
20

Nerwork

Srorage devices
S adapter(s)

Host system e

FIG. 1

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

324 820

4 4

Cruest virtual machine -‘ FCruest virtual machine

;204

e 5{/}1")

Craest OS8

50

Computer
securicy module (CSMY

OXIT
event handler

Vv

Hypervisor o

Host system hargware

10

~

F I C} . .Z - z\

/ | Guest virtual machine s ohe
>2¢ i

4¥e -

Guest O8

| Computer
Hyvpervisor

security module (CSM)

Host system hardware

10

FlG. 2-B

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

3/8

(uest virtual machine ,oGe -

S

Computer
security module {CSM)
Gruest OS |

Virt. exceprion handler

Flvpervisor

T T RN S 1S ." - "'v . . Fo
Host sveram haradware

FIG. 2-C

112 124 — 114

Virtuahized

Virtuahized
PrOCESSOT

MeEMmory

Virtuabized :

Virouahzed
output devices

Virmalized
input devices

conrroller
huab

Virtualized
neow., a(ilaptm*{s}_ -

Guest VM O\

Virtualized

StoTage devices

F1G. 3

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

4/8

Guest VM 1

Guest OS _

Process virtual
MEMmory

Virtwalized
physical memorty

----- - e rlost system - physical machine

v

W
-
w_

CSM

virtual memory

. \\i
ey’
!

—
YIRS e o

28
\./\
N g
Fady \J
. . ‘-\ ~
™ o -_4 p&4) . AI":_U v . A ,.'_! Y =y g rA L, 3
:', i <
. 3
- .
»
: ‘ £ ¥ 1
A I a
Yy 9 .
L :
- bl Fhts i T VR, . o . .
S
\\

- 06

m.—om_q——s—-u-nmmwn—vﬂﬁf
v . ,)

hwme‘ -

Fi(s 4

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

5/8

Instrac- |

Susp end

non Reo
%))1' . r. "’. = Ty e -, Y &7)
IRCHSTCE event

decoder |

1) i$pfi tcher

Ut tHile et b g e
‘ ‘ reTister

Memory
ACCESS |
module

30

Execution wrt{s]] Commit unit

2
P & f
N

Virtual machine
control module |

Processor - 47

F1G. 5

WO 2016/118032

CA 02954510 2017-01-06

6/8

Instruction Operator

encoding freld(s) |

| - P Operand(s)
entitier | a

YAdrege e

= SWOOTESK ¢S 3
{(-\ "‘s F _
i SO . NP A

FLAGS Value

F1G., 6

_—— ADD [EBX + 4*ECX + 0x02}, AX
/ i

45 l 4

0x66 0x01 Oxd44 OXB% 0x02 ="

uYJ P 48

™

Opcode Immediate

492 /

4'{“)(.:1 ’ () o 4() { ’

PCT/R0O2015/050008

CA 02954510 2017-01-06

WO 2016/118032

Attempt to tetch
guest INSIruction

X

eteh Y

PCT/R0O2015/050008

Gienerare VM exit event

306 -

Fetch \
7 tailed because ot

attempt fails

. —a
\ Q
—

Decode and dispatch

SLAT permission
’ vigiation?y

YES
betch guest instructon
noring SLAT permussions

Mark guest instruction as

guest Instruction

Attempt 1o execute
guest Mstrucion

VM exit
condinon sanstied
(not memotry
related)?

Y S

.
-
~
: ‘-(-
} .
L] -
.
v

Fxecution
and/or commitung
the results causes
MEMOTY ACCCSS
violatton?

NO

Cruest instr,
marked as force-
tetched?

tgr=—y “
YES
.
e

torce-tetchea

Save cdisassembly data

TO Susp cnd event register

Save execution result(s)

M
.
-

to suspend event register

| Complete execution stage of
guest INsructon

'n-vv.ﬁ we®

~

10

),

E Commit resuits of
| CLEST IMstruction

CA 02954510 2017-01-06

WO 2016/118032 PCT/R0O2015/050008

254

VM Exit
events

336

VM exit .
event indicauve ot
sceurity threat?

YES Take protecnve action |]
AZAMISE GUEST PLOCESS
)I . = o
and/or guest VM

WP
42
N
S

14

.....

results of current
FUest MSITuction are
avariabler

Retrieve exec. resalts o
CUrtent gucst s recton o
§
|

— . : f - P ot T g N 3, .,‘. o b
346 | Apph execuon resul s ot |
current guest mstrucuon | 3

Disassémbiy ™
data ot current
guest MStrucion are
avaiiable?

Retrieve disassembly data ot
current guest (NSruchion

Emulate
CHTTENT St mstraciion

isassembie

Currenit guest mstructon

16

Ve
20

A AN - -‘? _’)

Iy

Processor

Inpurt devices

Storage devices

Corroller
by

Host system

FIG. 1

Network
adapter(s;

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - abstract drawing

