
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0358492 A1

Kortemeyer et al.

US 201603.58492A1

(43) Pub. Date: Dec. 8, 2016

(54)

(71)

(72)

(21)

(22)

(62)

(60)

SYSTEMAND METHOD FOR PREPARING
AND DELVERING INFORMATIONAL
CONTENT

Applicant: Board of Trustees of Michigan State
University, East Lansing, MI (US)

Inventors: Gerd Kortemeyer, East Lansing, MI
(US); Wolfgang Bauer, East Lansing,
MI (US)

Appl. No.: 15/242,729

Filed: Aug. 22, 2016

Related U.S. Application Data
Division of application No. 13/775,862, filed on Feb.
25, 2013, now Pat. No. 9,424,565, which is a division
of application No. 10/130,864, filed on Nov. 4, 2002,
now Pat. No. 8,504,482, filed as application No.
PCT/US00/24943 on Sep. 12, 2000.
Provisional application No. 60/167.887, filed on Nov.
26, 1999.

Publication Classification

(51) Int. Cl.
G09B 5/2 (2006.01)
G09B 5/06 (2006.01)

(52) U.S. Cl.
CPC G09B 5/12 (2013.01); G09B 5/065

(2013.01)
(57) ABSTRACT
At least one content publishing server having a memory
storing a map data structure configured by a content author
which defines relationships among plural resources and
thereby define an informational item of higher granularity
content. Each of the plural resources are associated with a
first electronic file linked to said map data structure and
configured to store information about the usage of the
associated resource. Higher granularity content is associated
with a second electronic file linked to said map data structure
configured to store information about the usage of the higher
granularity content. The server which delivers the informa
tional item to a computer gathers feedback usage informa
tion reflecting how the higher granularity content and indi
vidual ones of the plural resources are used by users. The
server updates the electronic files in accordance with the
feedback usage information.

Library
Server

A

Modify resource on
Access instructor's horre
Server Sw

Replicate
Sces structor

Skiwe <> problem

PG
learners

offline

update records on learner's
hone server

O
O

Patent Application Publication Dec. 8, 2016 Sheet 1 of 21 US 2016/03.58492 A1

^ \ Networx
N- x

:::::::::

Fig. 1 - Overview of Network

Patent Application Publication Dec. 8, 2016 Sheet 2 of 21 US 2016/03.58492 A1

Client
logged into Server C
Server B is home server

-

:

Session D3a Records

Fig. 2A - Overview of Network Communication

Patent Application Publication Dec. 8, 2016 Sheet 3 of 21 US 2016/03.58492 A1

msul 1
msua1:
misul2:
msua2 :
hubill 4
hub.15
hubill 6
huba2O
huba21
huba22
hub a 23
hub. 25
huba 27

S

S

IS

IS

: hub :
: hub
: hub
: hub :
: hub
: hub
: hub:

er : library: hubs 128-pc
: Other : access: hubs 128-pc-27. Cl. m.su.edu: 35.8. 116. 47
: Oth

access: hubs 128-pc-23

ibrary : Zaphod. lite.msu.edu: 35.8. 63.51
ccess: agrajag. lite.msu.edu: 35.8. 63.68
ibrary : frootnig. lite. m.su.edu: 35.8. 63. 69
ccess : bistromath .. lite.msu.edu: 35.8. 63.67
library: hubs 128-pc-14 ... cl. m.su.edu: 35.8. 116. 34

: library: hubs 128-pc-15. cl. m.su.edu: 35.8. 116. 35
: library: hubs 128-pc-16. cl. m.su.edu: 35.8. 116.36
access: hubs 128-p C-2O.

: access: hubs 128-p C-21.
: access: hubs 128-pc-22.

. Cl
25

.msu.edu: 35.8. 116. 40

.msu.edu: 35.8. 116. 41

.msu.edu: 35.8. 116. 42

.msu.edu: 35.8. 116. 43

. Cl. msu.edu: 35.8. 116. 45

Fig. 2B - Example of Hosts Lookup Table

10,000 Pings

2 4 6 8
Processes

Fig. 2C- Benchmark on Parallelism of Server-Server Communication (no disk
acceSS)

Patent Application Publication Dec. 8, 2016 Sheet 4 of 21 US 2016/03.58492 A1

10000 put

g - dSeries

Series
Series.

-j- Series

8

S3Series.4
8

:

H-e- i- on Series:8 :
k

O r “r r r r r

Processes

Fig. 2D - Benchmark on Parallelism of Server-Server Communication (with disk
access as in Fig. 2A)

Patent Application Publication Dec. 8, 2016 Sheet 5 of 21

Request for URL

US 2016/03.58492 A1

Dynamic Resource Replication
Server A

Fa
R T

locally present?

Library Server in the
Author's domai age

Send Ouery if
inne Server

D2b

eos author at do rain

Was HomeServer?

ird cre
server of

resource author

Subscribe to URL :

?e O SS soonS
A PRequest for

DSa

ransfer could
F complete? O6

N-T
Rename Transfer File to URL

Error ok
Fig. 3A - Dynamic Resource Replication, Subscription

Home Server

Register Subscription
of JR for Server A

s Sf D
Send data for
unprocessed URL

O3.

DSC

Patent Application Publication Dec. 8, 2016 Sheet 6 of 21 US 2016/03.58492 A1

Dynamic Resource Replication
Author publishes
modified resource

Home
Server

For each
serve? which is

Server a' subscribed to the

Receive and acknowledge Send update
N/ UN notification
Wis

URL accessed
recently U2

Delete local cop

Unsubscribe to URL N-T
U3b Delete Subscription

of JR for Server
U3

Send HTTP request, store
incoming data in transfer file 1 X Allowed?

U4a V NT U4b

fansfer could 3. /fe 2C Send data for
complete US IO 2. unprocessed URL

T U4

Rename Transfer File to URL
U6

See

Fig. 3B - Dynamic Resource Replication, modification

Patent Application Publication Dec. 8, 2016 Sheet 7 of 21 US 2016/03.58492 A1

eace {

Fig. 4 - Illustration of Resource Assembly

Patent Application Publication Dec. 8, 2016 Sheet 8 of 21 US 2016/03.58492 A1

Fig. 5A - Example, Graphical User Interface of Resource Assembly Tool

Patent Application Publication Dec. 8, 2016 Sheet 9 of 21 US 2016/03.58492 A1

File Edit View Go Communicator Help

Bookmarks & Location. what's Related n
8

Toggle Display Mode Zoorn Out 200r1. In
Condense Straighten Revet Undo Redo Store Condition (Blocking This Link)

From Physical Units Test
to Motion in One Dimension

(click to edit)

Fig. SB – Example, Graphical User Interface of Resource Assembly Tool

Patent Application Publication Dec. 8, 2016 Sheet 10 of 21 US 2016/0358492 A1

Iox

st Bookmarks & Location. what's Related n

Toggle Display Mode 200m Out 200m In
Condense Straighter Resert Undo Red Store Link

From Physical Units Refresher
to Physical Units Test
Delete Link
Insert Resource Into Link
Done

Fig. 5C - Example, Graphical User Interface of Resource Assembly Tool

Patent Application Publication Dec. 8, 2016 Sheet 11 of 21 US 2016/03.58492 A1

ids."
we coe. ht'

s: "Start"> < fic egources

src="" type="finish"
inish"> < r source>

<res Circe i.
3rcas"/res/rcs/korte/testa / nits. proben."
types"rnandatory"
titles "Physical Units Test"> <A resource>

Kresorce ics"9"
srcs" fres/rns / korte/chapters / cred in
titles' viction in One :) margi on "> <A resci

Kiss cle i? a

fires frisufbauer / bridges/units, secuence"
- "Physical. Jinits Refresh sir"> < resourcs

<osition is: '9"
type= "stop."
Wales' se ... assssssse its

</condition
Ik rice'' os "6" is a 3.

<k frogs: '8" to: '' icos' 3"> <Aiki>
<iik Erotis. "&" Q: "i"> <Airks
<irk frons' ' toss' 6"></inki>

raps

s solved">

Fig. 6- XML representation of the map in Fig. 5C (non-graphical information
only).

Patent Application Publication Dec. 8, 2016 Sheet 13 of 21 US 2016/0358492 A1

s" Star-t" (A resoir C
ei"Finish"><resource>
w : Apartilita O. intii."

is
ics' 2

s:... ca." A res ins: Ako
rt. Odiction"> KArcs cric

is ?ko: te Aparts ?oa tidir. Xi" tit.
insu/korte tests part 3. p. of ea."

C t Srg: "Are:
ides "2" site'?
ics" 3 sr
ic." 9.
is a

<condition id-'47" tyg
value is "user . assessents this fasu/korte/tests/arti... proble . statis is ovec">
</cordition>

{{Cition is 48.'
values" user . assessments
</codic s

id: '49" types "stop"
user . assessets th

2. c

c

--

his first ?acritief tests ?part 2. Iroken. Statists solved.">

> <Ara sourcs
sh"> <A resource
Rei"> <, resource>

id="1" srce " '' types "stazrt 1" titi
id: "2" sic: " " type: "finish' tit

st 5' 'Ares/irst si:it: fr. 3 Ce Car
is "3" srae" fres, 1st Sitify asthi

it st" "/res/ast saith, toos
<res). Ce id="5" s fres, as a slaiti accelerate lin"></resource>
{{Cition is: 4'

'ser. Sissessents
<Cicilitici de' 4"

e..."Fini
ar. J. C.

t"> <Ara scuroax

... as th/racecar problem. status - solved"> <A condition:

value See - Arace car. problem. answer
<c indi. c. 42'

value - "user . as sessiet Sili) is . iisu si:ii) frace car. . . Cle
<codilti
values's
R. floi='.

n id="43" types "stop"
is . Anisustaith race car. proce:n. a. ?.swe

cs: 8' cock
is 5 conditions"

ink.
fron: 8" to."2" - A
fron" S' icy." 2 " & fink
frcis's tos' 2" colors' AO's ?k

Fig. 7C - Example of a page (summary. page)

Patent Application Publication Dec. 8, 2016 Sheet 14 of 21 US 2016/0358492 A1

:::::::::::::::::::

*:::::::::::::::::::

Caioadmapri
3 & 8. s

K. Cai Exacerote with
^ s&S.X. -iss star- "true", resource of

st3 esource, 3rd
y processed ist

it.

Function simplify expression
return simplified ruitivaiue bogiear expression

:

Fig. 8 - Flow chart of the course initialization routine run when a learner first
accesses a course during a Session (see Figs. 9A and 1A for the procedures
loadmap and tracer oute)

Patent Application Publication Dec. 8, 2016 Sheet 15 of 21 US 2016/0358492 A1

Global Variables: Initialize Course for Learner
map counter integer
link conditions - array
resource properties - hash

Procedure loadmap(URL)
Already

processed this
map?

f

Open map file
N- 3

Anoth T

<Ext) Read entry, -> <ed.
f

return ReSource Condition Link

Store properties under Store properties under Store properties under
a resource D a conditionID a linkiD

N. 7 O N. 12
F s Store link Register link as

SO - property of originating
map 8 Condition resource)

U N. L3
Recursive call Register link as property of destination
tO loadmap resourceD
with map URL 14

9

Fig. 9A - Flow chart of procedure loadmap

Patent Application Publication Dec. 8, 2016 Sheet 16 of 21 US 2016/03.58492 A1

ids fres/msu/korte/chapters/applications.sequence: .58
ids fres/msufkorte/parts/part 1, sequence: .9
ids fres/msufkorte/parts/part dir.xn: 2.6
ids fresfmsufkorte/parts/part intro.html: 2.5
ids fresfmsufkorte/parts/part2.sequence: .. 5
ids freshmsufkorte/parts/summary, page: 2.24
ids freshms/korte/refresh/refresher.sequence: 20
ids freshmsu/korte/refresh/review.sequence: $.36
ids freshmsufkorte?tests/final.sequence: 1.29
ids fres/msufkortef tests/midterm.sequence: . . .
ids fres/msu/kortef tests/part ..problem: 2.2
ids fres/msufkorted tests/part{2.problem: 2.19
ids fres/msufkoftef tests/parti3.problem: 2.13
ids fres/msu/korte?tests/pretest.problem: .5
ids fres/msufsmith/accelerate.html: 3,5
ids fres/msufsmithfracecar, problem: 3.5
ids fresfmsufsmith?too fast.html: 3.6
ids fresfmsufsmith?tooslow.html: 3.8

map start fres/msu/kortel foo.course: 1.
map start fres/msu/korted parts/part, sequence: 2.
map start fresfmsufkorte/parts/summary page: 3.1

map finish fres/msu/korteffoo.course: .2
map finish fres/insufkorte/parts/patti, Sequence; 2.2
map finish dres?msu/korte/parts/sunnmary.page: 3.2

title I: Midtern
title 5: Part 2
title 120; Refresher
title 129: Final Exam
title 1.36: Review
title 1.5: Pretest
title 1.58: Applications
title.9: Part
title 2.2: Problem
title 2.13: Problem 3
title 2.19: Problem 2
title 2.24: Summary
title 2.5: Part introduction
title 2.6; Directions

(.)

Fig.9B - Dump of the resource properties hash. Excerpt of the resource properties
gathered in procedure loadmap

Patent Application Publication Dec. 8, 2016 Sheet 17 of 21 US 2016/0358492 A1

O. E. 1: .
to 1.11: 1.3, 1.7.1.12
to 1.15: 1.10
O 1.20: 1.6
o .29: .11
to 1.36: 1.8, 1.9
to 1.5: I.4, 1.5
O 9: I.2
to 2. 1: 2.2
to 2.12: 2.6
O 2.13: 2.8
o 2.19: 2.7
o 2.24: 2.9
o 2.5: 2.1
o 2.6: 2.3.2.42.5

3 5: 3 2. 3 3 3 .4, 3 8
6: 3.5
.8: 3.6

from . . .29, 1.2
from 1.15: 1.3
from 1.2: ... I
from 1.20: .5
from 1.29: 1.10
from .36: E.7
from 1.5: I. 1, 1.6
from 19: 14, 1.8
from 2.12: 2.3
from 2.13: 2.4
from 2. 19: 2.5
from 2.2: 2.9
from 2.24: 2.6.2.7.2.8
from 2.5: 2.2
from 2.6: 2.1
from 3.5:3.4
from 3.2: 3.5.3.6.3.7,3.8
from 3.5: 3.1
from 3.6: 3.2
from 3.8: 3.3

Fig. 9C - Dump of the resource properties hash. Excerpt of information gathered
about links between resources in Subroutine loadmap.

Patent Application Publication Dec. 8, 2016 Sheet 18 of 21 US 2016/0358492 A1

goes to 1. : 1.5 coines from . . . undercond. 1: 0
goesto 1.10: .29 comestrom . O: .. 5 undercond .10: ()
goesto. . . .2 connesfrom29 undercond 2.1 : 70
goes to 1.12; i. connesfrom . 2: ... undercond.12: O
goesto 1.2: 1. connesfrom .2: .9 undercond .2: ()
goesto 1.3: 1.15 connesfrom .3: , undercond .3: 1.30
goes to 1.4: 1.9 comes from .4: .5 undercond 4:1. 9
goesto 1.5: 1.20 comesfrom .5: .5 undercond 5:0
goesto 1.6: 1.5 comesfrom E.6: .20 undercond 6:0
goes to 1.7: 1.36 connesfrom 7: . . undercond .7: 1.43
goesto 1.8: 1.9 comes from 1.8: .36 undercond 2.8: 0
goesto 1.9: 1.1 connesfrom 9: 36 undercond 9:0
goes to 2. 1: 2.6 connesfrom 2.2: 2.5 undercond 2. 1: ()
goesto 2.2: 2.5 connes from 2.2: 2. undercond 2.2: 0
goesto 2.3: 2.2 connesfrom 2.3: 2.6 undercond 2.3: ()
goes to 2.4: 2.13 connes from 2.4: 2.6 Lindercond 2.4:0
goes to 2.5: 2.19 connesfrom 2.5: 2.6 undercond 2.5: 0
goes to 2.6; 2.24 connesfrom 2.6; 2.2 undercond 2.6: 2.47
goes to 2.7: 2.24 comes from 2.7: 2.19 undercond 2.7: 2.48
goes to 2.8; 2.24 connesfrom 2.8: 2.13 undercond 2,8; 2.49
goes to 2.9: 2.2 comesfrom 2.9: 2.24 undercond 2,9: 0
goes to 3. : 3.5 comesfrom 3.3 : 3. undercond 3, 1: ()
goes to 3.2: 3,6 comes from 3.2: 3.5 undercond 3,2: 3,4}.
goes to 3.3: 3.8 comes from 3.3: 3.5 undercond 3,3: 3.42
goes to 3.4: 3, 15 comes from 3.4: 3.5 undercond 3.4: 3,43
goes to 3.5: 3.2 comes from 3.5: 3,6 undercond 3.5: O
goes to 3.6: 3.2 comes from 3.6: 3.8 undercond 3.6: 0
goes to 3.7: 3.2 comes from 3.7: 3.5 undercond 3.7: 0
goes to 3.8: 3.2 comes from 3.8: 3.5 undercond 3.8: 3.40

condid 1.19: 8
Condid .30: 9
condid .43: 0
condid 70: 1
condid 2.47: 5
condid 2,48: 6
condid 2,49: 7
condid 3,40:
condid 3,4}: 2
condid 3,42: 3
condid 3,43: 4

Fig. 9D - Dump of the resource properties hash. Excerpt of information gathered
about links and link conditions between resources in Subroutine loadmap.

Patent Application Publication Dec. 8, 2016 Sheet 19 of 21 US 2016/0358492 A1

0 : true:normal
1 : user.assessments this./msu/smithfracecar problem.status=Solved:force
2 : user.assessments this./.msu./Smith/racecar.problem.answer-friction:stop
3 : user.assessments this.fmsufsmith/racecar problem.answer=sliding:stop
4 : user.assessments this.?msu/smithfracecar problem.answer-nonconstant:stop
5 : user.assessments this./.msu/korte/tests/part 1 problem.status=Solved:stop
6 : user.assessments this.fmsu/korte?tests/partl2.problem.status=Solved:stop
7 : user.assessments this../msu/korte/tests/part3.problem.status-solved:stop
8 : user.assessments this.fmsu/korte/tests/pretest.problem.status-solved:stop
9 : user.assessments this.fmsu/korte/tests/midterm.sequence percent>60:stop
10 : user.assessments this./.msu/korte/tests/midterm.sequence-percent<10:force

1 : user.assessments this.fmsu/korte/tests/final. sequence percent>60:stop

Fig. 10 - Excerpt of the dump of the condition array constructed in procedure
loadmap

Patent Application Publication Dec. 8, 2016 Sheet 20 of 21 US 2016/0358492 A1

w:

... initialize Course for Learner ::::::::::::::::::::::::

y^
xxx888: 8xxx8

K. :::::::::::: ^
Y

8:88x3:38:888. 8:

Fig. 11A - Flow chart of procedure traceroute

Patent Application Publication Dec. 8, 2016 Sheet 21 of 21 US 2016/0358492 A1

4.

conditions 2.5: 8
conditions 2.6: 8
conditions 3.} : ((8&5)8(8&7):(8&6))

Fig. 11B - Dump of resource properties hash. Excerpt of cumulative link
conditions to reach a certain resource.

US 2016/03.58492 A1

SYSTEMAND METHOD FOR PREPARING
AND DELVERING INFORMATIONAL

CONTENT

FIELD OF THE INVENTION

0001. This invention relates to a system and method for
interactive, adaptive, customized and individualized com
puter-assisted instruction of students, preferably imple
mented on network connected computers. More particularly,
the system and method comprises i) an assembly tool for
bringing diverse educational resources together to create
customized course material for the instruction of students
and ii) a replication element to update each resource and
assure access to each updated resource. The system and
method of the present invention responds to the instructor's
creativity, allowing the instructor to shape and control the
instructional materials and process.

BACKGROUND OF THE INVENTION

0002 The application of computers in education has been
limited by several problems, including a) a failure to provide
systems that adapt to new advances in course material
caused by technological developments, b) a failure to permit
customized design of instructional information by the
teacher, and c) a failure to integrate systems effectively into
the existing curriculum.
0003 Current approaches merely sequence students
through pre-packaged educational materials. These systems
do not provide any means for gathering or using more
comprehensive information from outside sources. Conse
quently, the educational materials are relatively static and
outdated resulting in course of limited to poor quality.
0004 Computer assisted instruction systems have
ignored or under-utilized such important developments in
computer technology in recent years as client-server systems
and networking systems. Though now an active field with a
wide spectrum of activities from research to commercial
applications, application of dynamic on-line systems in
educational, instructional and homework tasks is only just
starting to be explored.
0005 What is needed is a computer-driven system that
adapts to new information, allows for new information to be
readily utilized by an instructor, so that the instructor can
integrate new information into the existing curriculum.

SUMMARY OF THE INVENTION

0006. The present invention contemplates a system and
method for computer-assisted education, comprising a
Resource Assembly Tool (RAT) and a Dynamic Resource
Replication (DRR) element. The RAT provides a graphical
user interface inside of a standard web browser. The inter
face consists of a plurality (e.g. two or more) browser
windows. In one embodiment, a first browser widow is
configured as resizable with a frameset that contains the
menu and the map under construction, and a second multi
purpose non-resizable window that displays information and
input forms. Once a new map is started, the author can then
enlarge the map area and insert resources into it. These
resources may be identified by URL or simple network
browsing or searching metadata Sources. Once resources
have been located they are connected together using the link
mode of the RAT.

Dec. 8, 2016

0007 Rather complex maps can be generated using the
RAT. These are different from binary trees, both because
branches can loop back, and because branches can be
re-united. Additionally, maps that are not created by the RAT
are accessible by the RAT with the resultant generation of a
graphical layout of the map. The RAT then provides the
integration of several maps, thus creating nested maps. A
course can easily contain several hundred of these nested
maps. Due to the inherent complexity of this arrangement all
maps and conditions are compiled into a pre-processed
binary data structure at the start of a session.
0008. The delivery system for these resources consists of
a distributed network of servers. While each author has a
so-called home server which holds the authoritative copy of
all resources published by that author, all servers in the
network can host sessions utilizing these resources. DRR is
designed to prevent overload situations on any one server in
the network, as well as to avoid single points of failure in the
network. Replication processes between servers in the net
work are triggered in two situations: i) a user wants to
retrieve a resource from a server in the network which is not
locally present on that server; ii) an author publishes a new
version of a resource. In the first case, after localizing the
author's home server and a series of authentication steps, the
session-hosting server Subscribes to the resource and repli
cates it to a local copy. In the latter case, all Subscribed
servers are notified that a new version is present, and
according to a decision algorithm either replicate the new
version or unsubscribe from it.

0009. As the RAT allows an author to assemble resources
from across the network into consistent presentations, the
DRR mechanism was found to be capable of ensuring the
integrity of Such presentations even if parts of the network
are down, inaccessible or overloaded. The dynamic nature of
the DRR allows for just-in-time just-enough replication of
resources and thus is different from caches, which are not
updated when a resource changes, and Static replication
mechanisms implemented in many databases which only
allow for non-discriminate replication of predefined chunks
of data at prespecified times.
(0010. The characteristics of the DRR allow extremely
large server networks to operate together without risk of a
network failure. The selective replication capability of the
DRR of the specific file requested by RAT limits the required
memory, transmission time, and does not require the users
computer to interact with the complete database of the
Library server.
0011 Thus, the present invention contemplates, in one
embodiment, a method of combining educational resources,
comprising: a) providing i) a network comprising a first
home server of a first educational institution and a second
home server of a second educational institution, said first
home server hosting (i.e. holding in memory or in otherwise
in a database) a first pool of resources, said second home
server hosting to a second pool of resources, said resources
comprising combinable fragments, pages, sequences and
courses, ii) a first author at said first educational institution
and a second author at said second educational institution,
iii) a resource assembly tool configured for use by said first
and second authors; and b) accessing a resource (e.g. a
fragment, page, sequence, portion of a course, or entire
course) from said second pool of resources through the
actions of said first author; c) combining, through the use of
said resource assembly tool by said first author, said resource

US 2016/03.58492 A1

from said second pool of resources with a resource (again,
a fragment, page, sequence of pages, portion of a course, or
entire course) from said first pool of resources. In a preferred
embodiment, said accessing comprises replicating said
resource from said second pool of resources.
0012. It is not intended that the present invention be
limited to the combination of resources “as is.” The author
has the freedom to make changes to the fragments, pages,
sequences, courses and the like having educational content.
For example, prior to said combining, the present invention
contemplates that said first author modifies said resource of
said second pool of resources (the original resource is not
overwritten; rather a new version is created). On the other
hand, prior to said combining, said first author may modify
said resource of said first pool of resources. Of course, said
first author may also choose to modify both resources before
combining.
0013 The present invention contemplates that, in one
embodiment, said combining is part of the process for
creating a first page, said page comprising combined
resource fragments. It is not intended, however, that the
present invention be limited to pages having only two
fragments. In other words, the combining of first and second
fragments may be preceded- or followed-by combinations of
other fragments. In some cases, the combining is the last step
in the creation of a first author page.
0014. It is also not intended that the combining only be at
the fragment level. Resources can be combined to create
entire courses. For example, a sequence of pages can be
combined with another sequence to make a course.
0015. As noted in more detail below, the present inven
tion contemplates that said first author publishes said first
author combination (e.g. page, sequence of pages, or
course), thereby adding said first author combination to said
first and second pools of resources. In other words, the
product of the combining is made accessible to authors from
other institutions, so that they may use the new product "as
is' or as subsequently modified. For example, the first author
page may be accessed by said second author and said second
author, after said accessing, is free to modify said first author
page so as to create a second author page.
0016. It is not intended that the second author be limited
to the nature or extent of modifications. The second author
may choose to delete or edit material on the page. On the
other hand, the second author may choose to add additional
fragments, pages, etc. from one or more pools of resources.
In any event, the present invention contemplates that said
second author, after said accessing and modifying, publishes
said second author combination (e.g. page or other
resource), thereby adding said second author combination to
said first and second pool of resources.
0017. In other words, the sharing can continue because—
whatever the second author does to the material—it is
available to the first author for possible use, as well as any
other authors that are part of the system via the network.
Indeed, it is not intended that the number of institutions or
authors be limited in any way. Instances where three or more
institutions are involved are contemplated. For example, the
present invention contemplates in one embodiment a method
of combining educational resources, comprising: a) provid
ing i) a network comprising a first home server of a first
educational institution, a second home server of a second
educational institution, and a third home server of a third
educational institution, said first home server hosting a first

Dec. 8, 2016

pool of resources, said second home server hosting a second
pool of resources, and said third home server hosting a third
pool of resources, said resources comprising combinable
fragments, pages, sequences of pages, and courses, ii) a first
author at said first educational institution and a second
author at said second educational institution, iii) a resource
assembly tool configured for use by said first and second
authors; and b) accessing, through the actions of said first
author, i) a resource (e.g. fragment, page, etc.) from said
second pool of resources and ii) a resource from said third
pool of resources; c) combining, through the use of said
resource assembly tool by said first author, said resource
from said second pool of resources and said resource from
said third pool of resources to create a first combination.
0018. In the above-described embodiment, said first
author is using and combining material from third-party
sources. However, it is not intended that the present inven
tion limit the author as to where resources can be obtained.
Moreover, the author can combine in any manner desired.
For example, the method can further comprised) combining
a resource (e.g. a fragment, page, etc.) from said first pool
of resources with said first combination to create a second
combination.

0019 All of the above-described discussion about repli
cating as part of accessing can apply to the three (or more)
institution embodiment. Similarly, the freedom to modify
prior to combining should again be underscored. Most
importantly, the present invention contemplates that said
first author publishes said first author page, thereby adding
said first author page to said first, second and third pools of
resources, and thereby permitting access by other authors
(who may make further changes and combinations to create
a second author page).
0020. A variety of system configurations can carry out the
methods described above. In one embodiment, the present
invention contemplates a system for sharing educational
resources, comprising: a) a first author computer at a first
educational institution connected to a first home server, said
first author computer having a user interface, said first home
server providing access to a first pool of resources compris
ing combinable resources (e.g. fragments, pages, sequences
of pages, portions of courses, and entire courses); b) a
second author computer at a second educational institution
connected to a second home server, said second author
computer having a user interface, said second home server
providing access to a second pool of resources comprising
combinable resources; c) a network connecting said first
home server of said first educational institution to said
second home server of said second educational institution;
d) a resource assembly tool configured for use through said
user interface of said first and second author computers, said
resource assembly tool capable of combining said combin
able resources from said first pool of resources and said
second pool of resources; and e) a resource replication
element configured so as to replicate resources from said
first and second pools of resources prior to said combining
of said resource assembly tool. Importantly, the systems are
not limited to the number of servers or client computers.

DESCRIPTIONS OF THE DRAWINGS

0021 FIG. 1 provides a top level schematic of the pri
mary interfaces of the LearningOnline Network.

US 2016/03.58492 A1

0022 FIG. 2A shows the overview of network commu
nication links between servers of the LearningOnline Net
work.
0023 FIG. 2B shows an example of the Hosts Lookup
Table.
0024 FIG. 2C illustrates the response times of server
server communications without disk access.
0025 FIG. 2D illustrates the response times of server
server communications with disk access.
0026 FIG. 3A depicts the implementation of the
Dynamic Resource Replication.
0027 FIG. 3B describes the process of modifying a
SOUC.

0028 FIG. 4 shows a top level illustration of the
Resource Assembly Tool.
0029 FIG. 5A presents an embodiment of a graphical
user interface during Resource Assembly Tool access.
0030 FIG. 5B presents an example of the graphical user
interface during Resource Assembly Tool access.
0031 FIG. 5C presents another example of the graphical
user interface during Resource Assembly Tool access.
0032 FIG. 6 shows the non-graphical (XML) presenta
tion of FIG. 5C.
0033 FIG. 7A shows an example of a course map having
nested sequences.
0034 FIG. 7B shows an example of a course map
sequence having nested pages.
0035 FIG. 7C shows an example of a course map sum
mary Sequence.
0036 FIG. 8 shows an example of a flow chart during a
course initialization first run.
0037 FIG. 9A illustrates an example of a flow chart
during a course initialization first run for the procedure
loadmap.
0038 FIG. 9B demonstrates an example of a resource
properties hash dump resulting from the loadmap procedure.
0039 FIG. 9C demonstrates an example of a resource
properties hash dump resulting from the links between
resources from the loadmap procedure.
0040 FIG. 9D demonstrates an example of a resource
properties hash dump resulting from the links and link
conditions between resources from the loadmap procedure.
0041 FIG. 10 depicts an example of an excerpt of the
dump of the condition array constructed in the loadmap
procedure.
0042 FIG. 11A illustrates an example of a flow chart
during a course initialization first run for the procedure
tracerOute.

0043 FIG. 11B depicts an example of an excerpt of the
resource properties hash dump resulting from cumulative
link conditions to reach a certain resource.

GENERAL DESCRIPTION OF THE INVENTION

0044 Current computer-assisted instructional systems
have only haphazardly exploited the potential of client
server systems and networking technologies. The present
inventors recognize that systems, running under Sophisti
cated windowing operating systems, can Support advanced
object based software applications, including high speed
graphics, animation and audio output, that are particularly
Suited to education. Servers can store gigabytes of educa
tionally relevant data and programs at central or distributed
locations at quite reasonable cost.

Dec. 8, 2016

0045 Clients and servers can be linked remotely with
increasing convenience and decreasing cost. The Internet
has emerged as a means of providing an inexpensive means
of connecting computers to provide effective communica
tions and access to information and other resources such as
software. Further Internet developments that made the Inter
net truly universal include the HTML and the HTTP proto
cols, which provide platform independent access to hyper
linked multimedia information, and the JavaTM
programming language, which provides platform indepen
dent Software for Internet applications programming. Sub
sets of the Internet (called intranets) have become an
increasingly important means for disseminating information
and enabling communication within constrained domains,
Such as a single School system or corporate enterprise.
0046. The present invention provides the tools for man
agement and control over the computer-assisted instruction
materials and provides the needed flexibility to allow an
instructor to construct customized material using informa
tion from diverse educational resources. The present inven
tion provides the tools for the integration of traditional
educational material (such as data, equations and the like)
from several sources. More importantly, the present inven
tion permits an instructor to select from a wider and richer
variety of educationally relevant sound and visual display
objects. All elements of the on-screen display can be pulled
from diverse sources and synthesized in an integrated dis
play calling for graphics, animation, video, or sound as
appropriate. The present invention provides the authoring
tools needed to generate multimedia educational course
material presentations that is accessible to the on-line stu
dent.

0047. The elements of the display objects can be created
by people other than the actual instructor (e.g. third-party
teachers, artists, animators, singers and so forth). The
instructor, through the tools of the present invention, has
access to these materials and can utilize all or a portion of
a third-party's course materials in the assembly of a cus
tomized on-line course, lecture, class, or session. The edu
cational resources are stored in libraries (e.g. as data Snips or
dynamic clip art) and then accessed by the instructor in an
implementation of this invention. These educational
resources can be in the form of short clips of text, sound,
Voice, graphics, animation or video. Using the resource
assembly tool of the present invention, these diverse
resources can be combined according to the desires and
creativity of the instructor to generate a customized presen
tation.

0048. Another important object is that the method and
system of this invention is adapted to implementation on a
variety of networks. When so implemented, the interactive,
adaptive, and self-paced computer-assisted instruction and
homework provided by this invention is available to geo
graphically dispersed students and from geographically dis
persed schools.
0049. The network on which this invention is imple
mented can be configured as an intranet. In another embodi
ment, implementation is achieved over the public Internet.
In either case, the system is configured with appropriate
links and is compatible with browser and e-mail format
extensions. In short, this invention is adaptable to Network
Computers (“NC). NCs are low cost computers specifically
designed to access intranets or the public Internet. In a
current preferred embodiment and implementation, this

US 2016/03.58492 A1

invention is adaptable to multimedia PCs for some students
or students with special needs. Typical interactive devices
include keyboards, mice or other pointing devices, Voice
recognition, joy-sticks, touch activated devices, light-pens,
and so forth. Other devices, such as virtual reality devices,
can be added as they become commercialized.
0050 Authoring instructional materials for a course, lec

ture, class or other type of educational presentation to a
student, when done according to the method of the present
invention, typically comprises several steps, including deci
sions about the objects to display to the student and the
sequencing of these objects. The first step is the selection of
objects which carry the education content for presentation to
a student. Objects can include visual display items, such as
text, animation or movies, audible display items. Such as
Voice, audio and so forth. They can include input items
known in the computer arts, such as buttons to select.
Selections to chose from include (but are not limited to) the
text to enter, the useful hypertext and hypermedia links, and
functions to perform with student input and so forth. The
second step is the selection of the sequencing logic for the
ordered display of the objects to the student throughout the
course, lecture, class or session.
0051 Importantly, to increase the utility of the materials,
the number of hard-coded hyperlinks between the resources
should be minimized. The actual combining and sequencing
is part of the system functionality and driven by RAT
constructed roadmaps, which are constructed by the
instructors. With this mechanism, one and the same resource
can be part of different courses in different contexts.
0052. The present invention contemplates the use of
algorithms in the design of the student interface virtual
course resources. In one embodiment, the learner is provided
with multiple representations of the same knowledge ele
ments and can select a preferred representation. In a pre
ferred embodiment, algorithms that learn from a learner's
previous selection of preferred options are employed and
these automatically customize the course to the learners
needs, offering remedial actions for detected shortcomings
and allowing leaps over segments of material for which the
student is predicted to already have achieved mastery.
0053. The present invention contemplates an automated
exam engine that will produce randomized and/or individu
alized tests without the instructor having the need or even
the opportunity to select the problems. This can be done by
providing a large pool of exam questions via an open Source
database. Each exam problem contains attached metadata
that catalogs its degree of difficulty and discrimination for
students of different ability levels.
0054 Using the RAT, an instructor can create and/or
assemble a customized set of assignments, quizzes, and
examinations with a large variety of conceptual questions
and quantitative problems. These on-line presentations can
include pictures, animations, graphics, tables, links, etc. The
writing and development is facilitated by numerous types of
individualized problems designed to encourage students to
collaborate and discuss concepts while insuring that prob
lems differ for each student to inhibit rote copying.
0055 Indeed, the present invention contemplates a feed
back system i) where students and other instructors can
comment, criticize, evaluate and/or grade a resource, and ii)
where the author of the resource can comment, evaluate,
grade and/or assist with performance of the student. With
regard to the latter, in a preferred embodiment, students are

Dec. 8, 2016

given instant feedback and relevant hints via the Internet and
may correct errors without penalty prior to an assignments
due date. The system keeps track of student’s participation
and performance, and records are available in real time both
to the instructor and to the individual student. Statistical
tools and graphical displays facilitate assessment and course
administration.
0056. This invention contemplates the ability of this
student feedback system to be initiated by a screen button on
the student’s navigation graphical interface that opens up a
text field. When the student sends a feedback, it arrives at an
email address (or set of email addresses) specified by the
course faculty; independent of the computer platform. With
the normal reply function, faculty or teaching assistants
can respond to the student input and the reply automatically
is returned by handling within the network. This type of
student input improves the use of the on-line resources. For
example, if additional specific hints are included in the reply
by the instructor, these changes take effect within the net
work immediately and all students benefit.
0057 Also contemplated by this invention is a chatroom
that allows for multiple ways of communication. Learners
can post text, graphics, whiteboard information and formu
las into the chatroom, which operates without any plugins.
0.058 With regard to students and other instructors com
menting and grading resources, the present invention con
templates compiling feedback of this type in an electronic
file associated with the particular resource (whether the
resource is a fragment, page, sequence of pages, portion of
a course, or entire course). When the author of the resource
(or another instructor) accesses the resource, the cumulative
feedback associated with the particular resource (at that
time) is available for review (e.g. the author or other
instructor can query the feedback) so that comments and
criticism can be considered in any effort to edit/modify the
resource, thereby improving the resource. This process is an
on-going process, allowing for the possibility of continuous
improvement of the resource as it is experience by students
or utilized by other instructors. By virtue of the feedback
system, resources can be placed in competition. That is to
say, students can apply a grade (or a set of grades directed
to various features of a resource Such as clarity, technical
functionality, accuracy and the like) to a particular resource
(e.g. a fragment, page, sequence of pages, portion of a
course, or course) and that grade can be compared to the
grade given to another resource in the same field (e.g.
biology, math, etc.). If desired, the resource receiving the
higher grade (or the higher average grade based on cumu
lative grading from a plurality of students) can thereafter be
selected preferentially for instructional purposes.
0059. Thus, the present invention also contemplates a
method of evaluating educational resources, comprising: a)
providing i) a network comprising a first home server of a
first educational institution and a second home server of a
second educational institution, said first home server hosting
a first pool of resources, said second home server hosting a
second pool of resources, said resources comprising com
binable fragments, pages, sequences and courses, ii) a first
author at said first educational institution and a second
author at said second educational institution, iii) a resource
assembly tool configured for use by said first and second
authors; iv) one or more students connected through one or
more computers to said network, said computers having a
user interface; b) displaying a resource from said first pool

US 2016/03.58492 A1

of resources through the actions of a student on said user
interface of said student's computer, to create a first dis
played resource; c) grading said first displayed resource,
whereby a numerical value associated with said first dis
played resource is stored in a file; and d) accessing said first
displayed resource (whether or not the resource is currently
displayed or otherwise in use) through the actions of said
first author, under conditions such that said numerical value
associated with said first displayed resource is apparent to
said author. Of course, the process need not stop here. In one
embodiment, the present invention further contemplates, e)
combining, through the use of said resource assembly tool
by said first author, a resource from said first or second pool
of resources with said displayed resource under conditions
wherein said displayed resource is modified to create a
modified first displayed resource: f) displaying said modified
first displayed resource through the actions of a student on
said user interface to create a second displayed resource; g)
grading said second displayed resource, whereby a numeri
cal value associated with said second displayed resource is
stored in a file; and h) accessing said second displayed
resource (whether or not the resource is currently displayed
or otherwise in use) through the actions of said first author,
under conditions such that said numerical value associated
with said second displayed resource is apparent to said
author. In some cases, the numerical value associated with
the second displayed resource will be higher than the
numerical value associated with the first displayed resource,
indicating that at least according to the student(s) the
resource has been improved. Again, the process need not
stop here; indeed, the above indicated steps can be repeated
numerous times (in the manner of a feedback loop).
0060. The present invention is not limited to grading
from students. The above-indicated method steps can be
modified such that other instructors provide the feedback
and the grading.
0061. In addition, the present invention is not limited to
grading and numerical values. The above-indicated method
steps can be modified Such that written comments or other
symbols are provided as feedback in association with a
SOUC.

0062. Furthermore, the present invention is not limited to
review of feedback and use of feedback by the original
author. The above-indicated method steps can be modified
Such that a second author at another institution views the
feedback and modifies the resource accordingly.
0063 A. The Resource Assembly Tool
0064. The RAT generates pathways that link resources.
The RAT acts as a graphical user interface inside of a
standard web browser. This invention contemplates that any
browser-compatible software language will support RAT’s
function. The RAT/browsers interface in one embodiment
comprises two or more windows. For example, one window
is resizable, and the other is a multipurpose non-resizable
window. The former window contains the menu and the
current project, while the latter window displays general
operational information. When a new project is started the
default settings are limited to start and finish codes, thus
allowing the user complete freedom of choice for the
resource links.
0065. The project window operates in a similar manner as
most popular computer operating systems. Editing is accom
plished by using the mouse to click on the appropriate
resource, or in the alternative, a dialog box allows use of

Dec. 8, 2016

describing the title of the resource for retrieval through the
network. The dialog boxes also accept URL addresses that
are either part of the institutions intranet or an external
WWW URL. The invention contemplates an ability for the
user to access a central database directory to search for
and/or browse to locate desired resources.

0066. The dialog box may also be utilized to delete
resources from a linked pathway as well as adding them. It
is envisioned that an option of a complete severance from
the integrated pathway is coupled with an alternative options
of merely removing the specific resource and leaving the
pathway intact.
0067. Once a desired resource is located, the link mode of
the RAT is utilized. This function “physically” connects on
resource to another that is the basis of the basic inventive
concept of this system.
0068. The default mode of the RAT is info mode. This
allows the user to quickly pan the mouse over the presented
pathway to examine the metadata of each resource. For
example, if the mouse pointer is stopped over a movie
resource, an information bubble will appear that presents the
title, actors, Subject matter, and running time. This will allow
an instructor to quickly assess whether any particular path
way requires modification for a new course or due to
changes within a specific academic field. If the instructor
does require changes to the resource they only click on the
resource and the RAT enters edit mode, thus allowing
changes.
0069
0070. To enable immediate and dynamic system recon
figuration in case of server or network downtimes and
overload situations, data replication is required, where any
machine in the network can serve any learner in the insti
tution. On approach is to use a server network of inexpen
sive web servers running LinuxTM and the Apache web
server, which communicate with each other via persistent
TCP connections. The network of the present invention has
the ability to replicate resources and update user records
dynamically from server to server, as well as the ability to
transfer user sessions between each other in overload situ
ations.

0071. In order for the resource pool to be functionally
more consistent and comprehensive, all resources in one
embodiment take the form of a multimedia object and are
stored in the multimedia resource pool. For each content
author, the system will provide separate private construction
and public resource space. Moving a resource from con
struction space into the public resource pool is combined
with the wizard-assisted gathering of abstracts, classifica
tion information and keywords (IMS compliant metadata
and the Library of Congress classification scheme), as well
as versioning and access privilege scheme.
(0072 C. Other System Elements
0073. This invention contemplates the integration of the
Computer-Assisted Personalized Approach (CAPA) with the
other system elements in order to provide students with
personalized problem sets, quizzes and exams. Different
students see slightly different problems, which enables them
to collaborate on a conceptual level without being able to
blindly copy answers. Students are given instant feedback
and relevant hints via the Internet and may correct errors
without penalty until the assignment due date. The system

B. The Replication Element

US 2016/03.58492 A1

records the students’ participation and performance, and the
records are available online to both the instructor and the
individual student.
0074 CAPA is a teaching tool, not a curriculum, and as
Such does not dictate course design, content or goals.
Instead, it enables faculty to augment their courses with
individualized relevant exercises. CAPA, as a stand-alone
system has been widely accepted by more than 40,000
students in astronomy, biochemistry, chemistry, mathemat
ics, physics, botany, accelerator physics, and a host of
human ecology and computer science courses since 1992.
CAPA has been licensed by various institutions for instruc
tion in several disciplines.
0075. This invention contemplates an integrated embodi
ment of CAPA with the LearningOnline Network (LON
CAPA). This linkage implements an infrastructure that
allows a group of organizations (departments, universities,
colleges, and commercial businesses) to link their on-line
learning communities. LON-CAPA thus enables institutions
to share their on-line learning objects and act as a common
marketplace.
0076 Most current on-line homework engines are close

to faculty needs and desires but due to time and budget
constraints they lack scalability and failover security. Sys
tems that provide on-line homework are frequently subject
to strong peak workloads close to deadlines, while at the
same time their functionality is crucial.
0077. The LON-CAPA is a distributed system with a
classical three-tier architecture based on a communication
backbone. The nodes in the network can be geographically
distributed among different departments and even institu
tions with only the commodity Internet as link.
0078 LON-CAPA is based on a network of basic com
puters as access servers and a few high-performance library
servers. While library servers hold all objects (content and
system) of a Subset of users within the network anytime,
access servers act as intelligent caches and replicate the
needed resources at that point upon demand and update them
as becomes necessary.

DEFINITIONS

0079. The terms “instructional materials” or “educational
materials' encompass all educational resources used as
components of a course of instruction, or as components of
a lecture, class, or other type of Session with one or more
students.
0080. The terms “educational resource' or simply
“resource' indicate an elementary piece or “fragment of
text, Sound, Voice, graphics, animation, and/or video (e.g. in
the form of data Snips or clip art) that can be combined,
utilizing the Resource Assembly Tool (RAT) of the present
invention, to represent a complete on-screen presentation
(e.g. whether a single screen or “page of fragments’ or
whether a plurality of pages and links). With RAT fragments
can be combined into “pages' (i.e. Something that a browser
would display as a page or a printer would print as a page).
Pages can be combined into sequences, and sequences into
courses. Such components are selected according to the
course (physics, math, biology, etc.) and can include pre
requisite tests, pretests, lessons, and unit tests.
0081. A "network” is the hardware and software connect
ing student client computers to school servers. “Network
connections' can comprise fiber optic links, wired links or
terrestrial or satellite wireless links. Servers are linked

Dec. 8, 2016

together on the network. There are “home” servers for each
resource "author.” A first resource author can, using the
Resource Assembly Tool of the present invention, access a
resource on his/her own home server; alternatively, a first
resource author can also access a resource on a second
resource author's home server.
I0082 Teachers and other instructional designers can cre
ate, or “author, materials for use in this invention (teachers
are thus “authors'). Materials can be original or can be
derived from existing textbooks, workbooks or media mate
rial. They can simply employ elements of Standardized
curricula, pretests such as criterion tests, post-tests, and
standardized texts. However, the present invention is par
ticularly Suited to non-standardized curricula and the use of
on-line educational resources authored by third-parties col
laborating in a combined educational effort.
I0083 Parties collaborating in a combined educational
effort can be from a variety of “educational institutions'
including but not limited to public and private colleges and
universities.
I0084. To encourage resource sharing and “re-usage' and
to improve the quality of the educational resources, teachers
and other instructional designers should be able to modify
(“edit) the resources for their own use, or even be value
adders. Modifying and adding value to a resource allows all
parties collaborating and contributing to the resource library
to share and generate improved and enhanced instructional
materials. It should be stressed that “modifying is meant to
indicate the creation of a new derivative resource of branch
(while preserving the original resource in its original form).
In other words, the modified resource does not override the
a resource; rather it creates a new resource in the system
which is derived from the original resource. In a preferred
embodiment, a detailed log is kept with all branches of a
resource specifying authorship history in machine-readable
form.
I0085 Efficient re-usage of educational objects only
works if those objects can actually be found in the poten
tially large pool of resources. The present invention con
templates that an instructor can "query' for an image with a
graphical representation of particular information form a
particular topic (e.g. trigonometry, calculus, etc.).
I0086. The present invention contemplates “personalized
homework' or “individualized homework.” This means that
each student sees a slightly different computer-generated
problem. This encourages collaboration between students on
a conceptual level, but prevent blind copying of answers.
The students get immediate automatic feedback for their
entered homework answers, while faculty are able to provide
answer-specific hints for common problems identified either
beforehand or during the class term.
I0087. The term “httpd is used to indicate Hypertext
Transfer Protocol Daemon, a detached permanent server
process that serves web content.
I0088. The term “GIF refers to a Graphical Interface
Format, a common format for INternet graphics developed
by Compuserve.

DETAILED DESCRIPTION OF THE
INVENTION

I0089. In one embodiment of the system and method of
the present invention, the Network comprises of relatively
inexpensive upper-PC-class server machines which are
linked through the commodity internet in a load-balancing,

US 2016/03.58492 A1

dynamically content-replicating and failover-secure way.
FIG. 1 schematically shows an overview of this network. All
machines in the Network are connected with each other
through two-way persistent TCP/IP connections. Clients (B.
F, G and H in FIG. 1) connect to the servers via standard
HTTP. There are two classes of servers, Library Servers (A
and E in FIG. 1) and Access Servers (C, D, I and J in FIG.
1). Library Servers are used to store all personal records of
a set of users, and are responsible for their initial authenti
cation when a session is opened on any server in the
Network. For Authors. Library Servers also host their con
struction area and the authoritative copy of the current and
previous versions of every resource that was published by
that author. Library servers can be used as backups to host
sessions when all access servers in the Network are over
loaded. Otherwise, for learners, access servers, are used to
host the sessions. Library servers need to be strong on I/O.
while access servers can generally be cheaper hardware. The
network is designed so that the number of concurrent
sessions can be increased over a wide range by simply
adding additional Access Servers before having to add
additional Library Servers. Preliminary tests showed that a
Library Server could handle up to 10 Access Servers fully
parallel.
0090. The Network is divided into so-called domains,
which are logical boundaries between participating institu
tions. These domains can be used to limit the flow of
personal user information across the network set access
privileges and enforce royalty schemes.

Example of Transactions
0091 FIG. 1 also depicts examples for several kinds of
transactions conducted across the Network. An instructor at
client B modifies and publishes a resource on her Home
Server A. Server A has a record of all server machines
currently subscribed to this resource, and replicates it to
servers D and I. However, server D is currently offline, so the
update notification gets buffered on A until D comes online
again. Servers C and J are currently not subscribed to this
resource. Learners F and G have open sessions on server I.
and the new resource is immediately available to them.
Learner H tries to connect to server I for a new session,
however, the machine is not reachable, so he connects to
another Access Server J instead. This server currently does
not have all necessary resources locally present to host
learner H, but subscribes to them and replicates them as they
are accessed by H.
0092 Learner H solves a problem on server J. Library
Server E is H’s Home Server, so this information gets
forwarded to E, where the records of H are updated.

Transaction Mechanism

0093 FIG. 2 elaborates on the details of this network
infrastructure. FIG. 2A depicts three servers (A, B and C)
and a client who has a session on server C. ASC accesses
different resources in the system, different handlers, which
are incorporated as modules into the child processes of the
web server Software, process these requests.
0094. Our current implementation uses mod perl inside
of the Apache web server software. As an example, server C
currently has four active web server software child pro
cesses. The chain of handlers dealing with a certain resource
is determined by both the server content resource area (see

Dec. 8, 2016

below) and the MIME type, which in turn is determined by
the URL extension. For most URL structures, both an
authentication handler and a content handler are registered.
0.095 Handlers use a common library lonnet to interact
with both locally present temporary session data and data
across the server network. For example, lonnet provides
routines for finding the home server of a user, finding the
server with the lowest load average (loadavg), sending
simple command-reply sequences, and sending critical mes
sages Such as a homework completion, etc. For a non-critical
message, the routines reply with a simple “connection lost
if the message could not be delivered. For critical messages,
lonnet tries to reestablish connections and re-send the com
mand. If no valid reply could be received, it answers
“connection deferred and stores the message in buffer space
to be sent at a later point in time. Also, failed critical
messages are logged.
0096. The interface between lonnet and the Network is
established by a multiplexed UNIX domain socket (denoted
DS in FIG. 2A). The rationale behind this rather involved
architecture is that httpd processes (Apache children)
dynamically come and go on the timescale of minutes, based
on workload and number of processed requests. Over the
lifetime of an httpd child, however, it has to establish several
hundred connections to several different servers in the
Network.
(0097. On the other hand, establishing a TCP/IP connec
tion is resource consuming for both ends of the line, and to
optimize this connectivity between different servers, con
nections in the Network are designed to be persistent on the
timescale of months, until either end is rebooted. This
mechanism will be elaborated on below.
0.098 Establishing a connection to a UNIX domain
Socket is far less resource consuming than the establishing of
a TCP/IP connection. lonc is a proxy daemon that forks off
a child for every server in the Network. Which servers are
members of the Network is determined by a lookup table, of
which FIG. 2B is an example. In order, these entries denote:
an internal name for the server, the domain of the server, the
type of the server, the host name, and the IP address.
0099. The lonc parent process maintains the population
and listens for signals to restart or shutdown, as well as
USR1. Every child establishes a multiplexed UNIX domain
socket for its server and opens a TCP/IP connection to the
lond daemon (discussed below) on the remote machine,
which it keeps alive. If the connection is interrupted, the
child dies, whereupon the parent makes several attempts to
fork another child for that server.

0100 When starting a new child (a new connection), first
an init-sequence is carried out, which includes receiving the
information from the remote lond which is needed to estab
lish the 128-bit encryption key; the key is different for every
connection. Next, any buffered (i.e., delayed) messages for
the server are sent.
0101. In normal operation, the child listens to the UNIX
Socket, forwards requests to the TCP connection, gets the
reply from lond, and sends it back to the UNIX socket. Also,
lonc takes care of the encryption and decryption of mes
sages. lonc was built by putting a non-forking multiplexed
UNIX domain socket server into a framework that forks a
TCP/IP client for every remote lond.
0102) lond is the remote end of the TCP/IP connection
and acts as a remote command processor. It receives com
mands, executes them, and sends replies. In normal opera

US 2016/03.58492 A1

tion, alonc child is constantly connected to a dedicated lond
child on the remote server, and the same is true vice versa
(two persistent connections per server combination).
(0103) lond listens to a TCP/IP port (denoted Pin FIG. 2A)
and forks off enough child processes to have one for each
other server in the network plus two spare children. The
parent process maintains the population and listens for
signals to restart or shutdown. Client servers are authenti
cated by IP
0104. When a new client server comes on-line, lond
sends a signal USR1 to lonc, whereupon lonc tries again to
reestablish all lost connections, even if it had given up on
them before a new client connecting could mean that that
machine came on-line again after an interruption.
0105. The gray boxes in FIG. 2A denote the entities
involved in an example transaction of the Network. The
Client is logged into server C, while server B is her Home
Server. Server C can be an Access Server or a Library
Server, while server B is a Library Server. Client submits a
solution to a homework problem, which is processed by the
appropriate handler for the MIME type “problem'. Through
lonnet, the handler writes information about this transaction
to the local session data. To make a permanent log entry,
lonnet establishes a connection to the UNIX domain socket
for server B. lonc receives this command, encrypts it, and
sends it through the persistent TCP/IP connection to the
TCP/IP port of the remote lond. lond decrypts the command,
executes it by writing to the permanent user data files of the
client, and sends back a reply regarding the Success of the
operation. If the operation was unsuccessful, or the connec
tion would have broken down, lonc would write the com
mand into a FIFO buffer stack to be sent again later lonc
now sends a reply regarding the overall success of the
operation to lonnet via the UNIX domain port, which is
eventually received back by the handler.

Scalability and Performance Analysis
0106 The scalability was tested in a test bed of servers
between different physical network segments and FIG. 2B
shows the network configuration of this test. In the first test,
the simple ping command was used. The pinging command
is used to test connections and yields the server short name
as reply. In this scenario, lonc was expected to be the
speed-determining step, since lond at the remote end does
not need any disk access to reply. The graph in FIG. 2C
shows the number of seconds until completion versus the
number of processes issuing 10,000 ping commands each
against one Library Server (a 450 MHZ Pentium II was used
in this test, with a single IDE HD). For the solid dots, the
processes were concurrently started on the same Access
Server and the time was measured until the processes
finished—all processes finished at the same time. One
Access Server, the 233 MHZ Pentium II, can process about
150 pings per second, and as expected, the total time grows
linearly with the number of pings.
0107 The gray dots were taken with up to seven pro
cesses concurrently running on different machines and ping
ing the same server—the processes ran fully concurrent, and
each process finished as if the other ones were not present
(about 1000 pings per second). Execution was fully parallel.
0108. In a second test, lond was the speed-determining
step—10,000 put commands each were issued first from up
to seven concurrent processes on the same machine, and
then from up to seven processes on different machines. The

Dec. 8, 2016

put command requires data to be written to the permanent
record of the user on the remote server.
0109. In particular, one “put request meant that the
process on the Access Server would connect to the UNIX
domain socket dedicated to the library server, lonc would
take the data from there, shuffle it through the persistent TCP
connection. lond on the remote library server would take the
data, write to disk (both to a dbm-file and to a flat-text
transaction history file), answer “ok”, lonc would take that
reply and send it to the domain socket, the process would
read it from there and close the domain-socket connection.
0110. The graph in FIG. 2D shows the results of the
above test. Series 1 (solid black diamond) is the result of
concurrent processes on the same server—all of these are
handled by the same server-dedicated lond-child, which lets
the total amount of time grow linearly. Series 2 through 8
were obtained from running the processes on different
Access Servers against one Library Server, each series goes
with one server. In this experiment, the processes did not
finish at the same time, which most likely is due to disk
caching on the Library Server lond-children whose data
file was (partly) in disk cache finished earlier. With seven
processes from seven different servers, the operation took
255 seconds till the last process was finished for 70,000 put
commands (270 per second) versus 530 seconds if the
processes ran on the same server (130 per second).
0111 Server Content Resource Areas
0112 Internally, all resources are identified primarily by
their URL. Different logical areas of the server are distin
guished by the beginning part of the URL:
fadm: publicly available content, logos, manual pages, etc.
fres/domainname/authorname? the resource area, hold
ing course maps, HTML pages, homework, movies, applets,
etc. Access to these files is restricted by the cookie-based
authentication mechanism. Content in this area will be
served by type-dependent handlers, for example, one han
dlers to serve homework problems, and another one for TeX
resources. The structure of this area of the server is exactly
the same on every server, even though not all resources
might be present everywhere.
/raw/domainname/authorname? internally, this is just a
symbolic link to the res directory, however, no content
handlers are called when serving a resource and access is
controlled by IP rather than cookies. This structure is used
for replication of resources between servers.
/-authorname? the content construction space. This is
normal UNIX filespace, which however can only by viewed
on the web by the authors themselves through the cookie
based authentication. Content handlers are active for this
space. This space can be mounted on other UNIX machines,
as well as AppleShare and Windows. Below the authorname,
this directory has the same structure as the resource space of
the author.

Publication of a Resource

0113 Authors can only write-access the f-authorname/
space. They can copy resources into the resource area
through the publication step, and move them back through
a recover step. Authors do not have direct write-access to
their resource space. During the publication step, several
events will be triggered. Metadata is gathered, where a
wizard manages default entries on a hierarchical per-direc
tory base. The wizard imports the metadata (including
access privileges and royalty information) from the most

US 2016/03.58492 A1

recent published resource in the current directory, and if that
is not available, from the next directory above, etc. The
Network keeps all previous versions of a resource and
makes them available by an explicit version number, which
is inserted between the file name and extension, for example
foo.2.html, while the most recent version does not carry a
version number (e.g., foo.html). Servers subscribing to a
changed resource are notified that a new version is available.

Dynamic Resource Replication

0114. Since resources are assembled into higher order
resources simply by reference, in principle it would be
sufficient to retrieve them from the respective Home Servers
of the authors. However, there are several problems with this
simple approach. Since the resource assembly mechanism is
designed to facilitate content assembly from a large number
of widely distributed sources, individual sessions would
depend on a large number of machines and network con
nections to be available, and thus be rather fragile. Also,
frequently accessed resources could potentially drive indi
vidual machines in the network into overload situations.

0115 Finally, since most resources depend on content
handlers on the Access Servers to be served to a client within
the session context, the raw source would first have to be
transferred across the Network from the respective Library
Server to the Access Server, processed there, and then
transferred on to the client.

0116. To enable resource assembly in a reliable and
Scalable way, a dynamic resource replication scheme was
developed. FIG. 3 shows the details of this mechanism.
Anytime a resource out of the resource space is requested,
a handler routine is called which in turn calls the replication
routine (FIG. 3A). As a first step, this routine determines
whether or not the resource is currently in replication
transfer (FIG. 3A, Step D1a). During replication transfer, the
incoming data is stored in a temporary file, and Step D1a
checks for the presence of that file. If transfer of a resource
is actively going on, the controlling handler receives an error
message, waits for a few seconds, and then calls the repli
cation routine again. If the resource is still in transfer, the
client will receive the message “Service currently not avail
able.’’.

0117. In the next step (FIG. 3A, Step D1b), the replica
tion routine checks if the URL is locally present. If it is, the
replication routine returns “OK” to the controlling handler,
which in turn passes the request on to the next handler in the
chain.

0118. If the resource is not locally present, the Home
Server of the resource author (as extracted from the URL) is
determined (FIG. 3A, Step D2). This is done by contacting
all library servers in the author's domain (as determined
from the Lookup Table, see FIG. 2B). In Step D2b, a query
is sent to the remote server whether or not it is the Home
Server of the author (in our current implementation, an
additional cache is used to store already identified Home
Servers (not shown in the figure)). In Step D2c, the remote
server answers the query with “True” or “False”. If the
Home Server was found, the routine continues, otherwise it
contacts the next server (Step D2a). If no server could be
found, a “File not Found' error message is issued. In our
current implementation, in this step the Home Server is also
written into a cache for faster access if resources by the same
author are needed again (not shown in the figure).

Dec. 8, 2016

0119. In Step D3a, the routine sends a subscribe com
mand for the URL to the Home Server of the author. The
Home Server first determines if the resource is present, and
if the access privileges allow it to be copied to the requesting
server (FIG. 3A, Step D3b). If this is true, the requesting
server is added to the list of subscribed servers for that
resource (Step D3c). The Home Server will reply with either
“OK” or an error message, which is determined in Step D4.
If the remote resource was not present, the error message
“File not Found' will be passed on to the client. If the access
was not allowed, the error message “Access Denied' is
passed on. If the operation Succeeded, the requesting server
sends an HTTP request for the resource out of the raw server
content resource area of the Home Server.
0.120. The Home Server will then check if the requesting
server is part of the network, and if it is subscribed to the
resource (Step D5b). If it is, it will send the resource via
HTTP to the requesting server without any processing by
content handlers (Step D5c). The requesting server will store
the incoming data in a temporary data file (Step D5a); the
same file checked in Step D1. If the transfer is not com
pleted, and appropriate error message is sent to the client
(Step D6). Otherwise, the transferred temporary file is
renamed as the actual resource, and the replication routine
returns “OK” to the controlling handler (Step D7).
I0121 FIG. 3B depicts the process of modifying a
resource. When an author publishes a new version of a
resource, the Home Server will contact every server cur
rently subscribed to the resource (FIG. 3B, Step U1), as
determined from the list of subscribed servers for the
resource generated in FIG. 3A, Step D3c. The subscribing
servers will receive and acknowledge the update message
(Step U1c). The update mechanism finishes when the last
Subscribed server has been contacted (messages to unreach
able servers are buffered). Each subscribing server will
check if the resource in question had been accessed recently,
that is, within a configurable amount of time (Step U2).
I0122) If the resource had not been accessed recently, the
local copy of the resource is deleted (Step U3a) and an
unsubscribe command is sent to the Home Server (Step
U3b). The Home Server will check if the server had indeed
originally subscribed to the resource (Step U3c) and then
delete the server from the list of subscribed servers for the
resource (Step U3d). If the resource had been accessed
recently, the modified resource will be copied over using the
same mechanism as in Step D5a through D7 of FIG. 3A
(FIG. 3B, Steps U4a through U6).

Construction of a Course by the Instructor
I0123 Content Re-Usage and Granularity
0.124. Any faculty participating in the Network can pub
lish their own learning resources into the common pool. To
that end, the Network provides a “construction space’ which
is only accessible to the author, and a publication process,
which transfers the material to the shared pool. During the
publication process, metadata about the resource is gathered,
and system-wide update notification and versioning mecha
nisms are triggered.
0.125 Learning resources can be simple paragraphs of
text, movies, applets, individualizing homework problems,
etc. In addition to providing a distributed digital library with
mechanisms to store and catalog these resources, the Net
work enables faculty to combine and sequence these
resources at several levels. An instructor from Community

US 2016/03.58492 A1

College A could combine a text paragraph from University
B with a movie from College C and an online homework
problem from Publisher D, to form one page. Another
instructor from High School E can take that page from
Community College A and combine it with other pages into
a module, unit or chapter. Those in turn can be combined
into whole coursepacks. Faculty can design their own cur
ricula from existing and newly created resources instead of
having to buy a complete off-the-shelf product.
0126 FIG. 4 shows a general overview of the resource
assembly mechanism and the different levels of content
granularity Supported by the current implementation of this
principle. The topmost puzzle piece represents a resource at
the fragment level—one image, one movie, one paragraph of
text, one problem, or one regular web page. Attached to the
resource is metadata gathered at the publication time of the
SOUC.

0127. Using the resource assembly tool described below,
these fragments and pages can be assembled into a page. A
page is a resource of the grain size which would be rendered
as one page on the web and/or on the printer.
0128. Using the same tool, fragments (which would then
be rendered as stand-alone pages), pages, and sequences can
be assembled into sequences. Sequences are resources
which are rendered a sequence of pages, not necessarily
linear. Examples are one lesson, one chapter, or one learning
cycle.
0129. On the third granularity level, fragments (rendered
as stand-alone pages), pages, and sequences can be
assembled into courses. Courses are a sequence which
represents the entirety of the resources belonging to a
learning unit into which learners can be enrolled. Examples
are a University one-semester course, a workshop, or a High
School class.

Maps

0130. To increase the utility of the materials, the number
of hard-coded hyperlinks between the resources should be
minimized. The actual combining and sequencing is part of
the system functionality and driven by RAT-constructed
“roadmaps’, which are constructed by the instructors. With
this mechanism, one and the same resource can be part of
different courses in different contexts. The soft-linking
makes it possible to import only the desired set of resources
without effectively importing additional parts another
instructors resources through hard-linked menus or “next
page” buttons that might resided on those resources.

Curriculum Adaptivity

0131 Maps allow for conditional choices and branching
points. The actual path through and presentation of the
learning resources is determined by instructor-specified
combinations of learner choices and system generated adap
tations (for example, if the learner does not pass a test,
additional resources may be included). Each learner can
have an individualized curriculum according to preferences,
capabilities and skills.
0132) These maps can be generated at different levels of
granularity with a graphical tool, or in an automated way
through custom scripts.

Dec. 8, 2016

Resource Assembly Tool
I0133. The Network provides the Resource Assembly
Tool as one means to generate maps. The Resource Assem
bly Tool provides a graphical user interface inside of a
standard web browser. The current implementation is writ
ten in JavaScript TM. FIG. 5 shows screenshots of the current
implementation. The interface usually consists of two
browser windows, one resizable one with a frameset that
contains the menu and the map under construction, and a
multipurpose non-resizable window that displays informa
tion and input forms. When a new map is started, it only has
a start and a finish resources. The author can then enlarge the
map area and insert resources into it.
I0134. In FIG. 5A, the author is editing information about
a resource in the map after clicking on the box representing
the resource in the map. In the dialog, the author can enter
a map-internal title for the resource, which is displayed to
the learners when navigating the maps. In the same dialog,
the author will specify the URL of the resource, which can
either be internal to the Network, or any URL of a web page
outside of it. For internal resources, the author can also
browse the Network filesystem or search the resource meta
data to locate an appropriate resource.
0.135 The resource priority can be chosen. A resource can
be “regular.” “mandatory' or “optional.” These resource
priorities are only used in the bookkeeping of earned points
by the learners. Within the map, resources of different
priorities are displayed in different colors. The dialog also
allows for two modes of removing the resource from the
map: either deleting it from the map including every link to
and from it, or deleting it while reconnecting any links that
went through the resource. As an example, resources A and
B might both connect to resource C, and resource C might
connect to D. When removing C from the map using the first
option, both A and B will not no longer be connected to D.
Using the second option, both A and B will reconnect with
D. In the latter case, the Resource Assembly Tool will also
handle conditional links correctly: Such as, if A connected to
C under condition 1, and C connected to Dunder condition
2, then in the end A will connect to Dunder a new condition
which is (1 AND 2).
0.136 Finally, this dialog allows the author to connect the
resource to another resource (or itself) through a new link.
When selecting this option, the Resource Assembly Tool
goes into link mode, and will link the current resource to the
next clicked resource (unless the action is cancelled).
I0137 FIG. 5B shows the Resource Assembly Tool in info
mode, that is, when no specific component of the map is
edited, and if the Tool is not in link mode. In info mode, the
contents of the dialog window change dynamically as the
mouse is moved over the components of the map. In this
case, the mouse pointer is over the link condition between
two resources. The dialog window shows the titles of the
connected resources, as well as the condition priority. In this
scenario, the condition priority is set Such that the link
cannot be taken (i.e., “is blocked') if the condition is false.
The condition priority can also be set such that the link is
recommended if the condition is true (possibly giving the
learner several options where to go next), or that the link
must be taken (“is forced) over any other possible link if the
condition is true. Within the map, conditions of different
priorities are displayed in different colors. If the author now
were to click on the condition, the Tool would go into edit
mode, and the condition could be edited.

US 2016/03.58492 A1

0138 FIG. 5C shows the Tool in edit mode for the link
between the resource titles displayed. The author can
remove the link, or insert a new resource into the link.
Obviously, by this mechanism, rather complex maps can be
generated. These are different from binary trees, both
because branches can loop back, and because branches can
be re-united. In fact, most branches re-unite in the finish
resources. Into each link, a condition with one of three
different priorities can be attached. Whether or not a certain
resource in the map can be displayed depends on whether or
not it can be reached through any path along allowed links,
starting with the start resource of the course. If a resource is
not linked to, it is assumed to be accessible if the map which
it is part of is accessible.

Map Representation and Storage Format

0139 FIG. 6 shows the XML representation of the
resource map constructed in FIG. 5, which is the format in
which maps are stored. In the figure, however, additional
graphical map layout information generated by the Resource
Assembly Tool is not displayed. This graphical information
is optional to re-generate the same graphical layout when the
map is brought up again in the Resource Assembly Tool, and
is not needed for any other system functionality.
0140 Maps can be generated by tools other than the
Resource Assembly Tool. In particular, an author might have
Some other representation of a course sequence, which can
be converted into a map using Scripts. If this map then were
to be brought up in the Resource Assembly Tool, the Tool
would automatically generate a graphical layout for it. Each
entry of the map, resources, conditions and links, are stored
in separate tags.
0141 Resources and conditions have to have unique ID
numbers. These numbers are automatically generated by the
Resource Assembly Tool when the entry is first created, or
added to the entries when a map generated outside the
Resource Assembly Tool is first retrieved. They can also be
assigned by custom scripts or added in by hand.
0142. In this example, FIG. 6, entry 1 is the start resource
of the map. When this map is accessed, the source (Src.) URL
of this tag will be the first resource rendered. Entry 2 is the
finish resource of this map. This resource will be the last
resource in the sequence of resources. Entry 6 is a problem
resource with the given URL and title, as well as the priority
“mandatory'. Entry 19 is a condition, which is used by the
link between entries 6, the problem, and 9, a sequence.

Example of Nested Maps

0143 FIG. 7 shows the XML representation of three
maps which are imported into each other. FIG. 7B is the
sequence that is referenced as resource 9 in the course map
FIG. 7A. In the resulting map, the entry point of resource 9
in FIG. 7A is in fact the entry point of the start resource of
FIG. 7B, namely, resource 1. The exit point of resource 9 in
FIG. 7A is the exit point of the finish resource of FIG. 7B,
namely, resource 2. FIG. 7C is the page which is referenced
as resource 24 in FIG. 7B.

0144. A course can easily contain several hundreds of
these nested maps. Since the accessibility of each individual
resource in the course depends on the state of all possible
paths linking it to the start resource of the course across all
intermediate maps, the computation and disk-I/O effort per
single transaction could quickly become prohibitive. Thus,

Dec. 8, 2016

all maps and conditions are compiled into a pre-processed
binary data structure at the start of a session.

Initialization of a Course for a Learner

0145 When a learner first enters a course during a
session, the system will initialize this course for the learner.
In particular, at this point, the course map and all nested
(embedded) maps and resources are evaluated, and the
information is compiled into two binary structures, which
are stored with the session information: the resource prop
erties hash, and the link conditions array. This information
will be used over the duration of the session for several
purposes: navigation (which resource is the next, which one
the previous?), for access control (can the resource be
reached under the link conditions given the current state of
the student?), and to register assessment results within the
context of a certain course and map (there might be several
instances of the same problem resource within a course).

Evaluation of the Map Structure for a Course

0146 The URL of the course is passed to the procedure
readmap (FIG. 8). Procedure readmap first initializes the
resource properties as an empty hash, seeds the link condi
tions array with a 0th element, which is set to “true', priority
“normal, and sets the map counter to 0 (FIG. 8, Step R1).
While the resource properties hash, the link conditions array
and the map counter are global variable of the initialization
process, all other variables are local to the procedures (an
important property for these routines to run recursively). The
procedure readmap then calls procedure loadmap for the
URL of the course (FIG. 8. Step R2).
0147 FIGS. 9 & 10 show a dump of excerpts of the
binary structure generated in loadmap for the nested maps of
FIG. 7. Procedure loadmap (FIG.9A) first checks if the map
URL has already been processed (multiple inclusion of the
same map in a course structure) (FIG. 9A, Step L1). If the
URL was processed, it has been assigned a map counter
value in the resource properties hash. If the map has been
processed, there is no need to process it again, and loadmap
returns.

0.148. If the map has not been processed, the map counter
is incremented and the map is registered under the current
value in the resource properties hash (FIG. 9A, Step L2).
The file is then opened (FIG. 9A, Step L3), which might
entail prior replication, and the contents are parsed. If there
are no further entries, loadmap returns (FIG. 9A. Step L4).
0149. The new entry tag is then read (FIG.9A. Step L5)
and the type is determined (FIG. 9A, Step L6). If the entry
is a resource (Step L7), a resource ID is formed by com
bining the map counter and the resource ID within the map.
For example, the “Part 1 Introduction” resource of part1.
sequence (FIG. 7B) was assigned the resource ID 2.5, since
it has the internal resource ID 5 in the 2" map processed
(see FIG.9B under “ids). If the same URL is found again,
additional IDs are assigned to it. It is necessary to store the
IDs under the URL in the resource properties hash for
reverse lookup if a user simply requests a URL. If the
resource is a start or finish resource, the resource ID is
registered as the start or finish resource of the map, respec
tively (FIG.9B. “map start”. “map finish'). The properties
of the resource (URL, Title, Priority, etc) are now stored
under the resource ID (see for example FIG.9B “title 2.5').

US 2016/03.58492 A1

0150. If the resource is not a map itself (FIG. 9A, Step
L8), the next entry is read. Otherwise, procedure loadmap
calls itself recursively to process that map (Step L9). If in
Step L6, the type of the entry was determined to be a
condition, a condition ID is formed (Step L10) by again
combining the map counter with the internal ID. The con
dition is also added to the end of the condition array (see
FIG. 10), which is a compilation of all conditions in the
course (Step L11). The conditions in this array are evaluated
when a transaction occurs that could change the state of the
student, and the state of each condition is stored by the index
number in the session environment. A reference to the index
number in the condition array is stored under the condition
ID (FIG. 9D. “condid).
0151. If the entry is a link (Step L6), a link ID is
generated (Step L12). This ID is formed by combining the
map counter and another counter which is incremented for
every new link within the map. Under this ID, the IDs of the
originating and the destination resource of the link are
stored, as well as that of the link condition (FIG. 9D). For
the originating resource, in Step L13 the link ID is added to
the list of outgoing links (FIG. 9C, “to), and for the
destination resource, the link ID is added to the list of
incoming links (FIG. 9C, “from).
0152. After the last entry has been processed, procedure
loadmap returns. After the last map has been processed, the
original course-level instance of loadmap returns to readmap
(FIG. 8, Step R2). The next major step will be to determine
all possible paths and conditions leading up to a resource for
access control.

0153 readmap checks if the course has a start resource
from its map start entry in the resource properties (Step R2),
and if does not, continue to store the two global binary data
structures (Steps R5.R6). In this special case, all resources
which are part of any maps in the course are assumed to be
accessible.

0154 If the course has a start resource, readmap calls the
procedure traceroute (FIG. 11A) with the following param
eters (Step R4): 1) the cumulative condition along this path
or route so far is set to “true' (the map is accessible), 2) the
resource ID of the start resource of the course map, and 3)
an empty list for all resources processed so far along this
route. It is again important to note that all variables except
the global binary structures are local to traceroute, since
traceroute will recursively call itself whenever there is a
branching to follow all possible paths of the maps.
O155 traceroute will establish a section within the
resource properties hash that builds up all conditions leading
up to a resource. FIG. 11B shows an excerpt of the final
result. For example, resource 2.5, the introduction to part 1,
can be reached under condition 8 (see FIG. 10), meaning,
after solving the pretest problem. traceroute first checks if
the resource has already been processed on this route by its
resource ID (FIG. 11A. Step T1). This test avoids that
traceroute runs into endless loops when the links on the map
loop. Next, the resource ID is added to the list of processed
resources on this route (Step T2).
0156 The resource conditions are now ORd (i.e. a
logical 'or' is appled) with the cumulative conditions on this
route (Step T3) the route represents another way of getting
to the resource. A small routine with simplification rules for
boolean expressions is called to simplify the potentially very
long expression.

Dec. 8, 2016

0157. In the next step, it is determined if the resource is
itself a map (Step T4). If it is, the exit route conditions can
differ from the entry route condition by all additional con
ditions along the paths in the embedded maps (for non-map
resources, entry and exit route conditions are the same). If,
however, the embedded map does not have a start resource
(Step T5), that is not the case—again, the missing of entry
point to an embedded link structure is interpreted as the
resources being openly accessible.
0158 If the embedded map does have a start resource.
traceroute is called recursively with the current route con
ditions, the ID of the start resource of that map, and the list
of already processed resource IDs (Step T6). Upon return, if
the embedded map does not have a finish resource, the entry
and exit conditions of this map are assumed to be the same
(Step T7). If the map had a finish resource, the route
condition so far is set to the resource condition of the finish
resource of the embedded map (Step T8). In order go on
from here, the user would have had to reach the finish
resource of the embedded map.
0159. Now the route conditions are correctly set for
exiting the resource and going on from here. traceroute now
loops over all outgoing links of the resource (Step T9). If the
link does have a link condition (Step T10), then the route
condition for this branch path is the cumulative route
condition so far AND the link condition (Step T11). If there
is no link condition, then there is no change in route
conditions (Step T12). To further process the routes along
this link, traceroute is called recursively with the resource ID
of the destination resource of the link, the new route
conditions, and the list of already processed resources (Step
T13). traceroute returns after processing the last outgoing
link of the resource it had been called.

(0160 FIG. 11B shows part of the output of traceroute for
the example FIG. 7.

Multivalued Boolean Evaluation of Link Priorities

0.161 When a user accessed a resource on a map and
desires to access the “next resource, the request is pro
cessed by a number of steps. From the data exemplified in
FIG. 9C, it is determined which outgoing links exist. From
the data in FIG. 9D it is determined to which resources those
links lead. For each of the resources, the expressions in FIG.
11A are evaluated as follows. Stored in the session environ
ment is the evaluation of the table FIG. 10, where the
boolean part is evaluated as “0” or “1”. In addition, a
multivalued boolean value is computed incorporating the
condition priority. A false blocking condition is assigned the
value Zero, all other false conditions the value 1. A true
forced condition is assigned the value 3, all other true
conditions the value 2.

(0162. In the expressions FIG. 11A an “&” (“AND”) is
processed as the minimum (min) operation, a “I” (“OR”) is
processed as the maximum (max) operation. The outcome
“0” means “blocked’, the outcome “1” means “not recom
mended', the outcome '2' means recommended, and the
outcome '3' means forced.

(0163. From the above, it should be clear that the methods
and systems of the present invention provide computer
driven system that adapts to new information, allows for
new information to be readily utilized by instructors, so that
the instructor can integrate new information into the existing
curriculum.

US 2016/03.58492 A1

1-20. (canceled)
21. A computer-implemented system for delivering and

augmenting informational content, comprising:
at least one content publishing server having a memory

storing a map data structure configured by a content
author to define relationships among plural resources
and thereby define an informational item of higher
granularity content;

each of said plural resources being associated with a first
electronic file linked to said map data structure and
configured to store information about the usage of the
associated resource:

the higher granularity content being associated with a
second electronic file linked to said map data structure
configured to store information about the usage of the
higher granularity content;

the content publishing server having networked connec
tion to deliver the informational item to a computer and
to receive feedback usage information from the com
puter reflecting how the higher granularity content and
individual ones of the plural resources are used on said
computer;

the content publishing server being programmed to update
said first and second electronic files in accordance with
the feedback usage information.

22. The computer-implemented system of claim 21 fur
ther comprising resource assembly tool configured to assem
bly said higher granularity content by defining and storing
said map data structure in the memory of said publishing
computer.

23. The system of claim 21 wherein the content publish
ing server uses information stored in at least one of said first
and second electronic files to conditionally recommend
resources to a learner.

24. The system of claim 21 further comprising at least one
resource server computer storing at least one of said plural
resources, the resource server computer being in networked
communication with said content publishing server to make
said at least one of said plural resources available to the
publishing server for reference by said map data structure.

25. The system of claim 22 wherein said content publish
ing server stores a copy of said first electronic file in
association with said at least one of said plural resources.

26. The system of claim 21 wherein the map data structure
forms a directed graph that defines branches that link
individual resources with one another.

Dec. 8, 2016

27. The system of claim 21 wherein the content publish
ing server has memory configured to store files using a map
data structure defining lower granularity content nested
within higher granularity content.

28. The system of claim 21 wherein the content publish
ing server has memory configured to store files using a map
data defining storing lower granularity content nested within
higher granularity content and defining conditional branch
points whereby the lower granularity content are only con
ditionally presented based on user interaction.

29. The system of claim 21 wherein the content publish
ing server has memory configured to store files using a map
data structure that causes storing of resources in association
with different resource priority levels, including but not
limited to the following levels: (a) regular priority, (b)
mandatory priority and (c) optional priority.

30. The system of claim 21 wherein the content publish
ing server has memory configured to store files using a map
data structure that organizes informational content according
to one of at least three predefined types, namely:

(a) resource type;
(b) condition type; and
(c) link type.
31. The system of claim 21 further configured to initialize

and deliver a course to a learner, wherein the content
publishing server is programmed to evaluate the higher
granularity content and to compile the higher granularity
content, including any embedded lower granularity content,
into at least one binary structure at the time a course is
initialized for said learner.

32. The system of claim 21 wherein the content publish
ing server is programmed to evaluate said informational
content according to at least one of three predefined infor
mation types, namely:

(a) resource type;
(b) condition type; and
(c) link type.
33. The system of claim 32 wherein the content publish

ing server is programmed to test for the resource type and
upon detection to recursively load additional informational
content if the informational content comprises a nested map
data structure.

34. The system of claim 32 wherein the content publish
ing server is programmed to test for the condition type and
upon detection storing the informational content as a con
dition associated with a link.

k k k k k

