
United States Patent 19)
Odnert et al.

III IIHIII
US005555417A

11 Patent Number:
45) Date of Patent:

5,555,417
* Sep. 10, 1996

(54) METHOD AND APPARATUS FOR
COMPLING COMPUTER PROGRAMS
WITH INTERPROCEDURAL REGISTER
ALLOCATION

(75) Inventors: Daryl Odinert, Boulder Creek; Vatsa
Santhanam, Sunnyvale, both of Calif.

(73) Assignee: Hewlett-Packard Company, Palo Alto,
Calif.

(*) Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,428,793.

(21) Appl. No.: 313,432
(22 Filed: Jan. 23, 1995

Related U.S. Application Data

63 Continuation of Ser. No. 435,914, Nov. 13, 1989, Pat. No.
5,428,793.

(51 Int. Cl. ...

4,777,588 10/1988 Case et al.
4,782,444 11/1988 Munshi et al...
4,961,141 10/1990 Hopkins et al.
5,083,263 1/1992 Joy et al.
5,161,216 11/1992 Reps et al. ..
5,428,793

364/200
... 364/200
... 364/200
... 395,425
... 395/375

6/1995 Odnert et al. 395/700

OTHER PUBLICATIONS

David W. Wall, "Global Register Allocation at LinkTime",
Digital Equipment Corp., Western Research Lab, ACM,
1986, pp. 264-275.
Primary Examiner-Kevin A. Kriess
Assistant Examiner-Dennis M. Butler

(57) ABSTRACT

Optimization techniques are implemented by means of a
program analyzer used in connection with a program com
piler to optimize usage of limited register resources in a
computer processor. The first optimization technique, called
interprocedural global variable promotion allows the global
variables of a program to be accessed in common registers
across a plurality of procedures. Moreover, a single common
register can be used for different global variables in distinct

52 U.S. Cl. 395/700, 364,232.23: 364,2804; regions of a program call graph. This is realized by identi
364/280.5: 364/DIG. 1 fying subgraphs, of the program call graph, called webs,

(58) Field of Search 395,375 700 where the variable is used. The second optimization tech
395/800,364,232.23 280.4 280 s nique, called spill code motion, involves the identification of

9 safaws • regions of the call graph, called clusters, that facilitate the
(56) References Cited movement of spill instructions to procedures which are

executed relatively less often. This decreases the overhead
U.S. PATENT DOCUMENTS of register saves and restores which must be executed for

4,571,678 2/1986 Chaitin 364200 procedure calls.
4,642,764 2/1987 Auslander et al. 364/200
4,656,582 4/1987 Chaitin et al. 364/200 20 Claims, 7 Drawing Sheets

SOURCE SOURCE SORCE
6 CODE f CODE2 CODEN

2. is 20 22
28

30

32

34 36 38
INTERMEDIATE INTERMEDIATE, ... INTERMEDIATE r CODE CODE 2 CODEN

O

WARIABLE USAGE PROCEOURE CAL REGISTER NEED
ANALYZER ANALYZER ANALYZER

46 SUMMARY FE
60, 48 GENERATOR
--- Y - 50 52 -
PREVIOUS SUMMARY SUMMARY SUMMARY
coPLATION FILE FILE 2 FILE N
- - - - - -

54
PROFILE N.

INFORMATION

58

PROGRAMANALYZER

PROGRAM
DATASASE

5,555,417 Sheet 1 of 7 Sep. 10, 1996 U.S. Patent

– – – – – – – – – – – –
|| |HEZATVN 7; }

! | HETICHWOO I ?? No.ldº, 83 10 d W00

8}
—^ | 3000 30800S — LOZ

2 3000 30800S ? ©

©LZZ
N 3000 30800S

U.S. Patent Sep. 10, 1996 Sheet 2 of 7 5,555,417

SOURCE SOURCE S9 ROE
CODE CODE 2 CODEN

e 26 - 8 2O

SCANNER

PARSER

TRANSLATOR

34 36 38
A- A- TOY

INTERMEDIATE INTERMEDIATE, INTERMEDIATE

22

28

32

CODE CODE 2 CODEN

40 42

VARIABLE USAGE PROCEDURE CALL REGISTER NEED
ANALYZER ANALYZER ANALYZER

46 SUMMARY FILE
60 GENERATOR

W 48
- - - Y 5O 52
PREVIOUS SUMMARY SUMMARY SUMMARY
COMPLATION FILE FILE 2 FILE N
- - - - - -

PROFILE
INFORMATION

58

TO X

U.S. Patent Sep. 10, 1996 Sheet 4 of 7 5,555,417

f22
8 2O 22
S- S- S
SOURCE SOURCE SOURCE
CODE CODE 2 CODEN

48
- - -

SUMMARY SUMMARY SUMMARY
FILE FILE N

- - - -

INTERMEDIATE INTERMEDIATE INTERMEDIATE
FILE f FILE 2 FILE N

38

f2B PROGRAM
DATABASE
-

PROGRAM
AWALYZER

2O 56 54

OBJECT OBJECT OBJECT --
FILE ;F' ' ' ' FILE N PROFILE

INFORMATION
2O -

58
RUN TIME

LINKER LIBRARIES

9

EXECUTABLE
FILE
-

FIG. 4

U.S. Patent Sep. 10, 1996 Sheet 5 of 7 5,555,417

V7

/ (a) f50 WEB3 (gi, r17) W WEB3(gl,r17)
(f32 --- /

f34 W v
154

A36 A38 N\ |

- 448

(e) WEB4 (g2, r18)

FIG 5

U.S. Patent Sep. 10, 1996 Sheet 6 of 7 5,555,417

PROCEDURES THAT
VARIABLE NAME ACCESS WARIABLE

gf B D E

U.S. Patent Sep. 10, 1996 Sheet 7 of 7 5,555,417

200 1\

2O2 () 2O6 (D

2O4 (.) FIG. 9

CUSTER f

- Y
cluSTER 2 CLUSTER 3

FIG 7

5,555,417
1.

METHOD AND APPARATUS FOR
COMPLING COMPUTER PROGRAMS
WITH INTERPROCEDURAL REGISTER

ALLOCATION

This is a continuation of application Ser. No. 07/435,914
filed on Nov. 13, 1989, now U.S. Pat. No. 5,428,793.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material to which a claim of copyright protection is
made. The owner has no objection to the facsimile repro
duction of the patent document or patent disclosure as it
appears in the Patent and Trademark Office patent file or
records, but reserves all other rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates to computer program compilers and
more particularly a computer program compilation system
that supports register allocation across procedure and com
pilation unit boundaries where there are global variables and
a limited number of registers for storage and manipulation of
data.

In a traditional compiler, register allocation is performed
on each procedure one at a time. In some compilers, the
register allocator has access to register allocation informa
tion from other procedures within the same compilation unit.
The compiler can use this information to improve the
register allocation in the callers of these routines. This type
of technique is limited in scope to the procedures of a single
compilation unit.
The traditional intraprocedural register allocation process

is effective, but in the absence of interprocedural informa
tion the following situations occur:
Local values in different procedures are assigned to the
same register. As a result, procedures must execute code
to save and restore these registers in order to preserve the
values needed by the calling procedure.
Global variables are referenced out of different registers in
different procedures. This requires a modified value of a
global variable to be stored to memory before any pro
cedure call, and loaded back from memory before any
subsequent use of that variable. This also requires each
procedure which references that variable to load the
variable from memory if it is used before being redefined,
and to store the global variable to memory before the exit
point if the variable is modified within that procedure.
For most programming languages, improving this situa

tion is complicated by the need to support multiple compi
lation units. For example, if one wishes to keep a certain
global variable in a register when compiling module A, one
must ensure that any reference to that variable in a different
module uses the same register.
One possible solution is to delay register assignment until

link time, when the code for the entire application is visible.
This solution is difficult to implement with traditional com
piler architectures, however, because of the need for data
flow and live range information at register allocation time.
Moreover, computing this information would create an
unreasonable delay each time a user needed to re-link an
application.
There are two known significant research efforts that have

addressed the weaknesses of procedure-at-a-time register
allocation. The first was carried out at DEC's Western
Research Lab in 1986 and described by David W. Wall in an
article entitled "Global Register Allocation. At LinkTime' in
the Proceedings of the SIGPLAN 86 Symposium On Com

10

15

20

25

30

35

45

50

55

60

65

2
piler Construction, SIGPLAN Notices, Vol. 21, No. 7, July
1986, pages 264-275. In this technique, the compiler does a
simple register allocation on each procedure and generates
register relocation information for the linker. The user may
optionally enable interprocedural register allocation at link
time. To promote a variable to a register, the linker only
needs to follow the prescribed relocation actions. This
technique showed some good results. Some benchmarks
improved by as much as 8% on a 64-register RISC machine,
with a majority of the benefit attributed to the promotion of
global variables.

Global variable promotion is an optimization technique
where memory references to global variables are converted
into register references. In effect, the global variable is
promoted from being a memory object to a register object.
Traditional compilers sometimes promote global variables
to registers locally within a procedure. Such locally pro
moted global variables are still accessed out of memory
across procedures. Before procedure calls and at the exit
point, the compiler inserts instructions to store the register
containing the promoted global variable back to memory.
Similarly, just after procedure returns and at the entry point,
the optimizer inserts instructions to load the promoted global
variable from memory to register.
The second significant research effort was produced at

MIPS Computer Systems and described by Fred C. Chow in
"Minimizing Register Usage Penalty at Procedure Calls'
published in Proceedings of the SIGPLAN 88 Conference
on Programming Language Design and Implementation,
July 1988, pages 85-94 and also in an article authored with
others in "Cross-Module Optimizations: Its Implementation
and Benefits' published in the Proceedings of the Summer
1987 USENIX Conference, pages 347-356. In the MIPS
system, the multiple compilation unit problem is solved by
exposing an intermediate code representation to the user.
Then, instead of linking object code, the user must link the
intermediate code files into a single, large intermediate
program file. The intermediate code linker then completes
the code generation and optimization process. As part of this
process, the optimizer tries to minimize register spill by
performing register allocation on procedures in a reverse
hierarchical order and propagating register usage informa
tion upwards in the call graph. This technique showed
generally positive results, although there were exceptions
noted. In one example discussed, this process resulted in
object code which executed more slowly than a version
compiled without interprocedural register allocation. There
are other computer systems and compilers that have been
implemented which use a similar technique within a single
compilation unit.
On many contemporary computer architectures, machine

registers are divided by software conventions into three
classes: status registers, caller-saves registers, and callee
saves registers.
Status registers are registers which are designated to hold
specific values which may not be used to hold variables or
other temporary values. Examples include a stack pointer
and a global data pointer.
Caller-saves registers are registers which may be used
within a procedure to hold values, but these values are not
guaranteed to remain unchanged after executing a call to
another procedure. These registers may be used by a
procedure without being preserved in memory before they
are used. The name "caller-saves' refers to the fact that
the caller of a procedure must save any needed values in
these registers so the called routine may use those regis
terS.

5,555,417
3

Callee-saves registers are registers which may be used
within a procedure to hold values, and these values are
guaranteed to remain unchanged after executing a call to
another procedure. However, the values in these registers
must be spilled before they are used and then restored to
the register before exiting the procedure. The name
"callee-saves' refers to the fact that the called routine is
responsible for saving these registers before they are used.
In the absence of interprocedural information, callee

saves register spilling is necessary in every procedure which
needs to use a register of that class. This creates significant
overhead in many programs.
Some other references to related work include:
"LISP on a Reduced Instruction Set Processor: Charac

terization and Optimization”, by P. A. Steenkiste of Stanford
University Computer Systems Laboratory, PhD Thesis,
Chapter 5, March 1987. This approach is similar to that of
MIPS, except that it reverts to ordinary intraprocedural
register allocation when the interprocedural registers are
exhausted in upper regions of the call graph.

“Data Buffering: Run-Time Versus Compile Time Sup
port' by Hans Mulder, Proceedings of the 3rd International
Conference on Architectural Support for Programming Lan
guages and Operating Systems, Apr. 3-6, 1989, pages
144-151. This approach is also similar to that of MIPS
except that it is limited in scope to single compilation units.

"The Impact of Interprocedural Analysis and Optimiza
tion in the R" Programming Environment' by Keith D.
Cooper, Ken Kennedy, and Linda Torczon of Rice Univer
sity. Published in the ACM Transactions on Programming
Languages and Systems, October 1986, pages 491-523.
This paper describes a program compiler which computes
interprocedural optimization information, but does not
address the register allocation problem.

Hewlett-Packard's Apollo Division uses an interproce
dural register allocation scheme within a single compilation
unit in their DN10000 architecture compilers. As with the
references above, except for the DEC paper, this approach
does not attempt to keep global variables in registers across
procedures.
What is needed is a method and apparatus for optimizing

register usage where there is a limited number of available
register resources in a computer processor and where a
plurality of procedures and variables are involved.

SUMMARY OF THE INVENTION

According to the invention, two specific optimization
techniques are implemented by means of a program analyzer
used in connection with a program compiler to optimize
usage of limited register resources in a computer processor.
The first optimization technique, called interprocedural glo
bal variable promotion allows the global variables of a
program to be accessed in common registers across a
plurality of procedures. Moreover, a single common register
can be used for different global variables in distinct regions
of a program call graph. This is realized by identifying
subgraphs of the program call graph, called webs, where the
variable is used. The second optimization technique, called
spill code motion, involves the identification of regions of
the call graph, called clusters, that facilitate the movement of
spill instructions to procedures which are executed relatively
less often. This decreases the overhead of register saves and
restores which must be executed for procedure calls.
The program analyzer according to the invention reads

summary files produced by a compiler modified to create
summary files containing, for each procedure of a source

O

15

20

25

30

35

45

50

55

60

65

4
code file, global variable usage information, register need
information, and names of called procedures. The compiler
is run on each source code file separately to produce separate
summary files. The program analyzer computes interproce
dural register allocation information from the summary files
and writes it out to a program database file. The program
analyzer builds a single program call graph (PCG) from all
the summary files. The PCG consists of a set of nodes, each
representing a procedure, interconnected by directional
edges, each representing a call from a first procedure to a
second procedure.

Traditional intraprocedural register allocators have in the
past employed data structure known as def-use chains to
represent live ranges of variables. Def-use chains are analo
gous to spider webs linking equivalence classes of defini
tions and uses of a variable. Consequently, def-use chains
are sometimes referred to as "webs'. Webs have not been
employed in the past in any interprocedural register alloca
tion techniques. In other words, live ranges for global
variables have not been computed across procedure bound
acS.

In order to facilitate global variable promotion, the pro
gram analyzer identifies webs for selected global variables
(the global variables selected are those variables that are
eligible for assignment to an interprocedural machine reg
ister). A web for a single global variable is a collection of
PCG nodes such that the global variable is accessed in at
least one node of the web and such that, for each node in the
web, the global variable is not accessed in any ancestor node
not in the web, and the global variable is not accessed by any
descendant node not in the web. Multiple webs may be
identified for a single global variable.
The program analyzer then prioritizes the webs according

to frequency of use of the corresponding global variable
within nodes of the web. The webs can optionally be
prioritized based on profile information collected from an
earlier run of the compiled source files.
The program analyzer then assigns the first available

interprocedural machine register to the selected webs in
priority order. In assigning interprocedural machine registers
to the selected webs, the program analyzer ensures that webs
that have common PCG nodes are assigned different
machine registers. The interprocedural registers assigned to
the webs are chosen from a limited sub-set of machine
registers designated for preserving values across procedure
calls (callee-saves registers).

Unlike previous approaches, this method of interproce
dural register assignment allows a single register to be used
for different purposes in distinct regions of the PCG. Spe
cifically, a single interprocedural register can be used for the
promotion of different global variables in different regions
of the PCG. This allows a larger number of global variables
to be promoted than the approach described by David W.
Wall. Moreover, with our method, global variables are not be
promoted in the regions of the PCG in which the variable is
not used.

Another function of the program analyzer is to facilitate
the reduction of the overhead associated with saving and
restoring callee-saves registers. This overhead is mitigated
through spill code motion.

In order to facilitate spill code motion, the program
analyzer first identifies clusters of nodes of the PCG. A
cluster is a collection of PCG nodes such that there exists a
unique root node of said cluster only through which every
other node in the cluster can be called. Profile information
collected form an earlier run of the compiled source files
may be used to aid cluster identification.

5,555,417
5

Interprocedural machine registers are assigned to each
cluster node, according to the register need for the corre
sponding procedure and as restricted by the cluster organi
Zation.

The root node of each cluster is designated to execute
machine instructions to preserve the values of the interpro
cedural registers assigned to nodes of that cluster. The
machine instructions are executed upon calls to the cluster
root node so that other nodes within the cluster need not
execute the machine instructions.
The assignment of interprocedural machine registers to

global variable webs and cluster nodes are finally written out
by the program analyzer to the program database.
The summary files read by the program analyzer are

produced in conjunction with intermediate files by a first
phase of compiler operation. In a second phase, the program
database file and intermediate files created by the first phase,
are processed to produce individual object code files with
the requisite interprocedural register assignments. In this
stage, the pseudo-register operands used in the intermediate
code (read from the intermediate files) are mapped into
machine registers by a register allocator. The register allo
cator uses the interprocedural machine registers specified in
the program database file to map certain pseudo-registers to
machine registers.

For each procedure corresponding to a node of a web that
was assigned an interprocedural machine register by the
program analyzer, all memory references to the correspond
ing global variable are converted into interprocedural reg
ister references. At the rootnodes of webs that were assigned
an interprocedural machine register, instructions are added
at the entry point to load the value of the corresponding
global variable from memory into the interprocedural reg
ister and at the exit point to store the value back to memory.
Additionally, machine instructions (spill code instructions)
are added to preserve the value of the interprocedural
register across calls to that root node. These transformations
effectively promote the storage class of the selected global
variables to register i.e. they result in global variable pro
motion.

For each procedure corresponding to a node of a cluster
that was assigned interprocedural machine registers by the
program analyzer, certain pseudo-registers are mapped into
those interprocedural machine registers instead of the ordi
nary callee-saves registers. Machine instructions are added
at the root nodes of clusters designated to preserve the values
of the interprocedural registers assigned to nodes of that
cluster. These transformations effectively result in spill code
motion.

The invention will be better understood by reference to
the following detailed description in connection with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system incor
porating the invention.

FIG. 2 is a block diagram of a computer program com
pilation system in accordance with the invention.

FIG. 3 is a block diagram of a register allocator used in
accordance with the invention.

FIG. 4 is an internal view of the compilation system
operational in accordance with the invention.

FIG. 5 illustrates a sample program call graph and the
webs identified for three global variables.

10

15

20

25

30

35

40

45

50

55

60

65

6
FIG. 6 is a table describing the usage of the global

variables at different nodes of the program call graph illus
trated in FIG.S.

FIG. 7 illustrates clusters of nodes within the same
program call graph shown in FIG. 5.

FIG. 8 is another sample program call graph to illustrate
a potential cluster identification problem.

FIG. 9 is another sample program call graph to illustrate
a potential web identification problem.

DESCRIPTION OF SPECIFIC EMBODIMENTS

The invention is described by a specific embodiment as
might be implemented on a Hewlett-Packard Precision
Architecture computer system. The invention may be
applied to any computer system where there is a finite
number of registers and more particularly to computer
systems where the number of registers available for com
putation and other processing is limited. This invention
applies particularly to computer systems that categorize the
available registers by software convention into callee-saves
and caller-saves register partitions. The invention operates
on source files, which are human readable high-level pro
gram fragments which comprise procedures.

Referring to FIG. 1, there is shown a computer system 10
incorporating the present invention. A compiler 12, is resi
dent in a computer 14, including a processor, and a program
analyzer 16 is resident in the computer 14 in accordance
with the invention. The invention operates as follows:
A plurality of source code files 18, 20, 22 are supplied one

at a time as input to the computer 14. The computer 14,
through the use of the compiler 12 and the program analyzer
16, processes the source code files 18, 20, 22 to produce
object files incorporating interprocedural register allocation
optimization in accordance with the invention. The object
files are linked into an executable file 24 by a linker 17. The
executable file 24 may be run on the computer 14 or on
another machine of the type for which the compiler has
generated the executable file 24.

Referring to FIG. 2, there is shown a block diagram of a
portion of an apparatus 26 for performing interprocedural
register allocation in accordance with the invention. The
apparatus 26 comprises a scanner 28, for sequentially read
ing source code files 18, 20, and 22, a parser 30, coupled to
receive from the scanner 28, lexically checked tokens of the
source code files one at a time for verifying syntactic
correctness. In addition, a translator 32, coupled to receive
the output of the parser 30 is operative to check for semantic
correctness and to generate an intermediate code represen
tation 34, 36, 38, for each of the source code files, respec
tively. The intermediate code is an ordered list of procedures
translated from the source code. Each procedure consists of
a sequence of machine instructions 108, each of which
consists of an opcode 100 and pseudo-registers 102, 104,
106 as shown in FIG. 3. The intermediate code is tempo
rarily stored for subsequent use or regenerated later. Each
unit of the intermediate code is analyzed by a variable usage
analyzer 40, register need analyzer 42, and a procedure call
analyzer 44.
The variable usage analyzer 40, identifies the global

variables used in each procedure, and the nature of the
access to the global variables.
The procedure call analyzer 44 identifies the names of the

called procedures and the nature of the calls to each proce
dure.

5,555,417
7

The register need analyzer 42 estimates machine register
need by examining the intermediate code.
The summary file generator 46 outputs the results pro

duced by the analyzers to summary files 48, 50, 52 in
accordance with the invention. The summary file contains a
record for each procedure in the corresponding source files.
The summary files 48, 50, 52 are processed serially by a
program analyzer 54 which analyzes the summary files as
herein below described. The results of the program analyzer
analysis is stored in a program database 56.

Optionally, profile information from a profile information
file 58 is also provided to the program analyzer 54. The
profile information is collected from an earlier run of the
result of a previous compilation 60 of the same source files
18, 20, and 22.

Referring to FIG. 3 there is shown an illustration of a
register allocator 62 in accordance with the invention. The
register allocator 62 is operative to receive the information
in the program database 56 and the intermediate code 34, 36,
38 in the form of procedures. Each procedure consists of a
sequence of instructions 108, each of which consists of an
opcode 100 and pseudo-registers 102, 104, and 106. The
register allocator 62 is responsible for converting memory
references to promoted global variables into interprocedural
register references. The register allocator 62 is also respon
sible for replacing all of the pseudo-registers 102, 104, 106
in the intermediate code with machine registers, some of
which may be interprocedural registers 110, 113. The reg
ister allocator is also responsible for adding spill code 116,
118 to preserve the values of certain registers, including the
interprocedural registers in root nodes of clusters and webs
as herein after explained.
The result of register allocation for each set of procedures

is output to an object file 120, which is in turn processed by
the linker 17 (FIG. 1) into an executable file 24 (FIG. 1).

Referring to FIG. 4, there is shown an internal overview
of the compilation system 122 with source files 18, 20, 22,
summary files 48, 50, 52, intermediate files 34, 36, 38,
program analyzer 54, profile information 58, program data
base 56, object files 120, the linker 17, run time libraries 19,
an executable file 24. The compiler comprises a first phase
12A and a second phase 12B. The compiler first phase
shown in FIG. 4 comprises the scanner 28, the parser 30, and
the translator 32 shown in FIG. 2. The compiler second
phase 12B shown in FIG. 4 includes the register allocator 62
shown in FIG. 3.

The collection of summary files 48, 50, 52 produced by
the compiler first phase 12A is exposed to the program
analyzer 54. The program analyzer is responsible for con
structing a program call graph 130 (FIG. 5) for the program,
identifying webs and clusters for the program call graph and
making decisions about how interprocedural registers are to
be allocated to the webs and clusters across that graph 130.
The program call graph 130 comprises nodes A, B, C, D,

E, F, G, H, and I with directional edges 132, 134, 136, 138,
140, 142, 144, 146, and 148 connecting the nodes. Webs
150, 152, 154, and 156 are identified for the program call

10

5

20

25

30

35

40

45

50

55

graph 130 in FIG. 5 and clusters 158, 160, and 162 are
identified on the same program call graph 130 in FIG. 7 as
hereinafter explained.
An interprocedural register is allocated to each selected

web. A plurality of interprocedural registers are allocated to
nodes of each cluster. These allocations are recorded in the
form of register actions to a program database 56 of infor
mation about the program. The register allocator 62 uses
information from the program database 56 to guide register

60

65

8
allocation on each procedure in the intermediate file, one at
a time.
The program analyzer 54 has been designed with the

availability of profile information 58 in mind. In a particular
embodiment, the implemented algorithms are not dependent
on profile information, but some of the heuristics used in the
program analyzer can be improved with profile information
58.

The Program Analyzer

The program analyzer 54 generates the program database
56 by completing the following tasks, in order.

1) Build a program call graph 130 (FIG. 5).
2 Identify webs for global variables and select webs for

which interprocedural registers are to be allocated.
3 Assign interprocedural registers to the webs selected

in step 2.
4) Identify clusters in the call graph.
5. Pre-allocate registers to the nodes of each cluster

identified in step 4 and identify the registers that must be
spilled at the root of each cluster.

5 Compute register actions for each node of the program
call graph and write these out to the program database.

Global Variable Promotion Strategy
Interprocedural register promotion is an optimization that

attempts to maintain certain important user global variables
in registers across procedure boundaries.
The preferred embodiment makes use of the compilation

system shown in FIG. 4 to automatically promote key global
variables to registers across procedure boundaries. The
compiler first phase 12A is responsible for communicating
the callee-caller relationships and global variable usage for
each of the source files 18, 20, 22 to the program analyzer
54 through summary files 48, 50, 52.
The program analyzer 54 collects the global variable

usage information across all source files that make up the
program. It determines which globals are ineligible for
register promotion and of the remaining global variables,
selects those that are the most heavily referenced, for
register promotion.
The program analyzer 54 partitions the references to a

global variable into disjoint webs and consider each web
individually for register allocation.
A web, for the purposes of interprocedural global register

allocation, identifies a minimal set of nodes in the call graph
over which an eligible global variable could reside in an
interprocedural callee-saves register (without requiring
caller spill). Typically, the nodes of a web would be a
connected subgraph which use or define the web variable.
The subgraph is selected such that no ancestral node or
descendent node in the call graph references the same web
variable.

Each web can have one or more entry nodes. These entry
nodes are basically the root nodes of the web subgraph.
Typically, an entry node would contain references to the
global variable while none of its direct predecessors would.
All descendant nodes of each entry node that either have a
local reference or a child reference to the global, are part of
the web. If a web is selected for promotion, at every node of
the web, references to the global memory variable would be
replaced by a register reference to a reserved interprocedural

5,555,417
9

callee-saves register which would be unavailable for normal
intraprocedural register coloring.

Additionally, at the entry nodes of the web, the global
variable is loaded into the reserved callee-saves register on
entry and stored back on exit (e.g. instructions 115 and 117
in FIG. 3). (Note that this allows a global variable whose
value has been initialized at compile time to be safely
promoted to a register.) For this approach to work, entry
nodes are required to have ONLY external predecessors
nodes and internal nodes are not allowed to have ANY
external predecessors.
To meet this requirement, special entry nodes may need to

be added to the web. For example, consider the program call
graph 200 in FIG. 9. Suppose a global variable g3 is
referenced in procedures S 202 and U 204, but not in
procedure T206. Suppose further that the web for g3 were
to include only nodes S and U. If that web is assigned an
interprocedural register, the instructions for procedure U
will reference the value of g3 from that interprocedural
register. When U is called from T, however, no instructions
will have been executed to place the most recent value of g3
in that interprocedural register. This will be an incorrect
translation of the source code. To solve this problem, pro
cedure T is added to the web and designated to be an entry
node.

The webs for a global variable are identified by using
dataflow sets (bit vectors of numeric global identifiers,
L REF, C REF, and P REF) at each node of the call
graph. These dataflow sets are computed by propagating the
local reference information at each node throughout the call
graph. After the webs are built, an interference graph is
constructed. In an interference graph, each node represents
a web and each edge represents an interference between two
webs. Two webs interfere with each other if the respective
global variables are simultaneously "live' at one or more
nodes in the call graph (i.e. if the two webs have common
call graph nodes). A global variable is live' at a node, if
there are references to that global variable either at that node
or in an ancestral or descendent node in the program call
graph.

Note that by definition, two different webs of the same
global variable will never interfere with each other. The
nodes of the interference graph will be assigned (colored
with) one of the reserved callee-saves registers in a manner
which avoids assigning the same register to adjacent nodes
in the interference graph. Before coloring, the webs are
sorted into an order based on heuristics. If a node is colored
successfully, then the corresponding web is in effect pro
moted to a register. Register actions will then be assigned to
the nodes comprising a colored web. These register actions
are used to direct the register allocator on how to promote
the global variable to a register. The register actions for a
node could include one or more of the following directives.

1. Make callee-saves register Runavailable for intrapro
cedural use.
2. Add save and restore code for register R (e.g. instructions

116 and 118 in FIG. 3).
Also, add load and store instruction for global variable G

(e.g. instructions 115 and 117 in FIG. 3) to and from
callee-saves register R on entry and exit (e.g. for variable g1
in procedure B in FIG. 5).

Note that a load or store instruction can be generated from
the information in the program database.
3. All references to global variable G (e.g. g1 in FIG. 5) are

to be replaced with references to callee-saves register R
(e.g. r17 in FIG. 5).

O

5

20

25

30

35

40

45

50

55

60

65

10
The register actions for each node are written out to the

program database 56 by the program analyzer 54 and later
queried and used by the compiler phase 2 (12B in FIG. 4).
To better understand the algorithm described below, con

sider FIG.5 and FIG. 6. The nodes of the program call graph
130, labeled A through I represent procedures and the edges
132, 134, 136, 138, 140, 142, 144, 146, 148 between these
nodes represent procedure calls. FIG. 6 describes how three
global variables g1, g2, g3 are accessed by the different
nodes of the program call graph.
The webs 150, 152, 154, 156 are identified for these three

global variables. Note that there are two separate webs 152,
156 for the global variable g2. For this example, all four
webs can be promoted using just two callee-saves registers,
r17, r18. These callee-saves registers could correspond to
the interprocedural registers 110 and 113 shown in FIG. 3.

Different webs for the same variable may be assigned
different registers. This is the case for web 4156 and web 2
152 for global variable g2, which are assigned registers r17
and r18 respectively.
The compiler second phase 12B is responsible for con

verting memory references to global variables correspond
ing to promoted webs into register references. For example,
memory references to global variable g2 are converted into
references of register r17 in procedures C, F, and G. Addi
tionally, at the entry procedure C for web 2 152, code is
inserted at the beginning to load the global variable g2 into
the register r17. Code is also inserted at the end of procedure
C to store back the global variable g2 from register r17 to the
memory location in the computer associated with that vari
able.

Interprocedural Global Register Promotion
Algorithm

The following pseudo-code provides guidance for coding
the algorithms discussed herein. This pseudo-code is based
on the 'C' programming language.

Input

A program call graph of 'n' nodes. It is assumed that the
representation of the call graph allows easy identification of
a node's successors and predecessors.

For each node of the call graph, a list of global variables
that are explicitly referenced, a set of heuristically assigned
reference frequencies for those globals, and the set of global
variables (not necessarily a subset of those referenced)
whose address have been taken or are otherwise ineligible
for promotion. This information is computed by the variable
usage analyzer 40 shown in FIG. 2.

Output
For each node of the call graph, intraprocedural register

actions required to maintain a selected set of singleton
global variables in registers within certain regions of the call
graph.

Main Data Structures

L REF i)
The dataflow set representing Local References. For

each node i, L REFi) represents the set of eligible
global variables (indices) referenced locally at that
node.

5,555,417
11

P REF i
The dataflow set representing Parent References. For

each node i, P REFEi) represents the set of eligible
global variables (indices) referenced by all parent
nodes of node i. A parent node is any node in the call
graph from which there is a forward call path (an
invocation sequence without procedure returns) to node
1.

C REF i)
The dataflow set representing Child References. For each

node i, C REFEi) represents the set of eligible global
variables referenced by all child nodes of node i. A
child node is any node in the call graph to which there
is a forward call path (an invocation sequence without
procedure returns) from node i.

R Action ig
Register Actions (1.3) at node i for promoted global

variable
Ref Count gi)
The reference count for variable g at node i

10

5

12
Global Table g

For each unique eligible global g, there is an entry in the
Global Table. Each entry for a global variable in the
Global Table has a unique index that is its numeric
identifier (which is used in the dataflow sets). Each
entry also contains the set of call graph nodes which
access that global. The organization of this symbol
table allows for easy entry, deletion and translation
between the global variable name and entry index.

Web Table w
For each web (identified by its entry index in this table),

the Web Table entry contains the numeric global
index, the entry nodes of the web, the other nodes of the
web, and the total reference count of the global over the
nodes in the web.

Web Interferences (w
This is the web interference graph. The Web Interfer

ences entry for each web contains the web numbers of
all other webs that it interferes with.

10

15

20

25

30

35

13

Pseudo-code

5,555,417
14

Allocate Global Registers ()

Initialize Global Table ();

Compute P REF ();

Compute C REF () ;

for each global id in Global Table do
Compute Webs (global id);

Compute Web Interferences ();

Color Webs ();

Compute Reg Actions ();

Initialize Global Table ()

for each summary file do {
Open the summary file for reading;
for each procedure p in the summary file do {

/* see File Structure Description given later */
for each Global Usage Info Record do {

if (global exists in Global Table () then

else

i Global Table () index for global;

O

15

20

25

30

35

5,555,417
15 16

Add Global Var Name to Global Table (i) ;
Global Table (i). Ref nodes += {p};
Ref Count (i, p = Weighted Reference Count;

}

Close the summary file;

Now the globals ineligible for register promotion
need to be removed from the Global Table(). A global
is ineligible if it's address has been taken, if it's
a volatile variable, or if there have been abnormal
references to it, as indicated by the Global Attributes.

for each entry in Global Table () do {
if (global ineligible for promotion) then {

Remove Global Var Name From Global Table();

/* The variable names present in the Global Table are
/* now the candidate globals that are eligible for
/* interprocedural register allocation * /

for each global i in Global Table do {
for each proc p in Global Table (i). Ref nodes do

L. REF (p) = L REF (p) + (i ;

Compute PREF ()

repeat

10

15

25

30

35

17
5,555,417

18

Changes : = false;
for each node n in Depth First Search order do

Calc P REF (n) ;
} until no Changes;

Calc PREF (i)

temp_P REF := 2;
for each predecessor p of i do {

temp P. REF U (P REF (p U L REF (p)); temp P REF :=
}

if (temp_PREF # P REF(i) then {
P_REF(i) := temp P REF;
Changes := true;

Compute C REF ()
(

repeat (
Changes : = false;
for each node n in reverse Breadth First Search order do

Calc CREF (n) ;
) until no Changes;

Calc_C REF (i)

temp C REF := s

for each successor s of i do {
temp C REF : se temp C REF U (C REF (p) U L REF (pl) ;

5,555,417
19 20

if (temp C REF if C REF(i) then {
C REF(i) := temp C REF;
Changes := true;

Compute Webs (g)

/ k

Build webs by first identifying primary entry nodes. A
requirement for a primary entry node is that the
globalid be part of its L. REF set but not the PREF
set. Any references to the global found within a
strongly connected component of the call graph will get
considered last.

sk/

Ref nodes : = Global Table (g). Ref nodes;
ScC refs := false;

analyze refs:
for each node p in Ref nodes do {

/* g e L. REF (p) */
if (g € P REF(i) & & Sco refs) then

continue;

/* p is a potential entry node */
web nodes := 2);
entry nodes := {p};
repeat {

for each node e in entry nodes do
{

Expand web (& web nodes, e, g) ;

entry nodes := 2;

10

15

20

25

30

35

5,555,417
21 22

web is legal
Check if web is legal (web nodes, &entry nodes);

} until web is legal;
A * see if this web can be merged with

previously found webs k/
Merge webs (web nodes);

/k

Now consider L. REF nodes in cycles. Note that none
of the nodes in cycles would have been identified
as entry nodes since (g € PREF (i) for all nodes in
a cycle.

k/

if (! Sco refs & & Ref nodes É 2) then {
Scc refs := true;
goto analyze refs;

}

Add to web table (g);

Expand web (web nodes, p, g)
{

/k. This routine recursively finds all successor nodes
of p that should belong to the web for global g.
These nodes are passed back through the web nodes
reference parameter.

k/
web nodes += { p);
if (p & Ref nodes) then {

Ref nodes := Ref nodes - {p};
}

for each successor s of p do {
if (((g & C REF(s)) (g E L REF(s))) & &

(s g web nodes)) then {
Expand webs (web_nodes, S, g) ;

5,555,417
23 24

BOOLEAN Check if web is legal (web nodes, new entry nodes) ;
{

/k

10 This routine checks if any web node has both
INTERNAL, and EXTERNAL predecessors. It returns
false if this is the case. All external predecessors
of such web nodes should be made part of the web and
are passed back as new new entry nodes.

15 k/

legal web := true;
for each node i in web nodes do (

Int pred := Ext pred : = false;
20 Ext pred nodes : = 2;

for each predecessor p of node i do
if (p € web nodes) then {

Int pred = true;
}

25 else {

Ext pred = true;
Ext pred nodes = Ext pred nodes U (p };

}

30 if (Int pred & & Ext pred) then {
legal web : = false;
new entry nodes := new entry nodes U

Ext pred nodes;

35

O

15

25

30

35

5,555,417
25 26

Merge webs (new web)

/ k

This routine maintains a temporary list of webs for the
global variable currently being analyzed. It checks to
see if the newly identified web has any nodes in common
with the previously identified webs. If so, the webs
are merged as needed such that the new list of webs are
disjoint. Note that merging 2 webs that are each legal
results in a merged web that continues to be legal.

k/

for each web w of g in Temp Web List do (
if ((new web n w) it 2) then {

new web := w U new web;
delete w from Temp Web List;

}

Add new web to Temp Web List;

Add to web table (g)
{

|

This routine transfers the webs on the Temp Web List
to the Web Table (), discarding webs that would not
be worthwhile to to promote to a register. It also
figures out the true entry nodes for each web.

k/

for each web w of g in Temp Web List do (

f k use some heuristics to decide if this web is worthy
of promotion

k/

10

15

5,555,417
27 28

if (web is unworthy of promotion) then
continue ;

entry nodes := 2);
for each node i in w do

Add each predecessor p of node i not in w
to entry nodes;

web lid := next available entry in Web Table();
Web Table (web lid). nodes := w;
Web Table (web lid). Entry nodes := entry nodes;
Web Table (web lid). intf := 0;
Web Table (webid).reg := 0;

5,555,417
29

The remaining pseudo-code routines are not specified in
detail because they use generally available graph coloring
algorithms.

30

10

15

5,555,417
31 32

if (web is unworthy of promotion) then
continue;

entry nodes := 2);
for each node i in w do

Add each predecessor p of node i not in W
to entry nodes;

web lid := next available entry in Web Table();
Web Table (web lid). nodes : = w;
Web Table (web lid). Entry nodes := entry nodes;
Web Table (web lid). intf := 2;
Web Table (webid).reg := 0;

25

30

35

5,555,417
33 34

Compute Web Interferences ()

/k

Computes the web interference graph.

For each entry w1 in the Web Table()
For each entry w? in the Web Table ()

If ((Web Table will. nodes n Web Table (w2). nodes) ; 2)
(

/* Add a mutual interference between will & W2
in the Web Interferences) Table.

k/

Web Table (wl). intf U= { w 2);
Web Table (w2). intf U= { wl };

10

1.5

20

25

35

5,555,417
35 36

Color Webs ()

For each web of every global g, compute the web savings
value if that web were to be promoted to a register, using
some heuristics. For example, webs with many entry nodes
and few internal nodes that reference the global should
be assigned a low savings. Use profile information to
assist in identifying heavily accessed nodes and/or
variables if it is available and selected by the user;

Sort the webs for every global g, based on the web savings
value;

?k

Color the Web Interference Graph using a fixed
number of interprocedural callee-saves registers by
visiting the Webs in the Sort order determined in
Step l.

If a web can't be colored skip over it.
k/

for each web w in sort order do {
available regs : = fixed subset of callee saves regs;

for each web x in Web Tablew). intf do {
if (Web Table x. reg i? 0) then

available regs -= Web Table (X). reg;
}

if (available reg at Q)) then
Web Table (w.reg : = first available reg;

5,555,417
37 38

Compute Reg Actions ()

O

15

20

25

30

35

This routine computes register actions described
below for the nodes of the call graph. These
register actions are written to the program database,
read by the compiler phase 2 and applied to each
procedure by the register allocator.

Register Action l
- Callee-saves register X is not
available for intraprocedural use
(i.e. it is an interprocedural register)

Register Action 2 :

- Insert code to preserve the original contents of
interprocedural register X

- Insert code to load up global variable g into
interprocedural register X at the entry point.

- Insert code to store the global variable g from
interprocedural X at the exit point.
(i.e. this is a register action to be applied at
web entry node, e.g. for variable gl and
register r17 at procedure B in Figure 5)

Note that the load/store instruction can be generated
from the information in the program database.

Register Action 3
- Convert all memory references to global variable

Y into register references to the
interprocedural register X (e. g. variable g1 and
register r17 in Figure 5).

k/

5,555,417
39

Register Spill Optimization

Software procedure calling conventions designate two
classes of registers, callee-saves and caller-saves registers.
Callee-saves registers that are used must be spilled to
memory at procedure entry points and restored at exit points.
These registers may be used to keep live values across calls
to other procedures. Caller-saves registers cannot hold live
values across calls, so their contents must be temporarily
saved in memory if those contents are needed after the call.
The simple idea behind register spill optimization is to

move callee-saves register spill upwards in the call graph so
that descendant nodes may use them “for free", hence the
term, spill node motion.
The method according to the invention has the following

features:
Regions of the call graph called clusters are identified over
which spill code motion may be effective.
The callee-saves registers are pre-allocated to nodes of the
cluster by the program analyzer. This allows the register
allocator to have some knowledge of every procedure's
register usage without forcing the procedures to be com
piled in any particular order.
Calls may still be made to procedures that are not known
until link time or load time, as long as those procedures
follow the standard register usage conventions.
In some procedures, a larger number of caller-saves
registers will be available than is allowed by the standard
convention.
The available set of callee-saves registers should get
utilized more efficiently.

Clusters

Clusters are identified for two reasons. First, to identify
the nodes where it is safe and correct to execute spill code
for other procedures. Second, to execute spill code relatively
infrequently in order to reduce overhead and achieve a
performance improvement.

Conceptually, a cluster is a collection of nodes in the call
graph that can be viewed as a single entity with regards to
register allocation. The procedure calling convention will be
adhered to at the boundary of a cluster, but not internally.
The idea is to have some nodes within the cluster be able to
use callee-saves registers without incurring the expense of
saving and restoring them on entry and exit respectively. If
such nodes within the cluster are heavily called, then a
measurable performance improvement should result.

Breaking up an entire call graph into disjoint clusters of
nodes enables more effective pre-allocation of callee-saves
registers within smaller regions. Without the notion of
clusters, one would run out of the few callee-saves registers
quickly in large programs. Regardless of which way callee
saves registers are pre-allocated (top-down or bottom-up),
certain regions of the call graph would be deprived of any
benefit (or possibly even impacted negatively).

Ideally clusters should be shallow with many nodes close
to the cluster root node. In addition, the root node should be
invoked less frequently than the internal nodes. Propagating
up the callee-spill code within the cluster to the root node
should then speed up the application. One is less likely to run
out of callee-saves registers for clusters that are short.
Additionally, wide clusters will allow the allocation of the
same set of callee-saves registers to many sibling nodes
within the cluster.

Finally, partitioning the call graph into many different
Small clusters is preferable to having a few large clusters.

O

15

20

25

30

35

40

45

50

55

60

65

40
This should allow a more uniform distribution of entry-spill
code across the entire call graph. Also, the pre-allocation
algorithm can try to move entry-spill code across clusters if
desired.

Cluster Definition

A cluster in the call graph is defined as a set of nodes with
the following properties:
1) There exists some node R (e.g. A in FIG. 7), called the
root of the cluster, which dominates all other nodes within
the cluster. (Node D dominates node N if and only if every
path from any start node to N includes D.) Note that this
does not imply that all nodes dominated by the root node
are in the cluster.

2) For every node P (e.g. Ein FIG. 7) in the cluster except
R, all immediate predecessors of P (e.g. B in FIG. 7) are
also in the cluster.

(3) A non-root node P is included only in the cluster of the
immediately dominating root node.
For spill code motion to improve performance, the root

node of a cluster should be called less frequently than the
internal nodes of the cluster. This can be estimated by
associating weights on the edges of the call graph which
indicate relative call frequencies. These weights can be
heuristically derived by the compiler first phase, but they
may be more accurately assigned by using profile informa
tion.

Root nodes are selected by examining the incoming and
outgoing calls at each node. The successors of a root node
are added to the cluster by applying conditions 1 and 2.
Note that condition 3 allows a leaf node of one cluster to
also be the root node of another cluster (e.g. Cand D in FIG.
7).

Register Pre-Allocation
The register need analyzer of the compiler first phase can

communicate the approximate callee-saves register require
ments to the Program Analyzer by performing normal intra
procedural register allocation on the intermediate code gen
erated. Based on this information for each node of a cluster,
registers are allocated within each cluster starting at the root
of the cluster and working downwards.

In effect, the callee-saves registers are split into four
classes which describe how each register can be used within
each procedure. The classes are defined by two conditions:
1) whether or not the register must be spilled on entry and
restored on exit when it is used in the procedure and 2)
whether or not the register can be used to hold values across
procedure calls. These classes are identified by the following
SetS.

FREEP-registers in this set need not be spilled if they
are used, and may hold live values across calls. These
are essentially the interprocedural registers.

CALLER SAVESIP-registers in this set need not be
spilled if they are used, but may not hold live values
across calls.

CALLEE SAVESIP-registers in this set must be
spilled if they are used, and may hold live values across
calls.

MSPILLP-registers in this set must be spilled if they
are used and they may not hold live values across calls.

When register assignment is done by the register allocator
62 (FIG. 3) for a procedure, the register allocator will query
the program database 56 to identify which set each machine
register belongs to, and replace each pseudo-register 102,

5,555,417
41

104, 106 with a machine register 112, 113, 114 from the
appropriate set. The register allocator 62 must also add spill
code 116,118 for those machine registers assigned from the
CALLEE SAVES and MSPILL sets.

There is an additional requirement in the register allocator
that all registers in in the MSPILL set at a cluster root
procedure must be spilled on entry and restored on exit (spill
code 116 and 118 in FIG. 3), regardless of whether or not
they are actually used inside that procedure. This will
accomplish the goal of having the rootnode execute the spill
code for the remaining nodes of the cluster. The algorithms
described hereinafter arrange that MSPILL will always be
empty at non-root nodes belonging to a cluster.
The algorithms described hereinafter also eliminate the

possibility of recursive call cycles from occurring within a
cluster. Consider the simple case of a self-recursive routine
which uses callee-saves registers. Such a routine would
expect that the values in these registers would remain safe
across the recursive call. If spill code is not executed at the
entry point, however, the values that were live across that
recursive call will be destroyed.

Recursive cycles are prevented from occurring within
clusters. However, entire clusters may occur within cycles in
the call graph.

If there exists a node within a cluster that makes a call
back to the root node, pre-allocation will note be done on
that cluster. This is done for performance reasons.
The pre-allocation technique herein proposed has one

major vulnerability. In particular, if a selected cluster root
node is a procedure that is called more frequently than the
other nodes of the cluster, calls to that procedure would be
slowed down.

10

15

20

25

30

42
FIG. 7 shows three clusters 158, 160, 162 that might be

identified for the program call graph 130. Cluster 158
comprises the nodes A, B, C, D, and E. Cluster 160
comprises the nodes D and E. Cluster 162 comprises the
nodes C, F, G, and I. Note that nodes D and Care cluster root
nodes that are themselves part of cluster 158. Node A is the
root node for cluster 158.

Spill Optimization Algorithms
Input: A call graph G of 'n' nodes. It is assumed that the

representation of the call graph allows easy identification
of a node's successors & predecessors.

Output: Register sets MSPILL, CALLEE SAVES,
CALLERSAVES, and FREE for each node of G to be
used by the register allocator. This information is stored in
the program database 56.
The following data structures are used to help identify

clusters.

Data Structures

visited 1..n)
Flag to mark a node as having been examined.
dom (1..n)
For each node i, domi) represents the set of nodes that

dominate it.
cluster 1..n)
For each ROOT node i, clusterilists the set of associated

cluster nodes.
AVAIL 1..n)
For each node i, AVAILi) represents a set of registers that

will be used in the register preallocation process.

10

15

5,555,417
43 44

for each web w of each global variable g do (
if (Web Table (w.reg 7: 0) then {

for each node i in Web Table (wl. nodes do {
R Action (i, g) := (1 };
if (i & Web Table (2). Entry nodes) then

R Action (i, g)
R Action (i, g) U (2) ;

if (g € L. REF(i)) then
RAction (i, g :=

Ractioni, g] U (3);

10

15

20

25

30

35

5,555,417
45 46

Pseudo-Code:

register preallocation (G)

/* G is a call graph k /

Identify Clusters () ;

Initialize the MSPILL and FREE sets at all nodes in G
to be empty;

Initialize the CALLEE SAVES and CALLER SAVES sets at
each node to the standard procedure call register sets;

Initialize visited (*) := false;

for each cluster root node P in G in depth first order do
{

A # don't allow recursive calls back to the root */
if any of immediate predecessor of P is an element

of the Cluster rooted at P then

continue;

Make a pre-pass over the cluster to see which
registers are used for global variables and to
determine which registers are used by clusters
below this one;

AVAILABLE REGS := CALLEE SAVES (P) -
(global interprocedural regs used in cluster) ;

Assign priorities to the registers based on which
registers are used by clusters whose roots are

O

5

20

25

3 O

35

47
5,555,417

48

members of this cluster. Registers not used by these
child clusters have highest priority;

/* USED is a global set of registers k /
USED := Get Regs. From Set (P, AVAILABLE REGS);

f :

* USED is now the set of callee-saves registers
k needed by the root node itself.
k/

AVAIL (P) := AVAILABLE REGS - USED;

CALLEE SAVES (P) := USED;

Prealloc Node (P);

MSPILLP := USED;

if P is a member of another cluster then

visited (P) false;

for each node Q in the cluster do
if Q is not a cluster root then

{

/*

Move into CALLER SAVES any segments that are
currently in AVAIL, as long as they are
also in MSPILL at the root node of the
Cluster.

k/

CALLER SAVES (Q) := AVAIL(Q) n MSPILLP) ;
MSPILL(Q) := 2) ;

10

15

25

30

35

5,555,417
49 50

Identify Clusters ()

compute domi set for all nodes of G:

Calc clusters () ;

Calc clusters ()

set visited (i) to false at all nodes of G;

set cluster (i) to 2 at all nodes of G:

for each start node S do
Examine node (S , NULL);

Examine node (P, CurclusterRoot)
{

/k

* EXTERNAL NODE (P) is true for any node P which
* is not included in the source code of the application.
k/

if (EXTERNAL NODE (P) postpone visit (P))
return;

visited (P) := true;

if (CurclusterRoot = NULL & &
All predecessors of P have been visited & &
CurClusterRoot dominates P & &

All predecessors of P are in the cluster
rooted at CurClusterRoot)

then {

O

15

20

25

30

35

5,555,417
51 52

add node P to the cluster rooted at CurCusterRoot ;

if (Is A Root (P)) then {
Create a Cluster rooted at P;
CurOluster Root := P;

for each successor S of P do (
if (! visited (S))

Examine node (S, CurclusterRoot);

BOOLEAN postpone visit (S)
{

fk
This function will return false if either

a) all predecessors of S have been visited
- OR -

b) Incoming edges from all predecessors nodes
that haven't been visited are BACK edges.

Conversely, this function will return true if
a) Not all predecessors of S have been visited

AND '-

b) there exists at least one unvisited predecessor
P, and the edge from P to S is not a BACK edge
in the graph (i.e. it's a FORWARD edge, CROSS
edge, or TREE edge).

This function is defined for two reasons. First,
Visiting a node should be delayed if not all of it's
predecessors have been visited yet. Second, even if
not all predecessors have been visited, there are cases

O

5

20

25

30

35

5,555,417
S3 54

where one must select some node to visit (or else there
will be a deadlock situation.) This happens when the
incoming edges to S are "back edges" (edges from
descendents of S.)

See the discussion below for an example of why this is
necessary.

k/

Is A Root (i)

Return true if should be a root node, false otherwise.
This is a heuristic based on the incoming and
outgoing calls at node i. If available and selected by
the user, use profile information to get accurate counts
of incoming and outgoing call counts at node i.

Get Regs. From Set (P, REGS)

Let N be the number of callee-saves registers
requested for procedure P.

This function selects up to N registers from the set
REGS, using the priority determined in the prepass to
determine in what order the elements should be selected.

The function returns the set of registers that were
selected. Note that the result set could be empty.

10

15

25

30

35

5,555,417
SS 56

Prealloc Node (P)
{

visited P := true;

TEMP := the intersection of the AVAIL sets over all

immediate predecessors of P.
/* TEMP is now the set of register segments that

are guaranteed not to hold live values on entry to P.

if (P is the root of a cluster) then

fk

First, try to move any registers that are in
MSPILLP into the MSPILL of the current cluster
root. Then, try to move any registers that are in
CALLEE SAVES (P) into the FREEP) if possible.

USED := USED U (MSPILLP) n TEMP) ;
MSPILLP := MSPILLP) - TEMP;
USED := USED U (CALLEE SAVES (PJ n TEMP) ;
FREEP) := CALLEE SAVES (P) n TEMP ;
CALLEE SAVES (P) := CALLEE SAVESP) - FREE (P) :
)

else

(

FREE (P) := Get Regs. From Set (P, TEMP) ;

AVAIL (P) := TEMP - FREEP) ;

CALLEE SAVES (P) CALLEE SAVES (P) -
(FREEP) t_j AVAILP) ;

USED := USED U FREEP) ;

5,555,417
57

An Example

Consider the sample cell graph 170 shown in FIG.8. The
nodes of this sample call graph are interconnected by
directional edges 180,182, 184, 186,188, 190. Assume that
the depth-first search order of the nodes of this call graph is
J, K, L, M, N, P. The depth-first search order is the order in
which these nodes are first considered by the algorithm.

Suppose that the function Is A Root() returns true for
nodes J and M. After visiting node J, Examine node() will
be called on node K. At this point, however, the decision on
whether or not to add node K to the cluster rooted at node
J will be postponed. This is because node Phas not yet been
visited.

If node Kis added to the cluster rooted at J, and Pisadded
to the cluster roted at M, condition 2 from the cluster
definition will be violated. (Note K will have an immediate
predecessor not in its cluster.)
The invention is practiced as follows:
Summary files 48, 50, 52 are produced for each of the

source files 18, 20, 22. The program analyzer 54 is invoked
specifying the names of the summary files as command line
options. The program analyzer 54 reads each of the sum
mary files, constructs the program call graph 130, computes
register actions need to do global variable promotion and the
register sets (MSPILL, FREE, CALLER SAVES,
CALLEE SAVES) for spill code motion and finally writes
these register actions and register sets out to the program
database 56.
The program analyzer 54 performs global register pro

motion and register spill optimization independently. Inter
procedural registers reserved for global promotion are not
available for pre-allocation.

After the program database 56 is created, the intermediate
files (or the source files) are read by the compiler second
phase 12B along with the record of register actions and
register sets from the program database for each procedure
being compiled. The register actions are then applied to each
procedure by the register allocator 62 and object files 120 are
created. The object files 120 thus created are read by the
program linker 17 linked with the run-time libraries 19 to
produce an executable file 24 with interprocedural register
allocations.

File Structure

The logical structure of the summary files is described
below using Backus Normal Format (BNF) notation.

<Summary File:Z ::= <Procedure RecordZ *
<Procedure Recorded ::=

Procedure Nane
Num, Callee Regs Needed
<Callee Info Records*
<Global Usage Info Recordd
<Plabel Recordb

<Callee InfoRecordd :=
Callee Name
Static Call Count

<Global Usage Info Recorded:-
Global Variable. Name
Global Attributes
Weighted Reference Count
Num. References

<Global Attributes> ::=
Global Type
Static Variable?
Address Taken?

<Plabel Recordd := Indirectly callable procedure name

--

The variable usage analyzer 40 computes the Global
Usage Info Record. The procedure call analyzer 44 com

5

10

15

20

25

30

35

40

45

50

55

60

65

58
putes the Callee Info Record and Plabel Record. The
register need analyzer computes the Num Callee Regs
Needed field of the Procedure Record. Finally, the sum
mary file generator 46 organizes the all the fields of the
Procedure Record and writes it out to the summary file 48,
50, 52 of the corresponding source code file 18, 20, 22.
The logical structure of the program database file is

described below using the same BNF notation.

<Database Filed ::= <Procedure. Record)
<Procedure Recordb ::= <Register Set) --

<Reg Action Recorded
<Register Set) ::= MSPILL --

FREE --
CALLERSAVES --
CALLEESAVES

<Reg Action Recordi> ::= Reg Action (1.3 --
Global Name --
Interprocedural Register

The invention has now been described with respect to
specific embodiments. Other embodiments will be apparent
to those of ordinary skill in this art upon reference to this
description. It is therefore not intended that this invention be
limited, except as limited by the appended claims.
What is claimed is:
1. A method for optimizing register usage in an executable

computer program on a computer processor having a limited
plurality of machine registers, said computer program being
compiled from a plurality of individual source code files,
said method comprising the steps of:

reading said individual source code files having high-level
program language text reciting a plurality of proce
dures,

said source code files being read one at a time; determin
ing syntactic and semantic correctness of each said
source code file;

translating each said source code file into an intermediate
representation and generating therefrom an intermedi
ate representation file;

collecting local information about usage of global vari
ables from each said source code file, wherein a global
variable is a named storage location the contents of
which can be stored in a single machine register and is
accessible from a plurality of procedures;

estimating need of registers for each procedure from each
said intermediate representation; and

constructing a record of said register need and said global
variable usage and calls to procedures for each proce
dure in a summary file for each said source code file.

2. The method according to claim 1 further including the
steps of:

computing, in a program analyzer, interprocedural regis
ter allocation optimization (IRAO) information from
all said summary files to be carried out as transforma
tions by subsequent compiler processes; and

storing said IRAO information in a program database file
for use by said subsequent compiler processes.

3. The method according to claim 2 further including the
steps of:

generating profile information about execution of said
computer program from a previous compilation of said
source code files and execution of said computer pro
gram by determining frequency of execution of at least
said procedures; and

supplying said profile information to said program ana
lyzer to aid in the said computing of said IRAO
information.

5,555,417
59

4. The method according to claim 2 further including the
steps of:

transforming each said intermediate representation file
into a sequence of machine instructions for each said
procedure, each said sequence of machine instructions
employing an plurality of pseudo-registers; and

implementing intraprocedural register allocation and
interprocedural register allocation optimization on said
sequence of machine instructions and based on said
IRAO information accessed from said program data
base file.

5. The method according to claim 4 wherein said IRAO
information computing step includes partitioning said
machine registers between interprocedural registers and
intraprocedural registers and wherein said implementing
step comprises the steps of:
mapping first selected ones of said pseudo-registers into

said limited plurality of said intraprocedural machine
registers, and

mapping second selected ones of said pseudo-registers
into said limited plurality of said interprocedural
machine registers in accordance with said IRAO infor
mation.

6. The method according to claim 2 wherein said com
puting step of the program analyzer comprises:

constructing a program call graph (PCG) from all said
records, said PCG comprising a set of nodes, each one
of said nodes representing one of said procedures
interconnected by directional edges, each said direc
tional edge representing a call from a first procedure to
a second procedure,

creating webs on said PCG for selected ones of said global
variables, wherein a web for a single global variable is
a collection of said nodes such that said global variable
is accessed in at least one node of said web and such
that for each node in said web, said global variable is
not accessed in any ancestor node not in said web, and
said global variable is not accessed by any descendant
node not in said web, and wherein a plurality of webs
may be created for a single global variable;

prioritizing said webs according to frequency of use of
said global variable within nodes of said web;

assigning a first available one of said machine registers as
an interprocedural machine register to first selected
ones of said webs according to said prioritizing step,
wherein no two of said selected webs having a node in
common can be assigned the same machine register;
and

assigning further available ones of said machine registers
as interprocedural machine registers to further selected
ones of said webs according to said prioritizing step
until all of said available ones of machine registers are
assigned or until all selected ones of said webs have
been assigned an available machine register.

7. The method according to claim 2 wherein said com
puting step of the program analyzer comprises:

constructing a program call graph (PCG) from all said
records, said PCG comprising a set of nodes, each one
of said nodes representing one of said procedures
interconnected by directional edges, each said direc
tional edge representing a call from a first procedure to
a second procedure;

creating clusters on said PCG, wherein a cluster is a
collection of said nodes such that there exists a unique
root node of said cluster only through which every

5

10

15

20

25

30

35

40

45

50

55

60

65

60
other node in said cluster can be called, to obtain a
cluster organization;

partitioning, for each said cluster, said machine registers
into interprocedural registers and intraprocedural reg
isters for each of the said nodes within said clusters
according to said register need and as restricted by said
cluster organization, and

designating, for each said cluster, that a cluster root node
execute machine instructions to preserve values of said
interprocedural registers used within said cluster upon
calls to said cluster root node so that other nodes within
said cluster need not execute said machine instructions.

8. The method according to claim 6 wherein said com
puting step of the program analyzer comprises:

constructing a program call graph (PCG) from all said
records, said PCG comprising a set of nodes, each one
of said nodes representing one of said procedures
interconnected by directional edges, each said direc
tional edge representing a call from a first procedure to
a second procedure,

creating clusters on said PCG, wherein a cluster is a
collection of said nodes such that there exists a unique
root node of said cluster only through which every
other node in said cluster can be called, to obtain a
cluster organization;

partitioning, for each said cluster, said machine registers
into interprocedural registers and intraprocedural reg
isters for each of the said nodes within said clusters
according to said register need and as restricted by said
cluster organization, and

designating, for each said cluster, that said cluster root
node execute machine instructions to preserve the
values of said interprocedural registers used within said
cluster upon calls to said cluster root node so that other
nodes within said cluster need not execute said machine
instructions.

9. A method for optimizing register usage in an executable
computer program on a computer processor having a limited
plurality of machine registers, said computer program being
compiled from a plurality of individual source code files,
said method comprising the steps of:

reading said individual source code files having high-level
program language text reciting a plurality of proce
dures, said source code files being read one at a time;

determining syntactic and semantic correctness of each
said source code file;

translating each said source code file into an intermediate
representation;

collecting local information about usage of global vari
ables from each said source code file, wherein a global
variable is a named storage location the contents of
which can be stored in a single machine register and is
accessible from a plurality of procedures;

estimating need of registers for each procedure from each
said intermediate representation; and

constructing a record of said register need and said global
variable usage and calls to procedures for each proce
dure in a summary file for each said source code file.

10. The method according to claim 9 further including the
steps of:

transforming each said source file into a sequence of
machine instructions for each said procedure, each said
sequence of machine instructions employing a plurality
of pseudo-registers; and

implementing intraprocedural register allocation and
interprocedural register allocation optimization on said

5,555,417
61

sequence of machine instructions and based on said
IRAO information accessed from said program data
base file.

11. An apparatus for optimizing register usage in an
executable computer program on a computer processor
having a limited plurality of machine registers, said com
puter program being compiled from a plurality of individual
Source code files, said apparatus comprising:
means for reading said individual source code files having

high-level program language text reciting a plurality of
procedures, said source code files being read one at a
time;

means coupled to said reading means for determining
syntactic and semantic correctness of each said source
code file;

means coupled to said determining means for translating
each said source code file into an intermediate repre
sentation and generating therefrom an intermediate
representation file;

means coupled to said translating means for collecting
local information about usage of global variables from
each said source code file, wherein a global variable is
a named storage location the contents of which can be
stored in a single machine register and is accessible
from a plurality of procedures;

means coupled to said collecting means for estimating
need of registers for each procedure from each said
intermediate representation; and

means coupled to said estimating means, to said collect
ing means, and to said translating means for construct
ing a record of said register need and said global
variable usage and calls to procedures for each proce
dure in a summary file for each said source code file.

12. An apparatus for optimizing register usage in an
executable computer program on a computer processor
having a limited plurality of machine registers, said com
puter program being compiled from a plurality of individual
source code files, said apparatus comprising:
means for reading said individual source code files having

high-level program language text reciting a plurality of
procedures, said source code files being read one at a
time;

means coupled to said reading means for determining
syntactic and semantic correctness of each said source
code file;

means coupled to said determining means for translating
each said source code file into an intermediate repre
sentation;

means coupled to said translating means for collecting
local information about usage of global variables from
each said source code file, wherein a global variable is
a named storage location the contents of which can be
stored in a single machine register and is accessible
from a plurality of procedures;

means coupled to said collecting means for estimating
need of registers for each procedure from each said
intermediate representation; and

means coupled to said estimating means, to said collect
ing means, and to said translating means for construct
ing a record of said register need and said global
variable usage and calls to procedures for each proce
dure in a summary file for each said source code file.

13. The apparatus according to claim 12 further compris
ing:

a program analyzer means for computing interprocedural
register allocation optimization (IRAO) information

10

15

20

25

30

35

40

45

50

55

60

65

62
from all said summary files to be carried out as trans
formations by subsequent compiler processes; and

means for storing said IRAO information in a program
database file for use by said subsequent compiler
processes.

14. The apparatus according to claim 13 further compris
1ng:

means for transforming each said source code file into a
sequence of machine instructions for each said proce
dure, each said sequence of machine instructions
employing a plurality of pseudo-registers; and

means coupled to said transforming means for implement
ing intraprocedural register allocation and interproce
dural register allocation optimization on said sequence
of machine instructions and based on said IRAO infor
mation accessed from said program database file.

15. A method of operating a general purpose data proces
sor having a plurality of machine registers, a sub-set thereof
being assigned for use as interprocedural registers, so as to
allow more efficient allocation of said procedural registers
when said data processor is executing a computer program
comprising a plurality of procedures, at least one of said
procedures operating on a global variable, said method
comprising the steps of:

building a program call graph, said program call graph
comprising a set of nodes, each said node representing
a procedure, interconnected by directional edges to
other said nodes, each said edge representing a call
from a first procedure to a second procedure, the node
representing said first procedure being the ancestor of
the node representing said second procedure and the
node representing said second node being the descen
dent of the node representing said first procedure;

defining webs corresponding to global variables, each
said web corresponding to a global variable, each said
web comprising a collection of program call graph
nodes such that said corresponding global variable is
accessed in at least one node in said web and such that,
for each node in said web, said corresponding global
variable is not accessed in any ancestor node not in said
web, and said global variable is not accessed by an
descendant node not in said web;

determining the order for said webs; and
assigning said global variables to interprocedural machine

registers according to the order of said webs corre
sponding to said global variables in said determined
order, wherein said selected global variables comprise
said global variables are eligible for assignment to an
interprocedural machine register.

16. A method of operating a general purpose data proces
sor having a plurality of machine register, a sub-set thereof
being assigned for use as interprocedural registers, so as to
allow more efficient allocation of said interprocedural reg
isters when said data processor is executing a computer
program comprising a plurality of procedures, at least one of
said procedures operating on a global variable, said method
comprising the steps of:

building a program call graph, said program call graph
comprising a set of nodes, each said node representing
a procedure, interconnected by directional edges to
other said nodes, each said edge representing a call
from a first procedure to a second procedure, the node
representing said first procedure being the ancestor of
the node representing said second procedure and the
node representing said second node being the descen
dent of the node representing said first procedure;

5,555,417
63

defining webs corresponding to global variables, each
said web corresponding to a global variable, each said
web comprising a collection of program call graph
nodes such that said corresponding global variable is
accessed in at least one node in said web and such that,
for each node in said web, said corresponding global
variable is not accessed in any ancestor node not in said
web, and said global variable is not accessed by an
descendant node not in said web;

determining the order for said webs; and
assigning said global variables to interprocedural machine

registers according to the order of said webs corre
sponding to said global variables in said determined
order, wherein said order determined for said webs is
determined by the frequency of use of the global
variable corresponding to each said web.

17. A method of operating a general purpose data proces
sor having a plurality of machine register, a sub-set thereof
being assigned for use as interprocedural registers, so as to
allow more efficient allocation of said interprocedural reg
isters when said data processor is executing a computer
program comprising a plurality of procedures, at least one of
said procedures operating on a global variable, said method
comprising the steps of:

building a program call graph, said program call graph
comprising a set of nodes, each said node representing
a procedure, interconnected by directional edges to
other said nodes, each said edge representing a call
from a first procedure to a second procedure, the node
representing said first procedure being the ancestor of
the node representing said second procedure and the
node representing said second node being the descen
dent of the node representing said first procedure;

defining webs corresponding to global variables, each
said web corresponding to a global variable, each said
web comprising a collection of program call graph
nodes such that said corresponding global variable is
accessed in at least one node in said web and such that,
for each node in said web, said corresponding global
variable is not accessed in any ancestor node not in said
web, and said global variable is not accessed by an
descendant node not in said web;

determining the order for said webs; and
assigning said global variables to interprocedural machine

registers according to the order of said webs corre
sponding to said global variables in said determined
order, wherein said order determined for said webs is
determined from profile information collected by
executing said program with exemplary input data on a
data processing system capable of running said pro
gram.

10

15

20

25

30

35

45

50

64
18. A method of operating a general purpose data proces

sor having a plurality of machine register, a sub-set thereof
being assigned for use as interprocedural registers, so as to
allow more efficient allocation of said interprocedural reg
isters when said data processor is executing a computer
program comprising a plurality of procedures, at least one of
said procedures operating on a global variable, said method
comprising the steps of:

building a program call graph, said program call graph
comprising a set of nodes, each said node representing
a procedure, interconnected by directional edges to
other said nodes, each said edge representing a call
from a first procedure to a second procedure, the node
representing said first procedure being the ancestor of
the node representing said second procedure and the
node representing said second node being the descen
dent of the node representing said first procedure;

defining webs corresponding to global variables, each
said web corresponding to a global variable, each said
web comprising a collections of program call graph
nodes such that said corresponding global variable is
accessed in at least one node in said web and such that,
for each node in said web, said corresponding global
variable is not accessed in any ancestor node not in said
web, and said global variable is not accessed by an
descendant node not in said web;

determining the order for said webs; and
assigning said global variables to interprocedural machine

registers according to the order of said webs corre
sponding to said global variables in said determined
order,

said method further comprising the step of identifying a
procedure into which code is to be inserted, said code
causing the contents of one of said interprocedural
register to be stored in a location in said data processing
system different from said interprocedural register
upon entry into said procedure thereby freeing said
interprocedural register for use in storing a different
said global variable.

19. The method of claim 18 wherein said step of identi
fying a procedure comprises identifying clusters of nodes in
said program call graph, each said cluster comprising a set
of connected nodes having a root node such that every other
node in the cluster can be called through said unique root
node.

20. The method of claim 19 wherein said clusters are
identified by using profile information collected by execut
ing said program with exemplary input data on a data
processing system capable of running said program.

