移动通信系统中具有可变测量周期的用户设备的测量方法和装置

一种用于在移动通信系统中由用户设备（UE）执行测量的方法和装置。该UE具有间断接收（DRX）模式和连续接收模式。该移动通信系统还具有UE所在的服务小区，以及位于该服务小区附近的相邻小区。根据DRX模式的周期来测量服务小区的信号强度。如果所测量的该服务小区的信号强度小于或等于预定阈值，则对该服务小区和该相邻小区连续执行信号强度测量。如果测量的该服务小区的信号强度大于该预定阈值，则停止连续信号强度测量并且根据DRX模式的周期测量该服务小区的信号强度。
权利要求书

1. 一种用于在移动通信系统中由用户设备 UE 执行测量的方法，该移动通信系统包括具有用于间断地接收数据的间断接收 DRX 模式和用于连续接收数据的连续接收模式的 UE、UE 所在的服务小区、以及位于该服务小区附近的相邻小区，该方法包括：
 根据 DRX 模式的时间来测量服务小区的信号强度；
 如果所测量的该服务小区的信号强度小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量；
 如果测量的该相邻小区的信号强度大于或等于测量的该服务小区的信号强度，则启动用于向该服务小区发送测量结果的定时器；以及
 如果到定时器期满为止该相邻小区的信号强度一直大于或等于该服务小区的信号强度，则向该服务小区发送测量报告。
 2. 如权利要求 1 所述的方法，其中连续执行信号强度测量包括：
 以比 DRX 模式的周期短的周期测量信号强度。
 3. 如权利要求 1 所述的方法，其中测量结果包括相邻小区的测量的信号强度、以及标识符 ID 信息。
 4. 如权利要求 1 所述的方法，其中该定时器包括计数器。
 5. 一种用于在移动通信系统中由用户设备 UE 执行测量的方法，该移动通信系统包括具有用于间断地接收数据的间断接收 DRX 模式和用于连续接收数据的连续接收模式的 UE、UE 所在的服务小区、以及位于该服务小区附近的相邻小区，该方法包括：
 根据 DRX 模式的周期来测量服务小区和相邻小区的信号强度；
 如果所测量的服务小区和相邻小区的信号强度之间的差小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量；以及
 如果连续测量的服务小区和相邻小区的信号强度之间的差大于该特定阈值，则停止连续信号强度测量并且根据 DRX 模式的周期测量服务小区和相邻小区的信号强度。
 6. 如权利要求 5 所述的方法，其中连续执行信号强度测量包括：
 以比 DRX 模式的周期短的周期测量信号强度。
 7. 一种用于在移动通信系统中执行高效测量的用户设备 UE 装置，该移动通信系统包括具有用于间断地接收数据的间断接收 DRX 模式和用于连续接收数据的连续接收模式的 UE、UE 所在的服务小区、以及位于该服务小区附近的相邻小区，该装置包括：
 收发器，用于发送和接收控制信息和数据；
 DRX 模式控制器，用于控制 DRX 模式的周期；以及
 测量单元，用于测量服务小区的信号强度，并且根据所测量的服务小区的信号强度控制用于服务小区的信号强度的测量周期，
 其中测量单元执行以下步骤：
 如果所测量的该服务小区的信号强度小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量；
 如果连续测量的该相邻小区的信号强度大于或等于连续测量的该服务小区的信号强度，则启动用于向该服务小区发送测量结果的定时器；以及
 如果到定时器期满为止该相邻小区的信号强度一直大于或等于该服务小区的信号强度，则通过收发器向该服务小区发送测量结果。
8. 如权利要求 7 所述的 UE 装置，其中测量单元执行以下步骤：
如果所测量的服务小区的信号强度小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量；以及
如果连续测量的服务小区的信号强度大于该特定阈值，则停止连续信号强度测量并且根据 DRX 模式周期对该服务小区执行信号强度测量。

9. 如权利要求 7 所述的 UE 装置，其中测量结果包括相邻小区的测量的信号强度、以及标识符 ID 信息。

10. 如权利要求 7 所述的 UE 装置，其中该定时器包括计数器。

11. 如权利要求 7 所述的 UE 装置，其中测量单元包括：
测量执行器，用于接收导频信道并对其进行测量；
测量结果管理器，用于管理测量执行器的测量结果，并利用用于确定信号强度的阈值来检测无线环境的变化；以及
测量执行控制器，用于根据测量结果管理器的检测结果控制测量的周期。
移动通信系统中具有可变测量周期的用户设备的测量方法
和装置

技术领域
[0001] 本发明一般涉及移动通信系统，更具体来说，涉及具有间断接收（DRX）循环并且处于无线资源控制（RRC）连接模式的用户设备（UE）的测量方法和装置。

背景技术
[0002] 通用移动电信业务（UMTS）系统是基于全球移动通信系统（GSM）和通用分组无线业务（GPRS）的使用宽带码分多址（W-CDMA）的第三代演进移动通信系统，其中，全球移动通信系统（GSM）和通用分组无线业务（GPRS）都是欧洲移动通信系统。
[0003] 在负责UMTS标准化的第三代伙伴计划（3GPP）中，正在进行关于作为UMTS系统的下一代移动通信系统的长期演进（LTE）系统的讨论。LTE系统是一种用于实现最大数据率为100Mbps的基于高速分组的通信的技术，并且目标是在2010年左右实现商业化。对于LTE系统，若干通信方案正在讨论中，例如，第一种方案通过简化网络的配置来减少位于通信路径中的节点数量，而第二种方案最大限度地使无线协议接近无线信道。
[0004] 图1图示应用本发明的LTE系统的配置。
[0005] 参照图1，预期将演进网络接入网络（E-RAN）110简化为2节点配置，即，演进节点B（ENB）120、122、124、126和128，以及锚节点130和132。用户设备（UE或‘终端’）101能够借助E-RAN110接入因特网协议（IP）网络，以进行通信。
[0006] 与第三代系统的现有节点B相对应的ENB120-128能够通过无线信道与UE101通信。与现有节点B相比，ENB120-128将执行复杂的功能。这是由于：在LTE系统中，将通过共享的信道来为包括诸如通过IP的语音（VoIP）之类的实时IP业务的用户业务量（traffic）提供服务。因此，需要一种用于收集多个UE的状态信息并且根据该状态信息来执行调度的装置，该装置预期由ENB120-128来管理。每个ENB能够控制多个小区。
[0007] ENB120-128执行根据UE的信道状态自适应地确定调度方案和信道编码率的自适应调制和编码（AMC）。此外，ENB120-128连同UE101一起执行在诸如高速下行链路分组接入（HSDPA）、高速上行链路分组接入（HSUPA）和增强专用信道（E-DCH）之类的第三代系统的业务中使用的混合自动重传请求（HARQ）技术。当仅用HARQ技术不能满足各种业务质量（QoS）要求时，ENB120-128和UE101将在它们的上层中使用外部ARQ技术。
[0008] 预期LTE系统将使用正交频分复用（OFDM）作为20MHz带宽中的无线接入技术。
[0009] 图2图示应用本发明的具有DRX间隔的UE的调度操作。
[0010] 在LTE系统中，UE的操作模式能够被分为两种模式：无线资源控制（RRC）空闲模式和RRC连接模式。RRC空闲模式是指当ENB中没有UE上下文信息和服务上下文信息时UE的状态。另外，锚节点不是以小区为单位而是以寻呼跟踪区域为单位，使用UE上下文信息来管理UE的位置。RRC连接模式是指不仅锚节点而且ENB都具有UE上下文信息时的状态，并且ENB能够以小区为单位管理具有已建立的RRC连接的UE的位置。这里不排除服务上下文也被包括在内的可能性。
换言之，处于 RRC 空闲模式中的任意 UE（以下简称 “RRC 空闲模式 UE”）首先建立到 ENB 的 RRC 连接，以接收或发送特定服务的数据。在此情况下，RRC 空闲模式 UE 应当向 ENB 提供 UE 上下文信息，并且甚至应当与锚节点建立信令连接，它还应当通过信令连接向锚节点提供 UE 上下文服务上下文信息。结果，处于 RRC 连接模式中的 UE（以下简称 “RRC 连接模式 UE”）能够立即从 ENB 分配到相关的无线资源，并且使用所分配的无线资源接收或发送特定服务的数据。

参照图 2，一般的 RRC 连接模式 UE 连续接收调度信道，并且如果调度信道包括用于 UE 自身的调度信息，则 RRC 连接模式 UE 则通过由该调度信道指示的相应无线资源接收或发送数据。这里，UE 确定调度信道中包含的 UE 标识符信息（UE ID）是否与其分配到的唯一 UE 标识符信息（唯一 UE ID）相同，以检查用于 UE 自身的调度信息的存在。

在 LTE 系统中，RRC 连接模式 UE 能够执行间断接收 / 发送 (DRX/DTX) 操作以最小化其电池消耗。即，在 DRX 间隔（或循环）期间，UE 不接收与数据或控制信息相关的调度信道。在 DRX 间隔期间，UE 禁止（或关闭）其发送和接收操作并且工作在睡眠状态。

因此，具有 DRX 间隔的 RRC 连接模式 UE 间断地接收调度信道并且检查存在 / 不存在用于 UE 自身的调度信息。例如，具有 ENB 和 UE 之间先前商定的 DRX 间隔的 UE 在该 DRX 间隔期间进入睡眠状态以最小化功耗。在 DRX 间隔期满之后，UE 能够转变到唤醒状态（或睡眠状态）并且接收调度信道。UE 利用 DRX 间隔间断地接收调度信道的操作可以包括：(i) 根据硬编码方案来确定 DRX 间隔的操作；(ii) 根据诸如 DRX 间隔计算公式之类的预先定义的规则来确定 DRX 间隔的操作；以及 (iii) 通过信令从 ENB 向 UE 分配 DRX 间隔的操作。

图 2 的参考标号 201、202、203 和 204 显示 UE 从 ENB 接收调度信道并检查用于数据接收 / 发送的调度信息存在 / 不存在的时间。

如果 UE 已经接收到调度信道并且所接收的调度信道不包括用于 UE 自身的调度信息，则 UE 在 DRX 间隔转变回睡眠状态。

如果处于睡眠状态的 UE 不接收通过下行链路发送的信道。换言之，ENB 在 DRX 间隔期间不对 UE 执行调度，即使它已经生成了用于 UE 去获取与 UE 调度同步的数据。

如果在时刻 204，ENB 对具有 DRX 间隔的 RRC 连接模式 UE 执行调度，即在时刻 204 之后，ENB 可以停止 DRX 间隔的应用，并且将其与停止 DRX 的 RRC 连接模式工作。而的 ENB 在时刻 204 开始调度时，ENB 继续调度 UE 而不应用 DRX 间隔，并且 UE 能够连续接收调度信道。

图 3 图示具有 DRX 间隔的 UE 的测量操作。由于 UE 使用 DRX 间隔执行测量，所以 UE 能够使功耗最小化。

UE 在接收到调度信道时检查是否已执行对于数据接收 / 发送的调度，并且此时，UE 也执行测量。因此，UE 在其进入睡眠状态的 DRX 间隔不执行测量，由此，与 UE 连续执行测量时相比，减小了功耗。

参照图 3，UE 在时刻 301，302，303，304 和 305 对当前服务小区和相邻小区执行测量，而在 DRX 间隔不执行测量。

在时刻 301 执行测量之后，UE 确定不存在其无线强度大于或等于当前服务小区的无线强度的相邻小区。

在时刻 302 执行测量之后，如果 UE 确定存在其无线强度大于或等于服务小区的无线强度的相邻小区。
线强度的相邻小区，则 UE 启动（或激活）用于触发测量报告的计数器或定时器。测量报告是 UE 向 ENB 提供关于无线环境的变化的信息的操作。基于测量报告，UE 能够执行切换。例如，当检测到存在具有大于当前服务小区的无线强度的相邻小区时，UE 向 ENB 提供关于该相邻小区的小区 ID 和无线强度的信息。在检查该小区 ID 和该无线强度之后，ENB 确定是否将 UE 切换到该相邻小区。该计数器或定时器用于防止由于无线环境的频繁变化而导致的测量报告的频繁发送。

【0024】一般地，只要在所设置的计数器的计数或所设置的定时器的时间期间没有连续保持更大或相同的无线强度，UE 就不能向 ENB 发送对于变化的无线环境的测量报告。换言之，当在该计数器的测量计数或该定时器的时间期间连续保持其中该相邻小区具有大于或等于该服务小区的无线环境强度的状态时，UE 向 ENB 发送测量报告。在 UE 检测到存在无线强度大于或等于该服务小区的无线强度的相邻小区之后，立即设置测量计数或时间。例如，在图 3 中，计数器被设置为值 3。该计数器值可以改变。因此，在时刻 302 检测到存在具有大于该服务小区的无线环境强度的相邻小区时，当在所设置的 3 个测量计数 311（即 303,304 和 305）期间该相邻小区连续具有大于该服务小区的无线环境强度时，UE 在步骤 321 向 ENB 发送测量报告。

【0025】如图 3 所述，UE 在其实际向 ENB 发送测量报告之前有长延迟时间。也就是说，采用计数器或定时器防止频繁发送测量报告或者减少不必要的信令开销的测量报告操作不能在适当的时间向 ENB 实际发送测量报告。

【0026】因此，不能执行正确的测量报告并且不能在适当的时间执行切换的 UE 和服务小区可能导致它们之间的无线电链路的失败。无线电链路失败不仅妨碍了 UE 和服务小区之间的数据发送/接收所必须的控制信息的正常发送/接收，而且妨碍了实际数据的正常发送/接收。

【0027】例如，假设 DRX 间隔的长度是 5.12 秒，则 UE 执行具有从 UE 已经确定相邻小区具有大于或等于当前服务小区的无线环境的时刻 302 到 UE 发送测量报告的时刻 305 总共为 5.12 秒 * 3 个间隔 = 15.36 秒的长延迟时间的测量报告操作。

【0028】发生长延迟时间问题和所导致的问题的原因在于；在 LTE 系统中，UE 的测量操作每 5.12 秒的 DRX 间隔仅执行一次，如图 3 所示。UE 不能正常支持这样的情况，即，由于在 DRX 间隔期间无线环境的变化，UE 应当在 DRX 间隔经历切换。

发明内容

【0029】本发明旨在解决至少以上问题和/或缺点并且提供至少以下描述的优点。因此，本发明的一个方面提供用于在移动通信系统中由 UE 以最小化的功耗执行测量报告的方法和装置。

【0030】本发明的另一方面提供用于在移动通信系统中执行具有间断接收（DRX）或间断发送（DTX）循环的 UE 的测量报告的方法和装置。

【0031】根据本发明的一个方面，提供一种用于在移动通信系统中由用户设备（UE）执行测量的方法。该 UE 具有用于间断地接收数据的间断接收（DRX）模式和用于连续接收数据的连续接收模式。该通信系统还具有 UE 所在的服务小区和位于该服务小区附近的相邻小区。根据 DRX 模式的周期来测量服务小区的信号强度。如果所测量的该服务小区的信号强
度小于或等于特定阈值，则对某服务小区和某相邻小区连续执行信号强度测量。如果连续测量的该服务小区的信号强度大于该特定阈值，则停止连续信号强度测量并且根据 DRX 模式的周期测量该服务小区的信号强度。

【0032】根据本发明的另一个方面，提供一种用于在移动通信系统中由用户设备（UE）执行测量的方法。该 UE 具有用于间断地接收数据的间断接收（DRX）模式和用于连续接收数据的连续接收模式。该通信系统还具有 UE 所在的服务小区和位于该服务小区附近的相邻小区。根据 DRX 模式的周期来测量服务小区的信号强度。如果所测量的该服务小区的信号强度小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量。如果连续测量的该相邻小区的信号强度大于或等于连续测量的该服务小区的信号强度，则启动用于向该服务小区发送测量结果的定时器。如果到定时器届满为止该相邻小区的信号强度一直小于该服务小区的服务信号强度，则向该服务小区发送测量结果。

【0033】根据本发明的另一个方面，提供一种用于在移动通信系统中由用户设备（UE）执行测量的方法。该 UE 具有用于间断地接收数据的间断接收（DRX）模式和用于连续接收数据的连续接收模式。该通信系统还具有 UE 所在的服务小区和位于该服务小区附近的相邻小区。根据 DRX 模式的周期来测量服务小区和相邻小区的信号强度。如果所测量的服务小区和相邻小区的信号强度之间的差小于或等于特定阈值，则对该服务小区和该相邻小区连续执行信号强度测量。如果连续测量的服务小区和相邻小区的信号强度之间的差大于该特定阈值，则停止连续信号强度测量并且根据 DRX 模式的周期来对服务小区和相邻小区执行信号强度测量。

【0034】根据本发明的另一个方面，提供一种用于在移动通信系统中执行高效测量的用户设备（UE）装置。该 UE 具有用于间断地接收数据的间断接收（DRX）模式和用于连续接收数据的连续接收模式。该通信系统还具有 UE 所在的服务小区和位于该服务小区附近的相邻小区。该 UE 装置具有发送器，用于发送和接收控制信息和数据；以及 DRX 模式控制器，用于控制 DRX 模式的周期。该 UE 装置还包括测量单元，用于测量服务小区的信号强度，并且根据所测量的服务小区的信号强度控制用于服务小区的信号强度的测量周期。

附图说明
【0035】通过以下结合附图的具体描述，本发明的以上和其它方面、特征和优点将变得更加清楚明白，在附图中：
【0036】图 1 图示应用本发明的 LTE 系统的配置；
【0037】图 2 图示应用本发明的具有 DRX 间隔的 UE 的调度操作；
【0038】图 3 图示具有 DRX 间隔的 UE 的测量操作；
【0039】图 4 图示根据本发明的实施例的具有可变 DRX 间隔的 UE 的测量操作；
【0040】图 5 图示根据本发明的实施例的 UE 的测量操作；以及
【0041】图 6 图示根据本发明的实施例的 UE 装置的框图。

具体实施方式
【0042】参照附图详细描述本发明的优选实施例，但领域已知的结构或过程的详细描述将被省略以避免使得本发明不明显。
[0043] 虽然这里将参照从第三代系统演进的 LTE 系统来描述本发明的实施例作为示例，
但是本发明的实施例能够适用于应用 ENB 调度的所有移动通信系统而不用修改。
[0044] 本发明的实施例定义了 LTE 系统中的 UE 的测量报告，并且具体来说，定义了执行
DTX/DRX 操作以最小化功耗并且还执行测量报告的 UE 的操作。也就是说，本发明的实施例
提供用于最大化测量报告的可靠性并且最小化功耗的 UE 测量报告方案。
[0045] 在本发明的实施例中，UE 使用与 DRX 间隔相同的测量周期向网络发送信号以告知关
于当前服务小区的测量结果，并且当关于当前服务小区的测量结果小于特定阈值时，UE 连
续执行测量或者以比 DRX 间隔短的时间间隔执行测量。如果测量结果满足用于发送测量报
告的条件，则 UE 向网络发送相应的测量报告。
[0046] 在连续执行测量或者以比 DRX 间隔短的时间间隔执行测量的同时，UE 应用计数器
在发送测量报告。如果关于当前服务小区的测量结果连续大于特定阈值，则应用计数器或定时器
的 UE 使用与 DRX 间隔相同的测量周期再次执行测量。也就是说，UE 返回
先前的 DRX 间隔测量操作。
[0047] 尽管参照其中 UE 将关于当前服务小区的测量结果与特定阈值进行比较的实施例
来描述本发明，但是本发明能够适用于其中 UE 将关于当前服务小区的测量结果与关于用于
切换的候选小区的测量结果进行比较的其它实施例。
[0048] 在本发明的实施例中，以 DRX 间隔为周期执行 DTX/DRX 操作的 UE 与 DRX 间隔同步地
执行测量操作，并且如果测量结果（即，当前服务小区的无线强度）大于特定阈值，则 UE
以 DRX 间隔为周期连续执行测量。这里，UE 能够接收从 ENB 发信号告知的阈值，或者可以
将阈值硬编码为一个固定值。
[0049] 然而，如果作为与 DRX 间隔同步进行的测量的结果，服务小区的无线强度小于或
等于特定阈值，则 UE 连续执行测量同时不再与 DRX 间隔同步地执行测量。如果在执行连续
测量的过程中服务小区的无线强度大于或等于该阈值，则 UE 再次与 DRX 间隔同步地执行测
量。
[0050] 当在执行连续测量的同时检测到具有大于或等于当前服务小区的无线强度的无线
强度的相邻小区时，UE 启动用于触发测量报告的计数器或定时器。如果到该计数器或定
时器期满为止该相邻小区连续保持大于或等于当前服务小区的无线强度的无线强度，则 UE
向 ENB 发送测量报告。然而，如果即使到该计数器或定时器期满之前当前服务小区的无线
强度仍然大于或等于特定阈值，那么 UE 再次与 DRX 间隔同步地执行测量。
[0051] 本发明的实施例在与 DRX 间隔同步地执行测量时能够仅对服务小区执行测量，并
且在与 DRX 间隔不同步地连续执行测量时能够不仅对服务小区而且对相邻小区执行测量。
此外，本发明的实施例在对于服务小区的无线强度小于或等于该阈值而导致与 DRX 间隔不
同步地执行测量时能够以较短的周期频繁执行测量而不是连续执行测量。此外，本发明的
实施例包括能够将服务小区和相邻小区之间的无线强度差与阈值进行比较而不是将服务小
区的无线强度与阈值进行比较的方案。
[0052] 图 4 图示本发明的实施例所提出的具有 DRX 间隔的 UE 的测量操作。
[0053] 参照图 4，在时刻 401，UE 与 DRX 间隔同步地对服务小区执行测量。如果时刻 401
处的测量结果（即，服务小区的无线强度）大于（或高于）或等于预定的特定阈值 THRES，
则在 DRX 间隔期满之后在 UE 接收到下一调度信道的时刻 402，UE 对服务小区执行测量。也
也就是说，UE 在 DRX 间隔中不执行测量。这里，UE 能够接收通过诸如从 ENB 专门发信号告知或广播的系统信息的公共信令发信号告知的特定阈值 THRES。可替换地，可以将特征阈值 THRES 硬编码为一个固定值。

[0054] 如果时刻 402 的测量结果（即，服务小区的无线强度）小于（或低于）或等于该特定阈值，则 UE 对服务小区和相邻小区连续执行测量，或者对服务小区和相邻小区频繁执行测量，即，使用比 DRX 间隔的时长短的时间间隔为周期来执行。如果 UE 使用较短时间间隔为周期对服务小区和相邻小区频繁执行测量，则 UE 接收通过专用信令或公共信令从 ENB 发信号告知的较短时间间隔信息。公共信令是指接收广播的系统信息的操作。可替换地，可以将该较短时间间隔信息硬编码为固定值。

[0055] 当 UE 从时刻 402 开始连续或使用较短时间间隔为周期对服务小区和相邻小区执行测量时，如果在时刻 411 服务小区的无线强度大于或等于该阈值，则 UE 停止该连续执行的或使用较短时间间隔为周期频繁执行的测量。另外，在 DRX 间隔，UE 不执行测量，并且在时刻 403 仅对服务小区执行测量。也就是说，如果服务小区具有良好的信道状态，则 UE 以 DRX 间隔为周期（即，以 UE 醒来以接收调度信道的 DRX 间隔为周期）执行测量。

[0056] 如果时刻 403 的测量结果（即，服务小区的无线强度）大于或等于该特定阈值，则在 UE 醒来以接收下一调度信道的时刻 404UE 仅对服务小区执行测量，而在 DRX 间隔不执行测量。如果时刻 404 的测量结果（即，服务小区的无线强度）小于或低于预定的该阈值，则 UE 对服务小区和相邻小区连续执行或者使用较短时间间隔为周期频繁执行测量。当在以较短时间间隔为周期执行测量的同时在时刻 421 检测到具有大于或等于服务小区的无线强度的无线强度的相邻小区时，UE 启动用于确定测量报告的发送的计数器或定时器。

[0057] 如果在时刻 431 设置的计数器的测量计数或定时器的时间期间，相邻小区连续保持大于或等于服务小区的无线强度值，则在时刻 441UE 向 ENB 发送测量报告。在时刻 441 发送的测量报告可以包括 UE 的无线环境的状态信息、相邻小区的 TD 信息，以及作为测量结果的无线强度。在时刻 441UE 对测量报告的发送可以被定义为，当在所设置的计数器或定时器期间执行的 M 个计数中的 N 个或更多个计数的测量结果维持时刻 421 的无线环境时（即，当相邻小区保持大于或等于服务小区的无线强度的无线强度时）发送测量报告。

[0058] 在除非 UE 在计数器的设定计数 M 或定时器的设定时间 T 期间连续保持无线环境、否则该 UE 不能发送测量报告的情况下，如果在间隔 431 相邻小区的无线强度小于或等于服务小区的无线强度，则 UE 取消（或禁止）计数器或定时器。

[0059] 如果在时间间隔 431 关于服务小区的测量结果大于或等于特定阈值 THRES，则 UE 停止对服务小区和相邻小区的连续执行或使用较短时间间隔作为周期频繁执行的测量，并且在间隔 431 所属的 DRX 间隔期间不执行测量。在 UE 醒来以接收下一调度信道时，UE 仅能够对服务小区执行测量。

[0060] 可以由 ENB 以不同方式设置用于间隔 431 的计数器或定时器。例如，ENB 根据相邻小区的无线强度是否进入或离开对于服务小区的无线强度的范围 a（＞0），或者根据相邻小区的无线强度是否进入或离开对于特定绝对无线强度的范围 a（＞0），来设置计数器或定时器，然后将设置结果以信号告知 UE。可以通过诸如由 ENB 专门发信号告知或广播的系统信息的公共信令来发送所设置的范围。因此，如果时刻 421 的无线环境与发信号告知
的设置结果一致，则 UE 在间隔 431 启动计数器或定时器。

[0061] 图 5 图示根据本发明的实施例的 UE 的测量操作。

[0062] 参照图 5，在步骤 501，处于 RRC 连接模式的 UE 以 DRX 间隔为周期执行 DTX/DRX 操作。在步骤 503，UE 以 DRX 间隔为周期对服务小区执行测量。也就是说，UE 在其醒来接收调度信道时对服务小区执行测量。这意味着 UE 在 DRX 间隔不执行测量。因此，就功耗而言，UE 具有高效率，这是因为其无需连续接收调度信道。

[0063] 在步骤 505，UE 检查步骤 503 的测量结果（即，服务小区的无线强度）是否大于或等于特定阈值 THRES。这里，特定阈值是 UE 已经通过诸如从 ENB 专有信号告知或广播的系统信息的公共信令接收的值。可替换地，特定阈值是通过硬编码一个值而得到的固定值。

[0064] 如果在步骤 505 根据测量结果确定的值为是，则 UE 前进至步骤 503，在步骤 503，UE 按照 DRX 间隔为周期对服务小区执行测量。然而，如果根据测量结果确定的值为否，则 UE 前进至步骤 501，连续或者使用比 DRX 间隔短的时间间隔为周期对服务小区和相邻小区执行测量。

[0065] 如果在步骤 511 UE 执行测量时，在步骤 513 服务小区的无线强度大于或等于特定阈值，则 UE 停止连续执行的或者使用较短时间间隔作为周期执行的对服务小区和相邻小区的测量，然后前进至步骤 503。即，如果服务小区的无线强度增加，则 UE 以 DRX 间隔为周期仅对服务小区执行测量。

[0066] 然而，如果服务小区的无线强度仍然不大于或等于该特定阈值，则方法继续至步骤 521。如果在 UE 执行步骤 511 时相邻小区的无线强度大于或等于服务小区的无线强度，则 UE 前进至步骤 523，启动用于发送测量报告的计数器或定时器。UE 能够接收通过诸如从 ENB 专有信号告知或广播的系统信息的公共信令发送信号告知的用于计数器或定时器的值。

[0067] 如果在步骤 525 中根据测量结果确定在计数器或定时器期满之前服务小区的无线强度大于或等于阈值 THRES，则 UE 前进至步骤 531，取消计数器或定时器。此后，UE 前进至步骤 503，以 DRX 间隔为周期对服务小区执行测量。此外，如果在 UE 执行步骤 511 时步骤 521 的条件没有发生，则 UE 前进至步骤 511，对服务小区和相邻小区连续或者使用较短时间间隔为周期频繁执行测量。

[0068] 然而，在步骤 541，如果到在步骤 523 中启动的计数器或定时器期满为止连续地保持步骤 521 中的测量结果，即相邻小区的无线强度大于或等于服务小区的无线强度的状态，则 UE 前进至步骤 543，向 ENB 发送测量报告。测量报告可以包括无线环境的标识符，相邻小区的标识符，以及测量结果值。

[0069] 在其中步骤 521 中的无线环境发生改变的情况下，例如在步骤 541 中在计数器或定时器的期满之前，服务小区的无线强度大于或等于相邻小区的无线强度，如果该相邻小区之外的另一相邻小区的无线强度大于或等于步骤 521 中的服务小区和该相邻小区的无线强度，则 UE 前进至步骤 545，取消计数器或定时器。之后，UE 前进至步骤 511，对服务小区和相邻小区连续执行测量或者使用较短时间间隔为周期频繁执行测量。

[0070] 图 6 图示根据本发明的实施例的 UE 装置的框图。

[0071] 参照图 6。控制器 611 控制 UE 接收调度信道的定时。也就是，控制器 611 表示用于控制 UE 使用 DRX 间隔为周期执行 DRX/DTX 操作的 DRX 执行控制器。
控制器 611 控制发送器 621 使得在 DRX 间隔时 UE 以睡眠状态操作，即，禁止发送器 621，并且在 DRX 间隔期满的调度反转为睡眠状态，即，使能发送器 621。

在控制器 611 的控制下，发送器 621 在调度时间接收调度信道，并且检查是否存在从 ENB 分配的任何无线资源。发送器 621 在调度时间与 ENB 交换控制信息或数据。

根据本发明，控制器 611 使用测量执行控制器 651 的输入参数控制发送器 621。也就是说，控制器 611 控制测量执行控制器 651 使根据 DRX 操作在 DRX 间隔不执行测量，而在用于接收调度信道的调度时间仅对服务小区执行测量。

作为参考，尽管本发明假设 DRX 间隔为 5.12 秒，但是并不意味着将 DRX 间隔的长度限制为 5.12 秒。也就是说，本发明的实施例可以考虑无线信道环境的效率和系统性能而使用较长的间隔或较短的间隔。换言之，DRX 间隔的长度可以根据系统环境来可变地设置。

测量执行控制器 651 控制发送器 621 在调度时间接收用于测量的导频信道。测量执行器 631 在测量执行控制器 651 的控制下对服务小区的导频信道或服务小区和相邻小区的导频信道执行测量。

测量结果管理器 641 管理并且存储测量执行器 631 的测量结果。例如，测量结果管理器 641 管理并且存储诸如用于确定服务小区的无线信道的特征值 THRES 以及设置用于测量报告的计数器或定时器的参数。因此，测量结果管理器 641 使用该参数来确定无线环境的变化。这里，该特定阈值是 UE 已经通过诸如从 ENB 门发信号告知或广播的系统信息的公共信令接收的值。可替换地，该特定阈值是通过硬编码一个值而得到的固定值。类似地，UE 可以接收通过诸如从 ENB 门发信号告知或广播的系统信息的公共信令发送信号告知的计数器或定时器的值。这里，可以根据 ENB 的容量以不同的方式设置计数器或定时器的值。

如果在测量结果管理器 641 中由于无线环境的重大变化而需要向 ENB 发送测量报告，则测量报告生成器 661 生成测量报告消息。使用发送器 621 向 ENB 发送测量报告消息。

如果从测量结果管理器 641 中的测量结果确定服务小区的无线信道小于或等于该阈值，则将测量结果视为控制输入参数的测量执行控制器 651 不仅为服务小区而且为相邻小区控制测量周期，使得其可以与 DRX 间隔不同步地连续执行测量，或者使用较短时间间隔作为周期频繁执行测量。即，测量执行控制器 651 控制发送器 621 在调度时间连续接收导频信道，或者控制发送器 621 以短于 DRX 间隔的时段的时间间隔为周期接收导频信号。

相应地，测量执行器 631 测量连续接收或以较短时间周期接收的服务小区或相邻小区的导频信道，并且测量结果管理器 641 检查和管理测量执行器 631 的测量结果。根据该测量结果，测量报告生成器 661 生成测量报告消息。

正如从前面的描述显而易见的，本发明的实施例使得支持 DTX/DRX 操作的 UE 能够以最小的功耗进行测量报告。也就是说，本发明的实施例为 UE 的测量报告提供最小的功耗。

此外，本发明的实施例使用可变的测量周期而不是预定的测量周期执行测量操作，使得可以在实时的基础上考虑实时变化的信道环境。另外，本发明的实施例最小化 UE 的测量报告的传输延迟，从而便于向 ENB 延迟报告关于 UE 的信道环境。因此，本发明的实施例适当地执行测量报告，从而保持到 ENB 的正常化的无线链路。

尽管已经参照本发明的某些优选实施例示出和描述了本发明，但是本领域技术人员理解，在不脱离如所附权利要求所限定的本发明的精神和范围的情况下，可以在其中
进行各种形式和细节的改变。
图 1
图 3

服务小区和相邻小区

测量结果：

服务小区 (n) > 相邻小区

为触发测量报告的延迟时间，测量结果不准确

UE 向 eNB 发送测量报告
图 5
图 6