wo 2012/125315 A2 |0 OO0 OO AR AR A

(43) International Publication Date
20 September 2012 (20.09.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2012/125315 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 12/08 (2006.01) GO6F 9/06 (2006.01)

International Application Number:
PCT/US2012/027645

International Filing Date:
4 March 2012 (04.03.2012)

English
English

Filing Language:
Publication Language:

Priority Data:
13/046,617 11 March 2011 (11.03.2011)

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: STARKS, John A.; c¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). GREEN, Dustin L.;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399

Us

(8D

(US). HARRIS, Todd William; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). JOHN, Math-
ew; c¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). RAJARAM, Senthil; c¢/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). MEHRA,
Karan; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). CHRISTIANSEN, Neal R.; ¢/o0 Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
DAL, Chung Lang; ¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

[Continued on next page]

(54) Title: VIRTUAL DISK STORAGE TECHNIQUES

FIG.4

400 Computer System

410 Virtual Machine
412 Guest Operating System

| 424 Application |

| 414 File System |

| 402 Virtual Disk

420 Virtualization System

404 Virtual Disk Parser !

422 Offload /
Provider 406 Virtual Disk File(s)
Engine

408 Virtualization System File System

106 Storage Device
454 Cache

460 Persistent Storage Unit

(57) Abstract: This document describes techniques for stor-
ing virtual disk payload data. In an exemplary configuration,
each virtual disk extent can be associated with state informa-
tion that indicates whether the virtual disk extent is described
by a virtual disk file. Under certain conditions the space used
to describe a virtual disk extent can be reclaimed and state in-
formation can be used to determine how read and/or write op-
erations directed to the virtual disk extent are handled. In ad -
dition to the foregoing, other techniques are described in the
claims, figures, and detailed description of this document.

wO 2012/125315 A2 |00V A R A

84)

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,

SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

VIRTUAL DISK STORAGE TECHNIQUES
BACKGROUND
[0001] Storage virtualization technology allows for the separation of logical storage from
physical storage. One exemplary use case for storage virtualization is within a virtual
machine. A layer of virtualizing software (typically called a hypervisor or virtual machine
monitor) is installed on a computer system and controls how virtual machines interact with
the physical hardware. Since guest operating systems are typically coded to exercise
exclusive control over the physical hardware, the virtualizing software can be configured
to subdivide resources of the physical hardware and emulate the presence of physical
hardware within the virtual machines. Another use case for storage virtualization is within
a computer system configured to implement a storage array. In this case, physical
computer systems or virtual machines can be connected to the storage array using the
1SCSI protocol, or the like.
[0002] A storage handling module can be used to emulate storage for either a virtual or
physical machine. For example, a storage handling module can handle storage 10 jobs
issued by a virtual or physical machine by reading and writing to one or more virtual disk
files, which can be used to describe, i.e., store, the extents of the virtual disk, i.e., a
contiguous area of storage such as a block. Likewise, the storage handling program can
respond to write requests by writing bit patterns data for the virtual disk to one or more
virtual disk files and respond to read requests by reading the bit patterns stored in the one
or more virtual disk files.
SUMMARY
[0003] This document describes techniques for storing data for a virtual disk in one or
more virtual disk files. In an exemplary configuration, a virtual disk extent can be
associated with state information that indicates whether the virtual disk extent is described
by a virtual disk file. Under certain conditions, the space used to describe the virtual disk
extent can be reclaimed and state information can be used to determine how to handle
subsequent read and/or write operations directed to the virtual disk extent. Reclaimed
space, .g., an extent built from one or more ranges, can be used to describe the same or
another virtual disk extent. In addition to the foregoing, other techniques are described in
the claims, the detailed description, and the figures.
[0004] It can be appreciated by one of skill in the art that one or more various aspects of
the disclosure may include but are not limited to circuitry and/or programming for

effecting the herein-referenced aspects; the circuitry and/or programming can be virtually

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

any combination of hardware, software, and/or firmware configured to effect the herein-
referenced aspects depending upon the design choices of the system designer.

[0005] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail. Those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any way limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 depicts a high-level block diagram of a computer system.

[0007] FIG. 2 depicts a high-level block diagram of an exemplary architecture for a
virtualizing software program.

[0008] FIG. 3 depicts a high-level block diagram of an alternative architecture for a
virtualizing software program.

[0009] FIG. 4 depicts a lower-level block diagram of a computer system configured to
effectuate a virtual disk.

[0010] FIG. 5A depicts a lower-level block diagram of a computer system configured to
effectuate a virtual disk.

[0011] FIG. 5B illustrates a lower-level block diagram of a computer system configured to
effectuate a virtual disk.

[0012] FIG. 6 depicts a high-level block diagram of a differencing disk.

[0013] FIG. 7 depicts a high-level illustration of the relationship between a virtual disk
and a virtual disk file.

[0014] FIG. 8 depicts a high-level illustration of the relationship between a virtual disk
and a virtual disk file.

[0015] FIG. 9 depicts a high-level illustration of the relationship between a virtual disk
and a virtual disk file.

[0016] FIG. 10 depicts a high-level illustration of the relationship between a virtual disk
and a virtual disk file.

[0017] FIG. 11 depicts an operational procedure that can be implemented in a computer-
readable storage medium and/or executed by a computer system.

[0018] FIG. 12 depicts additional operations that can be executed in conjunction with
those illustrated by FIG. 11.

[0019] FIG. 13 depicts additional operations that can be executed in conjunction with
those illustrated by FIG. 12.

[0020] FIG. 14 depicts an operational procedure that can be implemented in a computer-

readable storage medium and/or executed by a computer system.

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

[0021] FIG. 15 depicts additional operations that can be executed in conjunction with
those illustrated by FIG. 14.

[0022] FIG. 16 depicts an operational procedure that can be implemented in a computer-
readable storage medium and/or executed by a computer system.

[0023] FIG. 17 depicts additional operations that can be executed in conjunction with
those illustrated by FIG. 16.

DETAILED DESCRIPTION

[0024] The disclosed subject matter may use one or more computer systems. FIG. 1 and
the following discussion are intended to provide a brief general description of a suitable
computing environment in which the disclosed subject matter may be implemented.
[0025] The term circuitry used throughout can include hardware components such as
hardware interrupt controllers, hard drives, network adaptors, graphics processors,
hardware based video/audio codecs, and the firmware used to operate such hardware. The
term circuitry can also include microprocessors, application specific integrated circuits,
and processors, €.g., cores of a multi-core general processing unit that perform the reading
and executing of instructions, configured by firmware and/or software. Processor(s) can
be configured by instructions loaded from memory, e.g., RAM, ROM, firmware, and/or
mass storage, embodying logic operable to configure the processor to perform a
function(s). In an example embodiment, where circuitry includes a combination of
hardware and software, an implementer may write source code embodying logic that is
subsequently compiled into machine readable code that can be executed by hardware.
Since one skilled in the art can appreciate that the state of the art has evolved to a point
where there is little difference between hardware implemented functions or software
implemented functions, the selection of hardware versus software to effectuate herein
described functions is merely a design choice. Put another way, since one of skill in the
art can appreciate that a software process can be transformed into an equivalent hardware
structure, and a hardware structure can itself be transformed into an equivalent software
process, the selection of a hardware implementation versus a software implementation is
left to an implementer.

[0026] Referring now to FIG. 1, an exemplary computing system 100 is depicted.
Computer system 100 can include processor 102, e.g., an execution core. While one
processor 102 is illustrated, in other embodiments computer system 100 may have
multiple processors, e.g., multiple execution cores per processor substrate and/or multiple

processor substrates that could each have multiple execution cores. As shown by the

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

figure, various computer-readable storage media 110 can be interconnected by one or
more system busses which couples various system components to the processor 102, The
system buses may be any of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. In example embodiments the computer-readable storage media 110 can
include for example, random access memory (RAM) 104, storage device 106, e.g.,
electromechanical hard drive, solid state hard drive, etc., firmware 108, e.g., FLASH
RAM or ROM, and removable storage devices 118 such as, for example, CD-ROMs,
floppy disks, DVDs, FLASH drives, external storage devices, etc. It should be
appreciated by those skilled in the art that other types of computer readable storage media
can be used such as magnetic cassettes, flash memory cards, and/or digital video disks.
[0027] The computer-readable storage media 110 can provide nonvolatile and volatile
storage of processor executable instructions 122, data structures, program modules and
other data for the computer system 100 such as executable instructions. A basic
input/output system (BIOS) 120, containing the basic routines that help to transfer
information between elements within the computer system 100, such as during start up,
can be stored in firmware 108. A number of programs may be stored on firmware 108,
storage device 106, RAM 104, and/or removable storage devices 118, and executed by
processor 102 including an operating system and/or application programs. In exemplary
embodiments, computer-readable storage media 110 can store virtual disk parser 404,
which is described in more detail in the following paragraphs, can be executed by
processor 102 thereby transforming computer system 100 into a computer system
configured for a specific purpose, i.e., a computer system configured according to
techniques described in this document.

[0028] Commands and information may be received by computer system 100 through
input devices 116 which can include, but are not limited to, a keyboard and pointing
device. Other input devices may include a microphone, joystick, game pad, scanner or the
like. These and other input devices are often connected to processor 102 through a serial
port interface that is coupled to the system bus, but may be connected by other interfaces,
such as a parallel port, game port, or universal serial bus (USB). A display or other type
of display device can also be connected to the system bus via an interface, such as a video
adapter which can be part of, or connected to, a graphics processor unit 112. In addition to
the display, computers typically include other peripheral output devices, such as speakers

and printers (not shown). The exemplary system of FIG. 1 can also include a host adapter,

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

Small Computer System Interface (SCSI) bus, and an external storage device connected to
the SCSI bus.

[0029] Computer system 100 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer. The remote
computer may be another computer, a server, a router, a network PC, a peer device or
other common network node, and typically can include many or all of the elements
described above relative to computer system 100.

[0030] When used in a LAN or WAN networking environment, computer system 100 can
be connected to the LAN or WAN through network interface card 114. The NIC 114,
which may be internal or external, can be connected to the system bus. In a networked
environment, program modules depicted relative to the computer system 100, or portions
thereof, may be stored in the remote memory storage device. It will be appreciated that
the network connections described here are exemplary and other means of establishing a
communications link between the computers may be used. Moreover, while it is
envisioned that numerous embodiments of the present disclosure are particularly well-
suited for computerized systems, nothing in this document is intended to limit the
disclosure to such embodiments.

[0031] Turning to FIG. 2, illustrated is an exemplary virtualization platform that can be
used to generate virtual machines. In this embodiment, microkernel hypervisor 202 can be
configured to control and arbitrate access to the hardware of computer system 200.
Microkernel hypervisor 202 can generate execution environments called partitions such as
child partition 1 through child partition N (where N is an integer greater than 1). Here, a
child partition is the basic unit of isolation supported by microkernel hypervisor 202.
Microkernel hypervisor 202 can isolate processes in one partition from accessing another
partition’s resources. In particular, microkernel hypervisor 202 can isolate kernel mode
code of a guest operating system from accessing another partition’s resources as well as
user mode processes. Each child partition can be mapped to a set of hardware resources,
e.g., memory, devices, processor cycles, etc., that is under control of the microkernel
hypervisor 202. In embodiments, microkernel hypervisor 202 can be a stand-alone
software product, a part of an operating system, embedded within firmware of the
motherboard, specialized integrated circuits, or a combination thereof.

[0032] Microkernel hypervisor 202 can enforce partitioning by restricting a guest
operating system’s view of the memory in a physical computer system. When

microkernel hypervisor 202 instantiates a virtual machine, it can allocate pages, e.g., fixed

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

length blocks of memory with starting and ending addresses, of system physical memory
(SPM) to the virtual machine as guest physical memory (GPM). Here, the guest’s
restricted view of system memory is controlled by microkernel hypervisor 202. The term
guest physical memory is a shorthand way of describing a page of memory from the
viewpoint of a virtual machine and the term system physical memory is shorthand way of
describing a page of memory from the viewpoint of the physical system. Thus, a page of
memory allocated to a virtual machine will have a guest physical address (the address used
by the virtual machine) and a system physical address (the actual address of the page).
[0033] A guest operating system may virtualize guest physical memory. Virtual memory
is a management technique that allows an operating system to over commit memory and to
give an application sole access to a logically contiguous working memory. In a virtualized
environment, a guest operating system can use one or more page tables, called guest page
tables in this context, to translate virtual addresses, known as virtual guest addresses into
guest physical addresses. In this example, a memory address may have a guest virtual
address, a guest physical address, and a system physical address.

[0034] In the depicted example, parent partition component, which can also be also
thought of as similar to domain 0 of Xen’s open source hypervisor can include a host
environment 204. Host environment 204 can be an operating system (or a set of
configuration utilities) and host environment 204 can be configured to provide resources
to guest operating systems executing in the child partitions 1-N by using virtualization
service providers 228 (VSPs). VSPs 228, which are typically referred to as back-end
drivers in the open source community, can be used to multiplex the interfaces to the
hardware resources by way of virtualization service clients (VSCs) (typically referred to as
front-end drivers in the open source community or para virtualized devices). As shown by
the figures, virtualization service clients execute within the context of guest operating
systems. However, these drivers are different than the rest of the drivers in the guest in
they communicate with host environment 204 via VSPs instead of communicating with
hardware or emulated hardware. In an exemplary embodiment the path used by
virtualization service providers 228 to communicate with virtualization service clients 216
and 218 can be thought of as the enlightened 10 path.

[0035] As shown by the figure, emulators 234, e.g., virtualized IDE devices, virtualized
video adaptors, virtualized NICs, etc., can be configured to run within host environment
204 and are attached to emulated hardware resources, e.g., IO ports, guest physical address

ranges, virtual VRAM, emulated ROM ranges, etc. available to guest operating systems

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

220 and 222. For example, when a guest OS touches a guest virtual address mapped to a
guest physical address where a register of a device would be for a memory mapped device,
microkernel hypervisor 202 can intercept the request and pass the values the guest
attempted to write to an associated emulator. Here, the emulated hardware resources in
this example can be thought of as where a virtual device is located in guest physical
address space. The use of emulators in this way can be considered the emulation path.
The emulation path is inefficient compared to the enlightened 1O path because it requires
more CPU time to emulate devices than it does to pass messages between VSPs and
VSCs. For example, several actions on memory mapped to registers are required in order
to write a buffer to disk via the emulation path, while this may be reduced to a single
message passed from a VSC to a VSP in the enlightened 10 path, in that the drivers in the
VM are designed to access 1O services provided by the virtualization system rather than
designed to access hardware.

[0036] Each child partition can include one or more virtual processors (230 and 232) that
guest operating systems (220 and 222) can manage and schedule threads to execute
thereon. Generally, the virtual processors are executable instructions and associated state
information that provide a representation of a physical processor with a specific
architecture. For example, one virtual machine may have a virtual processor having
characteristics of an Intel x86 processor, whereas another virtual processor may have the
characteristics of a PowerPC processor. The virtual processors in this example can be
mapped to processors of the computer system such that the instructions that effectuate the
virtual processors will be directly executed by physical processors. Thus, in an
embodiment including multiple processors, virtual processors can be simultaneously
executed by processors while, for example, other processor execute hypervisor
instructions. The combination of virtual processors and memory in a partition can be
considered a virtual machine.

[0037] Guest operating systems (220 and 222) can be any operating system such as, for
example, operating systems from Microsoft®, Apple®, the open source community, etc.
The guest operating systems can include user/kernel modes of operation and can have
kernels that can include schedulers, memory managers, etc. Generally speaking, kernel
mode can include an execution mode in a processor that grants access to at least privileged
processor instructions. Each guest operating system can have associated file systems that
can have applications stored thereon such as terminal servers, e-commerce servers, email

servers, etc., and the guest operating systems themselves. The guest operating systems can

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

schedule threads to execute on the virtual processors and instances of such applications
can be effectuated.

[0038] Referring now to FIG. 3, it illustrates an alternative virtualization platform to that
described above in FIG. 2. FIG. 3 depicts similar components to those of FIG. 2;
however, in this example embodiment hypervisor 302 can include a microkernel
component and components similar to those in host environment 204 of FIG. 2 such as the
virtualization service providers 228 and device drivers 224, while management operating
system 304 may contain, for example, configuration utilities used to configure hypervisor
302. In this architecture, hypervisor 302 can perform the same or similar functions as
microkernel hypervisor 202 of FIG. 2; however, in this architecture hypervisor 304
effectuates the enlightened 10 path and includes the drivers for the physical hardware of
the computer system. Hypervisor 302 of FIG. 3 can be a stand-alone software product, a
part of an operating system, embedded within firmware of the motherboard or a portion of
hypervisor 302 can be effectuated by specialized integrated circuits.

[0039] Turning now to FIG. 4, it describes computer system 400, which illustrates a high-
level block diagram of components that can be used to effect the techniques described in
this document. Briefly, computer system 400 can include components similar to those
described above with respect to FIG. 1 through 3. FIG. 4 shows virtualization system 420,
which can be thought of as a high-level representation of the virtualization platform
illustrated by FIG. 2 or FIG. 3. For example, virtualization system 420 can be though of
as a high-level representation of the combination of features provided by microkernel
hypervisor 202 and host environment 204. Alternatively, virtualization system 420 can be
thought of as a high-level representation of hypervisor 302 and management OS 304.
Thus, use of the term “virtualization system 420” throughout this document signals that
the virtual disk techniques described in the following paragraphs can be implemented
within any type of virtualization software layer or in any type of virtualization platform.
[0040] Virtualization system 420 can include offload provider engine 422. Briefly,
offload provider engine 422 can be configured to service offload read and offload write
requests (sometimes called PROXY READ and PROXY WRITE) issued by, for example,
application 424. An offload read request is a request to create a token that represents data
that would have been read if the offload read had been a normal read. An offload write is
a request to write the data represented by a token to a destination location. In one usage
example, an offload read followed by an offload write can be used to copy data from one

location to another, e.g., from computer system 400 to a destination computer system

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

within a domain by using tokens that represent the data to avoid moving the data through
local RAM. For example, suppose that computer system 400 and a destination computer
system (not shown) can access a common data repository and a request to copy data from
computer system to the destination is received. Instead of copying the data to the
destination, application 424 can issue a request to offload provider engine 422 to issue a
token that represents the data as it exists at the time the token is associated with the data.
The token can be sent to the destination and used by a program running on the destination
to obtain the data from the common data storage repository and write the data to the
destination. Copy-offload techniques are described in more detail in co-pending US
Patent Application No. 12/888,433, entitled “Offload Reads and Writes” and U.S. Patent
Application No. 12/938,383, entitled “Virtualization and Offload Reads and Writes,” the
contents of which are herein incorporated by reference in their entirety to the extent they
are consistent with techniques described in this document.

[0041] Virtual disk parser 404, which can be a module of executable instructions in a
specific example embodiment, can be used to instantiate virtual disks from virtual disk
files and handle storage IO on behalf of a virtual machine. As shown by the figure, virtual
disk parser 404 can open one or more virtual disk files such as virtual disk file(s) 406 and
generate virtual disk 402.

[0042] Virtual disk parser 404 can obtain virtual disk file(s) 406 from storage device 106
via virtualization system file system 408. Briefly, virtualization system file system 408
represents a software module that organizes computer files and data of virtualization
system 420, such as virtual disk file(s) 406. Virtualization system file system 408 can
store this data in an array of fixed-size physical extents, i.e., contiguous areas of storage on
a physical storage device. In a specific example, an extent can be a cluster, which is a
sequence of bytes of bits having a set length. Exemplary cluster sizes are typically a
power of 2 between 512 bytes and 64 kilobytes. In a specific configuration, a cluster size
can be 4 kilobytes.

[0043] When a request to open virtual disk file 406 is received, virtualization system file
system 408 determines where the file is located on disk and issues an 1O job to the disk
device driver to read the data from one or more physical extents of the disk. The 10 job
issued by file system 408 determines a disk offset and length that describes the location of
the persistent copy of virtual disk file 406 on storage device 106 and issues the 10 job to
storage device 106. Due to the semantics of how storage devices operate, a write 10 job

can be buffered in one or more levels of caches of volatile memory, represented by cache

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

454, until the circuitry of storage device 106 determines to access the location on the
persistent storage unit 460, e.g., a platter, a flash memory cell, etc., and write the buffered
bit pattern indicative of the new contents of the persistent copy of the virtual disk file(s)
406 to persistent storage unit 460.

[0044] Virtual disk parser 404 can obtain the bit pattern indicative of virtual disk file(s)
406 and expose the payload, e.g., user data, in the virtual disk file(s) 406 as a disk
including a plurality of virtual disk extents. In an embodiment, these virtual disk extents
can be a fixed-size block 512 kilobytes up to 64 megabytes in size and partitioned into a
plurality of sectors; however, in another embodiment the virtual disk extents could be
variable-sized extents. In an exemplary configuration, prior to booting guest operating
system 412, resources related to an emulated or enlightened storage controller and
emulated or enlightened aspects of a virtual disk are setup such that an emulated storage
controller with memory mapped registers is effected within guest physical address space
of the virtual machine 410. Boot code can run and boot guest operating system 412,
Virtualization system 420 can detect an attempt to access this region of guest physical
address space and return a result that causes guest operating system 412 to determine that
a storage device is attached to the emulated storage controller. In response, guest
operating system 412 can load a driver (either a para virtualization driver or a regular
driver) and use the driver to issue storage 10 requests to the detected storage device.
Virtualization system 420 can route the storage 1O requests to virtual disk parser 404.
[0045] After guest operating system 412 is running it can issue 1O jobs to virtual disk 402
via file system 414, which is similar to virtualization system file system 414 in that it
organizes computer files and data of guest operating system 412 and applications installed
on guest operating system 412. Guest operating system 412 can interact with virtual disk
402 in a way that is similar to how an operating system interacts with a physical storage
device and eventually the IO jobs are routed to virtual disk parser 404. Virtual disk parser
404 can include logic for determining how to respond to the 10 jobs in a way that emulates
a physical storage device. For example, virtual disk parser 404 can read data from virtual
disk file(s) 406 and write data to virtual disk file(s) 406. The data written to virtual disk
file(s) 406 in turn is routed through virtualization system file system 408 and committed to
a persistent copy of virtual disk file(s) 406 stored on or in persistent storage unit 460.
[0046] Referring briefly to FIG. 5A, it illustrates an alternative architecture for
implementing techniques described in this document. As shown by FIG. 5, virtual disk

parser 404 can also be implemented in an operating system 502 such as an operating

10

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

system offered by Microsoft®. In this example, virtual disk parser 404 can be configured
to run on storage server 500, which could include components similar to computer system
100 of FIG. 1. In this example, storage server 500 could include an array of physical
storage devices 510 and can be configured to make storage available to servers such that
the storage appears as locally attached to operating system 508. Virtual disk parser 404
can operate the same as it was described with respect to FIG. 4; the difference being in this
configuration read/write 10 jobs issued by file system 414 can be routed over a network
connection to virtual disk parser 404.

[0047] Referring briefly to FIG. 5B, it illustrates yet another architecture for implementing
techniques described in this document. FIG. 5B is similar to FIG. 5A in that virtual disk
parser 404 is implemented in operating system 502 and computer system 512 could
include components similar to computer system 100 of FIG. 1. The difference in this
example; however, is that the figure illustrates a loopback-attached virtual disk 402. File
system 414, including applications such as application 424 can be stored in virtual disk
402 and virtual disk file(s) 406 can be stored in computer system file system 514.

[0048] Turning attention now to virtual disk 402, while it can be effected by a single
virtual disk file, in other configurations a group of differencing virtual disk files can be
used to bring about virtual disk 402. FIG. 6 illustrates exemplary chains of virtual disk
files that can be used by virtual disk parser 404 to effect virtual disk 402 as a differencing
disk. Generally, a differencing virtual disk file represents the current state of a virtual disk
as a set of modified extents in comparison to a parent image. The parent image can be
another differencing virtual disk file or a base virtual disk file.

[0049] In an exemplary configuration, the linking between a parent virtual disk file and a
child virtual disk file can be stored within the child. In particular, the child can include an
identifier of the parent and a value that describes the location of the parent. When starting
a virtual machine, virtual disk parser 404 may receive information that describes the last
virtual disk file in the chain, i.e., virtual disk file 612 is the last in a chain that includes
virtual disk files 612, 610, 606, and 600, and open this file. This file can include an
identifier of its parent, i.e., virtual disk file 610, and a path to it. Virtual disk parser 404
can locate and open the parent and so on and so forth until a base virtual disk file is
located and opened.

[0050] Virtual disk parser 404 can use information that indicates whether data is present
or stored in a parent virtual disk file. Typically, the last virtual disk file in the chain is

opened as read/modify and other virtual disk files are opened as read only. Thus, writes

11

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

are typically made to the last virtual disk file in the chain. Read operations are similarly
directed first to the last virtual disk file in the chain and virtual disk parser 404 will
logically search the virtual disk files in logical order from last to base until the data is
found in the instance that information about where the data is located is not cached. Ina
specific example, a block allocation table (not shown) for a virtual disk file, e.g., virtual
disk file 612, can include state information that indicates whether the virtual disk extent is
defined by a section of the virtual disk file or if this virtual disk extent is transparent, e.g.,
defined by a different virtual disk file further along the chain. In one implementation,
virtual disk parser 404 can determine whether this virtual disk extent is transparent and
access the block allocation table for the next virtual disk file in the chain, e.g., virtual disk
file 610, and so on and so forth until a virtual disk file in the chain is located that defines
the data.

[0051] Referring now to FIG. 7, it illustrates virtual disk 402 described at least in part by
virtual disk file 702, which could be similar to any virtual disk file described in FIG. 6 that
is write/modifiable, e.g., virtual disk file 602, 608, or 612, or a single virtual disk file. As
shown by the figure, virtual disk 402 can include N extents of storage (where N is an
integer greater than 0) and in this specific example virtual disk 402 includes 10 extents.
Virtual disk 402 is illustrated as including the bit patterns for different files and data for
guest operating system 412, which are differentiated by the different patterns within the
virtual disk extents.

[0052] Since virtual disk 402 is not a physical storage device, the underlying payload data
for the virtual disk extents can be “described by,” i.e., stored in, different sections within
virtual disk file 702. For example, virtual disk extent 1 is described by a section that is
defined by a virtual disk file offset value O or the first offset that can be used to store
payload data. Allocation table 416, which can be stored in random access memory while
computer system 400 is in operation, can be persisted in virtual disk file 702 in any section
and can span multiple sections. Briefly, allocation table 416 can include information that
links virtual disk extents to sections of virtual disk file 702. For example, allocation table
416 can store information that defines the virtual disk file byte offsets that define the
section of virtual disk file 702 that stores the data. The arrows signify the relationships
stored in allocation table 416.

[0053] Described in more detail in the following paragraphs, allocation table 416 can also
include state information; however, this configuration is exemplary. In alternate

configurations this information can be stored in a different section of virtual disk file 702

12

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

and loaded into RAM 104. Allocation table 416 can include an entry for each virtual disk
extent; state information indicating what state each extent is in; and a file offset indicating
where in virtual disk file 702 each virtual disk extent is described (not illustrated). In an
alternative embodiment an extent could also be defined by multiple already-mapped and
contiguous (in file offset) table entries. In this configuration, reads and writes that cross
block boundaries can be serviced as a single read/write to virtual disk file 702 if the block
payloads are contiguous in the file. In a specific example, virtual disk parser 404 can also
store information that indicates what type of bit pattern is stored in each unused section of
the virtual disk file, i.e., a free space map. In addition to the foregoing, the free-space map
can allow be used by virtual disk parser 404 to determine which sectors of virtual disk file
406 are used and which are free. The free space map in this example can be configured to
track free space in the file that is non-zero. In an exemplary embodiment, because using a
non-zero portion of free space to describe a portion of virtual disk 402, which must be zero
or must not disclose information from other virtual disk offsets, the free space is
overwritten with zeros or a non-information disclosing pattern (typically zeros),
respectively. Virtual disk parser 404 can use this information in order to determine what
section of virtual disk file to allocate to a virtual disk extent. For example, if a virtual disk
extent in the zero state is written to, virtual disk parser 404 can allocate a section that
already has zeros in it to back the virtual disk extent.

[0054] As guest operating system 412 or operating system 508 runs it will generate data
and files and issue disk writes to virtual disk 402 to store data. When virtual disk file 702
does not have any additional non-used space, virtual disk parser 404 can extend the end of
file and use the new space to describe the virtual disk extents. Guest operating system 412
or operating system 508 may use, delete, and reuse sections of virtual disk 402; however,
since virtual disk parser 404 is merely storing data on behalf of file system 414, virtual
disk parser 404 may be unable to determine whether a section of virtual disk file is still
being used by guest operating system 412. Consequently, virtual disk parser 404 may
hold allocated space in virtual disk file 702 to describe virtual disk extents that are no
longer in use by file system 414. The result of this is that the size of virtual disk file 702
may grow until it reaches the size of virtual disk 402.

[0055] In exemplary embodiments, virtual disk parser 404 can be configured to reclaim
unused sections of a virtual disk file and optionally reuse them. As such, the frequency at
which the virtual disk file needs to be extended is reduced, and the overall size of the

virtual disk file is reduced. In an example embodiment, when a file system signals that it

13

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

is no longer using a virtual disk extent, virtual disk parser 404 can de-allocate, i.e., unlink,
the virtual disk extent from the virtual disk file and associate the virtual disk extent with
information that describes how read operations to the virtual disk extent should be treated.
The section of the virtual disk file can then be reused to describe the same or another
virtual disk extent.

[0056] In an exemplary configuration, virtual disk parser 404 can use TRIM, UNMAP,
and/or WRITE SAME of zero commands issued by a file system to determine when a
virtual disk extent can be de-allocated from virtual disk file(s) 406. TRIM commands can
be issued by guest operating system 412 or operating system 508. For example, as guest
operating system 412 or operating system 508 runs, file system 414 may determine that
some sectors are no longer needed and issue a TRIM command. Alternatively or
additionally, virtual disk parser 404 can be configured to request that file system 414 issue
TRIM commands at predetermined intervals, or when predetermined criteria are satisfied,
e.g., when virtual machine 410 is instantiated, when virtual machine 410 is shut down,
under light use, etc.

[0057] Briefly, a TRIM command is used to inform the data storage device as to which
sectors are no longer considered in use so that the data stored therein can be optionally
discarded by the data storage device. One type of TRIM command, called a free space
TRIM command, can be used by file system 414 to signal that sectors are no longer in use
by file system 414 and the other, called a standard TRIM command, does not. The
difference between the two types of TRIM commands is that when a sector is the subject
of a free space TRIM, file system 414 provides security for the sector by preventing user
space applications and the like from reading from the sector. The fact that file system 414
secures access to sectors that have been trimmed in this way can be used to increase the
ability to efficiency allocate virtual disk file space. This particular aspect is described in
more detail in the following paragraphs.

[0058] In an exemplary configuration, virtual disk parser 404 can be configured to execute
reclamation operations when a virtual disk extent is fully covered by a TRIM command.
Or put another way, virtual disk parser 404 can unlink virtual disk extents from the virtual
disk file in response to receipt of a TRIM command that defines a range of virtual disk
sectors that identifies all of the sectors in the virtual disk extent. In the same or an
alternative embodiment, when a TRIM command is received that covers a portion of a
virtual disk extent, virtual disk parser 404 can determine what portion of the virtual disk

file corresponds to the trimmed sectors and send a TRIM command for the portion of the

14

10

15

20

25

WO 2012/125315 PCT/US2012/027645

virtual disk file to storage device 106. In this example, the underlying file system, e.g.,
virtualization system file system 408, storage server file system 504, or computer system
file system 514 can translate the offsets of the TRIM command and send the translated
offsets to storage device 106, reclaim space directly via internal data structure updates, or
clear data from caches.

[0059] In the same or another embodiment, when a TRIM command is received that
covers a portion of a virtual disk extent, virtual disk parser 404 can be configured to store
information that indicates what sectors have been the subject of the TRIM command and
whether the TRIM command was a free space trim or not. In the instance that the
remainder of the virtual disk extent is trimmed, virtual disk parser 404 can de-allocate the
virtual disk extent from the virtual disk file.

[0060] When de-allocating virtual disk extents, virtual disk parser 404 can associate the
virtual disk extent with state information that describes how read operations directed to the
virtual disk extent can be handled. Table 1 illustrates exemplary state information that
virtual disk parser 404 can associate with virtual disk extents and use to optimize the
reclamation of the virtual disk file. The ability to reclaim a virtual disk extent can be
accomplished in one example by using two states (described and not described); however,
since the bit pattern stored in virtual disk file 702 is not typically erased when the data is
deleted, additional states can be used to determine when space selected to describe a
virtual disk extent needs to be cleared before it can be reused or if it can be reused without
overwriting the data previously stored therein. One reason for why the data is not erased
upon deletion is that it costs processor cycles to erase data and since some storage devices
are configured to perform write operations on a per-block basis, it is more efficient to
erase data when over-writing with new data. The following states are exemplary and the

disclosure is not limited to using states that are defined by the following table.

State Description

Mapped This state indicates that the virtual disk extent is linked to the
virtual disk file.

Transparent | This state indicates that the virtual disk extent is defined by a
different virtual disk file.

Zero This state indicates that the virtual disk extent is not described by
the virtual disk file. In addition, this state indicates that the virtual

disk extent is defined as zero and that the zeros are meaningful.

15

10

15

20

25

WO 2012/125315 PCT/US2012/027645

Unmapped | This state indicates that the virtual disk extent is not described by
the virtual disk file. In an embodiment, this state can include sub-

states anchored and unanchored.

Uninitialized | This state indicates that the virtual disk extent is not described by
the virtual disk file and that the virtual disk extent is defined as
free space. In an embodiment, this state can also include sub-
states anchored and unanchored.

Table 1
[0061] Referring to Table 1 in conjunction with FIG. 7, the first state listed is the

“mapped” state, which indicates that the virtual disk extent is described by a section of
virtual disk file 702. For example, virtual disk extent 0 is an example virtual disk extent
that is illustrated as being in the “mapped” state.

[0062] Continuing with the description of Table 1, a virtual disk extent can be associated
with state information that indicates that the virtual disk extent is “transparent,” that is, the
virtual disk extent is described by a different virtual disk file. In the instance that a read
operation is received by virtual disk parser 404 to a virtual disk extent in the transparent
state, virtual disk parser 404 can refer to a different virtual disk file and check its
allocation table to determine how to respond to the read. In an instance that virtual disk
parser 404 receives a write to the virtual disk extent, virtual disk parser 404 can transition
the virtual disk extent from the “transparent” state to the “mapped” state.

[0063] Continuing with the description of Table 1 in conjunction with FIG. 7, a virtual
disk extent can also be associated with the “unmapped” state. In this example, the virtual
disk extent is not described by virtual disk file 702 nor is it described by any other virtual
disk file in a chain. In this example, the unmapped state can be used to describe a virtual
disk extent that was subject to a TRIM command that did not indicate that file system 414
would secure access to the virtual disk extent. Or put another way, the TRIM command
used to transition this virtual disk extent to this state was a standard TRIM command. In
the instance that the virtual disk extent is in the unmapped state and an IO job indicative of
a read to the extent is received, virtual disk parser 404 can respond with zeros, the zero
token, ones, a token representing all ones, or a non-information disclosing bit pattern, e.g.,
all zeros, all ones, or a randomly generated pattern of ones and zeros. In this example, if a
section of virtual disk file 702 is allocated to back a virtual disk extent in this state, virtual

disk parser 404 can write a non-information disclosing bit pattern to the section of virtual

16

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

disk file 702 before allocating it or select a section that already includes a non-information
disclosing bit pattern to describe the virtual disk extent. Virtual disk extent 6 of FIG. 7 is
indicated as in the unmapped state.

[0064] In an embodiment, the data defining an unmapped or uninitialized extent can be
kept and the unmapped or uninitialized state can include two sub-states: anchored, which
means that the data is still present within virtual disk file 702, and unanchored, which
means that the data may or may not be kept. In instances where these sub-states are used,
virtual disk parser 404 can transition an unmapped but anchored extent to mapped by
allocating the section or sections that store the data without zeroing the section or sections.
Similarly, while virtual disk parser 404 is configured to treat uninitialized extents as if
they were unmapped for at least a portion of virtual disk 402, virtual disk parser 404 can
avoid zeroing an uninitialized but anchored extent during transition of that extent to
mapped, by allocating the section or sections that store the data without zeroing the section
or sections.

[0065] Table 1 additionally describes a “zero” state. In this example, the virtual disk
extent is not described by virtual disk file 702 nor is it described by any other virtual disk
file in a chain; however, the virtual disk extent is required to read as all zeros. In this
example, the zero state can be used to describe a virtual disk extent that was subject to
either type of TRIM command or to describe a virtual disk extent that a program has
written all zeros to. For example, suppose a deletion utility program wrote all zeros to
virtual disk extent 4 to ensure that the data it previously stored was completely
overwritten. In the instance that the virtual disk extent is in the zeroed state, and an 1O job
indicative of a read to the extent is received, virtual disk parser 404 can respond to with
zeros or the zero token (in an offload read operation). In the instance that a write is
directed to a virtual disk extent in this state, virtual disk parser 404 can zero a section of
virtual disk file 702 and use it to describe the virtual disk extent or select a section of
virtual disk file 702 that is already zero and allocate it to back the virtual disk extent. In
this embodiment, zeroed space could be tracked using a data structure or virtual disk file
702. The data structure could be updated periodically, when virtual disk file 702 is
opened, when virtual disk file 702 is closed, etc. A read from an extent in the unmapped
or uninitialized states may optionally cause virtual disk parser 404 to transition the extent
to the zero state in a configuration where virtual disk parser 404 is configured to provide

sector stability for extents in the unmapped or uninitialized states.

17

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

[0066] Table 1 also describes a state called the “uninitialized” state. The uninitialized
state indicates that the virtual disk extent is not described by virtual disk file 702 and file
system 414 1s securing access to the virtual disk extent. That is, file system 414 is
configured to prevent user applications from reading sectors within this virtual disk extent.
In this example, the uninitialized state can be used to describe a virtual disk extent that
was subject to a free space TRIM command. In the instance that the virtual disk extent is
in the uninitialized state and an 1O job indicative of a read to the extent is received, virtual
disk parser 404 can respond with any data, i.e., a bit pattern from almost anywhere else in
virtual disk file 702, zeros, ones, a non-information disclosing bit pattern, etc., because
virtual disk parser 404 is not providing security for the virtual disk extent, beyond the
requirement that only virtual disk payload data and non-security-impacting metadata may
be exposed to the virtual disk client. In the instance that a write is directed to a virtual
disk extent in this state, virtual disk parser 404 can simply allocate a section of the virtual
disk file 702 without having to alter any data that may be stored within the section.
Consequently, this state is the most advantageous because space can be allocated within
the virtual disk file without clearing it beforehand. Virtual disk extent 5 of FIG. 7 is
indicated as in the uninitialized state and virtual disk file 702 is not backing the virtual
disk extent.

[0067] Once state information is associated with each virtual disk extent, virtual disk
parser 404 can be configured to provide additional information to an administrator or the
like about how virtual disk 402 is arranged. In an example embodiment, virtual disk
parser 404 can be configured to respond to offset queries that include certain parameters
based on the state information. For example, a user can issue a query to iterate, starting at
a given byte offset, through virtual disk 402 and locate ranges that satisfy a specific
criteria such as “mapped,” “unmapped,” “transparent,” etc. In addition, a user can select
how “deep” the query should go to take into account differencing virtual disk files. For
example, and referring to FIG. 7, a user could set a depth of 2 and execute a query. In
response, virtual disk parser 404 will execute the query on the last two virtual disk files in
a chain, e.g., virtual disk files 610 and 612. Specific queries can include a query to obtain
the next non-transparent range(s), the next non-zero range(s), the next defined range(s),
the next initialized range(s), etc. Briefly, a query for the next defined range can be
configured to return the next range(s) which contain defined data (e.g., sectors in the
mapped or zeroed state, with transparent sectors resolving to the parent virtual disk file’s

state for that sector). A query for the next initialized range(s) can return the next range(s)

18

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

which contain data in a state other than the uninitialized state, with transparent sectors
resolving to the parent virtual disk file’s state for that sector.

[0068] Turning now to FIG. 8, it illustrates a specific example of how virtual disk parser
404 can transition virtual disk extents from one state to another in response to a file or
other data being saved to virtual disk 402. For example, suppose that a user uses a
database management program within virtual machine 410 and creates a database. The
user can save the database in a file and file system 414 can determine where on virtual
disk 402 to save file 802. File system 414 can issue one or more disk writes to write file
802 to, for example, sectors that fall within virtual disk extents 3-5. In this example,
virtual disk extent 3 is “mapped” and virtual disk parser 404 can write the first portion of
file 802 to the section identified by allocation table 416.

[0069] Virtual disk extents 4 and 5, on the other hand, are in the “zero” and “uninitialized”
state. In this example, virtual disk parser 404 can select an unused section of virtual disk
file 702 to back virtual disk extent 4 and determine that virtual disk extent 4 is in the
zeroed state. In response to this determination, virtual disk parser 404 can zero the section
that is going to be used to describe virtual disk extent 4 or locate a section which is already
all zeros. After locating a zeroed section or the process of zeroing the section is complete,
virtual disk parser 404 can generate information that identifies the virtual disk file byte
offset indicative of the first byte of the section that defines where virtual disk extent 4 is
described in virtual disk file 702 and store it in allocation table 416. Virtual disk parser
404 can then change the state information associated with virtual disk extent 4 to indicate
that it is “mapped.” Then the portion of the write to extent 4 can be written to the located
section.

[0070] Alternatively, for a portion of a write which covers an entire extent of the virtual
disk currently in the zero state, a located section of the virtual disk file may be chosen, the
portion of the write may be issued to the section, and upon completion of the write the
virtual disk parser 404 can then change the state information associated with the virtual
disk extent to indicate that the extent is “mapped”. Alternatively, for a portion of a write
which only covers part of a virtual disk extent currently in the zero state, a located section
of the virtual disk file may be chosen, the portion of the write may be issued to the section,
a zeroing write may be issued to the remainder of the section, and on completion of the
write the virtual disk parser 404 can then change the state information associated with the

virtual disk extent to indicate that the extent is “mapped”. Those skilled in the art will

19

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

recognize that the given ordering of writes may be enforced using flush or write-through
writes, such as force-unit-access writes.

[0071] Similarly, virtual disk parser 404 can select an unused section of virtual disk file
702 to back virtual disk extent 5 and determine that virtual disk extent 5 is in the
uninitialized state by consulting allocation table 416. In response to this determination,
virtual disk parser 404 can allocate the section to describe virtual disk extent 5 without
modifying the contents of the selected section. Virtual disk parser 404 can generate
information that identifies the virtual disk file byte offset indicative of the first byte of the
section, which indicates where virtual disk extent 4 1s described in virtual disk file 702 and
store the file byte offset of the section in allocation table 416. Virtual disk parser 404 can
then change the state information associated with virtual disk extent 5 to indicate that it is
“mapped.”

[0072] FIG. 9 illustrates another specific example of how virtual disk parser 404 can
transition virtual disk extents from one state to another in response to a deletion operation
on file 802 and an operation that zeros the contents of virtual disk extent 7. For example,
a user may have deleted file 802 and file system 414 may have issued a TRIM command.
In this example, virtual disk parser 404 may receive a TRIM command that includes a
range of virtual disk sectors that fully cover virtual disk extents 4 and 5 and partially cover
virtual disk extent 3. In response to a determination that virtual disk extent 4 and 5 are
fully trimmed, virtual disk parser 404 can be configured to remove the linking from
allocation table 416 and transition virtual disk extent 4 to a state that indicates that virtual
disk file 702 is not backing this virtual disk extent. As shown by the allocation table entry
for virtual disk extent 4, the state virtual disk parser 404 transitions the virtual disk extent
to depends on what states virtual disk parser 404 is configured to use and whether or not
file system 414 issues a free space TRIM command or a standard TRIM command. For
example, virtual disk parser 404 may be configured to use two states: mapped and zero to
describe virtual disk extents. Alternately, virtual disk parser 404 may be configured to use
three states: mapped, zero, unmapped to describe virtual disk extents. Alternately, virtual
disk parser 404 may be configured to use four states: mapped, zero, unmapped, and
uninitialized. The distinction between unmapped and uninitialized corresponds to the
distinction between standard TRIM and free space TRIM. If the parser is configured to
not use the uninitialized state, then a free space TRIM is treated as a normal TRIM. As
shown by the figure, the parts of file 702 are still being stored in virtual disk file 702 since

it is inefficient to clear them from virtual disk file 702.

20

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

[0073] Since virtual disk extent 5 was partially covered by the TRIM, virtual disk parser
404 can handle this extent in one of a variety of ways. In one configuration, virtual disk
parser 404 may leave extent 5 in the mapped state. In this configuration, virtual disk
parser 404 may transition extents when TRIM information is received for an entire extent.
Alternatively, virtual disk parser 404 may track TRIM information that partially covers
extents in the hope that more TRIM information is received that provides an indication
that space describing the extent can be de-allocated.

[0074] Similarly, virtual disk extent was also partially covered by the TRIM. In this
example, virtual disk parser 404 may leave it in the mapped state and can also be
configured to send TRIM information that describes the part of virtual disk file 702 that is
no longer in use to the underlying file system, e.g., virtualization file system 408, storage
server file system 504, or computer system file system 514.

[0075] In addition to the deletion of file 802, FIG. 9 shows an example where virtual disk
extent 7 was zeroed. Virtual disk parser 404 can scan an IO job issued by file system 414
that indicates that the entire range of virtual disk extent 7 is zeroed. In response to this
determination, virtual disk parser 404 can be configured to remove the linking from extent
allocation table 416 and transition virtual disk extent 7 to the zero state. As shown by the
figure, the previous contents of virtual disk extent 7 are still being stored in virtual disk
file 702.

[0076] Turning to FIG. 10, it illustrates virtual disk 402 described at least in part by a
group of virtual disk files 1002, 1004, 1006, which could be similar to the chain of virtual
disk files defined by virtual disk file 608, 604, and 600. In this exemplary embodiment,
the data that represents virtual disk 402 is broken up across multiple virtual disk files. In
this exemplary embodiment, when virtual disk parser 404 attempts to read virtual disk
extent 1 and 2, virtual disk parser 404 can access the allocation table for virtual disk file
1002 and determine that these extents are transparent. Next, virtual disk parser 404 can
access the allocation table for virtual disk file 1004 and determine that these extents are
transparent. Finally, virtual disk parser 404 can access allocation table for grandparent
virtual disk file 1006 and determine that these virtual disk extents are defined.

[0077] The following are a series of flowcharts depicting operational procedures. For ease
of understanding, the flowcharts are organized such that the initial flowcharts present
implementations via an overall “big picture” viewpoint and subsequent flowcharts provide

further additions and/or details that are illustrated in dashed lines. Furthermore, one of

21

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

skill in the art can appreciate that the operational procedure depicted by dashed lines are
considered optional.

[0078] Referring now to FIG. 11, it illustrates an operational procedure for reclaiming
space within a virtual disk file including the operations 1100, 1102, 1104, and 1106.
Operation 1100 begins the operational procedure and operation 1102 shows instantiating a
virtual disk including a virtual disk extent, the virtual disk extent being dissociated from a
virtual disk file. Turning briefly to FIG. 4, FIG. 5A or FIG. 5B, virtual disk 402 can be
instantiated by virtual disk parser 404, e.g., executable instructions and associated instance
data, that exposes the data stored within one or more virtual disk files as a logical hard
drive, which can be configured to handle read/write operations from file system 414 by
emulating the behavior of a hard drive. Virtual disk file 406 (which could be one or more
files as illustrated in FIG. 6) can store what is typically found on a physical hard drive, i.e.,
disk partitions, file systems, etc. Turning to FIG. 7, virtual disk 402 is shown including a
plurality of extents, some of which are dissociated from any sections of virtual disk file
702.

[0079] In a specific example, suppose the extents are blocks. In this example, allocation
table 416, which can be loaded from one or more sections in the virtual disk file 702 into
random access memory, can be used to store information that links virtual disk blocks in
virtual disk 402 to extent sized (e.g., block sized) sections of virtual disk file 702.
Allocation table 416 can also store state information for each virtual disk block in virtual
disk 402. Virtual blocks that potentially include non-zero data can be associated with state
information that indicates that the block is in the mapped state. That is, a section of virtual
disk file 702 has been allocated to describe, i.c., store data for, a block of virtual disk 402.
Virtual disk blocks 0-3 and 7 are examples of blocks in this state. As shown by the figure,
virtual disk blocks 4 and 5, 6, 8 and 9 may be valid virtual disk blocks; however, these
virtual disk blocks may not have any space allocated within virtual disk file 702. Since
file system 414 may write to these blocks, in an exemplary embodiment, these virtual disk
blocks can be associated with information that can be used by virtual disk parser 404 to
determine how to respond to read and/or write operations to them.

[0080] Referring briefly back to FIG. 11, operation 1104 shows that a computer system
can additionally include circuitry for allocating, based on state information associated with
the virtual disk, a section of the virtual disk file to describe the virtual disk extent without
overwriting a preexisting bit pattern within the section of the virtual disk file. For

example, and returning to FIG. 8, virtual disk parser 404 can receive an 1O job to write to

22

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

a portion of the virtual disk extent. In response to receipt of the write 10 job, virtual disk
parser 404 can check allocation table 416 and determine that space within virtual disk file
702 has not been allocated to describe the virtual disk extent and allocate a section of
virtual disk file 406 to back the virtual disk extent. Thus, the data written by file system
414 to the virtual disk extent will be stored by virtual disk parser 404 in a section of virtual
disk file 702.

[0081] In this example, virtual disk parser 404 may not overwrite any data already stored
in the section of virtual disk file 702 (by writing all zeros, ones, or any other non-
information disclosing bit pattern) prior to using it to describe the virtual disk extent based
on the state information in allocation table 416. In an exemplary configuration, the state
information could indicate that file system 414 is securing access to this virtual disk extent
because the virtual disk extent is covered by file system free space. In a specific example,
the state information could indicate that the virtual disk extent is in the “uninitialized”
state. Allocating the virtual disk extent without clearing it provides an added benefit of
saving processor cycles and 10 jobs that would be otherwise used to overwrite the section
of virtual disk file 702.

[0082] In a specific example of operation 1104, and turning to FIG. 7, suppose that an
extent is a block and file system 414 sends an 10 job to virtual disk 402 to write a bit
pattern indicative of file 802 to virtual disk blocks 3-5. In response to receipt of such an
10 job, virtual disk parser 404 can determine that virtual disk block 5 is not backed by any
sections of virtual disk file 406 and that it is uninitialized. In response to this
determination, virtual disk parser 404 can be configured to allocate a section of virtual
disk file 702 to describe virtual disk block 5 and write a portion of the bit pattern
indicative of file 802 therein without overwriting data that was previously stored in the
portion of the section not covered by the IO job.

[0083] Turning again to FIG. 11, operation 1106 shows that the computer system can
additionally include circuitry configured to modify the state information associated with
the virtual disk extent to indicate that the virtual disk extent is described by the virtual disk
file. For example, and turning back to FIG. 8, virtual disk parser 404 can modify, e.g.,
overwrite in memory, the state information associated with virtual disk extent 5 to reflect
that virtual disk file 702 is describing the virtual disk extent. In one configuration, the
write and the modification of the state information can occur concurrently. For example,
virtual disk parser 404 can store information in allocation table 416 that indicates that

virtual disk extent 5 is “mapped.” Consequently, subsequent read operations directed to

23

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

sectors of virtual disk extent 5 will be handled by virtual disk parser 404 by returning the
bit pattern stored at the byte offset identified in allocation table 416. Virtual disk parser
404 can concurrently write data, e.g., a bit pattern associated with a write operation that
triggered this procedure, to the section of virtual disk file 702 allocated to describe the
virtual disk extent and issue an IO job to a write the bit pattern to the section of virtual
disk 702 to virtualization system file system 408, storage server file system 504, or
computer system file system 514. At some point in time, such as prior to completion of a
subsequently issued flush command, the bit pattern will be persisted in persistent storage
unit 460.

[0084] Turning now to FIG. 12, it shows additional operations that can be executed in
conjunction with those illustrated by FIG. 11. Turning to operation 1208, it indicates that
the computer system can include circuitry for responding to an offset query command with
information that identifies sectors of the virtual disk that arc non-zero, sectors of the
virtual disk that are in a non-transparent state, sectors of the virtual disk that are in a
mapped state, and/or sectors of the virtual disk that are in an initialized state. For
example, virtual disk parser 404 can be configured to receive a command to generate
information about virtual disk 402 such as the next byte offset on the virtual disk, given a
starting byte offset, that is in a non-transparent state, i.c., a state other than transparent, a
mapped state, i.e., sectors of the virtual disk 402 that include data in virtual disk file 406, a
defined state, 1.e., sectors of the virtual disk 402 that are mapped or zero, and/or an
initialized state, i.e., a state other than uninitialized. The command can be depth-limited,
in that only a specified number of virtual disk files are examined, with any ranges
remaining transparent after the specified number of virtual disk files are examined
reported back to the requestor in addition to ranges indicated by the state query, regardless
of which state query was requested. In response to receipt of such a command, virtual
disk parser 404 can start at the initial byte offset on virtual disk 402 and build a response
range or set of ranges until the range associated with the command is detected and return
the desired information.

[0085] Continuing with the description of FIG. 12, operation 1210 shows sending a
request to a file system controlling the virtual disk file to issue at least one command
selected from a group of commands including a trim command, an unmap command, a
write same of zero command, and an offload write of a zero token command. Referring
back to FIG. 4, FIG. 5A, or FIG. 5B, virtual disk parser 404 can be configured to issue a

request to file system 414. The request in this example can be for file system 414 to issue

24

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

a TRIM command. For example, virtual disk parser 404 can issue one or more requests to
file system 414 periodically, soon after instantiation of virtual disk 402, and/or prior to
shutting down, hibernating, etc., virtual machine 410. In response to such a request, file
system 414 can determine what sectors of virtual disk 402 it is no longer using and send
one or more TRIM commands identifying these unused sectors to virtual disk parser 404.
Virtual disk parser 404 may thereby receive trim information such as a list of ranges of
sectors that are no longer in use by file system 414 and whether file system 414 is
preventing reads from the ranges of sectors in order to secure access to those sectors.
Virtual disk parser 404 can receive the information and transition virtual disk extents
covered by the ranges into states where space within virtual disk file 702 can be reclaimed.
[0086] Continuing with the description of FIG. 12, operation 1212 shows that the
computer system can include circuitry for determining a portion of the virtual disk file that
corresponds to a portion of a second virtual disk extent in response to receipt of a request
to trim a portion of the second virtual disk extent; and circuitry for sending a trim
command for the determined portion of the virtual disk file to a file system configured to
store the virtual disk file on a storage device. For example, and referring to FIG. 8, file
system 414 may issue a TRIM command that identifies a portion of a virtual disk extent,
e.g., the TRIM command may only identify a range of sectors that corresponds to a part of
the sectors that form one or more virtual disk blocks. In a specific example, suppose file
system 414 trims the space used to store file 802. As such, the trim command may only
identify a portion of the sectors that constitute virtual disk extent 3. In this example,
virtual disk parser 404 can determine that the range of sectors covers a subsection of the
virtual disk extent and use mapping information in allocation table 416 to determine the
portion of virtual disk file 702 that corresponds to the trimmed sectors of the virtual disk
extent. Virtual disk parser 404 can issue a request to trim the portion of virtual disk file
702 that corresponds to the trimmed sectors of the virtual disk extent to virtualization
system file system 408 or storage server file system 504. Virtualization system file system
408 or storage server file system 504 may be configured to use the trim command and
benefit from it by trimming a portion of the sectors backing virtual disk file 406, flushing
data from a cache, clearing internal buffers, etc.

[0087] Alternatively, virtual disk parser 404 can store information indicating that a portion
of the virtual disk extent was trimmed as well as information that indicates whether it was
a free space trim or not. As guest operating system 412 or operating system 508 runs, it

may eventually zero or trim the remainder of the virtual disk extent. In response to this

25

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

occurring, virtual disk parser 404 can determine to transition the virtual disk extent into a
state where it is not described by virtual disk file 702 and select a state based on how the
different portions of the virtual disk extent were trimmed or zeroed. Virtual disk parser
404 can be configured to select the most restrictive state to transition a virtual disk extent
when different portions of a virtual disk extent can be placed in different non-described
states, where the zero state is the most restrictive, uninitialized is the least restrictive state,
and unmapped is somewhere in between. For example, if a first portion is zeroed and the
remainder is uninitialized, virtual disk parser 404 can transition the entire virtual disk
extent to the zeroed state.

[0088] Continuing with the description of FIG. 12, operation 1214 illustrates that
computer system 400 can additionally include circuitry configured to de-allocate the
virtual disk extent from the section of the virtual disk file and modify the state information
associated with the virtual disk extent to indicate that the virtual disk extent has no
associated space in the virtual disk file in response to receipt of a request to trim a range of
sectors that covers the virtual disk extent. For example, and turning to FIG. 9, virtual disk
parser 404 can remove the linking in allocation table 416 that ties a virtual disk extent to a
section of virtual disk file 702. This operation has the effect of dissociating the virtual
disk extent from virtual disk file 702. In addition to removing the link, virtual disk parser
404 can modify the state information associated with the virtual disk extent to indicate that
the extent has no associated space within virtual disk file 702, i.e., virtual disk parser 404
can place the virtual disk extent into the unmapped, uninitialized, or zeroed state.

[0089] Virtual disk parser 404 can remove the linking and update the state information in
response to receipt of a request to trim or zero sectors of the virtual disk extent. For
example, a request to trim or zero sectors can be received that identifies a range of byte
offsets that could cover one or more virtual disk extents. In response to receipt of such an
10 job, virtual disk parser 404 can determine that the request covers the sectors of the
virtual disk extent and execute the aforementioned operations for removing the linking and
updating the state information.

[0090] In a specific example, suppose that the 10O job indicates that the trim is a free space
trim. For example, a user may have deleted file 802, which is stored as a bit pattern across
virtual disk extents 3-5 and file system 414 may indicate that the space is no longer being
used by file system 414. In response to receipt of a free space TRIM command, virtual
disk parser 404 can access allocation table 416 and determine that file system 414 has

trimmed a portion of extent 3, 5 and all of extent 4. In this example, virtual disk parser

26

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

404 can remove the link mapping virtual disk extent 4 to virtual disk file 702 and modify
the state information associated with virtual disk extent 4 to indicate that the virtual disk
extent is uninitialized. This section of virtual disk file 702 can now be reused to back
other virtual disk extents. In addition, virtual disk parser 404 can determine that virtual
disk extent 3 and 5 are the subject of a partial TRIM command. In this example, virtual
disk parser 404 can use allocation table 416 to discover the virtual disk file byte offsets
that describe the portion of virtual disk file 702 that describes the trimmed portions of
virtual disk extent 3 and 5 and issue a TRIM command describing the virtual disk file byte
offsets to virtualization system file system 408, storage system file system 504, or
computer system file system 514,

[0091] In another specific example, suppose that the 10 job issued by file system 414
indicates that file 802 was zeroed. For example, file 802 could be a database file storing
sensitive information such as credit card numbers and an administrator determined to zero
out the contents of the file by writing all zeros to it by issuing a write command with an
all-zero buffer, which will write zeros over the data existing in file 802. In response to
receipt of such an 1O job, virtual disk parser 404 can be configured to determine that
virtual disk extent 4 has been zeroed and that this extent can be reclaimed. In this
example, virtual disk parser 404 can remove the link mapping virtual disk extent 4 to
virtual disk file 702 and modify the state information associated with virtual disk extent 4
to indicate that the virtual disk extent is zeroed. This section of virtual disk file 702 can
now be reused to back other virtual disk extents and virtual disk parser 404 can respond to
subsequent read operations to virtual disk extent 4 by replying with all zeros.

[0092] In another specific example, a user may write bulk zeros to initialize the state of
file 802, rather than to overwrite data stored therein. In this example, a command such as
a TRIM, in the instance that virtual disk parser 404 repots that trimmed sections read as
zero, UNMAP, when virtual disk parser 404 reports that unmapped regions are zero,
WRITE SAME of zero, and/or an offload write of a zero token can be used to transition an
extent to the zeroed state.

[0093] In a specific example, suppose that the 1O job indicates that the trim is a standard
trim. For example, a user may have deleted file 802, which is stored as a bit pattern across
virtual disk extents 3-5; however, the TRIM command may not indicate whether or not the
space is being used by file system 414. In response to receipt of a standard TRIM
command, virtual disk parser 404 can access allocation table 416 and determine that file

system 414 has trimmed a portion of extent 3, 5 and all of extent 4. In this example,

27

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

virtual disk parser 404 can remove the link mapping virtual disk extent 4 to virtual disk
file 702 and modify the state information associated with virtual disk extent 4 to indicate
that the virtual disk extent is unmapped or zero. This section of virtual disk file 702 can
now be reused to describe other virtual disk extents. In addition, virtual disk parser 404
can determine that virtual disk extent 3 and 5 are the subject of a partial TRIM command.
In this example, virtual disk parser 404 can use allocation table 416 to discover the virtual
disk file byte offsets that make up the portion of virtual disk file 702 that describes the
trimmed portions of virtual disk extent 3 and 5 and issue a TRIM command specifying the
virtual disk file byte offsets, typically in the form of ranges, to virtualization system file
system 408.

[0094] Referring now to FIG. 13, which illustrates additional operations that can be
executed in addition to operation 1214 of FIG. 12. Operation 1316 illustrates that a
computer system can include circuitry for receiving a request to write data to the virtual
disk extent; circuitry for zeroing an unused section of the virtual disk file based on the
state information associated with the virtual disk extent, the state information indicating
that the virtual disk extent was zeroed; and circuitry for allocating the unused section of
the virtual disk file to describe the virtual disk extent. Referring to FIG. 9 for context,
virtual disk parser 404 can receive a request to write data to the virtual disk extent, e.g.,
virtual disk extent 4 of FIG. 9, which in this example is associated with state information
that indicates that the virtual disk extent is zeroed. For example, when virtual disk extent
4 was de-allocated virtual disk parser 404 could have determined that the virtual disk
extent was zeroed, i.¢., an application wrote all zeros to file 602 by using an offload write
of a well-known zero token.

[0095] In response to determining that the virtual disk extent is in the zeroed state, virtual
disk parser 404 can identify an unused section of virtual disk file 702, i.e., a section that is
not actively being used to describe a virtual disk extent and not actively being used to
store any allocated metadata, and use the section to back the virtual disk extent. The
virtual disk parser further insures that any reads from not-yet-written sectors of the newly
allocated extent read as all zeros. The virtual disk parser 404 can write payloads of 10
write jobs to the section; update state information to indicate that the virtual disk extent is
mapped; and update information in allocation table 416 to describe the virtual disk file
byte offset that identifies the beginning of the section used to store virtual disk extent 4.
The virtual disk parser 404 also can create a log entry, which insures that in the event of

system failure and re-start prior to writes being flushed, not-yet-written sectors of the

28

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

newly allocated extent still read as all zeros, and written sectors of the newly allocated
extent read as either all zeros or the written data. Upon the first subsequent flush
command, virtual disk parser 404 insures that a system failure subsequent to completion of
the flush will result in reads from previously written sectors of the newly allocated extent
reading the data that was written, and reads from not-yet-written sectors of the newly
allocated extent reading zeros.

[0096] Continuing with the description of FIG. 13, operation 1318 shows that a computer
system can include circuitry for receiving a request to write to the virtual disk extent; and
circuitry for allocating an unused section of the virtual disk file to describe the virtual disk
extent without modifying contents of the unused section of the virtual disk file based on
the state information associated with the virtual disk extent, the state information
indicating that the file system is securing access to the virtual disk extent. Referring again
to FIG. 9 for context, virtual disk parser 404 can receive an 10 job to write data to the
virtual disk extent, e.g., virtual disk extent 4 of FIG. 9, which in this example is associated
with state information that indicates that security for the virtual disk extent is being
provided by file system 414. In response to detecting this state information, virtual disk
parser 404 can identify an unused section of virtual disk file 702; write the payload of the
10 job to the section; update state information to indicate that the virtual disk extent is
mapped; and update information in allocation table 416 to describe the virtual disk file
byte offset that identifies the beginning of the section used to store virtual disk extent 4.
[0097] Suppose that in this example the extent is a block and the payload for the 10 job
only covers a portion of the sectors in the virtual disk block. Specifically, the virtual disk
block may be 512 kilobytes and the write may cover the first 500 sectors of the virtual disk
block. In this example, virtual disk parser 404 can write data in the first 500 sectors of the
allocated section of virtual disk file 702 without erasing the data stored in the remaining
524 sectors. Thus, if this section was examined one would find that the first 500 sectors
include the payload and the remaining 524 sectors include whatever bit pattern was
previously written to the section of virtual disk file 702. In this example, virtual disk
parser 404 can use this section without clearing it because file system 414 is configured to
deny read operations to sectors that are in file system free space. Since an application will
be prevented from reading the remaining 524 sectors of virtual disk block, it can contain
any data, which had previously been stored in the virtual disk.

[0098] Turning now to operation 1320 of FIG. 13, it shows that a computer system can be

configured to include circuitry for receiving a request to write to the virtual disk extent;

29

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

circuitry for logically overwriting an unused section of the virtual disk file with a non-
information-disclosing bit pattern based on the state information associated with the
virtual disk extent, the state information indicating that the file system is not securing
access to the virtual disk extent; and circuitry for allocating the overwritten section of the
virtual disk file to describe the virtual disk extent. Referring again to FIG. 9 for context,
virtual disk parser 404 can receive a request to write data to the virtual disk extent, which
in this example is associated with state information that indicates that file system 414 is
not securing access to the virtual disk extent. For example, virtual disk parser 404 may
have de-allocated the virtual disk extent in response to receipt of a standard TRIM
command and could have stored state information indicating that virtual disk extent is
unmapped, i.e., not backed by space in virtual disk file 702, in allocation table 416.
[0099] In response to determining that the virtual disk extent is unmapped, virtual disk
parser 404 can identify an unused section of virtual disk file 702 to use to describe the
virtual extent and logically write a non-information disclosing bit pattern to the section to
ensure that reads to the virtual disk extent do not inadvertently reveal any information. In
a preferred implementation, the non-information disclosing bit pattern could be all zeros or
previously-stored data. After the section is zeroed or some other non-information
disclosing bit pattern is logically written to the section such as previously-stored data,
virtual disk parser 404 can logically write the payload of an IO job to the section; update
state information to indicate that the virtual disk extent is mapped; and update information
in allocation table 416 to describe the virtual disk file byte offset that identifies the
beginning of the section used to store the virtual disk extent.

[0100] Continuing with the description of FIG. 13, operation 1322 shows that the
computer system can include circuitry configured to send, based on state information
indicating that the virtual disk extent was zeroed, a token representing zeros to a requestor
in response to receipt of an offload read request associated with the virtual disk extent.
For example, and referring to FIG. 4, offload provider engine 422, e.g., circuitry
configured to service offload read and offload write commands, can send a token
representing zeros to a requestor, e.g., application 424, in a response to an offload read
request issued by the requestor. An offload read request can be used to efficiently copy
data from one location to another by generating and sending tokens to requestors, the
tokens representing the requested data instead of copying the data into the requestors’
memory and then sending the data to the destination. Offload read and offload write

commands can be used to achieve copy offload when the destination location recognizes

30

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

the token generated by the source location and can logically write the data represented by
the token to the destination. In the case of a well-known zero token generated by the
source, the destination need not access the underlying storage, e.g., storage device 106,
which could be a SAN target in this specific implementation. In this example, the offload
read request can be to perform an offload read operation on one or more files that have
data stored in one or more virtual disk extents, one of which is associated with state
information indicating that the virtual disk extent is zeroed. In this example, the offload
read request may be serviced by generating a well-known zero token value and returning
that well-known zero token to the requestor.

[0101] The offload read request can be routed to offload provider engine 422. Offload
provider engine 422 can receive the request and send a message to virtual disk parser 404
for the data stored in the virtual disk extents. Virtual disk parser 404 can receive the
request, read the state information for the virtual disk extent, and determine, in this
specific example, that the state information indicates that this virtual disk extent is zeroed.
Virtual disk parser 404 can send a message back to offload provider engine 422 that
indicates that the virtual disk extent is all zeros and offload provider engine 422 can
generate a well-known token value that indicates that the requested data is all zeros, e.g.,
the range of sectors that describes a virtual disk block is all zeros, and send the well-
known zero token to the requestor.

[0102] In a specific example, the offload request can be forward to a SAN instead of being
processed by computer system 400, storage service 500, or computers system 512. In this
example, the SAN may generate the token and return it back to virtual disk parser 404,
which can then send the zero token to the requestor. In yet another example, when offload
provider engine 422 receives the message that indicates that the virtual disk extent is all
zeros, offload provider engine 422 can generate the well-known-zero token, which in
effect achieves logically copying the requested zero data into a separate area that is
associated with the token by identifying the data as equivalent to any other zero data and
sharing the area associated with the well-known zero token. In the instance that offload
provider engine 422 subsequently receives an offload write specifying the token
previously sent to the requestor, offload provider engine 422 can logically copy the data
from the area associated with the token to offsets specified by the requestor.

[0103] Turning now to FIG. 14, it illustrates an operational procedure for reclaiming
virtual disk file space including the operations 1400, 1402, 1404, and 1406. As shown by

the figure, operation 1400 begins the operational procedure and operation 1402 shows that

31

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

a computer system can include circuitry for receiving a signal indicating that a portion of a
virtual disk extent is no longer in use, the virtual disk extent being part of a virtual disk,
the virtual disk being stored in a virtual disk file. For example, and turning to FIG. 4,
virtual disk parser 404 can be configured to instantiate virtual disk 402. File system 414
can send a signal indicating that it is no longer using a portion of virtual disk 402, e¢.g., a
range of sectors of a virtual disk extent, to virtual disk parser 404. In a specific example,
the signal could be a TRIM command. In a specific example, the signal received by
virtual disk parser 404 could identify byte offset values that define a range of sectors that
it is no longer using, which could be the first part of a virtual disk extent.

[0104] Continuing with the description of FIG. 14, operation 1404 shows that the
computer system can also include circuitry configured to identify a portion of the virtual
disk file that describes the portion of the virtual disk extent. Referring back to FIG. 7,
virtual disk parser 404 can receive the signal and the virtual disk byte offset values that
identify, for example, the first portion of virtual disk extent 0. In response to receipt of the
signal, virtual disk parser 404 can check allocation table 416 to determine the portion of
virtual disk file 702 that corresponds to the virtual disk byte offset values associated with
the signal.

[0105] Turning now to operation 1406 of FIG. 14, it shows that the computer system can
include circuitry for sending a request to trim the identified portion of the virtual disk file
to a file system configured to store the virtual disk file on a storage device. For example,
and again referring to FIG. 7, virtual disk parser 404 can determine that the signal
identified less than the entire virtual disk extent. For example, the signal may indicate a
range of sectors that does not include all of the sectors of a virtual disk extent. In response
to this determination, virtual disk parser 404 can issue a request to trim the portion of
virtual disk file 702 that corresponds to the trimmed portion of the virtual disk extent to a
file system hosting virtual disk file 702, e.g., virtualization system file system 408.
Virtualization system file system 408 may be configured to use the trim command and
benefit from it by trimming virtual disk file 406, flushing data from a cache, clearing
internal buffers, sending the trim to the disk on which the file system data is stored, etc.
[0106] In a specific example, virtual disk parser 404 can be configured to issue the TRIM
command to the underlying file system in response to determining that the request to trim
a portion of the virtual disk file does not cover the entire extent. For example, suppose
that the signal identifies that the first 600 sectors of a virtual disk extent are no longer in

use and virtual disk parser 404 may determine that the 600 sectors of virtual disk extent

32

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

are less than the 1024 sectors that constitute the virtual disk extent. In response to this
determination, virtual disk parser 404 can access allocation table 416 and determine the
virtual disk file byte offsets that describe the first 600 sectors of the section of virtual disk
file 702 that describes the virtual disk extent and send a request to trim this part of virtual
disk file 702 to a file system that hosts virtual disk file 702.

[0107] Turning now to FIG. 15, it illustrates additional operations that can be executed in
conjunction with those depicted by FIG. 14. Turning now to operation 1508, it shows that
the computer system can additionally include circuitry for sending, based on state
information indicating that the virtual disk extent was zeroed, a token representing zeros to
a requestor in response to receipt of an offload read request associated with the virtual disk
extent. For example, and referring to FIG. 4, offload provider engine 422, e.g., circuitry
configured to service offload read and offload write commands, can send a token
representing zeros to a requestor, e.g., application 424, in a response to an offload read
request issued by the requestor. An offload read request can be used to efficiently copy
data from one location to another by generating and sending tokens to requestors, the
tokens representing the requested data instead of copying the data into the requestors’
memory and then sending the data to the destination. Offload read and offload write
commands can be used to achieve copy offload when the destination location recognizes
the token generated by the source location and can logically write the data represented by
the token to the destination. In the case of a well-known zero token generated by the
source, the destination need not access the underlying storage, e.g., storage device 106,
which could be a SAN target in this specific implementation. In this example, the offload
read request can be to perform an offload read operation on one or more files that have
data stored in one or more virtual disk extents, one of which is associated with state
information indicating that the virtual disk extent is zeroed. In this example, the offload
read request may be serviced by generating a well-known zero token value and returning
that well-known zero token to the requestor.

[0108] Continuing with the description of FIG. 15, operation 1510 shows that the
computer system can include circuitry for selecting a sub-group from the group of virtual
disk files; and circuitry for generating information that identifies sectors of the sub-group
that include data and sectors of the sub-group that are transparent. In an exemplary
embodiment, virtual disk 402 can be instantiated from a plurality of virtual disk files. Or
put another way, virtual disk 402 can be formed from M virtual disk files (where M is an

integer greater than 1). In this exemplary embodiment, virtual disk parser 404 can be

33

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

configured to receive a request from, for example, an administrator, to determine the next
byte offset on virtual disk 402, starting at a given byte offset, that is associated with a
sector defined within a subgroup of the virtual disk files. For example, and referring to
FIG. 10, virtual disk parser 404 may receive a request for the next defined byte offset
starting at the virtual disk offset corresponding to the first sector of virtual disk extent 2
and information indicating that the subgroup includes virtual disk file 1002 and virtual
disk file 1004. In this example, virtual disk parser 404 can start scanning through
subgroup and determine that the next defined byte offset is the sector that corresponds to
the beginning of virtual disk extent 3. Since in this example, the data in virtual disk extent
2 is backed by a section of virtual disk file 1006 it is outside of the search and is not
returned as being defined.

[0109] Continuing with the description of FIG. 15, operation 1512 shows that the
computer system can include circuitry configured to dissociate the virtual disk extent from
the virtual disk file and modify state information associated with the virtual disk extent to
indicate that the virtual disk extent has been zeroed in response to determining that the
virtual disk extent was zeroed. For example, and turning to FIG. 7, in an embodiment
virtual disk parser 404 can determine that the virtual disk extent has been zeroed. For
example, virtual disk parser 404 can receive a request to write data represented by a well-
known zero token to the virtual disk extent, e.g., virtual disk extent 7. Virtual disk parser
404 can determine from a data structure associated with the request that the request is for
the entire virtual disk extent, i.e., the byte offset values can start at the first sector of extent
7 and end at the last sector of extent 7. In response to such a determination, and instead of
writing the zeros to the corresponding section of virtual disk file 702, virtual disk parser
404 can be configured to remove the link that maps virtual disk extent 7 to a section of
virtual disk file 702 used to describe virtual disk extent 7 and associate the virtual disk
extent with information that indicates that the virtual disk extent is all zeros. For example,
virtual disk parser 404 can write eight bytes of information in allocation table 416 that
indicates that the virtual disk extent includes all zeros. The end result of this operation is
that the section of virtual disk file 702 can be reused to store data for other virtual disk
extents and the virtual disk extent will read as if it includes all zeros, even though no
portion of the virtual disk file is describing the extent on a bit-for-bit basis.

[0110] Continuing with the description of FIG. 15, operation 1514 shows that the
computer system can additionally include circuitry configured to dissociate the virtual disk

extent from the virtual disk file and modify state information associated with the virtual

34

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

disk extent to indicate that the virtual disk extent is free space in response to a
determination that the virtual disk extent is considered free space by a file system. For
example, and again turning to FIG. 7, virtual disk parser 404 can determine that file
system 414 has associated the virtual disk extent with information that indicates that it is
free space, 1.e., space that is not used by file system 414. For example, virtual disk parser
404 can receive a signal from file system 414 indicating a range of sectors that covers the
virtual disk extent, e.g., virtual disk extent 3, and information that indicates that the sectors
are considered to be free space. In response to receipt of such a signal, virtual disk parser
404 can be configured to remove information that links the virtual disk extent to a section
of virtual disk file 702. The result of this operation is that the section of virtual disk file
702 can be reused to store data for other virtual disk extents. Virtual disk parser 404 can
additionally associate the virtual disk extent with information that indicates that the virtual
disk extent includes arbitrary data, i.e., data previously stored in any part of the virtual
disk, all zeros, or all ones. Consequently, read operations directed to this virtual disk
extent can be handled by returning arbitrary data which was previously stored in the
virtual disk. In addition, the arbitrary data can optionally change each time a read
operation is received, if the virtual disk parser 404 is configured to allow the arbitrary data
to change each time a read operation is received.

[0111] Continuing with the description of FIG. 15, operation 1516 shows that the
computer system can additionally include circuitry configured to dissociate the extent
from the virtual disk file and modify state information associated with the virtual disk
extent to indicate that the virtual disk extent includes a non-information-disclosing bit
pattern in response to a determination that the virtual disk extent was trimmed. For
example, and again turning to FIG. 7, virtual disk parser 404 can determine that file
system 414 has trimmed a range of sectors that compose a virtual disk extent. In response
to such a determination, virtual disk parser 404 can remove information in allocation table
416 that links the virtual disk extent to a section of virtual disk file 702. The result of this
operation is that the section of virtual disk file 702 can be reused to store data for other
virtual disk extents. Virtual disk parser 404 can additionally associate the virtual disk
extent with information that indicates that the virtual disk extent includes a non-
information-disclosing bit pattern, e.g., all zeros, ones, or a randomly generated bit pattern.
Consequently, read operations directed to this virtual disk extent can be handled by
returning the non-information-disclosing bit pattern. In a specific preferred

implementation, the non-information-disclosing bit pattern can be all zeros. However, this

35

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

is different than the zero state described above in that the zero state can be used to
represent meaningful zeros, i.e., the instance where the virtual disk extent was
intentionally zeroed.

[0112] Referring to operation 1518, it shows that the computer system can additionally
include circuitry configured to send a request to issue a trim command to a file system
controlling the virtual disk. Referring back to FIG. 7, virtual disk parser 404 can be
configured to issue a request that file system 414 issue one or more TRIM commands. In
an exemplary configuration, virtual disk parser 404 can be configured to periodically send
such a request or to send such a request based on predetermined criteria, e.g., when VM
410 starts or shortly before the VM is to be shut down. In response to such a request, file
system 414 can issue one or more TRIM commands that identify the unused sectors of
virtual disk 402 to virtual disk parser 404. Virtual disk parser 404 may then receive trim
information from the TRIM commands such as the range of sectors that are no longer in
use by file system 414 and optionally information that indicates whether the trimmed
sectors are considered free space. Virtual disk parser 404 can receive the information and
use it to update state information stored in allocation table 416 and to possibly reclaim
unused sections of virtual disk file 702.

[0113] Turning now to FIG. 16, it illustrates an operational procedure for storing data for
a virtual machine. The operational procedure begins with operation 1600 and transitions
to operation 1602, which describes an instance where a computer system can include
circuitry for executing a guest operating system including a file system within a virtual
machine. For example, and referring to FIG. 4, virtualization system 420, which could be
hypervisor 302 of FIG. 3 or the combination of functions executed by host environment
204 and microkernel hypervisor 202 of FIG. 2, can instantiate virtual machine 410 and run
a guest operating system (such as guest operating system 412) within it. In this example,
guest operating system 412 can include file system 414, which can be executable
instructions that organize and control data for guest operating system 412.

[0114] Continuing with the description of FIG. 16, operation 1604 shows that the
computer system can include circuitry for exposing a virtual storage device to the guest
operating system, the virtual storage device including a virtual disk extent, the virtual disk
extent being dissociated from a virtual disk file. Turning back to FIG. 4, virtualization
system 420 can expose virtual disk 402 to guest operating system 412. For example,
virtual disk parser 404 can be in communication with a storage virtualization service

provider that is operable to communicate with a storage virtualization service client

36

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

running within guest operating system 410. In a specific example, the storage
virtualization service client could be a driver installed within guest operating system 412
that signals to the guest that it can communicate with a storage device. In this example, 10
jobs sent by file system 414 are sent first to the storage virtualization service client and
then to the storage virtualization service provider via a communication channel, e¢.g., a
region of memory and cross-partition notification facility. Virtual disk 402 can be
composed from one or more virtual disk files 406 that can be opened by virtual disk parser
404 and used to store data for virtual disk 402. In a specific example virtual disk 402 can
be described at least in part by virtual disk file 702 of FIG. 7. In another specific example,
and turning to FIG. 10, virtual disk 402 can be described by a group of virtual disk files
(1002 - 1006). In either case, and returning to FIG. 4, virtual disk 402 can include a
plurality of virtual disk extents and one of the virtual disk extents can dissociated, i.e., not
described on a bit-for-bit basis by any space within its associated virtual disk file.

[0115] Continuing with the description of FIG. 16, operation 1606 shows that the
computer system can include circuitry for receiving a request to write data to the virtual
disk extent. Turing back to FIG. 7, virtual disk parser 404 can receive a request to write
data to the virtual disk extent that has no associated space within virtual disk file 702. For
example, an 1O job can be received that specifies an offset value indicative of the address
of a virtual disk sector, which is within the virtual disk extent.

[0116] Turning back to FIG. 16, operation 1608 shows that the computer system can
optionally include circuitry for determining that state information associated with the
virtual disk extent indicates that the virtual disk extent is free space. In response to receipt
of the IO job, virtual disk parser 404 can access allocation table 416 and read state
information associated with the virtual disk extent. In this example, the virtual disk extent
may be associated with information that indicates that the virtual disk extent is free space,
1.e., that file system 414 is not using the virtual disk extent and that read operations to the
virtual disk extent can be answered with arbitrary data.

[0117] Referring to FIG. 16, operation 1610 shows that the computer system can
optionally include circuitry for allocating a section of the virtual disk file to describe the
virtual disk extent without overwriting a preexisting bit pattern within the section of the
virtual disk file. For example, and returning to FIG. 7, in response to receipt of a write 1O
job, virtual disk parser 404 can locate a section in virtual disk file 702 that is not being

used and allocate it to store data for the virtual extent. For example, virtual disk parser

37

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

404 can write information in allocation table 416 that links the virtual disk extent to byte
offset values of the allocated section of virtual disk file 702.

[0118] In this example, virtual disk parser 404 may not overwrite any bit pattern existing
within the section, e.g., data from some deleted file and/or arbitrary data, stored in the
section of virtual disk file 702 (by writing all zeros, ones, or any other non-information-
disclosing bit pattern) prior to using the section to describe the virtual disk extent because
state information indicates that file system 414 has identified virtual disk extent 5 as free
space. This provides an added benefit of saving processor cycles and 10 jobs that would
be otherwise used to overwrite the section of the virtual disk extent.

[0119] Referring to operation 1612 of FIG. 16, it shows that the computer system can
optionally include circuitry for modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent is mapped to the allocated section of the
virtual disk file. For example, and turning back to FIG. 7, virtual disk parser 404 can
modify, e.g., overwrite in memory, the state information associated with the virtual disk
extent to indicate that it is mapped. Consequently, subsequent read operations directed to
sectors of the virtual disk extent will be handled by virtual disk parser 404 by returning the
bit pattern stored in corresponding portions of the allocated section.

[0120] Turning now to operation 1614 of FIG. 16, it shows storing the data to the
allocated section of the virtual disk file. Turning back to FIG. 6, virtual disk parser 404
can write the data, e.g., a bit pattern, into virtual disk file 702. An IO job indicative of the
write to virtual disk file 702 can be issued to virtualization system file system 408 and
eventually the change can be persisted by persistent storage unit 460.

[0121] Turning now to FIG. 17, it shows additional operations that can be executed in
conjunction with those illustrated by FIG. 16. Turning attention to operation 1716, it
shows that the computer system can optionally include circuitry for dissociating the virtual
disk extent from the virtual disk file and modifying the state information associated with
the virtual disk extent to indicate that the virtual disk extent has been zeroed in response to
determining that the virtual disk extent was zeroed. For example, and turning to FIG. 6, in
an embodiment virtual disk parser 404 can determine that the virtual disk extent has been
zeroed. For example, virtual disk parser 404 can receive an offload write request to write
data represented by a well-known zero token to the virtual disk extent, e.g., virtual disk
extent 7. Virtual disk parser 404 can determine from a data structure associated with the
request that the request is for the entire virtual disk extent, i.e., the byte offset values can

start at the first sector of virtual disk extent 7 and end at the last sector of virtual disk

38

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

extent 7. In response to such a determination, and instead of writing the zeros to the
corresponding section of virtual disk file 702, virtual disk parser 404 can be configured to
remove the link from the virtual disk extent to a section of virtual disk file 702 stored in
allocation table 416 and associate the virtual disk extent with information that indicates
that the virtual disk extent is all zeros.

[0122] Continuing with the description of FIG. 17, operation 1718 shows that the
computer system can optionally include circuitry for dissociating the virtual disk extent
from the virtual disk file and modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent includes arbitrary data in response to
receipt of a signal from a file system identifying the virtual disk extent as free space. For
example, and again turning to FIG. 7, virtual disk parser 404 can determine that file
system 414 has associated the virtual disk extent with information that indicates that it is
free space, 1.e., space that is not used by file system 414. For example, virtual disk parser
404 can receive a signal from file system 414 indicating a range of sectors that covers the
virtual disk extent, e.g., virtual disk extent 3, and information that indicates that the sectors
are free space. In response to such a determination, virtual disk parser 404 can be
configured to remove information in allocation table 416 that links the virtual disk extent
to a section of virtual disk file 702 and associate the virtual disk extent with information
that indicates that arbitrary data, i.e., data previously stored in any part of the virtual disk,
all zeros, or all ones, can be returned in response to receipt of a read IO job.

[0123] Operation 1720 of FIG. 17 shows that computer system 400 can optionally include
circuitry for dissociating the virtual disk extent from the virtual disk file and modifying the
state information associated with the virtual disk extent to indicate that the virtual disk
extent includes a non-information disclosing bit pattern in response to receipt of a request
to trim all the sectors of the virtual disk extent. For example, and again turning to FIG. 7,
virtual disk parser 404 can determine that the sectors that compose a virtual disk extent
have been trimmed. For example, virtual disk parser 404 can receive a trim command
from file system 414 indicating a range of sectors that covers the virtual disk extent. In
response to receipt of such a signal, virtual disk parser 404 can be configured to remove
information in allocation table 416 that links the virtual disk extent to a section of virtual
disk file 702 and associate the virtual disk extent with information that indicates that the
virtual disk extent includes a non-information-disclosing bit pattern.

[0124] The foregoing detailed description has set forth various embodiments of the

systems and/or processes via examples and/or operational diagrams. Insofar as such block

39

10

WO 2012/125315 PCT/US2012/027645

diagrams, and/or examples contain one or more functions and/or operations, it will be
understood by those skilled in the art that each function and/or operation within such block
diagrams, or examples can be implemented, individually and/or collectively, by a wide
range of hardware, software, firmware, or virtually any combination thereof.

[0125] While particular aspects of the present subject matter described herein have been
shown and described, it will be apparent to those skilled in the art that, based upon the
teachings herein, changes and modifications may be made without departing from the
subject matter described herein and its broader aspects and, therefore, the appended claims
are to encompass within their scope all such changes and modifications as are within the

true spirit and scope of the subject matter described herein.

40

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

What is Claimed:
1. A computer-readable storage medium including instructions that upon execution by a
processor cause the processor to:

instantiate a virtual disk including a virtual disk extent, the virtual disk extent
being dissociated from a virtual disk file;

allocate, based on state information associated with the virtual disk, a section of the
virtual disk file to describe the virtual disk extent without overwriting a preexisting bit
pattern within the section of the virtual disk file; and

modify the state information associated with the virtual disk extent to indicate that
the virtual disk extent is described by the virtual disk file.

2. The computer-readable storage medium of claim 1, further comprising instructions that
upon execution cause the processor to:

Send a request to a file system controlling the virtual disk file to issue at least one
command selected from a group of commands including a trim command, an unmap
command, a write same of zero command, and an offload write of a zero token command.
3. A computer system, comprising:

a processor;

a memory coupled to the processor when the processor and the memory are
powered, the memory including instructions that upon execution by the processor cause
the computer system to:

receive a signal indicating that a portion of a virtual disk extent is no longer in use,
the virtual disk extent being part of a virtual disk, the virtual disk being stored in a virtual
disk file;

identify a portion of the virtual disk file that describes the portion of the virtual
disk extent; and

send a request to trim the identified portion of the virtual disk file to a file system
configured to store the virtual disk file on a storage device.

4. The computer system of claim 3, the memory further comprising instructions that upon
execution cause the computer system to:

send, based on state information indicating that the virtual disk extent was zeroed,
a token representing zeros to a requestor in response to receipt of an offload read request
associated with the virtual disk extent.

5. The computer system of claim 3, the virtual disk file being a member of a group of

virtual disk files that together form a virtual disk that includes the virtual disk extent and

41

10

15

20

25

30

WO 2012/125315 PCT/US2012/027645

the memory further comprising instructions that upon execution cause the computer
system to:

select a sub-group from the group of virtual disk files; and

generate information that identifies sectors of the sub-group that include data and
sectors of the sub-group that are transparent.
6. The computer system of claim 3, the memory further comprising instructions that upon
execution cause the computer system to:

dissociate the virtual disk extent from the virtual disk file and modify state
information associated with the virtual disk extent to indicate that the virtual disk extent
has been zeroed in response to determining that the virtual disk extent was zeroed.
7. The computer system of claim 3, the memory further comprising instructions that upon
execution cause the computer system to:

send a request to issue a trim command to a file system controlling the virtual disk.
8. A computer implemented method for storing data for a virtual machine, comprising:

executing a guest operating system including a file system within a virtual
machine;

exposing a virtual storage device to the guest operating system, the virtual storage
device including a virtual disk extent, the virtual disk extent being dissociated from a
virtual disk file;

receiving a request to write data to the virtual disk extent;

determining that state information associated with the virtual disk extent indicates
that the virtual disk extent is free space;

allocating a section of the virtual disk file to describe the virtual disk extent
without overwriting a preexisting bit pattern within the section of the virtual disk file;

modifying the state information associated with the virtual disk extent to indicate
that the virtual disk extent is mapped to the allocated section of the virtual disk file; and

storing the data to the allocated section of the virtual disk file.
9. The method of claim 8, further comprising

dissociating the virtual disk extent from the virtual disk file and modifying the state
information associated with the virtual disk extent to indicate that the virtual disk extent
includes arbitrary data in response to receipt of a signal from a file system identifying the

virtual disk extent as free space.

42

WO 2012/125315 PCT/US2012/027645

10. The method of claim 8, further comprising
dissociating the virtual disk extent from the virtual disk file and modifying the state
information associated with the virtual disk extent to indicate that the virtual disk extent
includes a non-information disclosing bit pattern in response to receipt of a request to trim

5 all the sectors of the virtual disk extent.

43

WO 2012/125315 PCT/US2012/027645
1/18
100 Computer System
Processing Uni 114 NIC
116 1/0O Devices
_________________________ 1

F20BIOS I
| 1208105

|

: 404 Virtual Disk
| Parser
|

118 Removable Storage
Devices

|

: 404 Virtual Disk
| Parser
|

I

: 404 Virtual Disk
| Parser
I

I

: 404 Virtual Disk
| Parser
I

102

Processor

FIG. 1

WO 2012/125315 PCT/US2012/027645

2/18

200 Computer System

Parent Partition Partition 1 Partition N
204 Host
Environment
220 Guest OS 222 Guest OS
234 1/0
Emulators
, . 216 218
228 Virtualization
Service Providers VSCs VSCs
| 404 Virtual Disk |
Parser
J 230 232
Virtual Virtual
224 Device Drivers Processor Processor

202 Microkernel Hypervisor

112
106 Storage| | 114 NIC Graphics 102 104 RAM
Device PrOfJeSfflng Processor
ni

FIG. 2

220 Guest OS

216
Management
0Ss
230 Virtual
Processor

WO 2012/125315 PCT/US2012/027645
3/18
300 Computer System
Partition 1 Partition N

222 Guest OS

218
VSCs

232 Virtual

Processor

302 Hypervisor

234 1/0O Emulators

______ A
| 404 Virtual Disk |
Parser |

228 Virtualization
Service Providers

224 Device Drivers

106 Storage
Device

114 NIC

112
Graphlgs 102 104 RAM
Processing Processor
Unit

FIG. 3

WO 2012/125315 PCT/US2012/027645

4/18

400 Computer System

410 Virtual Machine
412 Guest Operating System

424 Application

414 File System

402 Virtual Disk v

420 Virtualization System

404 Virtual Disk Parser /’
/
422 Offload
Provider 406 Virtual Disk File(s)
Engine

408 Virtualization System File System

106 Storage Device
454 Cache

460 Persistent Storage Unit

FIG. 4

WO 2012/125315 PCT/US2012/027645

5/18

506 Client Computer System

508 Operating System

424 Application

414 File System

402 Virtual Disk ™
\
\
500 Storage Server \
502 Operating System ;
404 Virtual Disk Parser /’
y
422 Offload
Provider 406 Virtual Disk File(s)
Engine

504 Storage Server File System

510 Storage Device Array

106 Storage Device
454 Cache

460 Persistent Storage Unit

FIG. 5A

WO 2012/125315

6/18

PCT/US2012/027645

512 Computer System

502 Operating System

424 Application

414 File System

402 Virtual Disk

422 Offload
Provider
Engine

404 Virtual Disk Parser

406 Virtual Disk File(s)

514 Computer System File System

510 Storage Device Array

106 Storage Device

454 Cache

460 Persistent Storage Unit

FIG. 5B

WO 2012/125315

602 Virtual Disk
File

Path to
Parent 604

7/18

608 Virtual Disk
File

Path to
Parent 604

604 Virtual Disk
File

Path to
Parent 600

600 Virtual Disk

File

FIG. 6

PCT/US2012/027645

612 Virtual Disk
File

Path to
Parent 610

610 Virtual Disk
File

Path to
Parent 606

606 Virtual Disk
File

Path to
Parent 600

PCT/US2012/027645

WO 2012/125315

8/18

L "Old

psziegiuiun

paddewun

padde

paddewun

pazileqiuiun

0i97

paddey

paddey

N[O T OO IMN]O |

paddey

paddey

o

8|qe] Uoljeso|ly 91 v

X 8|1d %sId [eNHIA 204

i

AR

0i87

I 0

%sIQ [BNHIA 20Y

PCT/US2012/027645

WO 2012/125315

9/18

8 'Ol

pazijeqiuiun

paddewun

padde

paddewun

paddepy

paddepy

paddep

paddep

paddep

N[O |F|O]|O N[0 O

paddep

o

9|qe] uonedo|ly 91y

X 8[ld XsId [eNHIA 204

9Ly

\ Ao

.

~_/

b 0

3sIA [eNHIA C0Y

ali4 Now\

PCT/US2012/027645

WO 2012/125315

10/18

6'9Old

pazijeniuiun

paddewun

0197

paddewun

pazijeniuiun 1o paddewun 1o o197 ‘paddepy

pazijenuiun Jo paddewun Jo o1az

paddey

paddey

paddey

| N[O F OO0

paddey

o

8|qe] Uohed0|lY 9L ¥

L

3

: oLy

8|Id %sI@ [eNHIA 204

[

.

o~
£ >a

FdR

€

[1 0

AsId |BnMIA 20

a4 Now\

PCT/US2012/027645

WO 2012/125315

11/18

0L "Old

3ll4 ¥siA [enuIA Jusiedpuels 9001

8|14 %sId [enHIA 001

0
<
4o MEHE
N
i

0

3SIJ [enpIA 20P

WO 2012/125315 PCT/US2012/027645

12/18

1100
Start

1102 instantiating a virtual disk including a virtual disk extent,
the virtual disk extent being dissociated from a virtual disk file

1104 allocating, based on state information associated with the
virtual disk, a section of the virtual disk file to describe the
virtual disk extent without overwriting a preexisting bit pattern
within the section of the virtual disk file

!

1106 modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent is described by
the virtual disk file

FIG. 11

WO 2012/125315

13/18

1100
Start

PCT/US2012/027645

1102 instantiating a virtual disk including a virtual disk extent,
the virtual disk extent being dissociated from a virtual disk file

y

1104 allocating, based on state information associated with the
virtual disk, a section of the virtual disk file to describe the
virtual disk extent without overwriting a preexisting bit pattern

within the section of the virtual disk file

L]

1106 modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent is described by

the virtual disk file

r—_—

I 1208 responding to

an offset query

| command with

| information that
| identifies sectors of
| the virtual disk that ' |
| arenon-zero,
sectors of the | |
virtual disk that are | |

1210 sending a
request to a file
system
controlling the

| virtual disk file
| to issue at least

one command

group of
commands

| selected from a |

in a non-transparent | | including a trim |

state, sectors of the |
I virtual disk that are |
in a mapped state, |
and/or sectors of
| the virtual disk that | |
| are in an initialized I
| state | |

| | token command

command, an
unmap
command, a
write same of
zero command,
and an offload
write of a zero

I 1212 determining a
| portion of the virtual
| disk file that
| correspondstoa |
| portion of a second |
| virtual disk extent in |
| response to receipt of |
arequestto trima |
portion of the second
| virtual disk extent; |
and |
I sending a trim
| command for the I
| determined portion I
| ofthe virtual disk |
| file to a file system |
| configured to store |
| the virtual disk file |
| ona storage device |

FIG. 12

I

r—_—

I
I 1214 dissociating |
the virtual disk |
extent from the |
| section of the |
| virtual disk file and
| modify the state |
| information I
associated with the I
virtual disk extent |
to indicate that the |
| virtual disk extent |
has no associated |
I space in the virtual |
disk file in response |
to receipt of a
request to trim a
range of sectors
that covers the
virtual disk extent

PCT/US2012/027645

WO 2012/125315

14/18

L e |

IIIIII —IIIIIIIIIII— JUIIXD _.IIIIIIII]
_ JUI)XS JSIP _ | JUAXS ISP | | S[SIP [BMITA 57} 0] SS3008 I _
| [BNI1A Y3 YaM |} TemIIA 9t 9QLIOSOp O O NSIP _ BuLINOGS ST WSS 371 oY) ey | U)X qSIP [EMLNA S} 9qLIOSIP
| vugﬁommmm 1sonbor | | e ogy jo uonoos uoprmiono | | Suneotpur uorewOuI 31E)S _ | 0190y sIp [emanA oty JO
| %8. - | oW Suneooqe pue yusyxa ysip | | ow UDIX3 YSIP [BOLIA OU) | UOBdss pasnun Sy Suneosorre

wgﬂuouh) ssuodsar _ [enIIA 37} 0} SS233¢8 WGE.:oum jou _ I PIIBIDOSSE UOTJRULIOJUL _ _ pue T@QOHQN SeM JUIXD
_ 1 101551boI £ O _ _ ST W)SAS 11 o1} 18yl Sunesrput _ _ 1BIs 9Y) UO Paseq S stp | | ISIP [eIA d1 Jey) Sunedipur |
_ ooz WSE%E QMH | UONBTHIONUT 9)€)S) U)X I [BNJIIA 90} JO UOPIIS pasnun. | _ UOIETUIOFUT 9)€)S) JUI)XD _
su ore 50107 m§> _ JSIP [eNMIA U} YA PAILISOSSE _ | s jo s;uuos Sukpow _ | SIP [EMAITA ST} I PIILIOOSSE
| :M o W e | | UOT)BULIOJUL 9)E)S J1) U0 Paseq | | INOTIIA JUSIXS JSIP [ENIIA S} | UOLBULIOFUT 3)8)S O} WO Paseq
_ - xw.c fem- | weped 31q Sursoposip-uoyeuriojut | _ SqQLIOSIp O} 91 ST [EIIA 3T} _ | 914 SISIP [BNMIA OY) JO UOHIDS

uﬁhwwwhwmmwca _ | -UOU © YA O NSIP [emaIA oY) | Jo uonoas pasnun ue Funeooy(e | _ pasnun ue SuUI0I9Z U)X
_ - .Mso Mmm _ _ Jo uonoas pasnun ue SUNLIMIIAC _ _ pue |, ISIp [emaA oY) 0} viep M |
I "msﬁcsumcmmmﬂ | | JUI)XD YSIP [BNMIA Y 0} | | Auerxo xw.% EME\/ ot 03 M _ | oy 3sonbore SUIA1001 9 €]

! 01 1sanbar e SurA1921 8¢ |

| | ! ouim oy ysonbor e SurAeo01 0Z¢T |

——— - rIIIINIIIILIIIINIIII_IIIII>IIII

S L03TX3 SISTD [FTTR ST ST9AG3 151 ST0195 70 S3UET ¢ Ty 01 Teombei 8 o sdimoaor T T T -

osuodsa1 ur o[1f JSIP [eniiiA o) Ul ooeds PoJeIdOSSE OU Sey| JUIXD JSIP [BILIIA SY) JBY) 9JBIIPUL 0} JUIXD NSIP [BMIIA O3 ()M _
_ POIBIOOSSE UOBULIOFUT 2)E)S 37} AJIPOW PUE O[1f YSIP [ENLITA 3T} JO UOTOIS) WO JUAIXS YSIP [EiA oy Suneroossip 4171 |

e e e e e e e e e e S e . S S G G, S G S, G G S, G G I G G GE— G G G G G—— S—

STy SIP [eNIA 9) £Q POqLISIP
SI JU2IXD NSIP [BILIIA O3 JBY) 9)BSIPUI 0} JU)XD NSIP [ETRIIA O} 1M PIILIOOSSE UOIIRULIOJUI 93€)s o) SWAJIpow 91 |

A

o1 NSIP [eNIA O3 JO UODAS oy} uIyim uroped 31q Sunsixoaid e SURLIMIDAO JNOYIIM JUSIXD NSIP [BNMIA
1) 9qLIOSOP 0} O NSIP [BILIIA 3U) JO UONOOS B “ISIP [eMIIA OU) [JIM POILIOOSSE UOIJRWLIONUL 9))S U0 paseq “Sunedole 401 |

A

1Y
JSIP Jen)mA & WOIJ PAjeIdossIp WG_QQ JUIXD ASIP [eNLIIA 27} ‘JuIXd JSIp JemMiA € WG:V.HJOG@ JSIp Jem)mA & WGﬁwﬁGwamG_ 011

A

R
0011

€L "Old

WO 2012/125315 PCT/US2012/027645

15/18

1400
Start

1402 receiving a signal indicating that a portion of a virtual disk
extent is no longer in use, the virtual disk extent being part of a
virtual disk, the virtual disk being stored in a virtual disk file

Y

1404 identifying a portion of the virtual disk file that describes
the portion of the virtual disk extent

L]

1406 sending a request to trim the identified portion of the virtual
disk file to a file system configured to store the virtual disk file
on a storage device

FIG. 14

PCT/US2012/027645

WO 2012/125315

16/18

- ——— [————— ———— — =

I | _ _ | Pa0ISZ Sem _
r——=l sem :%W%ﬁmwb BILIIA | | washs g v | I b p st | _| |Q| yore | _| T T T
| _ | 5 - ox Pl Mpo. | , £q aoeds say petapisuoo | ! U 1M Sururugep | E&m& mcm% are | JUSIXD I
ASIp | O IR UONBIID | gy yop erana. | odosuodsox | 3ew dnos-ans | _xm% renaia o s |
e o) osuodsarur | a3 JO 8103098
PO | g Susopost | oy ey voneurmIINOp ® || 1 paouoz u2aq sey | °®3 || poyeroosse ssonbar |
wE:obsoo_ Am: mwwo &-hoc.v | | 03 asuodsax uy 20eds 2oy | U ISP [PA _USN E%v uM BoE_ | pearpeoyo ue jo |
| wopsks ! 25 %2: ﬁw&xo o | _ ST JUDIXD NSIP [BNIIIA dU) _ _ 2T} JEY) 9ILIIpUL _ _ e dnos=qus _ 1d13031 01 asuodsax
| sigeoy _ | nstw/w - 8@% .MH |, YeUI SIBOIPUL 03 JUSIXD | Yoy yuoyxo yysip renynal oﬁw % oﬁmmwpoﬁom I ur J0jsanbar e 03 |
| PUBWILIOD | _ ﬁop E&Mu xmwv an/. _ | NSIP TeNAIIA SU3 g | | 31 YuM pajeroosse | _ - QMMNEN@S | _ so10z Sunyuasaidar |
| e | | owqum vo.pﬁoo%m _ | Uopﬁoo%m\%oﬂn&u&ﬁ _ | uonewioym _ | — | | uasjor & pooraz sem _
_ B ONssI _ _ UOTRUIIOFUT 78} | 91e1s ATTpota _ | aels Appows _ | puE SOy _ | FueIxd SIp TRNIIA _
01 3sonbax _ AJTpou pue a7y JSIp | _ PUB O[1f JSIP [eNIA 24} _ pue o113 JSIp [emaIA | | 3stp rerana _ | sy Je Supeorpur _
| Supuos | enyais oy woy 3uemo | _ oy Juanxd ISIp 1t | oy woxy uaya | jodnosom | DUEEND
| 81st _ | o .mSESo%% orsr | ot BUBEI0SSIp pIST | | ys1p [emyna ogy | _ woxy dnoig-qns | ajes uo paseq |

| | | | _ | _ Suneossip 16T | e Sunooyas o161 _ | Supuas g1 |

||§|L|||H|||_.|||H||I._-_||H||L_.||>|||_—||HllL

001A9D 95810)S B UO 9[1J NSIP [BNIA 97} 210)S 0) poImSyuos
W9)SAS 9[1f & 01 o1 SIP [eMmIIA o) JO uoniod paynuopt oy} wiy o) jsanbar e Surpuss 90|

A

JU)XD ISIP [eMIIA 21 JO uonuod oy
S9qLIOSOP JeN) 91 NSIP [EMMIA) JO uonIod e SWIATUPT H0f |

A

STy SIP [ENMIA € UT PoI0)s SUIdG SIP [eMIA oY) “NSIP [eniIA
& Jo 11ed Suroq juo)xa JSIP [eIIA oY) ‘osn ul pJUo] ou SI JU)X
YSIp [emIA & Jo uoniod e jey) Sunestpul [euSis & SUIAI09I 70|

He)s
00bT

GL Old

WO 2012/125315 PCT/US2012/027645

17/18

1600
Start

1602 executing a guest operating system including a file system
within a virtual machine

L]

1604 exposing a virtual storage device to the guest operating
system, the virtual storage device including a virtual disk extent,
the virtual disk extent being dissociated from a virtual disk file

L]

1606 receiving a request to write data to the virtual disk extent

L]

1608 determining that state information associated with the
virtual disk extent indicates that the virtual disk extent is free
space

Y

1610 allocating a section of the virtual disk file to describe the
virtual disk extent without overwriting a preexisting bit pattern
within the section of the virtual disk file
y
1612 modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent is mapped to the

allocated section of the virtual disk file

L]

1614 storing the data to the allocated section of the virtual disk
file

FIG. 16

WO 2012/125315

18/18

1600
Start

PCT/US2012/027645

1602 executing a guest operating system including a file system
within a virtual machine

y

1604 exposing a virtual storage device to the guest operating
system, the virtual storage device including a virtual disk extent,
the virtual disk extent being dissociated from a virtual disk file

y

1606 receiving a request to write data to the virtual disk extent

v

1608 determining that state information associated with the virtual disk extent

indicates that the virtual disk extent is free space

information associated
with the virtual disk
extent to indicate that the
virtual disk extent has
been zeroed in response to
determining that the |
virtual disk extent was

y

1610 allocating a section of the virtual disk file to describe the
virtual disk extent without overwriting a preexisting bit pattern
within the section of the virtual disk file

L

1612 modifying the state information associated with the virtual
disk extent to indicate that the virtual disk extent is mapped to the
allocated section of the virtual disk file

L]

1614 storing the data to the allocated section of the virtual disk
file

I S J— T

1716 dissociating the I
virtual disk extent from |
the virtual disk file and |
modifying the state I

I
I
I
I

1718 dissociating the
virtual disk extent from
the virtual disk file and

modifying the state
information associated
with the virtual disk
extent to indicate that the
virtual disk extent
includes arbitrary data in
response to receipt of a
signal from a file system
identifying the virtual

zeroed extent

FIG. 17

I

| 1720 dissociating the virtual

| disk extent from the virtual
disk file and modifying the

I state information associated

I with the virtual disk extent to

| indicate that the virtual disk

| extent includes a non-

| information-disclosing bit

| pattern in response to receipt

| of a request to trim all the

| sectors of the virtual disk

|

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings

