(54) Titre : MISE EN TAMPON OPTIQUE EFFICACE EN ENERGIE UTILISANT UN COMMUTATEUR OPTIQUE

(54) Title: POWER-EFFICIENT OPTICAL BUFFERING USING OPTICAL SWITCH

(57) Abrégé/Abstract:
The present invention generally relates to optical circuits for mitigating power loss in medical imaging systems and methods for using such circuits. Circuits of the invention can involve a first optical path, a second optical path, and a means for recombining an optical signal transmitted through the first and second optical paths by sequentially gating the first and second optical paths to a single output.
Title: POWER-EFFICIENT OPTICAL BUFFERING USING OPTICAL SWITCH

Abstract: The present invention generally relates to optical circuits for mitigating power loss in medical imaging systems and methods for using such circuits. Circuits of the invention can involve a first optical path, a second optical path, and a means for recombining an optical signal transmitted through the first and second optical paths by sequentially gating the first and second optical paths to a single output.

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(b))
POWER-EFFICIENT OPTICAL BUFFERING USING OPTICAL SWITCH

Cross-Reference to Related Application
This application claims priority to, and the benefit of, U.S. Provisional Patent Application Serial No. 61/745,305, filed December 21, 2012, the contents of which are incorporated by reference.

Field of the Invention
The present invention generally relates to optical circuits for mitigating power loss in medical imaging systems.

Background
Optical coherence tomography (OCT) is a medical imaging technique that uses reflected light to produce an image. In OCT, light from a broadband light source is split by an optical fiber splitter with one fiber directing light to a sample path and the other fiber directing light to a reference path mirror. An end of the sample path is typically connected to a scanning device. The light reflected from the scanning device is recombined with the signal from the reference mirror to form interference fringes, which are transformed into a depth-resolved image. In swept-source OCT, the interference spectrum is recorded using a source with an adjustable optical frequency, in which the optical frequency is swept through a range of frequencies and the interfered light intensity is recorded as a function of time during the sweep.

Optical buffering, as used in swept-source OCT, is a method to copy, induce a relative delay (i.e., a buffer), and then recombine two or more optical signals in order to increase the effective imaging speed beyond that of the native imaging speed of the light source.

Traditionally, the buffering approach works by splitting the light source optical signal into multiple paths, delaying the signals with respect to each other, and then recombining the relatively delayed signals using an optical coupler into a common path for subsequent introduction into the OCT system. With this approach, imaging speed has been increased by as much as 16-fold over the native transmission speed of the light source.
The recombination of optically buffered signals using the typical 50/50 coupler, however, discards half of the optical power present in each light source sweep. This unfortunately leads to a reduction in overall system sensitivity. Moreover, the loss in power comprises image quality and has a negative impact on signal-to-noise.

Summary

The present invention provides optical circuits that include an optical switch for recombining buffered and non-buffered optical signals transmitted through the optical circuit. The optical switch toggles between buffered and non-buffered signals in an alternating fashion and redirects each signal to a single output. As encompassed by the invention, the optical switch contains two input ports and a single output port. One input port is connected to an optical path transmitting the buffered signal and the other input port is connected to a second optical path transmitting the non-buffered signal. As the switch toggles back and forth, the switch allows the signal from one optical path to pass while preventing passage of the other signal. Each signal, however, is directed to the single output port of the optical switch. Because the entire buffered and non-buffered signal is directed to a single output, no power is lost during the recombination process.

Due to the optical switch, optical circuits of the invention provide better signal-to-noise ratios than conventional buffering circuits that use optical couplers for recombining signals. The improved signal-to-noise leads to sharper resolution and better imaging when the provided circuits are used in conjunction with various imaging methods. Although any imaging method is useful, the provided circuits are particularly amenable for use in optical coherence tomography (OCT), wherein reflected light is used to obtain depth-resolved images. Circuits of the invention can be used with OCT imaging devices, such as OCT imaging catheters, to obtain high-quality intravascular images.

In addition to the provided optical circuits, the invention also encompasses methods for reducing power loss in an optical circuit. The provided methods involve recombining optical signals transmitted through multiple paths of an optical circuit by sequentially gating the multiple paths to a single output, thereby reducing power loss in the optical circuit. Methods of the invention utilize an optical switch that redirects light from any of the input ports connected to the optical paths to a single output port in a sequential fashion, as explained above.
Circuits and methods of the invention are useful in a variety of optical buffering configurations. For example, the invention is equally applicable to buffering approaches with higher multiplication factors (i.e., 4x, 8x, 16x, etc.). Circuits and methods of the invention are also applicable to polarization-maintaining (PM) buffering schemes. In this aspect, the invention would use PM optical switches and fibers rather than standard optical switches and single mode fibers. Circuits and methods of the invention are also useful with a variety of delay approaches, such as single-pass, double-pass, and quad-pass delay schemes.

Brief Description of the Drawings

FIG. 1 illustrates a conventional optical buffering circuit.

FIG. 2 illustrates an optical buffering circuit in accordance with the invention.

FIG. 3 is a diagram of components of an OCT subsystem.

FIG. 4 is a diagram of the imaging engine shown in FIG. 3.

Detailed Description

The present invention provides optical circuits and methods for eliminating or reducing power loss in optical buffering. The invention utilizes an optical switch to recombine optical signals from multiple optical paths in a sequential manner to a single output. In certain aspects, the invention encompasses an optical circuit comprising a first optical path, a second optical path, and a means for recombining an optical signal transmitted through the first optical path with a signal transmitted through the second optical path by sequentially gating the first optical path and the second optical path to a single output. In other aspects, the invention comprises a method for reducing power loss in an optical circuit comprising transmitting an optical signal through a first optical path, transmitting an optical signal through a second optical path, and recombining the optical signals of the first and second paths by sequentially gating the first and second optical path to a single channel, thereby reducing power loss in the optical circuit. A conventional optical buffering circuit comprising a 2x buffer stage is depicted in FIG. 1. The circuit 100 comprises a 50/50 optical splitter 110 with one input port connected to a light source 120 and two output ports connected to a first and second optical fiber 130A and 130B. The first optical fiber 130A is longer than the second 130B such that light transmitted through the first optical fiber incurs a time delay relative to light transmitted through the second optical fiber. The
additional length of the first optical fiber 130A is represented by the spooling of the fiber 130A1. Light from the first and second optical fibers 130A and 130B is recombined using a 2x2 50/50 coupler 140 with each output port of the coupler 140 containing only half the power from each input leg 130A and 130B. One of the output ports of the coupler 140 is then fed to the input/source arm of the OCT interferometer 150 and the other output port is discarded (i.e., not used by the OCT interferometer). The conventional optical buffering circuit 100 essentially discards half the optical power because it is not available in a single output port. This is disadvantageous because optical power in the native light source is limited to begin with.

Typically, relative time delay between the first and second optical fibers is adjusted to half of the period of the native A-line rate (e.g., imaging speed) of the light source and the duty cycle (i.e., the percentage of “on time”) of the native light source is less than 50%. If 4x buffering is used, the duty cycle would be less than 25%, and so on for higher buffering orders. The light in the long segment and the light in the short segment is T/2 out of phase (where T is the repetition period of the native light source) and arrives at different times to the coupler in a non-overlapping manner.

Optical circuits of the invention replace the passive 50/50 optical coupler with an active optical switch, such as a 2x1 optical switch. The optical switch of the invention may be electronically toggled, for example, via an applied drive voltage, at a frequency and phase synchronized to the period of the native light source. The switch redirects light from either of the two input ports into a single output port in a sequential fashion, thereby avoiding the 50% optical loss associated with the use of 50/50 couplers in conventional optical buffering circuits.

An exemplary optical circuit in accordance with the invention is provided in FIG. 2. The circuit 200 comprises a 50/50 optical splitter 210 with one input port connected to a light source 220 and two output ports connected to a first and second optical fiber 230A and 230B. The first optical fiber 230A is longer than the second 230B such that light transmitted through the first optical fiber 230A incurs a time delay relative to light transmitted through the second optical fiber 230B. The additional length of the first optical fiber 230A is represented by the spooling of the fiber 230A1. Light from the first and second optical fibers 230A and 230B is recombined using a 2x1 optical splitter 260 with an input port connected to each optical fiber 230A and 230B and an output port connected to an output channel 270. The optical switch 270 is electronically toggled between the first and second input ports such that optical signals from the first and
second optical fiber 230A and 230B are recombined in a single port with none of the optical power being discarded. Accordingly, 100% of the power can be directed towards the OCT interferometer 250, rather than 50%.

Optical switches are well-known in the art. An optical switch is a switch that enables signals in optical fibers to be selectively switched from one circuit to another. An optical switch may operate by mechanical means, such as physically shifting an optical fiber to drive one or more alternative fibers, or by electro-optic effects, magneto-optic effects, or other methods. Slow optical switches, such as those using moving fibers, may be used for alternate routing of an optical switch transmission path. Fast optical switches, such as those using electro-optic or magneto-optic effects, may be used for various imaging methodologies. Any optical switch may be used in accordance with the invention. In preferred aspects of the invention, the optical switch is a fast optical switch. In some aspects of the invention, the optical switch is a passive optical switch. In preferred embodiments of the invention, however, the optical switch is an active optical switch. In this aspect, the toggling between the input ports of the switch can be actively controlled. In certain embodiments, the active optical switch is electronically toggled via an applied drive voltage at a frequency and phase synchronized to the period of the native light source. In certain embodiments of the invention, the optical switch is a 2x1 optical switch, such as the 1 x 2 MEMS PRO8 Series Optical Switch Module (Model No. OSW8102) available from Thorlabs, Inc. The invention is not limited to only 2x1 optical switches and can include 4x1 optical switches, 8x1 optical switches, and so forth, in addition to 2x1 optical switches. The selected optical switch can be adjusted as needed and depends on the buffering scheme implemented (i.e., a 2x buffering scheme, 4x buffering scheme, 8x buffering scheme, etc.). Accordingly, the invention comprises buffering approaches with higher multiplication factors (i.e., 4x, 8x, 16x, etc.). This may also raise the number of optical paths beyond simply a first and second optical path as necessary.

Like optical switches, optical splitters are also well-known in the art. An optical splitter is device that splits a beam of light into two or more beams. Any optical splitter may be used with the invention. In certain embodiments, the splitter is a 1x2 optical splitter. In further embodiments of the invention, the optical splitter is a 1x2 50/50 optical splitter. Any optical signal split ratio may be used. For example, while preferred embodiments of the invention utilize 50/50 split ratios, other ratios such as 90:10, 80:20, and 60:40 are also encompassed. In addition,
1x4, 1x8, and higher splitting schemes can be used depending on the contemplated optical buffering circuit. No matter the configuration, however, light from the different optical paths is recombined into a single output by redirecting light from any of the optical paths in a sequential fashion to a single output, preferably via an optical switch.

Any optical fiber may be used in accordance with the present invention. An optical fiber is a thin, flexible, transparent fiber made of glass or plastic that functions as a waveguide, or “light pipe” to transmit light between the two ends of the fiber. Optical fibers typically include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection, which causes the fiber to act as a waveguide. Any optical fiber may be used in accordance with the invention. In certain aspects, the optical fiber is a single-mode optical fiber.

The invention may also encompass the use of polarization-maintaining optical fibers for use in polarization-maintaining buffering schemes. In fiber optics, polarization-maintaining optical fiber (PMF or PM fiber) is optical fiber in which the polarization of linearly polarized light waves launched into the fiber is maintained during propagation, with little or no cross-coupling of optical power between the polarization modes. Such fiber is used in special applications where preserving polarization is essential. Polarization maintaining optical fibers are well-known in the art, for example, the PANDA PM optical fiber, available from Fujikura, Ltd. Polarization-maintaining couplers may also be used in conjunction with the PM optical fibers for recombining optical signals from the PM optical fibers. Suitable PM couplers are also well-known in the art and can be commercially obtained, for example, from Thorlabs, Inc. (Model No. PMC780-50B-APC - 1x2 PM Coupler). Circuits and methods of the invention are also useful with a variety of delay approaches, such as single-pass, double-pass, and quad-pass delay schemes. These delay schemes are also well-known in the art.

An exemplary assembly of a buffering circuit in accordance with the invention will now be provided. The source light is provided by a laser (Axsun Technologies ECTL) with a central wavelength of 1040 nm and a repetition rate of 100 kHz. The total tuning bandwidth is 110 nm, 100 nm of which is tuned during the sampling duty cycle. Because the switch is operated in the dead-time between the original and buffered sweeps, the entire 100 nm bandwidth is conserved for both the original (non-delayed) and buffered (delayed) sweeps. The sampling and laser-on duty-cycles are 46% and 62% respectively. A 60/40 splitter is used to compensate the 1.5 dB
attenuation (70% transmission) of the fiber spool, such that both the original and buffered sweeps have similar power. The spool itself consists of 1000 m of HI1060 fiber. Three polarization controllers are used to adjust the polarization at the input of the fiber spool and at both inputs to the optical switch. The optical switch is commercially available (Boston Applied Technologies, based on their Nanona FOS platform). The switch employs transparent electro-optic ceramics to produce a variable wave plate, which is then used to produce a polarization independent 2x2 optical switch. The use of the switch improves buffer stage efficiency significantly compared to buffer stages that use 50/50 couplers to recombine optical signals, with considerably less loss of optical signal.

Optical circuits of the present invention can operate as a light source for a variety of uses, including imaging applications. In certain aspects, the light leaving the provided optical circuit is directed to an OCT system. Systems and methods of the invention are particularly amenable for use in OCT as the provided systems and methods can improve image quality and signal-to-noise.

Measuring a phase change in one of two beams from a coherent light is employed in optical coherence tomography. Commercially available OCT systems are employed in diverse applications, including art conservation and diagnostic medicine, e.g., ophthalmology. Recently, it has also begun to be used in interventional cardiology to help diagnose coronary heart disease. OCT systems and methods are described in U.S. Patent Application Nos. 2011/0152771; 2010/0220334; 2009/0043191; 2008/0291463; and 2008/0180683, the contents of which are hereby incorporated by reference in their entirety.

Various lumen of biological structures may be imaged with the aforementioned imaging technologies in addition to blood vessels, including, but not limited to, vasculature of the lymphatic and nervous systems, various structures of the gastrointestinal tract including lumen of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct, lumen of the reproductive tract including the vas deferens, vagina, uterus, and fallopian tubes, structures of the urinary tract including urinary collecting ducts, renal tubules, ureter, bladder, and structures of the head, neck, and pulmonary system including sinuses, parotid, trachea, bronchi, and lungs.

In OCT, a light source delivers a beam of light to an imaging device to image target tissue. Within the light source is an optical amplifier and an tunable filter that allows that allows a user to select a wavelength of light to be amplified. Wavelengths commonly used in medical
applications include near-infrared light, for example, 800 nm for shallow, high-resolution scans or 1700 nm for deep scans.

Generally, there are two types of OCT systems, common beam path systems and differential beam path systems, which differ from each other based upon the optical layout of the systems. A common beam path system sends all produced light through a single optical fiber to generate a reference signal and a sample signal, whereas a differential beam path system splits the produced light such that a portion of the light is directed to the sample and the other portion is directed to a reference surface. The reflected light from the sample is recombined with the signal from the reference surface of detection. Common beam path interferometers are further described in, for example, U.S. Patent Nos. 7,999,938; 7,995,210; and 7,787,127, the contents of which are incorporated by reference herein in its entirety.

In a differential beam path system, amplified light from a light source is inputted into an interferometer with a portion of light directed to a sample and the other portion directed to a reference surface. A distal end of an optical fiber is interfaced with a catheter for interrogation of the target tissue during a catheterization procedure. The reflected light from the tissue is recombined with the signal from the reference surface, forming interference fringes that allow precise depth-resolved imaging of the target tissue on a micron scale. Exemplary differential beam path interferometers are further described in, for example, U.S. Patent Nos. 6,134,003; and 6,421,164, the contents of which are incorporated by reference herein in its entirety.

In embodiments using OCT, the system 700 will additionally comprise an OCT subsystem, depicted in FIGS. 3 and 4. Generally, an OCT system comprises three components which are 1) an imaging catheter 2) OCT imaging hardware, 3) host application software. When utilized, the components are capable of obtaining OCT data, processing OCT data, and transmitting captured data to a host system. OCT systems and methods are generally described in Milner et al., U.S. Patent Application Publication No. 2011/0152771, Condit et al., U.S. Patent Application Publication No. 2010/0220334, Castella et al., U.S. Patent Application Publication No. 2009/0043191, Milner et al., U.S. Patent Application Publication No. 2008/0291463, and Kemp, N., U.S. Patent Application Publication No. 2008/0180683, the content of each of which is incorporated by reference in its entirety. In certain embodiments, systems and methods of the invention include processing hardware configured to interact with more than one different three
dimensional imaging system so that the tissue imaging devices and methods described here in can be alternatively used with OCT, IVUS, or other hardware.

In OCT, a light source delivers a beam of light to an imaging device to image target tissue. Light sources can be broad spectrum light sources, or provide a more limited spectrum of wavelengths, e.g., near infra-red. The light sources may be pulsed or continuous wave. For example the light source may be a diode (e.g., super-luminescent diode), or a diode array, a semiconductor laser, an ultra-short pulsed laser, or super-continuum light source. Typically the light source is filtered and allows a user to select a wavelength of light to be amplified. Wavelengths commonly used in medical applications include near-infrared light, for example between about 800 nm and about 1700 nm. Methods of the invention apply to image data obtained from obtained from any OCT system, including OCT systems that operate in either the time domain or frequency (high definition) domain.

In time-domain OCT, an interference spectrum is obtained by moving a scanning optic, such as a reference mirror, longitudinally to change the reference path and match multiple optical paths due to reflections of the light within the sample. The signal giving the reflectivity is sampled over time, and light traveling at a specific distance creates interference in the detector. Moving the scanning mechanism laterally (or rotationally) across the sample produces reflectance distributions of the sample (i.e., an imaging data set) from which two-dimensional and three-dimensional images can be produced.

In frequency domain OCT, a light source capable of emitting a range of optical frequencies passes through an interferometer, where the interferometer combines the light returned from a sample with a reference beam of light from the same source, and the intensity of the combined light is recorded as a function of optical frequency to form an interference spectrum. A Fourier transform of the interference spectrum provides the reflectance distribution along the depth within the sample.

Several methods of frequency domain OCT are described in the literature. In spectral-domain OCT (SD-OCT), also sometimes called "Spectral Radar" (Optics Letters, vol. 21, No. 14 (1996) 1087-1089), a grating or prism or other means is used to disperse the output of the interferometer into its optical frequency components. The intensities of these separated components are measured using an array of optical detectors, each detector receiving an optical frequency or a fractional range of optical frequencies. The set of measurements from these
optical detectors forms an interference spectrum (Smith, L. M. and C. C. Dobson, Applied Optics vol. 28: (1989) 3339-3342), wherein the distance to a scatterer is determined by the wavelength dependent fringe spacing within the power spectrum. SD-OCT has enabled the determination of distance and scattering intensity of multiple scatters lying along the illumination axis by analyzing the exposure of an array of optical detectors so that no scanning in depth is necessary. Alternatively, in swept-source OCT, the interference spectrum is recorded by using a source with adjustable optical frequency, with the optical frequency of the source swept through a range of optical frequencies, and recording the interfered light intensity as a function of time during the sweep. An example of swept-source OCT is described in U.S. Pat. No. 5,321,501.

Time- and frequency-domain systems can further vary based upon the optical layout of the systems: common beam path systems and differential beam path systems. A common beam path system sends all produced light through a single optical fiber to generate a reference signal and a sample signal whereas a differential beam path system splits the produced light such that a portion of the light is directed to the sample and the other portion is directed to a reference surface. Common beam path systems are described in U.S. Pat. 7,999,938; U.S. Pat. 7,995,210; and U.S. Pat. 7,787,127 and differential beam path systems are described in U.S. Pat. 7,783,337; U.S. Pat. 6,134,003; and U.S. Pat. 6,421,164, the contents of each of which are incorporated by reference herein in their entireties.

In certain embodiments, the invention provides a differential beam path OCT system with intravascular imaging capability as illustrated in FIG. 3. For intravascular imaging, a light beam is delivered to the vessel lumen via a fiber-optic based imaging catheter 826, which is a multifunction catheter of the invention. The imaging catheter is connected through hardware to software on a host workstation. The hardware includes imagining engine 859 and a handheld patient interface module (PIM) 839 that includes user controls. The proximal end of imaging catheter 826 is connected to PIM 839, which is connected to imaging engine 859 as shown in FIG. 8A.

An embodiment of imaging engine 859 is shown in FIG. 4. Imaging engine 859 (i.e., the bedside unit) houses power distribution board 849, light source 827, interferometer 831, and variable delay line 835 as well as a data acquisition (DAQ) board 855 and optical controller board (OCB) 851. PIM cable 841 connects imagining engine 859 to PIM 839 and engine cable 845 connects imaging engine 859 to the host workstation (not shown). Light source 827 can be,
in certain aspects, an optical circuit in accordance with the present invention. The light source 827, for example, can comprise the exemplary optical circuit depicted in FIG. 2. In this aspect, light leaving the output port of the optical switch is directed to the optical fiber interferometer 831 of the OCT system depicted in FIG. 4.

Incorporation by Reference

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.

Equivalents

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed is:

1. An optical circuit, the optical circuit comprising:
 a first optical path;
 a second optical path; and
 a means for recombining an optical signal transmitted through the first optical path with an optical signal transmitted through the second optical path by sequentially gating the first optical path and the second optical path to a single output.

2. The optical circuit of claim 1, wherein the first optical path is longer than the second optical path.

3. The optical circuit of claim 1, wherein the optical signal transmitted through the first optical path is delayed relative to the optical signal transmitted through the second optical path.

4. The optical circuit of claim 1, wherein the means for recombining said optical signals comprise an optical switch.

5. The optical circuit of claim 1, wherein the optical switch comprises a 2x1 optical switch.

6. The optical circuit of claim 1, further comprising an optical splitter configured to split an optical signal from a light source between the first optical path and the second optical path.

7. The optical circuit of claim 6, wherein the optical splitter comprises a 1x2 optical splitter.

8. The optical circuit of claim 1, wherein the first and second optical paths comprise single mode optical fibers.

9. The optical circuit of claim 1, wherein the first and second optical paths comprise polarization maintaining optical fibers.
10. The optical circuit of claim 9, wherein the means for recombining said optical signals comprise a polarization maintaining optical switch.

11. The optical circuit of claim 1, coupled to an implantable device.

12. The optical circuit of claim 11, wherein the implantable device is an imaging device.

13. The optical circuit of claim 11, wherein the imaging device comprises a catheter or guidewire.

14. The optical circuit of claim 12, wherein imaging comprises optical coherence tomography.

15. A method for reducing power loss in an optical circuit, the method comprising: transmitting an optical signal through a first optical path; transmitting an optical signal through a second optical path; and recombining the optical signals of the first and second optical paths by sequentially gating the first optical path and second optical path to a single output, thereby reducing power loss in the optical circuit.

16. The method of claim 15, wherein the first optical path is longer than the second optical path.

17. The method of claim 15, wherein the optical signal transmitted through the first optical path is delayed relative to the optical signal transmitted through the second optical path.

18. The method of claim 15, wherein the recombining step comprises transmitting the optical signals of the first and second optical paths to an optical switch that sequentially gates the first optical path and second optical path to an output channel.
19. The method of claim 15, wherein the first and second optical paths comprise polarization maintaining optical fibers.

20. The method of claim 19, wherein the recombining step comprises transmitting the optical signals of the first and second optical paths to an optical switch that sequentially gates the first optical path and second optical path to a single output.
FIG. 3