STRINGTHA GHA CHARDA HOUR DIEGA

593096

SPRUSON & FERGUSON

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

CONVENTION APPLICATION FOR A STANDARD PATENT

We, INTERNATIONAL BUSINESS MACHINES CORPORATION, of Armonk, New York 10504, United States of America hereby apply for the grant of a standard patent for an invention entitled:

"METHOD AND APPARATUS FOR IMPLEMENTING OPTIMUM PRML CODES" which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION

Number of Basic Application:-855,641

Name of Convention Country in which Basic Application was filed:-UNITED STATES OF AMERICA

Date of Basic application: -24 APRIL 1986

Our address for service is:-

C/- Spruson & Ferguson

Patent Attorneys Level 33 St Martins Tower 31 Market Street

Sydney New South Wales Australia

DATED this TWENTY-THIRD day of APRIL 1987

INTERNATIONAL BUSINESS MACHINES CORPORATION

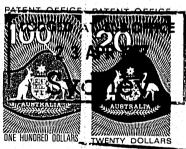
stered Patent Attorney.

THE COMMISSIONER OF PATENTS TO:

AUSTRALIA

By:

SBR/na/228T


FEE STAMP TO VALUE OF

ATTACHED

..275.

MAIL OFFICER.

LODGED AT SUB-OFFILE 2 3 APS 1381

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952-1969

Declaration In Support Of Convention Or Non-Convention Application For A Patent Or Patent Of Addition

(This declaration shall be made by the applicant, or, if the applicant is a body corporate, by a person authorized by the body corporate to make the declaration on its behalf).

In support of the Application made for a patent for an invention entitled METHOD AND APPARATUS FOR IMPLEMENTING OPTIMUM PRML CODES.

I, Alexander Kerr
care of IBM Canada Ltd.
3500 Steeles Avenue East
Markham, Ontario
Canada L3R 2Z1

do solemnly and sincerely declare as follows:

- 1. I am authorized by International Business Machines Corporation, the applicant for the patent to make this declaration on its behalf.
- 2. (1) John Scott Eggenberger of 984 Coeur D'Alene Way, Sunnyvale, California, U.S.A., 94087 and (2) Arvind Motibhai Patel of 6583 San Ignacio Ave., San Jose, California, U.S.A., 95119, are the actual inventors of the invention and the facts upon which the applicant is entitled to make the application are as follows: Applicant is entitled to apply by virtue of an Assignment dated April 24, 1986 from John Scott Eggenberger and Arvind Motibhai Patel to International Business Machines Corporation.
- 3. The basic application as defined by Section 141 of the Act was made in the United States of America on April 24, 1986 by John Scott Eggenberger and Arvind Motibhai Patel.
- 4. The basic application referred to in paragraph 3 of this Declaration was the first application made in a Convention country in respect of the invention the subject of this application.

Declared at Markham, this 16th day of March, 1987.

Alexander Kerr

(12) PATENT ABRIDGMENT (11) Document No. AU-B-71888/87 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 593096

(54) Title
IMPLEMENTING OPTIMUM PRML CODES

International Patent Classification(s)

- (51)4 H03M 007/46
- (21) Application No.: 71888/87
- (22) Application Date: 23.04.87

- (30) Priority Data
- (31) Number (32) Date (33) Country 855641 24.04.86 US UNITED STATES OF AMERICA
- (43) Publication Date: 29.10.87
- (44) Publication Date of Accepted Application: 01.02.90
- (71) Applicant(s)
 INTERNATIONAL BUSINESS MACHINES CORPORATION
- (72) Inventor(s)

 JOHN SCOTT EGGENBERGER; ARVIND MOTIBHAI PATEL
- (74) Attorney or Agent SPRUSON & FERGUSON
- (56) Prior Art Documents
 AU 559975 27963/84 H03M 7/46
 US 4567464
- (57) Claim
- 1. Apparatus for encoding a preselectable number of bits of binary data into codewords having a preselectable number of bits, said apparatus comprising:

receiver means for receiving the binary data; and encoder means, coupled to the receiver means for producing sequences of fixed length codewords;

said sequences having no more than a first

preselected number of consecutive zeroes therein; and

said sequences comprising two subsequences, one

consisting only of odd bit positions and another

consisting only of even bit positions, each of said

subsequences having no more than a second preselected

number of consecutive zeroes therein.

6. 13 in 10

593096

FORM 10

SPRUSON & FERGUSON

COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE:

71888/87

Class

Int. Class

Complete Specification Lodged:

Accepted:

Published:

This document contains the amendments made under Section 49 and is correct for printing.

Priority:

Related Art:

Name of Applicant:

INTERNATIONAL BUSINESS MACHINES CORPORATION

Address of Applicant:

Armonk, New York 10504, United States of

America

Actual Inventor(s):

JOHN SCOTT EGGENBERGER and

ARVIND MOTIBHAI PATEL

Address for Service:

Spruson & Ferguson, Patent Attorneys, Level 33 St Martins Tower, 31 Market

Street, Sydney,

New South Wales, 2000, Australia

Complete Specification for the invention entitled:

"METHOD AND APPARATUS FOR IMPLEMENTING OPTIMUM PRML CODES"

The following statement is a full description of this invention, including the best method of performing it known to us

SBR/na/228T

The second secon

METHOD AND APPARATUS FOR IMPLEMENTING OPTIMUM PRML CODES

Background of the Invention

Partial Response Maximum Likelihood (PRML) techniques have been long associated with digital communication channels. See for example, Y. Kabal and S. Pasupathy, "Partial-Response Signaling", IEEE Trans. Technol., Vol. COM-23, pp. 921-934, September 1975; R. W. Lucky, J. Salz and E. J. Weldon, Jr., PRINCIPLES OF DATA COMMUNICATIONS, New York: McGraw-Hill, 1968; G. D. Forney, Jr., "The Viterbi Algorithm", Proc. IEEE, Vol. 61, pp. 268-278, March 1973; and J. M. Wozencraft and I. M. Jacobs, PRINCIPLES OF COMMUNICATION ENGINEERING, New York: Wiley, 1965. Applying the principles of PRML signaling and detection to recording channels of mass storage devices is also well known. See for example, G. D. Forney, "Maximum Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference", IEEE Trans. Inform. Theory, Vol. IT-18, pp. 363-378, May 1982; H. Kobayashi, "Application of Probabilistic Decoding to Digital Magnetic Recording", IBM. J. RES. DEVELOP., Vol. 15, pp. 64-74, January 1971; and K. Nishimura and K. Ishii, "A Design Method for Optimal Equalization in Magnetic Recording Channels with Partial Response Channel Coding", IEEE Trans. Magn., Vol. MAG-19, pp. 1719-1721, September 1983.

5

eg(93 9

ۥٷٛ۞ٛ

Data detection in conventional prior art peak-detection magnetic recording channels is achieved by first differentiating the analog signal and then processing the differentiated signal with a zero-crossing detector to determine the presence or absence of a zero-crossing event within the detection window. Data detection in a digital communication channel is generally based on periodically sampling the amplitude of the transmitted signal.

10

5

 In the absence of noise or other imperfections, the zero crossings of the derivative signal in peak detection occur only at times corresponding to the clocktimes at which a transition was written. Enhancements such as precompensation, run-length-limited (RLL) codes and more sophisticated detectors have extended the performance of peak-detection systems.

In sampled or clocked detection, the amplitude of the signal is periodically sampled and the data which those samples represent is interpreted therefrom. Maximum likelihood (ML) detection minimizes the probability of error when the samples are interpreted.

Sampled amplitude detection anticipates the presence of interfering non-zero sample amplitudes corresponding to each input at more than one sampling time. Such signals are referred to as partial response (PR) signals, and

channels which transmit PR signals are often referred to as PR channels.

detection is typically used in PR channels (hereafter, PRML channels) although, barring cost and complexity considerations, it can be used in peak detection and other applications as well. Typically, for a given channel bandwidth, a PR signal transmission of data at a higher rate than full response signals which have zero amplitude at all but one of the In addition to filtering the readback sampling times. signal to condition it for most accurate detection and interpretation, other techniques, such as encoding the data, are used to enhance performance of ML detectors.

Encoding data for use with recording channels is also known. The (d,k) constraints, which specify the minimum and maximum run lengths of zeroes, respectively, in RLL codes used in peak-detection systems, reduce intersymbol interferences while maintaining selt-clocking characteristics of the data signal. See, for example, IBM TECHNICAL DISCLOSURE BULLETIN, Vol. 28, No. 5, October 1985, pp. 1938-1940, entitled "Improved Encoder and Decoder for a Byte-Oriented (0,3) 8/9 Code", and IBM TECHNICAL DISCLOSURE BULLETIN, Vol. 18, No. 1, June 1975, pp. 248-251, entitled "Encoder and Decoder for a Byte-Oriented (0,3) 8/9 Code".

7

5

10

15

In a PRML channel, a channel code can also be used to gain provide clocking and automatic control (AGC) information. Since the maximum run length of nominally zero samples must be limited, the k constraint is still appropriate when specifying the channel code requirements for PRML channels. However, RLL codes with d greater than are not in PRML channels necessary compensation for ISI is inherent in the ML detector. Thus, there is no need to reduce interference by coding with a d constraint.

On the other hand, the k constraint is not the only constraint required for the PRML channel. Since ML detection requires that more than one option be kept open with respect to recent past data estimators, an additional constraint is desired to limit both detector delay and hardware complexity. If a data sequence of the input signal is demultiplexed into an even indexed sample subsequence and an odd indexed sample subsequence, and ML detection is applied to each subsequence independently, a constraint on the number of successive nominally zero samples in each subsequence adequately limits the detector delay and hardware. Thus, in terms of NRZI data representation, the required limitation is on the maximum number of sequential zeroes in both the even-indexed and the odd-indexed subsequences. The maximum number of sequential NRZI zeroes in either subsequence is referred to as the k₁ constraint, and is analogous to the k constraint for the interleaved sequence of data.

SA9-85-048

5

10

creece e

15

cece

20

25

Codes having run length constraints restrict the allowed code sequences to less than 2ⁿ sequences possible, where n specifies the number of data symbols in a sequence. The rate of such a code is less than 1 data bit to 1 code bit, which can be expressed as a ratio of small integers. Thus, if an 8-bit data byte is mapped into a 9-bit codeword, the code rate is 8/9.

Summary of the Invention

The present invention relates to modulation codes suitable for PR channels employing ML detection. These modulation codes improve performance of the timing and gain control circuits of the channel by providing frequent non-zero samples. In addition, they limit the complexity of the ML detector by forcing path merging in the path memory during processing of data estimators.

The modulation codes according to the present invention are characterized by three parameters d, k, and k_1 written $(d, k/k_1)$. The parameters d and k represent the minimum and maximum of run lengths of zeroes in the channel output code bit sequence, where a run length of zeroes may be regarded as a period of silence in the detection process. The parameter k_1 represents the maximum run length of zeroes in the particular all-even or all-odd subsequences. In the codes of the present invention, d equals 0 since a minimum run length of zeroes is inapposite in the context of PRML channel. A small value of k is desirable for accurate timing and gain

.10.

15

control, and a small value of k_{\parallel} reduces the size of the path memory required in the ML detector.

In particular, the present invention is related to PRML code constraints for use in magnetic recording of digital data in disk memory devices. The code constraints and the apparatus for encoding and decoding data in accordance therewith is applicable, however, to any PR signaling system employing ML detection.

In accordance with one aspect of the present invention there is disclosed apparatus for encoding a preselectable number of bits of binary data into codewords having a preselectable number of bits, said apparatus comprising:

receiver means for receiving the binary data; and encoder means, coupled to the receiver means for producing sequences of fixed length codewords;

said sequences having no more than a first preselected number of consecutive zeroes therein; and

said sequences comprising two subsequences, one consisting only of odd bit positions and another consisting only of even bit positions, each of said subsequences having no more than a second preselected number of consecutive zeroes therein.

In accordance with another aspect of the present invention there is disclosed a method for encoding a preselectable number of bits of binary data into codewords having a preselectable number of bits, said method comprising the steps of:

receiving the binary data; and

producing sequences of fixed length codewords;

said sequences having no more than a first preselected number of consecutive zeroes therein; and

said sequences comprising two subsequences, one consisting only of odd bit positions and another consisting only of even bit positions, each of said subsequences having no more than a second preselected number of consecutive zeroes therein.

According to one embodiment of the present invention, the smallest value of the parameters k and k₁ for which a rate 8/9, (o,k/k₁) block code exists are (0,3/6) and (0,4/4). The present invention provides optimized sequential logic circuits including look-up tables for encoding and decoding rate 8/9 block codes having these parameters.

KAC:4470

Description of the Drawing

Fig. 1 is a schematic diagram of a PRML system modulation code encoder for a code having rate 8/9 and run length constraints (0,4/4), constructed according to the principles of the present invention.

Fig. 2 is a schematic diagram of a PRML system modulation code decoder for a code having rate 8/9 and run length constraints (0,4/4), constructed according to the principles of the present invention.

Fig. 3 is a legend of schematic symbol conventions used in Figs. 1, 2, 5 and 6.

Fig. 4 is a table of 279 decimal numbers equivalent to 9-bit binary sequences derived in accordance with the principles of the present invention for the rate 8/9, (0,4/4) code.

Fig. 5 is a schematic diagram of a PRML system modulation code decoder for a code having rate 8/9 and run length constraints (0,3/6), constructed according to the principles of the present invention.

Fig. 6 is a schematic diagram of a PRML system modulation code decoder for an alternative code having rate 8/9 and run length constraints (0,3/6), constructed according to the principles of the present invention.

Fig. 7 is a table of 272 decimal numbers equivalent to 9-bit binary sequences derived in accordance with the principles of the present invention for the rate 8/9, (0,3/6) code.

Description of the Preferred Embodiment

In accordance with the present invention, a rate 8/9

20

9-bit codewords from 8-bit data bytes. Thus, at least 256

RLL block code having (0,4/4) constraints provides 279 ccdewords of 9 bits each can be uniquely defined where all catenations of such codewords comply with the d, k/k,

constraint. The code provides for specific assignment of

8-bit data bytes to 9-bit codewords which preserves read

backward symmetry and creates partitions of bytes and codewords with similar structure. The partitions of bytes are uniquely identifiable and overall mapping of the codewords is produced by gating partition bits according to simple boolean functions.

If Y denotes a 9-bit codeword in the $(0,k/k_1)$ code, then

$$Y = [Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8, Y_9]$$
 (1)

The constraint k = 4 in the overall coded sequence can be produced by eliminating 9-bit sequences with run lengths of 3 zeroes at either end thereof, or run lengths of 5 zeroes within each 9-bit sequence. Such a constraint is given by the following boolean relation:

$$(Y_1 + Y_2 + Y_3) \quad (Y_2 + Y_3 + Y_4 + Y_5 + Y_6) \quad (Y_3 + Y_4 + Y_5 + Y_6 + Y_7)$$

$$(Y_4 + Y_5 + Y_6 + Y_7 + Y_8) \quad (Y_7 + Y_8 + Y_9) = 1$$

$$(2)$$

Similarly, the constraint $k_1 = 4$ is described by the following two equations for the sequence of all odd-bit positions and the sequence of all even-bit positions, respectively, in Equations (3) and (4) given below.

$$(Y_1 + Y_3 + Y_5) \quad (Y_5 + Y_7 + Y_9) = 1 \tag{3}$$

$$(Y_2 + Y_4 + Y_6) (Y_4 + Y_6 + Y_8) = 1$$
 (4)

Two hundred seventy-nine valid 9-bit binary sequences satisfy Equations (2), (3), and (4), the decimal equivalents for which are given in Fig. 4. Thus, 23 excess codewords are available for special purposes or for use as alternates to eliminate undesirable codeword patterns.

Referring now to Fig. 1, an 8-bit binary data byte, denoted X, and its assigned 9-bit codeword, Y, are given by:

$$X = [X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8]$$
 (5)

$$Y = [Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8, Y_9]$$
 (6)

The first partition of codeword assignments, denoted M, comprises the set of data bytes in which the first and last four bits of the 8-bit binary data bytes can be mapped without change into the first and last four bits, respectively, of the 9-bit codeword, Y. The middle bit, i.e. the fifth bit position, of the 9-bit codeword in this partition is always 1. Thus, partition M comprises 163 codewords which can be identified by the relation:

$$M = (x_1 + x_2 + x_3) (x_4 + x_5) (x_6 + x_7 + x_8) + x_2 x_7$$
 (7)

A second partition, M_1 , comprises 8-bit binary data bytes in which the first four bytes of Y are the same as those in X. Thus, M_1 , which includes M, comprises twelve

5

နိုင် (၂၈၅) ဤဌာန

> 0000 0000

additional codeword assignments identified by a specific structure of the first four bits in X given by the equation:

$$M_1 = M + (X_1 + X_3) X_4$$
 (8)

The remaining 81 codeword assignments are divided into partitions N_1 , R_1 and S_1 , which identify 42, 7 and 32 codeword assignments, respectively. These assignments are given by the following structures of the first four bits in X:

$$N_1 = M (X_1 + X_3) X_4$$
 (9)

$$R_1 = M (X_1 + X_3) X_2 (10)$$

$$S_1 = M (X_1 + X_3) X_2 (11)$$

The code inherently provides read-backward symmetry, which means that the last four bits of X are mapped into the last four bits of Y symmetrically with respect to the first four bits of Y, read backwards. Thus, the last four bits of the last-mentioned remaining 81 codeword assignments are given by partitions M_2 , N_2 , R_2 and S_2 which are backwardly symmetrical counterparts of the partition sets M_1 , N_1 , R_1 and S_1 , respectively. In particular, M_2 , N_2 , R_2 and S_2 are identified by exclusive structures of the last four bits of X given by logic equations symmetrical to Equations (8), (9), (10) and (11) as given in Chart I.

20

15

To avoid an all ones coded sequence, the middle bit, Y_5 , is changed to zero which, in turn, creates another valid codeword. The logic equations for encoder 100 of Fig. 1 are given in Chart I.

5

The decoder function identifies the same partitions as those in the encoder, using the exclusive structures of bit patterns in the 9-bit sequence Y to obtain logic equations for the components of X. Decoder equations for the decoder of Fig. 2 are provided in Chart II.

10

Referring now to Fig. 1, encoded variables, X_1-X_8 are received by gates 101-106, 108-112, 114-118, 120-122, 124-127 and 130-142 of encoder 100. In response to such variables, gates 107-110 produce codeword partitions M_1 , N_1 , R_1 and S_1 , respectively. Similarly, gates 113-116 produce codeword partitions M_2 , N_2 , R_2 and S_2 . Finally, encoded variables Y_1-Y_9 are produced by gates 117, 119, 121, 128, 129, 134, 138, 139 and 141, respectively.

. . .

Coded variables, Y_1-Y_9 , are received by gates 201-204, 207-218 and 225-234 of decoder 200 as shown in Fig. 2. Backward reading, codeword partitions, M_1 , N_1 , R_1 and S_1 , for recreating uncoded variables, i.e. the data, are produced by gates 205, 207, 209 and 212, respectively, in response to coded variables Y_1-Y_9 . Similarly, partitions M_2 , N_2 , R_2 and S_2 are produced by gates 206, 208, 210 and 214, respectively. Finally, the data, X_1-X_8 ,

is provided by gates 215, 219, 216, 221, 222, 217, 220 and 218, respectively.

Another version of rate 8/9 (0, k/k_1) codes in accordance with the present invention have k=3 and $k_1=6$. The partition of codeword assignments for a (0,3/6) block code is given in Chart III which shows logic equations for partitions M_1 , M_2 , M_3 , M, E, N_1 , R_1 , S_1 , N_2 , R_2 , and S_2 . Also shown in Chart III are the encoder logic functions for encoder 500 of Fig. 5.

10

The decoder function identifies the partitions M, E, N_1 , R_1 , S_1 , N_2 , R_2 , and S_2 using the structure of the 9-bit codeword Y. The logic equations for these partitions, as well as the decoder logic functions for decoder 600 of Fig. 6 are given in Chart IV.

15.

20

Referring now to Fig. 5, encoded variables $X_1 - X_8$ are received by gates 501-554 of encoder 500. In response to such variables, gates 501-503, 555, 520, 505, 556, 513 produce codeword partitions M_1 , M_2 , M_3 , M, E, N_1 , R_1 , and S_1 , respectively. Similarly, gates 515, 557, 519 produce codeword partitions N_2 , R_2 , and S_2 . Finally, encoded variables $Y_1 - Y_9$ are produced by gates 558-565, respectively.

້າ ເ

Finally, coded variables Y_1 - Y_9 are received by gates 601-641 of decoder 600 as shown in Fig. 6. Decoding partitions E, N_1 , R_1 and S_1 are produced by gates 601,

604, 607 and 608, respectively, in response to coded variable $Y_1 - Y_9$. Similarly, partitions M_1 , N_2 , R_2 and S_2 are produced by gates 602, 609, 611 and 612, respectively. Decoded data $X_1 - X_8$ is provided by gates 642-649, respectively.

The decimal equivalents of the 272 valid 9-bit binary sequences which satisfy the equations of Charts III and IV are shown in Fig. While the numbers in Fig. 4 are symmetric (i.e., for each 9-bit codeword represented, the number formed by reversing to order of those bits is also represented), the numbers in Fig. 7 are not so symmetric.

Both codes described in this specification are optimum block codes in that k cannot be decreased without increasing k_1 , decreasing the rate or increasing the block length. Similarly, k_1 cannot be decreased without increasing k, decreasing the rate or increasing the block length.

5

CHART I

0,4/4 ENCODER

$$M = (X1 + X2 + X3) \cdot (X4 + X5) \cdot (X6 + X7 + X8) + X2 \cdot X7$$

$$M1 = M + (X1 + X3) \cdot X4 \qquad M2 = M + (X8 + X6) \cdot X5$$

$$N1 = \overline{M} \cdot (X1 + X3) \cdot \overline{X4} \qquad N2 = \overline{M} \cdot (X8 + X6) \cdot \overline{X5}$$

$$R1 = \overline{M} \cdot (\overline{X1 + X3}) \cdot X2 \qquad R2 = \overline{M} \cdot (\overline{X8 + X6}) \cdot X7$$

$$S1 = \overline{(X1 + X2 + X3)} \qquad S1 = \overline{(X8 + X7 + X6)}$$

$$Y1 = X1 + R1 + S1 \cdot X4$$

$$Y2 = M1 \cdot X2 + R1 + S1$$

$$Y3 = X3 + R1 + S1 \cdot \overline{X4}$$

$$Y4 = M1 \cdot X4 + N1 \cdot \overline{X2} + R1 \cdot \overline{X4} + S1 \cdot (\overline{X5} + S2)$$

$$Y5 = M \cdot (\overline{X1 \cdot X2 \cdot X3 \cdot X4 \cdot X5 \cdot X6 \cdot X7 \cdot X8})$$

$$Y6 = M2 \cdot X5 + N2 \cdot \overline{X7} + R2 \cdot \overline{X5} + S2 \cdot (\overline{X4} + S1)$$

$$Y7 = X6 + R2 + S2 \cdot \overline{X5}$$

$$Y8 = M2 \cdot X7 + R2 + S2$$

 $Y9 = X8 + R2 + S2 \cdot X5$

CHART II

0,4/4 DECODER

 $M = Y5 + Y1 \cdot Y2 \cdot Y3 \cdot Y4 \cdot Y6 \cdot Y7 \cdot Y8 \cdot Y9$

$$A1 = \overline{Y6} + \overline{Y2} + Y4$$

$$A2 = \overline{Y4} + \overline{Y8} + Y6$$

$$M1 = M + \overline{A2}$$

$$M2 = M + \overline{A1}$$

$$N1 = \overline{M} \cdot A2 \cdot \overline{Y2}$$

$$N2 = \overline{M} \cdot A1 \cdot \overline{Y8}$$

$$R1 = \overline{M} \cdot A2 \cdot Y2 \cdot Y1 \cdot Y3$$

$$R2 = \overline{M} \cdot A1 \cdot Y8 \cdot Y9 \cdot Y7$$

$$S1 = \overline{M} \cdot A2 \cdot Y2 \cdot \overline{(Y1 \cdot Y3)} \qquad S2 = \overline{M} \cdot A1 \cdot Y8 \cdot \overline{(Y9 \cdot Y7)}$$

$$S2 = \overline{M} \cdot A1 \cdot Y8 \cdot \overline{(Y9 \cdot Y7)}$$

$$X1 = (M1 + N1) \cdot Y1$$

$$X2 = M1 \cdot Y2 + N1 \cdot \overline{Y4} + R1$$

$$X3 = (M1 + N1) \cdot Y3$$

$$X4 = M1 \cdot Y4 + R1 \cdot \overline{Y4} + S1 \cdot \overline{Y3}$$

$$X5 = M1 \cdot Y6 + R2 \cdot \overline{Y6} + S2 \cdot \overline{Y7}$$

$$X6 = (M2 + N2) \cdot Y7$$

$$X7 = M2 \cdot Y8 + N2 \cdot \overline{Y6} + R2$$

$$X8 = (M2 + N2) \bullet Y9$$

CHART III

0,3/6 ENCODER

 $Y9 = (\overline{E} \cdot M + N2) \cdot X8 + N1 \cdot (X5 + \overline{X6}) + R1 \cdot X2 + \overline{X5} \cdot (R2 + S1) + S2 \cdot X3$

CHART IV

0,3/6 DECODER

 $E = \overline{Y1} \cdot \overline{Y2} \cdot \overline{Y4} \cdot \overline{Y5} \cdot \overline{Y6} \cdot \overline{Y9}$ M = Y5 + E $N1 = \overline{N} \cdot (Y1 + Y3) \cdot Y4 \cdot \overline{Y6}$ $N2 = \overline{Y1} \cdot \overline{Y2} \cdot Y6$ $R1 = \overline{N} \cdot (Y1 + Y2 \cdot Y3) \cdot Y4 \cdot Y6$ $R2 = \overline{M} \cdot (Y1 + Y2) \cdot \overline{Y4} \cdot Y6$ $S1 = \overline{M} \cdot \overline{Y4} \cdot \overline{Y6}$ $S2 = \overline{(M + Y1 + Y3)}$ $X1 = E + (M + N1) \cdot Y1 + R1 \cdot \overline{Y3} + S1 \cdot Y2 + S2 \cdot Y8$ $X2 = E + (M + N1) \cdot Y2 + R1 \cdot Y9$ $X3 = (N + N1) \cdot Y3 + R1 \cdot \overline{Y2} + S1 \cdot (Y1 + \overline{Y2}) + S2 \cdot Y9$ $X4 = E + (M + N1 + N2) \cdot Y4 + R1 \cdot \overline{Y1} + R2 \cdot Y1 \cdot Y2$ $X5 = E + (M + N2) \cdot Y6 + N1 \cdot Y8 \cdot Y9 + R1 \cdot Y8 + \overline{Y9} \cdot (R2 + S1)$ $X6 = (N + N2) \cdot Y7 + N1 \cdot Y7 \cdot Y8 + R1 \cdot Y7 + R2 \cdot \overline{Y8}$ $+ S1 \cdot (\overline{Y1} \cdot \overline{Y2} + \overline{Y8}) + S2 \cdot Y6$ $X7 = (M + N2) \cdot Y8 + R2 \cdot Y2 \cdot Y3$ $X8 = E + (M + N2) \cdot Y9 + R2 \cdot \overline{Y7} + S2$

SA9-85-048

The claims defining the invention are as follows:

1. Apparatus for encoding a preselectable number of bits of binary data into codewords having a preselectable number of bits, said apparatus comprising:

receiver means for receiving the binary data; and encoder means, coupled to the receiver means for producing sequences of fixed length codewords;

said sequences having no more than a first preselected number of consecutive zeroes therein; and

said sequences comprising two subsequences, one consisting only of odd bit positions and another consisting only of even bit positions, each of said subsequences having no more than a second preselected number of consecutive zeroes therein.

- 2. Apparatus as in claim 1 wherein the first and second preselected number of consecutive zeroes are equal.
- 3. Apparatus as in claim 2 wherein the first and second preselected number of consecutive zeroes are 4.
- 4. Apparatus as in claim 1 wherein the first and second preselected number of consecutive zeroes are unequal.
- 5. Apparatus as in claim 4 wherein the first preselected number of consecutive zeroes is three and the second preselected number of consecutive zeroes is six.
- 6. Apparatus as in claim 1 wherein the ratio of the number of bits in the encoded binary data to the number of bits in the codewords is 8/9.

7. Apparatus as in claim 1 wherein:

the codewords comprise a plurality of partitions; and

the encoder means includes a plurality of gating means for producing the partitions of codewords and output gating means for combining the partitions of codewords into the sequence of codewords.

- 8. Apparatus as in claim 1 further including decoding means for decoding a preselectable number of codewords into a preselectable number of bits of binary data, said decoding means comprising:
- receiving means for receiving the codewords; and sequential means, coupled to the receiver means, for producing sequences of binary data in response to said codewords.
- 9. Apparatus as in claim 8 wherein the sequential means includes a plurality of gating means for producing the partitions of binary data and output gating means for combining the partitions of binary data into the sequences of binary data.

10. A method for encoding a preselectable number of bits of binary data into codewords having a preselectable number of bits, said method comprising the steps of:

receiving the binary data; and producing sequences of fixed length codewords; said sequences having no more than a first preselected number of consecutive zeroes therein; and

said sequences comprising two subsequences, one consisting only of odd bit positions and another consisting only of even bit positions, each of said subsequences having no more than a second preselected number of consecutive zeroes therein.

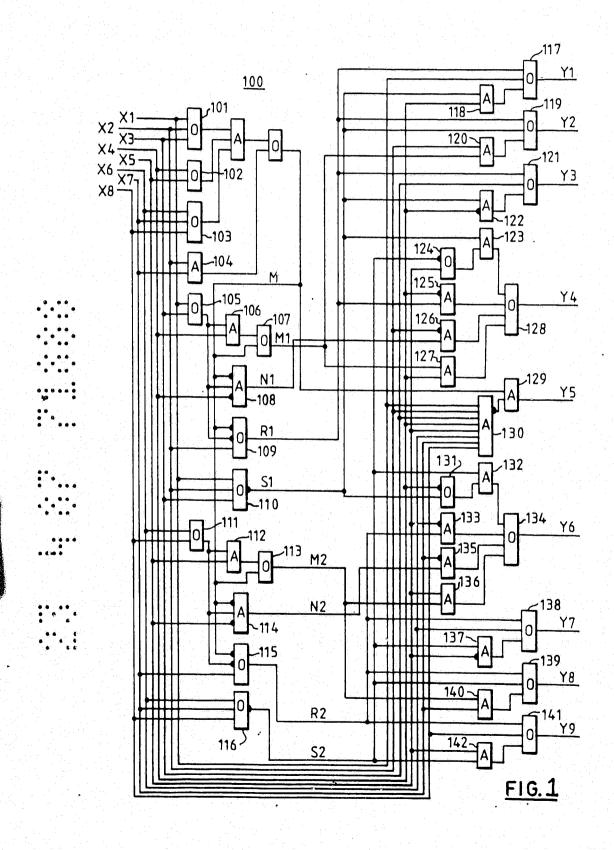
- 11. The method as in claim 10 wherein the first and second preselected number of consecutive zeroes are equal.
- 12. The method as in claim 11 wherein the first and second preselected numbr of consecutive zeroes are 4.
- 13. The method as in claim 10 wherein the first and second preselected number of consecurtive zeroes are unequal.
- 14. The method as in claim 13 wherein the first preselected number of consecutive zeroes is three and the second preselected number of consecutive zeroes is six.
- 15. The method as in claim 10 wherein the ratio of the number bits in the encoded binary data to the number of bits in the codewords is 8/9.

orece

16. The method as in claim 10 for decoding a preselectable number of codewords into a preselectable number of bits of binary data further comprising the steps of:

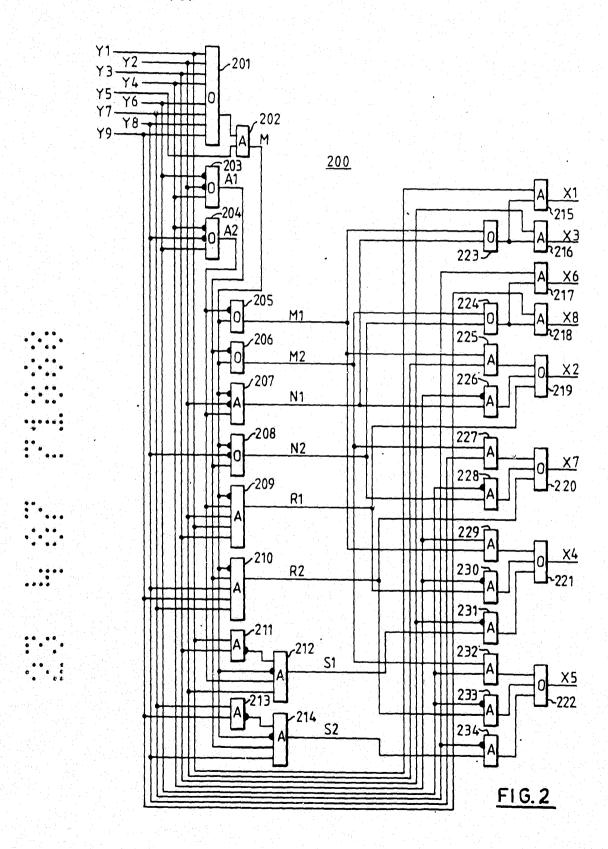
receiving the codewords; and producing sequences of binary data from said codewords.

- 17. Apparatus as in claim 1 wherein the first or second preselected number of consecutive zeroes cannot be decreased without increasing the second or first, respectively, preselected number of consecutive zeroes.
- 18. Apparatus as in claim 6 wherein the first or second preselected number of consecutive zeroes cannot be decreased with decreasing said ratio.
- 19. Apparatus for encoding a preselectable number of bits of binary data into code words having a preselectable number of bits, said apparatus being substantially as described herein with reference to Figs. 1 and 3 of the drawings.
- 20. A method for encoding a preselectable number of bits of binary data into code words having a preselectable number of bits, said method being substantially as described herein with reference to Fig. 4 or Fig. 7 of the drawings.

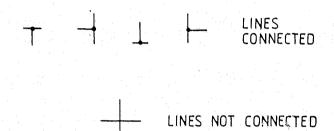

DATED this SIXTEENTH day of MARCH 1989

INTERNATIONAL BUSINESS MACHINES CORPORATION

Patent Attorneys for the Applicant SPRUSON & FERGUSON



.0000

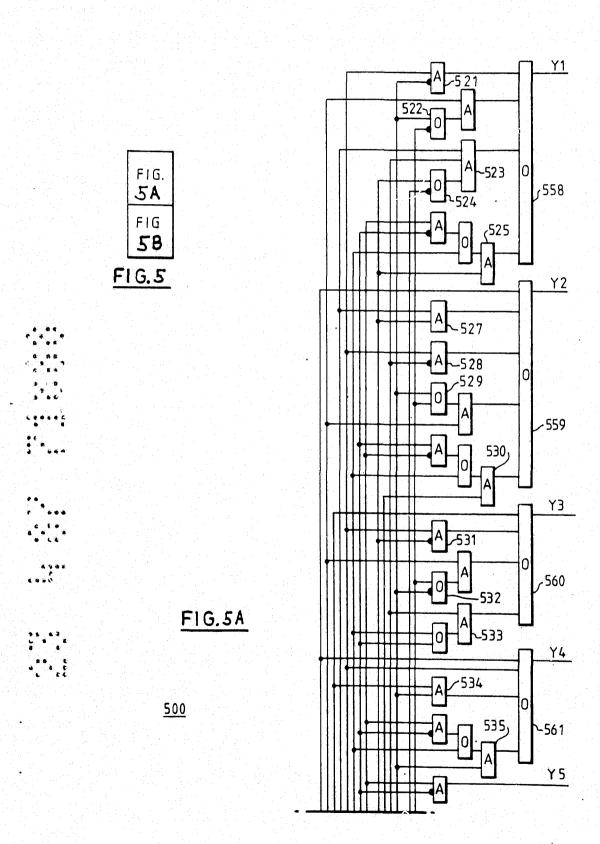


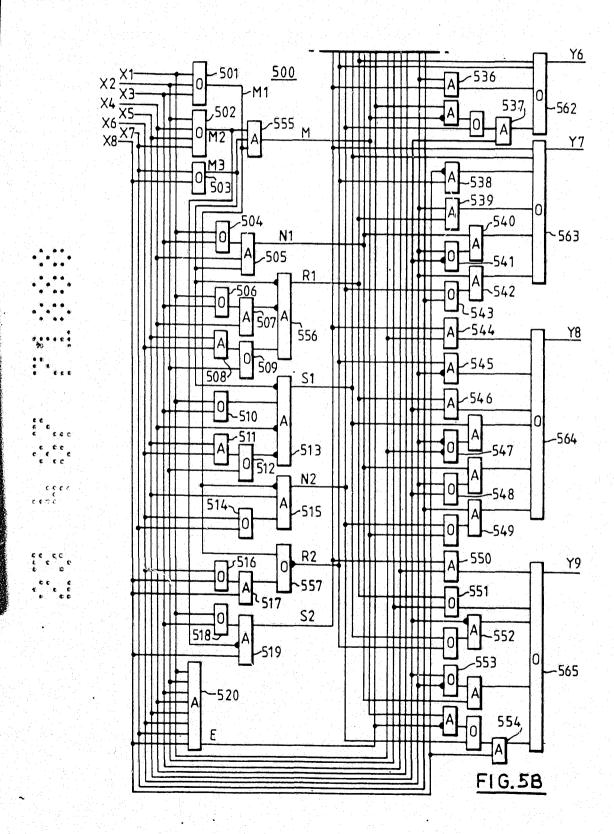
\\ \frac{\sigma}{2} \\ \frac{1}{2} \

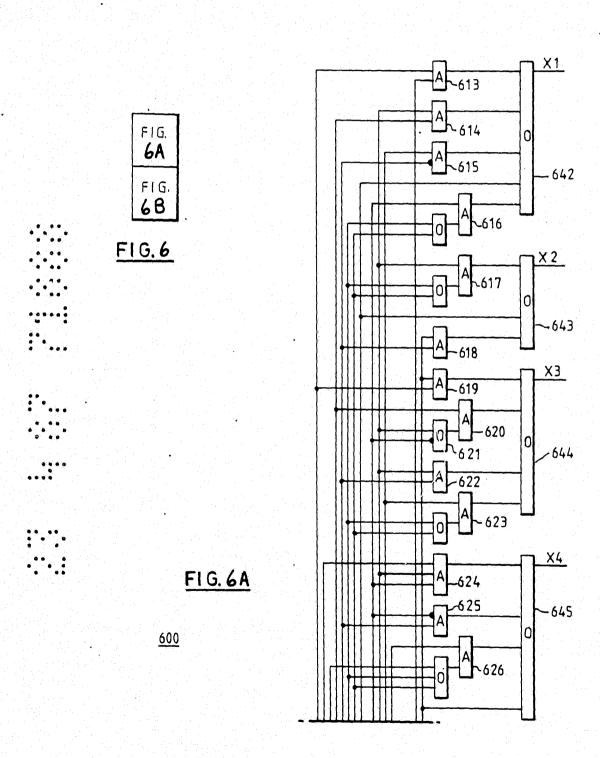
r.)

CONNECTIVITY: T's REPRESENT CONNECTION, CROSSOVERS ARE NOT CONNECTED ie

GATES:-


λ₃ •




FIG. 3

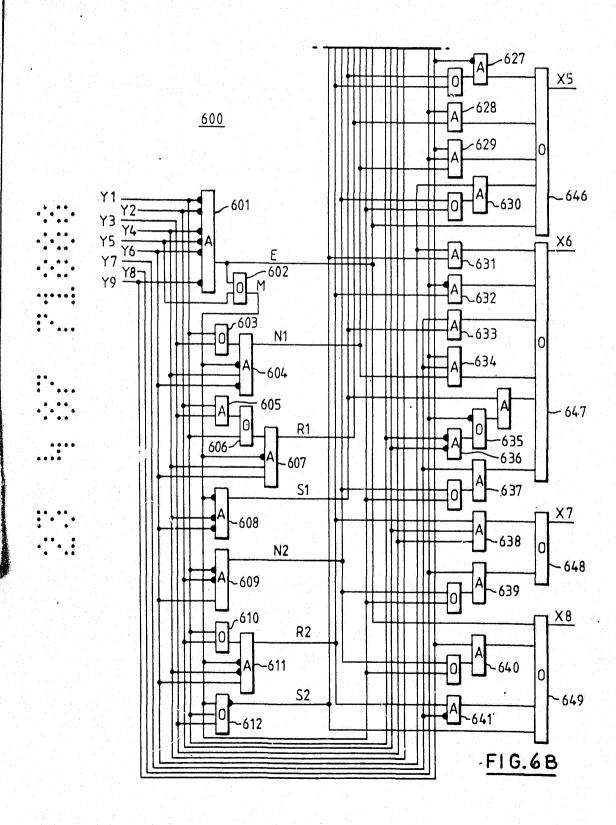

```
73
                       116
                              183
                                     225
                                            268
                                                   310
                                                          361
                                                                 402
                                                                        438
                                                                               479
                 75
                       117
                              185
                                     227
                                            269
                                                   311
                                                          363
                                                                 403
                                                                        439
                                                                               481
                 76
                       118
                              186
                                     228
                                            270
                                                   313
                                                          364
                                                                 406
                                                                        441
                                                                               483
                 77
                       119
                              187
                                     229
                                            271
                                                   314
                                                          365
                                                                 407
                                                                        442
                                                                               484
                 78
                       121
                              188
                                     230
                                            281
                                                   315
                                                          366
                                                                 409
                                                                        443
                                                                               485
                 79
                       122
                              189
                                     231
                                            282
                                                   316
                                                          367
                                                                 410
                                                                        444
                                                                               486
                 89
                       123
                              190
                                     233
                                            283
                                                   317
                                                          369
                                                                 411
                                                                        445
                                                                               487
                 90
                       124
                              191
                                     235
                                            284
                                                   318
                                                          370
                                                                 412
                                                                        446
                                                                               489
                 91
                       125
                                            285
                              195
                                     236
                                                   319
                                                          371
                                                                 413
                                                                        447
                                                                               491
                 92
                       126
                              198
                                     237
                                            286
                                                   329
                                                          372
                                                                 414
                                                                        451
                                                                               492
                 9.3
                       127
                              199
                                     238
                                            287
                                                   331
                                                          373
                                                                 415
                                                                        454
                 94
                                                                               493
                       146
                              201
                                     239
                                            289
                                                   332
                                                          374
                                                                 417
                                                                        455
                                                                               494
                 95
                       147
                              203
                                     241
                                            291
                                                   333
                                                          375
                                                                               495
                                                                 419
                                                                        457
                 9.7
                       150
                              204
                                     242
                                            292
                                                   334
                                                          377
                                                                 420
                                                                        459
                                                                               497
                 99
                       151
                              205
                                     243
                                            293
                                                   335
                                                          378
                                                                 421
                                                                        460
                                                                               498
                100
                       153
                              206
                                     244
                                            294
                                                   345
                                                          379
                                                                 422
                                                                        461
                                                                               499
                101
                       154
                              207
                                     245
                                            295
                                                   346
                                                          380
                                                                 423
                                                                        462
                                                                               500
                102
                       155
                              210
                                     246
                                            297
                                                   343
                                                                        463
                                                          381
                                                                 425
                                                                               501
                103
                       156
                              211
                                     247
                                            299
                                                   348
                                                          382
                                                                 427
                                                                        466
                                                                               502
                105
                       157
                              214
                                     249
                                            300
                                                   349
                                                          383
                                                                 428
                                                                        467
                                                                               503
                107
                       158
                              215
                                     250
                                            301
                                                   350
                                                          390
                                                                 429
                                                                        470
                                                                               505
                108
                       159
                              217
                                     251
                                            302
                                                   351
                                                          391
                                                                 430
                                                                        471
                                                                               506
                109
                       177
                              218
                                     252
                                            303
                                                   353
                                                          393
                                                                 431
                                                                        473
                                                                               507
                110
                       178
                              219
                                     253
                                            305
                                                   355
                                                          395
                                                                 433
                                                                        474
                                                                               508
                111
                       179
                              220
                                     254
                                            305
                                                   356
                                                          396
                                                                 434
                                                                        475
                                                                               509
                113
                       180
                              221
                                     255
                                            307
••••
                                                   357
                                                          397
                                                                 435
                                                                        476
                                                                               510
                114
                       181
                              222
                                     265
                                            308
                                                   358
                                                          398
                                                                 436
                                                                        477
                                                                               511
                115
                       182
                                     267
                                            309
                                                   359
                                                          399
                                                                 437
                                                                        478
```

FIG.4

ş. .

```
70 111 165 210 249 309 355 402 443 486
71 113 166 211 250 310 357 403 445 487
73 114 167 213 251 311 358 405 446 489
74 115 173 214 253 313 359 406 447 490
75 117 174 215 254 314 361 407 453 491
77 118 175 217 255 315 362 409 454 493
78 119 177 218 274 317 363 410 455 494
79 121 178 219 275 318 365 411 457 495
82 122 179 221 278 319 366 413 458 497
83 123 181 222 279 326 367 414 459 498
86 125 182 223 281 327 369 415 461 499
87 126 183 226 282 329 370 419 462 501
89 127 185 227 283 330 371 421 463 502
90 141 186 229 285 331 373 422 465 503
91 142 187 230 286 333 374 423 466 505
93 143 189 231 287 334 375 425 467 506
94 145 190 233 291 335 377 427 469 507
95 146 191 234 293 338 378 429 470 509
98 147 197 235 294 339 379 430 471 510
99 149 198 237 295 342 381 431 473 511
101 150 199 238 297 343 382 433 474
102 151 201 239 299 345 383 434 475
103 153 202 241 301 346 393 435 477
105 154 203 242 302 347 395 437 478
106 155 205 243 303 349 397 438 479
107 157 206 245 305 350 398 439 482
109 158 207 246 306 351 399 441 483
110 159 209 247 307 354 401 442 485
```

FIG. 7