wO 2007/066320 A1 |10 0 000 0 0000 0 R 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 June 2007 (14.06.2007)

‘ﬂ[l A0 0 OO0

(10) International Publication Number

WO 2007/066320 Al

(51) International Patent Classification:
GOG6F 17/50 (2006.01)

(21) International Application Number:
PCT/IL.2006/001349

(22) International Filing Date:
23 November 2006 (23.11.2006)

English
English

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
60/748,957 8 December 2005 (08.12.2005) US

(71) Applicant (for all designated States except US): MEN-
TOR GRAPHICS CORPORATION [US/US]; 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-9733 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VELLER, Yossi
[IL/IL]; 9/a Hahagana Street, 46325 Herzliya (IL).
HANGA, Vasile [IL/IL]; 3 Havradim Street, 42651 Ne-
tanya (IL). ROZENMAN, Alexander [II./IL]; 13/10 Smi-
lansky Street, 75258 Rishon Lezion (IL). RACHAMIM,
Rami [I1/IL]; 12 Dultzin Street, 69630 Tel Aviv (IL).

(74) Agents: LUZZATTO, Kfir et al.; Luzzatto & Luzzatto,
Box 5352, 84152 Beersheva (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: CONVERSION OF CIRCUIT DESCRIPTION TO AN ABSTRACT MODEL OF THE CIRCUIT

(57) Abstract: A system and method
is disclosed for converting an existing
circuit description from a lower level
description, such as RTL, to a higher-level
description, such as TLM, while raising
the abstraction level. By changing the

RECEIVE INPUT FILES RELATED TO MODEL

DESCRIPTICN AND SIMULATION DATA FOR THE

abstraction level, the conversion is not
simply a code conversion from one
language to another, but a process of
learning the circuit using neural networks

CIRCUIT . L .

300 and representing the circuit using a
system of equations that approximate
the circuit behavior, particularly with
respect to timing aspects. A higher

v level of abstraction eliminates much of
the particular implementation details,
and allows easier and faster design

BASED ON THE INPUT FILES, GENERATE AN exploration, analysis, and test, before
ABSTRACT MODEL OF THE CIRCUIT THAT implementation. In one aspect, a model
APPROXIMATES THE CIRCUIT BEHAVIOR description of the circuit, protocol

02 information relating to the circuit, and
simulation data associated with the lower
level description of the circuit are used to
generate an abstract model of the circuit

A4 that approximates the circuit behavior.

OUTPUT THE ABSTRACT BEHAVIORAL MODEL OF
THE CIRCUIT 304




WO 2007/066320 A1 |00 0T 000 00 0000 00 00 000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
—  before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments



WO 2007/066320 : PCT/IL2006/001349

CONVERSION OF CIRCUIT DESCRIPTION TO AN ABSTRACT
MODEL OF THE CIRCUIT

Related application data

Priority is claimed to US provisional patent application 60/748,957, filed
December 8, 2005, which is hereby incorporated by reference.

Field of the Invention

The present invention generally relates to simulation, and more
particularly to converting a simulated circuit description to a higher

level of abstraction.

Background of the Invention

The complexity of integrated circuits (ICs) being designed nowadays is
continuously increasing and has resulted in complete system-on-chip
(SoQ) solutions. Even more, the complexity of such integrated systems is
exploding thanks to advances in process fabrication. The limiting factor
is now the ability to design, manage and verify such systems rather than

the ability to fabricate them.

The typical design process begins with a software program that
describes the behavior or functionality of a circuit. This software
program 1is written in a hardware description language (HDL) that
defines a behavior to be performed with limited implementation details.
Logic synthesis tools convert the HDL program into a gate netlist
description. The RTL description is used to verify functionality and
ultimately generate a netlist that includes a list of components in the
circuit and the interconnections between the components. This netlist is

used to create the physical integrated circuit.

As SoC's are becoming larger, the only way to efficiently design such
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dense SoC's, both from the design complexity and time-to-market
aspects, is by embedding Intellectual Property (IP) cores. Standards for
such cores are currently evolving. Ideally, they should be reusable, pre-
characterized and pre-verified. But it often desirable to change the
design to create the next generation. For example, as fabrication
technology changes, it is desirable to convert or migrate the design to the
new process parameters. For example, an IP core may be designed and
tested for 90 nm technology, but it is desirable to convert the IP core to a
new process of 60 nm technology. Or it may be desirable to update the
design and incorporate changes in order to create the next generation

design.

In order to test and explore such changes in the design, simulation must
be performed, which is very time consuming. A few seconds of real-time
simulation can take weeks or even months. If the simulation results are
not desirable, then the design process must start over again by changing

the high-level code and re-simulating.

Because of such delays in simulation, designers are beginning to move
the design process to a higher level of abstraction (meaning less focus on
design details). At the higher level of abstraction, design exploration can
be performed to evaluate which performance and power consumption
can be achieved, which parts to use, etc. The preferable higher level of
abstraction is called Transaction Level Modeling (TLM), which refers to
the evolving design and verification space called Electronic System Level
(ESL) with methodologies that begin at a higher level of abstraction
than the current mainstream Register Transfer Level (RTL). The main
ESL design language SystemC, is driven from C/C++ rather than from
hardware languages like Verilog and VHDL.

The challenge is how to rewrite or convert existing models and code at
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the register transfer level to models and code at the electronic system
level. There are some tools available that can make such a conversion,
such as VTOC available from Tenison Corporation, but these tools do a
simple code conversion without changing the level of abstraction. Thus,
for example, having the same level of abstraction, including the same
level of design details, means that the verification and simulation are

just as slow.

A simple example is if an engineer wants to use an existing circuit, but
increase the memory size. There are no guarantees that making such an
update will work. For example, increased memory size may drain the
battery too quickly rendering the circuit unmarketable. Using current
tools, the designer must either physically implement the circuit to see if
it works or modify the RTL code and simulate the design. Such
simulation may take weeks or even months, and if the modification does

not work, the process must be started over again.

Thus, it is desirable to convert an existing design from a lower level of
code, such as RTL, to a higher level, such as ESL, while changing the
abstraction level of the design in order to gain the benefits of having the

code at the higher level.

Summary of the Invention

A system and method are disclosed for converting an existing circuit
description, specifically its timing characteristicé, from a lower level
description, such as RTL, to a higher-level description, such as TLM,
while raising the abstraction level. By changing the abstraction level,
the conversion is not simply a code conversion from one language to
another, but a process of learning the circuit using neural networks and
representing the circuit using a system of equations that approximate

the circuit behavior, particularly with respect to timing aspects. A



WO 2007/066320 PCT/IL2006/001349

higher level of abstraction eliminates much of the particular
implementation details, and allows easier and faster design exploration,

analysis, and test, before implementation.

In one aspect, a model description of the circuit, protocol information
relating to the circuit, and simulation data associated with the lower
level description of the circuit are used to generate an abstract model of

the circuit that approximates the circuit timing behavior.

In another aspect, such generation is accomplished using machine
learning algorithms and/or a neural network. The neural network
generates a system of weighted equations. Input patterns are used to
calculate a difference between the actual output values (using the
equations) and desired values (using simulated data) and extract a
deterministic behavior. The weights of the equations can then be

modified.

In yet another aspect, causality analysis is used in order to synthesize
the model description, protocol information and simulation data. The
synthesized data may then be passed more efficiently through the neural

network.

In another aspect, the resulting abstract model can be simulated as-1s to
run pure performance analysis of a system, or can be plugged into TLM
functional models and used to provide timing and functional behavior

during fully functional simulation.

These features and others of the described embodiments will be more
readily apparent from the following detailed description, which proceeds

with reference to the accompanying drawings.
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Brief Description of the drawings

Figure 1 is a high-level flowchart of a method for converting a
circuit description from a lower-level description into a higher-level
description, while changing the level of abstraction;

Figure 2 is a flowchart of a method for converting a description of
a circuit simulation into a series of transactions through message
extraction;

Figure 3 is a hardware diagram of a system used to convert the
description of the circuit into transactions;

Figure 4 is a detailed example showing simulated signal data of
the circuit description on numerous hardware lines;

Figure 5 is a detailed example of a state machine for some of the
available transactions;

Figure 6 is a detailed flowchart of a method for converting the
simulated circuit description into transactions;

Figure 7 is a flowchart of a method for converting a series of
transactions into a super-transaction representation;

Figure 8 shows a transaction-based view of the simulation data
that may be displayed to the user;

Figure 9 is a flowchart of a method for performing model
extraction of the circuit;

Figure 10 is a flowchart of a method providing further details for
generating an abstract model;

Figure 11 is a hardware diagram of a system used to convert
transaction data into an abstract model;

Figure 12 is an example of a fork table used in generating the
abstract model;

Figure 13 is an example of a latency table used in generating the

abstract model;
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Figure 14 is a flowchart of a method for performing causality
analysis;

Figure 15 is a flowchart of a method performed by a neural
network for generating a system of equations approximating the circuit
behavior;

Figure 16 shows a network that may be used to implement the
invention; and

Figure 17 is an exemplary flowchart of a method for implementing

the invention over the network of Figure 16.

Detailed Description of preferred Embodiments

Figure 1 shows a high-level flowchart for converting a circuit description
from a low-level description (e.g., HDL, RTL) to a higher level of
abstraction, such as a transaction level model (TLM). The low-level
description generally includes details at the signal level, while the TLM
uses high level functions and equations to calculate output transactions
based on inputs and is not concerned with the device-level
implementation of the circuit. ESL is an emerging electronic design
methodology, which focuses on the higher abstraction level. Electronic
System Level is now an established approach at most of the world’s
leading System-on-a-chip (SoC) design companies, and is being used
increasingly in system design. From its genesis as an algorithm
modeling methodology with ‘no links to implementation’, ESL is evolving
into a set of complementary methodologies that enable embedded system
design, verification, and debugging through to the hardware and
software implementation of custom SoC, system-on-FPGA, system-on-
board, and entire multi-board systems. ESL can be accomplished

through the use of SystemC as an abstract modeling language.

At process box 10, simulation is performed on the low-level circuit
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description. At process box 12, transactions are extracted from the
simulation data. The simulation and transaction extraction process are
described more fully in relation to Figures 2-8, but basically the system
maps signal patterns into messages using pre-defined protocols (e.g.,
AMBA, PCI, etc.). Then the messages are converted to transactions. At
process box 14, model extraction is performed. The model extraction is
described more fully in relation to Figures 9-18, but generally the system
looks to repetitive correlation (i.e., deterministic behavior) between
input sequences and output messages. Neural network functions are
used to calculate the output message generation and extrapolate
statistical behavior of a component. Additionally, data dependencies can
be extracted. Finally, in process box 16, the model is output at the
higher level of abstraction. The model, in a sense, is like a black box
where input transactions/messages are analyzed to generate output
transactions/messages, without a focus on signal levels and values, but
more a focus on timing and relationships between messages. The
resulting abstract model can be simulated as-is to run pure performance
analysis ;)f a system, or can be plugged into TLM functional models and
used to provide timing and functional behavior during fully functional

simulation.

Figure 2 shows a flowchart of a method for converting simulation data of
a circuit description to a transaction-based description, which is at a
higher layer of abstraction. In process box 20, simulation data of a
circuit description is received. The circuit description may be in HDL or
any other software language and it may be compiled and simulated as
part of a system design flow or it may be separately compiled and
simulated. Thus, the simulation can be run in combination with the
conversion process to a transaction-based description, or it can be run on

a separate machine at a separate time. Any desired simulator may be
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used, such as ModelSim®, available from Mentor Graphics Corporation,
or VCD (Value Change Dump) files generated by any other simulator. In
process box 24, the simulated circuit is converted into a series of
transactions associated with a predetermined protocol. The protocol
used is typically provided as input into the system by the user. In
process box 26, the simulation data is output in the form of the
transactions, which is a higher level of abstraction than the received
simulated circuit design. For example, Figure 4 shows a simulated
circuit description, which is at a signal level including a plurality of
signals on various hardware lines. Figure 8 illustrates the converted
circuit description at a transaction level. The output may be achieved by
a variety of techniques, such as displayed to the user on a display (not

shown), output to a file, etc.

Figure 3 shows a hardware diagram of a system 38 for converting a
circuit description into a circuit description at the transaction level. A
storage device 40 of any desired type has stored thereon the circuit
design in HDL or any other desired language that may be used to
describe circuits. A compiler 42 compiles the design and a protocol
library 44. The compiler 42 may be any desired compiler and is usually
included as part of a simulator package. The protocol library 44 includes
messages and transactions associated with a protocol used by the circuit.
Messages include part of a transaction, such as a request and an
acknowledge of the bus, whereas a transaction is a complete operation,
such as any of a variety of types of Read or Write transactions or control
or setup transactions. A simulation kernel 46 simulates the compiled
design in a well-known manner, as already described. The simulation
kernel 46 outputs the simulation data 48 in any desired format. Box 48

can also represent a pre-simulated design data (VCD format).



WO 2007/066320 PCT/IL2006/001349

A message recognition module 50 reads the simulation data 48 and
analyzes the data to convert it to messages of the protocol stored in the
protocol library 44. Figures 4-6 describe this conversion more
thoroughly, but generally switching signals of the simulation are
compared (during various time slices) to messages within the protocol
library 44 to determine what message is being processed during a
particular time slice. The messages associated with the switching
signals during each time slice are then stored to convert the switching

signals into messages.

A transaction recognition module 52 reads the messages determined by
the message recognition module 50 and converts the messages into
transactions using a comparison of a series of messages to
predetermined messages within the protocol library 44. If a match is
found, then the transaction recognition module stores the series of
messages as a transaction. The result is that the messages are

converted into a series of transactions.

A transaction sequence recognition module 54 converts multiple
transactions into a single super-transaction sequence. TFor example,
several Writes can be converted into a single control operation. This
conversion from multiple transactions to a super-transaction sequence is
described further below in relation to Figure 7. If desired, the
transaction sequence recognition module 54 may be bypassed or omitted,
so that the transactions are output directly. Results 56 of the conversion

are output onto a storage medium or a display.

In any event, the simulated circuit description is taken to a higher level
of abstraction, as the simulation data is converted first to messages,

then to transactions, and finally, if desired, to transaction sequences.
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The compiler 42, simulator kernel 46, and modules 50, 52, 54, may all be
run on the same computer. Alternatively, the circuit description may be
compiled and simulated in a different location so that the resultant
simulation data 48 is merely on a storage medium to be input into the
message recognition module 50. In such a case, as shown at 58, it is
desirable that the some of the protocol data from the protocol library 44

is incorporated into the simulation data in a pre-processing step.

Figure 4 shows a detailed example of part of the simulated signal data
48. Various signal data 70 on hardware lines are shown including a
clock line 72, a read/write line 74, a bus request line 76, a ready line 78,
address lines 80, and data lines 82. Simulation is also carried out on
many more hardware lines, which are not shown for convenience. The
signals being simulated follow a predetermined protocol 84. A protocol
is a set of rules or standards designed to enable circuit elements to
communicate together and exchange information with as little error as
possible. The protocol 84 is made up of a plurality of transactions 85,
such as shown at 86 (i.e., transaction A) and at 88 (i.e., transaction B). A
transaction is a discrete activity, such as a Read or Write operation that
moves data from one place to another in the system. The transactions
86, 88 are in turn made up of a series of messages 90. For example,
transaction 86 is shown as including three messages, 92, 94, and 96. A
message is a smaller unit of information electronically transmitted from
one circuit element to another to facilitate the transaction. Example
messages include “request for bus”, “acknowledge”, “ready”, etc. Those
skilled in the art will readily recognize that these are only examples of
transactions and messages and others may be used. Each message is
associated with a time-slice 98, such as those shown at 100, 102, and
104. Normally, the time-slices are based on the clock signal 72. During

each time-slice, the hardware lines 70 are analyzed to determine the



WO 2007/066320 PCT/IL2006/001349
- 11 -

message being sent in correspondence with the transactions of the
protocol, as further described below. Transaction 88 is similar to

transaction 86 and need not be further described.

Figure 5 shows an example part of a state machine 120 stored within the
protocol library 44. Different states 122 are shown as numbered circles.
Messages, such as those at 90, are shown in boxes, and cause the state
machine to move from one state to another. Transactions may be
defined by a path through the state machine 120 that starts at an idle
state 124 (state 0) and that ends at the same idle state, although those
skilled in the art will recognize that the state machine 120 may be
constructed in a variety of different formats. For example, a read
transaction 126 is made up of numbered states 0, 1, 2, 3, 4 and 5. The
read transaction 126 is completed upon return to the idle state from
state 5 to state 0, as shown by arrow 128. A write transaction 130 1s
made up of numbered states O, 1, 2, 6, 7, 8, 9, and 10. The write
transaction 130 is completed upon return to the idle state from state 7 to

state 0, as shown by arrow 132.

Figure 6 shows a flowchart of a method preformed by the message
recognition module 50 and the transaction recognition module 52 in
order to convert the simulation data into a transaction-based
description. At process box 150, the simulated input data (see box 48 in
Figure 3) is received so that it may be used by the message recognition
module 50. Such simulation data is normally within a database. In
process box 152, the analysis starts by monitoring the signal data 70 on
the various hardware lines upon which messages are received.
Additionally, in process box 152, the protocol library 44 is read to access
a state machine, such as state machine 120, associated with the lprotocol.

In process box 154, in order to analyze a transaction, an assumption is
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made that the transaction starts from the idle state 124. In process box
156, a time-slice of data is read corresponding to the clock signal on
hardware line 72. For example, in Figure 4, the data may be read
starting with a time-slice 100. Thus, the switching signals on the
various hardware lines are read in order to be analyzed. In process box
158, the data read is analyzed by comparing the switching signals to
known patterns of messages stored in the protocol library 44. Returning
briefly to Figure 5, from the idle state 124, a bus request message
changes the state of the state machine to state 1. A bus request message
has a particular pattern of signal data on the hardware lines, which is
compared to a known pattern in the protocol library 44. Thus, once a
match is found between the known pattern of messages and the message
analyzed during the currently analyzed time-slice, the message has been
determined and is stored in process box 160. In process box 162, the
current state of the state machine is updated to reflect the change of
state. Continuing with the example, the new state is state 1 after a bus
request message is received. In decision box 164, a determination is
made whether the state machine has returned to the idle state. If yes,
this indicates that a transaction is complete and the transaction is
determined in process box 166 by comparing a sequence of the stored
messages to a sequence of known messages in the protocol library 44.
The sequence of stored messages are those received from the start of the
idle state until the state machine returned to the idle state. Once a
match is found between the sequence of stored messages and those in
the protocol library, the transaction associated with those messages is
easily obtained from the protocol library 44. The determined transaction
is then stored as indicated in process box 166. In decision box 168, a
check is made whether all of the input simulated signal data has been
anaiyzed by reading whether the database including the signal data is at
the end. If yes, the method ends as shown at 170. Otherwise, the
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method continues at process box 156 and the next time-slice is read (e.g.,
time-slice 102). Once the method ends, the database of signal data is
converted into a series of transactions associated with the protocol found

in the protocol database 44.

Figure 7 shows a method implemented by the transaction sequence
recognition module 54 (see Figure 3). It may be desirable to group
transactions together in order to display to a user the circuit at an even
higher level of abstraction. For example, several write / read
transactions can be shown as a single control transaction as opposed to
individual transactions. In process box 200, a group of transactions is
selected. For example, if there are many of the same type of
transactions in sequence (e.g., Reads), such a sequence may be
condensed. In process box 202, the selected group is compared to
predetermined groups. In decision box 204, a determination is made
whether there is a match between the selected group and the
predetermined groups. If there is a match, then in process box 206, the
sequence of transactions is stored as a single transaction in order to
convert the circuit description to an even higher level of abstraction. In
decision box 208, a check is made whether all of the transactions have
been read. If yes, then the method ends at 210. If not, then a new group
of transactions is chosen at 212, and the process starts over at process

box 202.

Figure 8 shows an example of a display showing the simulation data of
Figure 3 at a higher level of abstraction. Particularly, instead of signals,
the simulation data is shown as a series of transactions. Write
transactions, such as at 240, are shown as dotted lines and read
transactions, such as shown at 242, are shown as solid lines.

Throughput is shown along the Y-axis and time is indicated along the X-
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axis. Thicker lines generally mean there is a grouping of many
transactions so close in time that at the current zoom level they cannot
be distinguished. Of course, a zoom option may be used to focus on
particular transactions. As can readily be seen, the view of Figure 8 is
much easier to read than that of Figure 4 and allows the designer to

obtain a better overall system view of the flow of data.

Figure 9 shows a flowchart of a method for implementing model
extraction 14 (Figure 1). In process box 300, input files are received
related to protocol information, model description, and simulation data
for the circuit. The protocol information is provided by the user and is
stored in the protocol library 44. The model description is also provided
by the user and includes an interface of the circuit model describing the
input/output ports and the lasting state description of the circuit model
that describes the internal states elements thereof. The simulation data
may be simulation data 48 (see Figure 3) or simulation data at the
transaction level 56 (Figure 3). In process box 302, using the input files,
an abstract model is generated that approximates the circuit behavior.
Although particular values may be associated with the approximated
circuit behavior, in general the timing aspects are the focal point. For
example, a particular address and read data are of less importance than
when the address arrives and when the data is output. Such parameters
can be added manually as they are easier to model (functionality is in
many cases more simple than timing behavior). In process box 304, the

abstract behavioral model is output.

Figure 10 is a flowchart of showing further details of process box 302. In
process box 320, a set of tables is created that is associated with the
input files. As explained further below, these tables are used to combine

all of the input information into a desirable format for the causality
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analysis and the learning phase. In process box 322, causality analysis
is performed on the tables. The causality analysis is described further in
Figure 14, but generally it is an analysis on the inputs in the table and
the outputs in order to find a repetitive correlation there between.
When there is a high degree of repetitive correlation of particular
‘events’, such events are given higher importance. On the other hand,
signals that are seen only once may be disregarded in order to lessen the
analysis of the learning phase. In process box 324, learning 18
performed. The learning is described further in Figure 15, but generally
“learning” is a standard term used in the industry, especially relating to
neural networks. [For example, an article entitled “Conditional
Distribution Learning with Neural Networks”, IEEE Signal Processing
1997, written by Tulay Hadah, Xiao Liu, and Kemal Sonmer describes
some aspects of “learning” using neural networks. In process box 326
model checking is performed in order to compare the generated model to

the desired results.

Figure 11 shows a part of the system for performing the model
extraction. Some aspects in Figure 11 have been already discussed. For
example, the simulation data 56 and the protocol library 44 were
discussed in relation to Figure 3. Although the simulation data 56 is
shown at the transaction level, it may be simulation data 48, if desired.
However, simulation data at the transaction level allows much less data
to be fed into the analysis, significantly speeding the process. A protocol
source file 350 is passed through a compiler 352 and the result is stored
in the protocol library 44. Lasting state information source file 354
contains information regarding the inner states of the circuit being
analyzed (e.g., describes registers in the circuit) and is also compiled in
compiler 356 and stored in a,file called Model Data 358. An interface

source file 360 contains information regarding the input and output
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ports of the circuit being analyzed. File 360 is passed through compiler
362 and combined with the compiled lasting state file 354 within the
model data file 358. The above-described compiled files are passed
together with the simulation data 56 to a table generator 370. The table
generator uses all of the input files to generate multiple tables, including
fork tables 872, latency tables 374, and data tables 376. The fork table
372 includes information regarding which path was taken during
simulation when a branch was encountered in the protocol. Figure 12
provides an example fork table and is described further below. The
latency tables 374 include information regarding the delay from a
change of input until the corresponding output is changed. The data
tables 376 include values associated with the output. In general, data
values are not needed because timing is more interesting for the overall
analysis. However, some data values may be tracked depending on

options set by the user.

The table generator 870 outputs the resulting tables to the causality
analysis engine 380 and to a neural network 302. As described further
below, the causality_ analysis engine performs time-based causality
analysis by applying a number of algorithms to each output message to
compute the most likely causality basis. The results are also
statistically analyzed and reduced so that only the most pertinent
information is fed to the neural network 382. The neural network 382
generates equations that approximate the circuit behavior. Those
skilled in the art will recognize that the neural network can be replaced
by any other machine learning or statistical algorithm. The model
checker 384 performs a check by comparing the inputs and outputs

using the generated equations to the simulated data.

Figure 12 shows an example fork table 400 generated by the table
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generator 370. The fork table includes multiple rows 402 representing
events and multiple columns 404, most of which represent lasting state
parameters. Column 406 includes a fork field. The fork field may
include numbers (not shown) indicating which direction a fork was taken

in association with an event and the associated lasting state parameters.

Figure 13 shows an example of a latency table 410. The latency table
also includes rows 412 representing events. Many columns 414
represent lasting state parameters. The last three columns 416, 418,
and 420 represent the event name, the time, and the latency,

respectively. Some simple examples showing possible values are shown.

As is well known, the format and fields within a table is design specific

and a wide variety of different formats and fields may be used.

Figure 14 is a flowchart of a method showing the operation of the
causality engine 380. In process box 440, a set of causality characters 1s
defined. Basically, when a repetitive correlation between inputs and
outputs is found, a character is assigned to such a situation. For each
output message in the latency table, causality characters are defined
with each character represented as a pair having the form (event, time
delta). Thus, the causality character describes a situation in which the
specified event causes the output message after a given period of time.
In process box 442, the number of causality characters is statistically
reduced. Reduction of information ultimately provided to the learning
process increases the speed of the system. Elimination of some
characters can be accomplished using a hypothesis algorithm that
provides a probability for a character to be part of the actual causality
model. Thus, characters with limited appearances are generally

eliminated. In process box 444, the causality characters are further
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reduced using a genetic optimization algorithm that creates a model for
the least amount of causality characters possible and still allowing to
choose a cause for each output message instance. In process box 446,
tables are created including will and time tables. The will table relates
to something that caused an output change, such as an input in
combination with a lasting state. The time table relates contains the
remaining character lines (after the reductions) with the latency time

value.

Figure 15 is a flowchart of a method for performing “learning” 324
(Figure 10). In process box 460, the tables generated in process box 446
(Figure 14) are used as well as tables generated from the table generator
370 (Figure 11) in order to create a system of weighted equations that
represent the behavior of the circuit. Thus, for example, the inputs and
outputs are analyzed in conjunction with state information to generate
the equations. Such a generation of equations is well known in the art
using standard techniques of neural networks. In process box 462, input
patterns are applied to the generated system of equations to generate
actual values produced by the equations. In process box 464, an error s
calculated by using a difference between the actual values (process box
462) to the desired values (determined during simulation). In process
box 466, based on this difference, the weightings in the system of
equations are modified in order to more closely match the desired values.
In decision box 468, a check is made whether the actual values
generated by the system of equations are within an acceptable limit. If
so, the flowchart is exited at 470. In not, the flow returns to process box

462 in order to re-analyze the equations.

Figure 16 shows that portions of the system may be applied to a

distributed network, such as the Internet. Of course, the system also
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may be implemented without a network (e.g., a single computer). A
server computer 480 may have an associated database 482 (internal or
external to the server computer). The server computer is coupled to a
network shown generally at 484. One or more client computers, such as
those shown at 488 and 490, are coupled to the network to interface with

the server computer using a network protocol.

Figure 17 shows a flow diagram using the network of Figure 16. In
process box 500, the circuit description to be transformed is sent from a
client computer, such as 488, to the server computer 480. In process box
502, the abstract model of the circuit description is generated that
approximates or imitates the circuit behavior, as previously described.
In process box 504, the generated abstract model is checked against
simulation results. In process box 506, the results are sent though the
network to the client computer 488. Finally, in process box 508, the
results are displayed to the user. It should be recognized that one or
more of the process boxes may be performed on the client side rather

than the server side, and vice versa.

Having illustrated and described the principles of the illustrated
embodiments, it will be apparent to those skilled in the art that the
embodiments can be modified in arrangement and detail without

departing from such principles.

In view of the many possible embodiments, it will be recognized that the
illustrated embodiments include only examples of the invention and
should not be taken as a limitation on the scope of the invention. Rather,
the invention is defined by the following claims. We therefore claim as
the invention all such embodiments that come within the scope of these

claims.
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Claims:

1. A method for converting a description of a circuit into an
abstract model, comprising: |

reading a model description of the circuit, protocol information
relating to the circuit, and simulation data associated with the circuit;
and

based on the -médel description, the protocol information, and the
simulation data, generating an abstract model of the circuit that

approximates the circuit behavior.

2. The method of claim 1, wherein generating the abstract model

includes generating a system of equations that represent the behavior of

the circuit.

3. The method of any of claims 1 and 2, wherein generating an
abstract model includes performing causality analysis including
determining repetitive behavior between multiple input and output

signals of the simulation data.

4. The method of any of the preceding claims, further including:

performing causality analysis including defining a set causality
characters, each causality character representing an association between
an event and an output; and

reducing the set of causality characters through statistical

analysis.

5. The method of claim 4, further reducing the set of causality

characters using a genetic optimization algorithm.

SUBSTITUTE SHEET (RULE 26)
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6. The method of any of the preceding claims, wherein generating
the abstract model further includes generating fork tables and latency
tables wherein the fork tables include state information and path
information associated with the circuit and the latency tables include a

latency period associated with a simulated event.

7. The method of any of the preceding claims, wherein the

simulation data is at a transaction level.

8. The method of any of the preceding claims, wherein generating
an abstract model includes learning the circuit using neural networks or

any other machine learning or statistical algorithm.

9. The method of claim 8, wherein learning includes:

generating a system of weighted equations representing the
behavior of the circuit;

applying input patterns to the system of equations to generate
actual output values;

calculating an error by using a difference between the actual
values and desired values;

modifying the weightings in the system of equations based on the

calculated error.

10. The method of any of the preceding claims, wherein the
simulation data is at a transaction-level through a conversion including:

reading low-level simulation data obtained from simulation of the
circuit description;

analyzing switching signals, from the low-level simulation data,

on simulated hardware lines of the circuit;

SUBSTITUTE SHEET (RULE 26)
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determining transactions of the protocol associated with the
analyzed switching signals; and
storing a converted description of the simulated circuit as a series

of the determined transactions.

11. The method of any of the preceding claims, wherein the circuit
description is in a register transfer level and the abstract model is at a
transaction-level model, the transaction-level model having a different

level of abstraction than the register transfer level.

12. The method of any of the preceding claims, wherein at least
one of the model description of the circuit, the protocol information
relating to the circuit, or the simulation data, is provided from a client
computer coupled to a network and generating the abstract model is

performed on a server computer coupled to the network.

13. A computer-readable medium including instructions stored

thereon for performing the method of claim 1.

14. An apparatus to convert a description of a circuit into an
abstract model, comprising:

a causality engine coupled to at least one database including a
protocol library, model data, and simulation data, the causality engine to
determine deterministic behavior between multiple input and output
signals of the simulation data; and

a neural network coupled to the causality engine to generate an
abstract model of the circuit approximating the circuit behavior based on

the determination of repetitive behavior by the causality engine.

SUBSTITUTE SHEET (RULE 26)
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15. The apparatus of claim 14, further including a table generator
coupled between the causality engine and the neural network, the table
generator for receiving the protocol library, the model data, and the
simulation data and for generating tables to be used in the neural

network.

16. The apparatus of any of claims 14-15, further including a
model checker coupled to the neural network, the model checker for

testing the abstract model of the circuit.

17. The apparatus of any of claims 14-16, wherein the causality
engine is located on a client computer and the neural network is located

o1 a server computer.

18. A method for generating an abstract model of a circuit,
comprising:

performing causality analysis on circuit simulation data at a
transaction-level to determine an association between input signals and
output signals and producing a causality output based on the analysis;
and

learning the circuit behavior using the causality output in order to
produce the abstract model including a sequence of equations that

approximate the circuit behavior.

19. The method of claim 18, further including converting low-level
simulation data to the simulation data at a transaction-level including:

reading the low-level simulation data obtained from simulation of
the circuit description; |

analyzing switching signals, from the low-level simulation data,

on simulated hardware lines of the circuit;

SUBSTITUTE SHEET (RULE 26)
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determining transactions of a protocol associated with the
analyzed switching signals; and
storing a converted description of the simulated circuit as a series

of the determined transactions.

20. The method of any of claims 18-19, wherein performing
causality analysis includes:

defining a set of causality characters based on the association
between input and output signals;

statistically reducing the set of causality characters; and

generating tables based on the reduced set of causality characters.

21. The method of any of claims 18-20, wherein the abstract

model is in an electronic-system-level model.

22. An apparatus for converting a circuit description into an
abstract model of the circuit, comprising:

means for reading a model description of the circuit, protocol
information relating to the circuit, and simulation data associated with
the circuit; and

means generating an abstract model of the circuit that
substantially imitates the circuit behavior using the model description of

the circuit, the protocol information, and the simulation data.

23. A method for generating an abstract model of a circuit,
comprising:

receiving a circuit description in a register transfer level having a
first level of abstraction;

converting the circuit simulation description into a transaction

level description; and

SUBSTITUTE SHEET (RULE 26)
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using a neural network, converting the transaction level
description into transaction-level model having a second level of

abstraction, different from the first level of abstraction.

SUBSTITUTE SHEET (RULE 26)
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