A stuffed animal includes a body and an appendage attached to the body. The appendage includes an elongate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a loop. The stuffed animal further includes a material covering the body appendage. Deflecting the surface of the bi-stable spring element, such as by lightly rapping it, causes the spring element to move to the second articulated position and wrap the appendage around an object, such as a wrist, a child’s bed rail, or stroller bar. The stuffed animal hangs from the object by the appendage, and will stay attached until pulled off, thereby preventing the accidental loss of the animal.
PROVIDE STUFFED ANIMAL WITH APPENDAGE HAVING BI-STABLE SPRING ELEMENT

ESTABLISH BASELINE STATE

EXTEND BI-STABLE SPRING ELEMENT

ALIGN STUFFED ANIMAL APPENDAGE TO A PORTION OF PATIENT'S BODY

DEFLECT BI-STABLE SPRING ELEMENT

CLASP APPENDAGE TO PATIENT'S BODY

APPLY CONTACT COMFORT

MEASURE NEW STATE

COMPARE NEW STATE TO BASELINE STATE

FIG. 13
SPRING-ACTUATED APPENDAGE FOR STUFFED ANIMAL AND METHOD FOR USE

CROSS REFERENCE TO RELATED APPLICATION

[0001] Reference is made to and this application claims priority from and the benefit of U.S. Provisional Application Ser. No. 61/839,725, filed Jun. 26, 2013, which application is incorporated herein in its entirety by reference.

FIELD OF THE INVENTION

[0002] This disclosure relates generally to stuffed animals and, more specifically, to animals with an articulating appendage.

BACKGROUND OF THE INVENTION

[0003] Stuffed toys, and particularly stuffed animals, are extremely popular with children. A child may develop a special bond with a particular stuffed animal, and may desire to take the animal with them wherever they go. However, young children lack dexterity and occasionally attention span. As a result, they are prone to dropping their stuffed animals, and often losing them. This can be an upsetting event for small children, even traumatizing.

SUMMARY OF THE INVENTION

[0004] In accordance with one aspect of the disclosure, a stuffed animal includes a body and an appendage attached to the body. The appendage includes an elongate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a loop. The stuffed animal further includes a material covering the body appendage.

[0005] In another aspect of the disclosure, a stuffed animal includes a body and a body appendage attached to the body. The appendage includes an elongate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a coil. A spring is attached to the body and the bi-stable spring element, and a material covers the body appendage.

[0006] In one embodiment, the animal further includes a lock attached to the spring to prevent the bi-stable spring element from articulating.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The features described herein can be better understood with reference to the drawings described below. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.

[0008] FIG. 1 depicts a stuffed animal according to one embodiment of the invention with the appendage in an extended position;

[0009] FIG. 2 depicts the stuffed animal shown in FIG. 1 with the appendage in an articulated position;

[0010] FIG. 3 depicts a bi-stable spring element in an extended straight position according to one embodiment of the present invention;

[0011] FIG. 4 depicts a cross-sectional transverse view of the bi-stable spring element shown in FIG. 3 in an articulated position;

[0012] FIG. 5 depicts the invention shown in FIG. 2 attached to a stroller;

[0013] FIG. 6 depicts a cross-sectional view of the appendage shown in FIG. 1;

[0014] FIG. 7 depicts a stuffed animal according to another embodiment of the invention with the appendage in an extended position;

[0015] FIG. 8 depicts the stuffed animal shown in FIG. 7 with the appendage in an articulated position;

[0016] FIG. 9 depicts a stuffed animal according to another embodiment of the invention with two appendages in an extended position;

[0017] FIG. 10 depicts the stuffed animal shown in FIG. 9 with the two appendages in an articulated position;

[0018] FIG. 11 depicts a stuffed animal according to another embodiment of the invention with the appendage in an extended position;

[0019] FIG. 12 depicts the stuffed animal shown in FIG. 10 with the appendage in an articulated position; and

[0020] FIG. 13 is a block diagram collectively presenting a flow chart illustrating an exemplary embodiment of a method for therapeutic treatment of a patient's disorder or condition according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] Most stuffed animals or toys found in the prior art lack a feature to prevent accidental loss. Some animals have an external strap with snaps, or an external fabric loop with hook and loop fasteners. However, the external straps may not be a proper length (i.e., too long or too short), or the fabric of the external loop may be mismatched, detracting from the aesthetic appearance of the stuffed animal. And, the snaps or hook and loop fasteners may be difficult for young children to manipulate.

[0022] Referring to FIG. 1, a stuffed animal 10 according to one embodiment of the invention takes the form of a bunny rabbit. The rabbit 10 may be formed with a conventional body 12 having a head, torso, arms, and legs. The rabbit 10 may have a soft fabric covering, such as polyester, and may be stuffed with 100% polyester fiber fill to provide a plush animal.

[0023] The rabbit 10 further includes two appendages 14, namely ears. At least one of the ears 14 includes a bi-stable spring element 16 to permit the ear to move from a first extended straight position 18 to a second articulated position 20, shown in FIG. 2. In FIG. 2, the articulated position 20 is a loop.

[0024] Referring to FIG. 3, the bi-stable spring element 16 is shown in the extended position 18 and includes a proximal end 22 closest to the body 12, and an opposing distal end 24 farthest away from the body. The bi-stable spring element 16 is very thin and has a length (L) much greater than its width (W), on the order of 10:1. When in the extended position 18, the bi-stable spring element 16 has an arcuate curvature 26 along its width (W). When in the articulated position 20, the spring element 16 has a flat structure.

[0025] The arcuate curvature 26 helps to provide the bi-stable properties, so the spring element 16 has essentially two different physical states or possible positions. The first state is the extended position 18 as shown in FIG. 1. In this state the bi-stable spring element 16 stores potential energy. The spring element 16 has spring-actuating properties which cause it to recoil from the extended position 18 when the curvature (i.e., lateral cross section) is slightly deformed at
any tangent to the curvature. Deformation may be induced by movement or a downward exerted force on its curved surface. The deformation converts the potential energy to kinetic energy, releasing the bi-stable spring element 16 from the extended position 18 and causing it to spring to the articulated position 20, which position is devoid of potential energy.

Thus, when the bottom surface 26 of the appendage 14 is lightly rapped against an object 28 such as a stroller handle bar, a child's bed rail, or a child's wrist, the release of potential energy will cause the bi-stable spring element 16 to immediately articulate to the second position 20. Referring to FIG. 4, shown is a cross-sectional view of a circular object 28 such as a stroller bar with the spring element 16 in the articulated position 20. The outer covering of the appendage 14 has been removed for clarity. In the illustrated embodiment, the second position 20 is a loop. The bi-stable spring element 16 enwraps the bar 28 and prevents the appendage from disengaging. In one example, the loop 20 may be sized to wrap around a bar 28 or wrist approximately two inches in diameter. The bar 28 may be any sort of object suited for the intended purpose, such as, but not limited to, a shopping cart, a back pack, or a high chair, for example.

To remove the appendage 14 from the object 28, the appendage may be manually unwound or straightened out from its articulated position 20 to its rigid, elongated and extended position outside the cavity. Potential energy is then stored in the member when it is elongated, and converted into kinetic energy when the bi-stable spring element 16 is sufficiently deflected. This deflection releases the kinetic energy and causes the spring element 16 to move into the articulated position 20. The spring element 16 may be triggered into the articulated position 20 merely by exerting a downward force on its top surface with a finger or an object.

The bi-stable spring element 16, when in the extended position, may be about 3 inches to 12 inches in length, preferably about 8 inches in length. The width of the bi-stable spring element 16 may be about 0.5 inches to 1.5 inches, preferably about 1 inch. The bi-stable spring element 16 may have a thickness of approximately 0.008 inches. The dimensions may vary according to the particular application. In one embodiment, the bi-stable spring element 16 is formed of metal or metal alloy, but other suitable materials may be used, such as carbon fiber or silicone.

Turning now to FIG. 6, in most embodiments the bi-stable spring element 16 is not visible to the user of the animal 10, and may be covered over with a fabric or like material 30. In one embodiment, the appendage 14, such as the rabbit ear, may be fabricated to define an internal pocket 32. For example, two pieces of fabric material 30 may be stitched together on their ends 34 to create the internal pocket 32. The bi-stable spring element 16 may be inserted, embedded, or otherwise attached within the pocket 32 to secure its orientation, or the pocket may be constructed small enough to simply capture and hold the spring element in place. In one example, the bi-stable spring element 16 is sewn into the pocket 32 of the ear 14 using the same material as the remainder of the body 12. In this manner, the appendage 14 appears to be exactly like the rest of the stuffed animal and is aesthetically pleasing to the eye.

In some embodiments, the bi-stable spring element 16 may include a coating 34 to prevent corrosion. The coating 34 may be formed of fabric, rubber, or plastic for example. A water-resistant coating 34 is preferable to protect the bi-stable spring element 16 from rusting.

Referring back to FIGS. 1, 2, and 5, the bi-stable properties of the spring element 16 may advantageously provide a durable hanger for the stuffed animal 10, such that the bi-stable spring element 116 can fully support the weight of the animal. In this manner, the animal 10 may be attached to many objects besides a stroller, such as a child's bed rail or a person's wrist, including a child. A child has no difficulty snapping the appendage into place, so the stuffed animal 10 can be attached to objects in a fun and easy manner. In one example, a person or child can "wear" the animal 10 around their wrist.

The embodiment of the bunny rabbit depicted in FIG. 1 is not meant to be limiting. Other animals and their appendages may include, but are not limited to, a frog and its tongue, an elephant and its trunk or tail, or a lizard and its tongue or tail.

For example, turning to FIGS. 7 and 8 wherein like numerals indicate like elements in FIGS. 1 and 2, a stuffed monkey 110 is shown with its prehensile tail (i.e., the tail has adapted to be able to grasp or hold objects such as tree branches). The monkey 110 may be formed with a body 112 having a head, torso, arms, and legs. Similar to the bunny described with reference to FIG. 1, the monkey 110 may have a soft fabric covering, such as polyester, and may be stuffed with 100% polyester fiber fill to provide a plush animal. The monkey 110 includes a single appendage 114, namely the prehensile tail. The tail 114 includes a bi-stable spring element 116 to permit the tail to move from a first extended position 118 to a second articulated position 120, shown in FIG. 8. In FIG. 8, the articulated position 120 is a loop.

Referring now to FIGS. 9 and 10, wherein like numerals are used to indicate like parts from FIGS. 1-6, shown is a stuffed animal 210 according to another embodiment of the invention. The animal is a dinosaur 210 and has two appendages 214a, 214b in an extended position. The first appendage 214a is the dinosaur’s tongue and the second appendage 214b is the dinosaur’s tail. Having two appendages with bi-stable spring elements creates more flexibility and variety for hanging or carrying. As illustrated in FIG. 10, the articulated position 220 of the bi-stable spring element 216 is a loop.

The embodiment of the dinosaur depicted in FIG. 9 is not meant to be limiting. Other animals and their dual appendages may include, but are not limited to, an elephant and its trunk and tail, or a lizard and its tongue or tail. The appendages 214a, 214b may be articulated separately or together.

Referring now to FIGS. 11 and 12, wherein like numerals are used to indicate like parts from FIGS. 1-6, in another embodiment of the present invention the stuffed animal takes the form of a human character 310. The character includes an appendage 314 having a bi-stable spring element 316 with a first extended position 318 that is straight and a second articulated position 320 that is coiled. In the illustrated example, the appendage 314 is a long nose, such that found on the popular children’s character Pinocchio. The head of the body 312 includes a spring 336 similar to that found on a retracted tape measure, and one end of the bi-stable spring element 316 is fixedly attached to the spring 336. When the appendage 314 is pulled straight out, the spring 336 within the character is extended. Pulling out the appendage 314 further causes the spring 336 to extend and tighten, adding kinetic tension.
When the appendage 314 is released, it retracts into the character 310, and the spring 336 returns to its original position. When the retractable appendage 314 is pulled out of the character, the center loose coil 336 within the character body 312 is pulled into a tighter coil and when the appendage is let go, the center tempered metal coil 336 returns to its starting position which draws the appendage 314 back into the character. In an exemplary embodiment, Pinocchio’s nose can be short or long. An additional locking mechanism (not shown), much like that on tape measures, can be added to the character to lock the extended appendage 314 in place.

In one embodiment, the bi-stable spring element 316 is formed of stainless steel and is safely encased by a stretchy fabric covering 330, such as Lycra Spandex.

In another embodiment of the invention, when the bi-stable spring element 316 is in the extended position 318 and the spring 336 is locked, the straightened appendage 314 can be pinched, clasped, or coiled around a wearer’s wrist, child’s bed rail, or stroller handle, causing the spring element 316 to spring back into a tight curve that wraps around the wrist or object in a loop, securing the stuffed character to the wearer, for example.

In the disclosed embodiment, the appendage 314 is a nose. However, other appendages are contemplated within the scope of the invention. For example, the appendage may be an animal’s tail, a tongue, or an elephant’s trunk, for example. In another embodiment, the appendage is the body of a snake that may be straitened or coiled.

The disclosed invention solves the problem of how to attach and carry animals easily and prevent the animal from being dropped or accidentally lost. Embodiments of the invention allow the user to easily attach the stuffed animal to the wrist, a child’s bed rail, or a carrige or stroller handle by simply claspng or coiling the animal’s appendage against the object. There is no need for hooks, hook and loop fasteners, or other method of attachment. The animal will stay attached until pulled off the wrist or object, and will prevent the accidental loss of animal.

When clasped or coiled to a user’s arm, the stuffed animal not only bestows the pleasure and delight normally associated with a stuffed toy, but may further provide comforting, textile feedback to the wearer. That is, the wearer may enjoy a feeling of reciprocity from the stuffed animal, in the sense that the animal “hugs back.” Accordingly, another aspect of the present disclosure is the psychological and physiological benefits of a stuffed animal with claspng appendage to provide therapeutic benefits to the wearer.

In one embodiment of the invention, the stuffed animal can be used as a therapy adjunct in association with treatment of disorders or medical conditions. In one example, the stuffed animal provides advantages and benefits similar to, but in some cases superior to, animal-assisted therapy.

Animal-assisted therapy is a healing approach used to achieve therapeutic goals through an assisted interaction between patients and trained animals accompanied by human owners or handlers. Effects of animal-assisted therapy are primarily attributed to “contact comfort,” a tactile process whereby unconditional attachment bonds form between animals and humans, inducing relaxation by reducing cardiovascular reactivity to stress. Animal-assisted therapy has proven beneficial not only for children, but also the elderly, the grief-stricken, and the emotionally challenged.

Although living animals as therapy adjuncts can help reduce anxiety, depression, loneliness, and isolation, the use of live animals has drawbacks. For example, animal-assisted therapy may be unsuitable in a sterile hospital environment. Live animals pose a risk to a hospital’s infection control plan, and may adversely affect other patient’s allergies. The risk of a live animal, such as a dog, in a sterile environment may outweigh any therapeutic benefits. In other examples, the monetary expense of owning or working with an animal may not be a viable option for everyone in need. And, if the therapy animal dies or otherwise becomes unavailable, the patient may experience a deep sense of loss, or even trauma, which may reverse the benefits of therapy.

Studies have shown that stuffed animals may serve as a suitable replacement for live therapy animals, with less risk of allergic reactions and transmission of infection. Stroking an animal, whether live or stuffed, has been shown to reduce agitation and anxiety and produce a sense of well-being in depression and aggressive behavior. For example, recent clinical studies indicate that stuffed animals may be particularly helpful to those with high levels of dissociation, an experience of having one’s attention and emotions detached from the environment. Dissociation is common in patients suffering from depression, anxiety, and bipolar disorder. Because symptoms of dissociation can begin in childhood and result from emotionally unavailable parents, divorce, or physical and emotional abuse, integrating stuffed animals into therapy for young children can provide a sense of security and help to rebuild impaired attachment bonds by providing a way to experience and express emotions, a feeling of unconditional support, and grounding. In adults, dissociation may result from posttraumatic stress disorder (PTSD), for example.

However, some patients may not have the physical dexterity to grasp and hold a stuffed animal, or they suffer from physical limitations that hinder or prevent them from doing so. Others may have no physical limitations per se, but their hands may be preoccupied with other activities or treatment.

The stuffed animal or character disclosed herein solves this problem by clasping onto a patient’s arm or leg, for example, to provide therapeutic contact comfort or a hugging sensation. Turning now to FIG. 13, in one embodiment of the invention a method 400 is provided for therapeutic treatment of a patient’s disorder or condition. The disorder or medical condition to which the disclosed method of treatment applies can include, but is not limited to, Alzheimer’s; dementia; Parkinson’s; bereavement; depression; post-traumatic stress disorder; hypertension; dissociative identity disorder; autism/Asperger’s; anxiety; affective, emotional and behavior disorders; cerebral palsy; coronary care; cancer care; general geriatrics; anxiety/lytic intervention; sexual and physical abuse survivors; pain management; dental procedures; stress mediation; and reduction to speed recovery.

The method for therapeutic treatment of a patient’s disorder or condition 400 includes providing a stuffed animal 438 having a body and an appendage attached to the body. The appendage includes an elongate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a loop. The method for therapeutic treatment 400 further includes extending the bi-stable spring element 440 to the first extended position, thereby storing potential energy in the bi-stable spring element, aligning the extended appendage 442 to a portion of the patient’s body from which the stuffed animal will be hung, deflecting the surface of the bi-stable spring element 444 to
convert the potential energy in the spring element to kinetic energy, thereby causing the bi-stable spring element to move to the second articulated position, clasping the appendage of the stuffed animal around the portion of the patient’s body 446, and applying contact comfort 448 to the patient for a clinically effective time period.

[0050] The contact comfort 448 may manifest itself in many forms, and may share many of the benefits associated with animal-assisted therapy, but without the aforementioned drawbacks. For example, the step of applying contact comfort 448 may produce physiological changes that indicate a clinically effective relaxation response, such as lowered body temperature, slowed respiratory rate or heart rate, lowered blood pressure, increased oxygen saturation, increased favorable hormone levels such as oxytocin, decreased unfavorable hormone levels such as cortisol, or reduced pain. Applying contact comfort 448 may also improve hemodynamics in patients with advanced heart failure.

[0051] The method for therapeutic treatment 400 may further include establishing a baseline state 450 related to the disorder or condition. The baseline state may include heart rate, respiratory rate, oxygen saturation, temperature, blood pressure, stress hormone levels, dissociation, patient satisfaction, physical pain, emotional distress, calmness, happiness, and distraction, for example. The data may be recorded prior to providing the stuffed animal to the patient, or at least before clasping the animal’s appendage to the patient.

[0052] The method 400 may further include measuring a new state 452 after the clinically effective time period, and comparing the new state 454 with the baseline state. The comparison 454 may provide useful data on the efficacy of the contact comfort, which can be applied to other patients. In another example, the comparison 454 may be used to establish parameters for the clinically effective time period. For example, clinical studies of animal-assisted therapy in postoperative pediatric patients have verified that pain was significantly less after 10 to 20 minutes, and other studies reported cognitive stimulation in adults. Similar results could be attained using the method for therapeutic treatment of a patient’s disorder or condition 400 disclosed in the present invention, although the clinically effective time period may be shorter or longer.

[0053] One of the benefits of the disclosed method for therapeutic treatment of a patient’s disorder or condition 400 among hospitalized patients may be associated with more positive psychological effects, including greater perceptions of happiness. For example, the method 400 may provide relief or distraction from their pain or situation. Children in particular may be more likely to experience relaxation and calmness from the sensual feedback resulting from the reciprocal hugging of the stuffed animal’s cuddly fabric and spring-actuated appendage around one’s wrist.

[0054] While the present invention has been described with reference to a number of specific embodiments, it will be understood that the true spirit and scope of the invention should be determined only with respect to claims that can be supported by the present specification. Further, while in numerous cases herein wherein systems and apparatuses and methods are described as having a certain number of elements it will be understood that such systems, apparatuses and methods can be practiced with fewer than the mentioned certain number of elements. Also, while a number of particular embodiments have been described, it will be understood that features and aspects that have been described with reference to each particular embodiment can be used with each remaining particularly described embodiment.

[0055] A sample of devices and methods that are described herein are as follows:

[0056] A stuffed animal comprising:

[0057] a body;

[0058] a body appendage attached to the body, comprising an elongate bi-stable spring element having a proximal end and an opposing distal end, the bi-stable spring element being moveable between a first extended position that is straight and a second articulated position that forms a coil;

[0059] a spring attached to the body and the bi-stable spring element; and a material covering the body appendage.

[0060] The stuffed animal according to paragraph [0056], further comprising a lock attached to the spring to prevent the bi-stable spring element from articulating.

[0061] The stuffed animal according to paragraph [0056], wherein the body is a human form.

[0062] The stuffed animal according to paragraph [0058], wherein the appendage is an elongated nose.

What is claimed is:

1. A stuffed animal comprising:
 a body;
 a body appendage attached to the body, comprising an elongate bi-stable spring element having a proximal end and an opposing distal end, the bi-stable spring element being moveable between a first extended position that is straight and a second articulated position that forms a loop; and
 a material covering the body appendage.

2. The stuffed animal according to claim 1, wherein the body is an animal body.

3. The stuffed animal according to claim 2, wherein the body is a rabbit and the appendage is an ear.

4. The stuffed animal according to claim 2, wherein the body is an elephant and the appendage is a trunk.

5. The stuffed animal according to claim 2, wherein the body is a monkey.

6. The stuffed animal according to claim 2, wherein the body is a dinosaur.

7. The stuffed animal according to claim 2, wherein the appendage is a tail.

8. The stuffed animal according to claim 1, wherein the bi-stable spring element is formed of a metal strip.

9. The stuffed animal according to claim 1, wherein the bi-stable spring element comprises an arcuate cross section across its width.

10. The stuffed animal according to claim 1, further comprising a second body appendage comprising a second elongate bi-stable spring element, the bi-stable spring element being moveable between a first extended position and a second articulated position.

11. The stuffed animal according to claim 10, wherein the first extended position is straight and the second articulated position is a loop.

12. The stuffed animal according to claim 10, wherein the first extended position is straight and the second articulated position is a coil.

13. A method for attaching a stuffed animal to an object, comprising the steps of:
 - providing a stuffed animal having a body and an appendage attached to the body, the appendage including an elon-
gate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a loop;

extending the bi-stable spring element to the first extended position, thereby storing potential energy in the bi-stable spring element;

aligning the extended appendage to an object from which the animal will be hung;

deflecting the surface of the bi-stable spring element;

converting the potential energy in the spring element to kinetic energy, thereby causing the bi-stable spring element to move to the second articulated position and wrap around the object.

14. The method of claim 13, further comprising a step of removing the appendage from the object by manually straightening out from its second articulated position to its first extended position.

15. A method for therapeutic treatment of a patient’s disorder or condition, comprising the steps of:

providing a stuffed animal having a body and an appendage attached to the body, the appendage including an elongate bi-stable spring element movable between a first extended position that is straight and a second articulated position that forms a loop;

extending the bi-stable spring element to the first extended position, thereby storing potential energy in the bi-stable spring element;

aligning the extended appendage to a portion of the patient’s body from which the stuffed animal will be hung;

deflecting the surface of the bi-stable spring element to convert the potential energy in the spring element to kinetic energy, thereby causing the bi-stable spring element to move to the second articulated position;

clasping the appendage of the stuffed animal around the portion of the patient’s body; and

applying contact comfort to the patient for a clinically effective time period.

16. The method according to claim 15, further comprising the step of establishing a baseline state related to the disorder or condition.

17. The method according to claim 16, wherein the baseline state is selected from the group consisting of heart rate, respiratory rate, oxygen saturation, temperature, stress hormone levels, and blood pressure.

18. The method according to claim 16, wherein the baseline state is dissociation.

19. The method according to claim 16, wherein the baseline state is selected from the group consisting of patient satisfaction, physical pain, emotional distress, calmness, happiness, and distraction.

20. The method according to claim 16, further comprising the step of measuring a new state after the time period.

21. The method according to claim 20, further comprising the step of comparing the new state with the baseline state.

22. The method according to claim 16, wherein the patient’s disorder or condition is mental.

23. The method according to claim 22, wherein the mental disorder or condition is selected from the group consisting of Alzheimer’s, dementia, bereavement, depression, post-traumatic stress disorder, dissociative identity disorder, autism/Asperger’s, anxiety, affective, emotional and behavior disorders, general geriatrics, anxiolytic intervention, sexual and physical abuse survivors, stress mediation, and reduction to speed recovery.

24. The method according to claim 16, wherein the patient’s disorder or condition is physical.

25. The method according to claim 24, wherein the physical disorder or condition is selected from the group consisting of Parkinson’s, hypertension, cerebral palsy, coronary care, cancer care, general geriatrics, pain management, and dental procedures.