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INCREMENTALLY DISTRIBUTING LOGICAL WIRES ONTO PHYSICAL SOCKETS
BY REDUCING CRITICAL PATH DELAY

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application claims priority, under 35 U.S.C. § 119(e), from U.S. Provisional
Application No. 62/320,299, filed on April 8, 2016, entitled “INCREMENTAL
ALGORITHM FOR DISTRIBUTING LOGICAL WIRES ONTO PHYSICAL SOCKETS
BY REDUCING THE DELAY ON CRITICAL PATHS”, and from U.S. Provisional
Application No. 62/335,869, filed on May 13, 2016, entitled “INCREMENTALLY
DISTRIBUTING LOGICAL WIRES ONTO PHYSICAL SOCKETS BY REDUCING
CRITICAL PATH DELAY™, the contents of all of which are incorporated herein by

reference in their entirety.

BACKGROUND

[0002] The present disclosure relates generally to testing a circuit design, and more
specifically to testing a circuit design using a programmable emulation tool having

improved performance.

[0003] Verification of Very Large Scale Integrated (VLSI) circuits is important to the
success of any modern VLSI product. Verification typically involves running a large number
of tests on the circuit by simulating the circuit on a state-of-the-art computer system. In the
past decade, it has often become intractable to conduct such tests on general purpose
computing equipment for reasons of poor performance and capacity. Some VLSI
manufacturers have shifted to running tests on specialized Configurable Hardware Logic

(CHL). This method is called hardware emulation, hereinafter also referred to as emulation.

[0004] In emulation, the VLSI design is mapped into a set or multitude of CHLs, which
together exhibit the behavior of the mapped circuit design. The CHLs may be Field
Programmable Logic Arrays (FPGAs), for example. Emulation presents several challenges:

[0005] 1. Splitting the design onto the CHLs, hereinafter also referred to as “partitioning”.

[0006] 2. Routing wires from one part of the design that is mapped on one CHL, e.g. CHL
A, to another part of the design that is mapped on a different CHL, e.g. CHL B, hereinafter
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also referred to as “routing”. This may involve several hops across other intermediate CHLs,
e.g. not CHL A or B, because of physical connectivity constraints; not all CHL pairs, e.g.

CHL A, B, may be directly connected to one another.

[0007] 3. Assigning specific design wires to specific physical CHL communication ports

(called sockets), hereinafter also referred to as the “pin assignment”.

[0008] A complication of pin assignment is that more than one wire may map onto the
same socket because the number of physical sockets is typically smaller than the number of
wires to be assigned. One solution to this problem utilizes time division multiplexing
(TDM) hereinafter also referred to as “multiplexing”. TDM divides a larger time unit (e.g., 1
second) into multiple smaller time units (e.g., 1/100 of a second). At each small time unit
data is transmitted for a different virtual wire. The wires assigned to the TDM time slots are
hereinafter also referred to as “virtual wires”. The sender and receiver circuits of signals on

virtual wires coordinate to associate virtual wires with TDM time slots.

[0009] Thus pin assignment presents a twofold challenge: assigning the wires to sockets,
and forming a time multiplexing hardware infrastructure in the programmable devices, e.g.
the set of FPGAs. The time multiplexing may be implemented by a set of mapped
multiplexer circuits. The challenges of wire assignment to sockets and wire assignment to
TDM time slots are coupled, because addressing the second challenge introduces further
constraints on the possible assignments available to address the first challenge and directly
affects emulator speed because the number of sockets is constrained by the hardware.

Therefore, there is a need to assign wires to sockets such that emulator speed is improved.

SUMMARY

[0010] According to one embodiment of the present invention, a computer-implemented
method for configuring a hardware system is presented. The method includes providing, in
the computer, a first data representative of a first assignment of a multitude of wires to a
multitude of physical connections between a multitude of logic circuits of the hardware
system; and transforming, using the computer, the first data into a second data
representative of a second assignment of the multitude of wires to the multitude of physical
connections. The transforming includes calculating a multitude of latencies each associated
with a selected one of the multitude of wires, and assigning a first subset of the multitude of
wires to at least one of the multitude of physical connections in accordance with a first
improvement goal. The transforming causes the value of each one of the multitude of
latencies that are associated with the first subset to be less than or equal to the first

improvement goal, when the second data is used to configure the hardware system.
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[0011] According to one embodiment, the method further includes sorting the multitude of
wires in accordance with the multitude of latencies to generate a latency sorted order. The
assigning is performed in accordance with the latency sorted order. According to one
embodiment, the latency sorted order is in an ascending order from a lowest latency being a
first latency in the latency sorted order to a highest latency being a last latency in the latency
sorted order. According to one embodiment, the latency sorted order is in a descending
order from a highest latency being a first latency in the latency sorted order to a lowest

latency being a last latency in the latency sorted order.

[0012] According to one embodiment, the method further includes assigning each one of
an unassigned multitude of wires to a different one of a multitude of vacant connections
when a number of the unassigned multitude of wires is less than or equal to a number of the
multitude of vacant connections. According to one embodiment, the method further includes
assigning each one of the first subset to the at least one of the multitude of physical
connections until it is determined that further assigning an additional one of the multitude of

wires causes the first improvement goal to be violated.

[0013] According to one embodiment, the method further includes assigning in accordance
with a second improvement goal when the first improvement goal is reached. The second
improvement goal is harder to reach than the first improvement goal. According to one
embodiment, the method further includes assigning in accordance with a second
improvement goal when the first improvement goal cannot be reached. The second
improvement goal is easier to reach than the first improvement goal. According to one
embodiment, the first improvement goal is calculated in accordance with at least one of the

multitude of latencies.

[0014] According to one embodiment, the multitude of logic circuits is selected from the
group consisting of programmable gate arrays (FPGA), and configurable hardware logic
(CHL). According to one embodiment, at least one of the multitude of physical connections

use time domain multiplexing (TDM).

[0015] According to one embodiment, the method further includes choosing a pair of the
multitude of logic circuits, and iteratively repeating the choosing, the calculating, and the
assigning in accordance with the improvement goal. According to one embodiment, the
method further includes choosing a pair of the multitude of logic circuits. The pair dictates a
highest frequency of the hardware system when the hardware system is configured with the
first data and run. According to one embodiment, at least one of the multitude of latencies is

further associated with a count of a multitude of clock signals.
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[0016] According to one embodiment of the present invention, a system for configuring a
hardware of the system is presented. The system is configured to provide a first data
representative of a first assignment of a multitude of wires to a multitude of physical
connections between a multitude of logic circuits of the hardware, and transform the first
data into a second data representative of a second assignment of the multitude of wires to
the multitude of physical connections. During the transformation the system is further
configured to calculate a multitude of latencies each associated with a selected one of the
multitude of wires, and assign a first subset of the multitude of wires to at least one of the
multitude of physical connections in accordance with a first improvement goal. The
transformation causes the value of each one of the multitude of latencies that are associated
with the first subset to be less than or equal to the first improvement goal, when the second

data is used to configure the hardware.

[0017] According to one embodiment, the system is further configured to sort the
multitude of wires in accordance with the multitude of latencies to generate a latency sorted
order. The system is configured to assign in accordance with the latency sorted order.
According to one embodiment, the system is further configured to assign each one of an
unassigned multitude of wires to a different one of a multitude of vacant connections when a
number of the unassigned multitude of wires is less than or equal to a number of the
multitude of vacant connections. According to one embodiment, the system is further
configured to assign each one of the first subset to the at least one of the multitude of
physical connections until it is determined that to further assign an additional one of the

multitude of wires causes the first improvement goal to be violated.

[0018] According to one embodiment, the system is further configured to assign in
accordance with a second improvement goal when the first improvement goal is reached.
The second improvement goal is harder to reach than the first improvement goal. According
to one embodiment, the system is further configured to assign in accordance with a second
improvement goal when the first improvement goal cannot be reached. The second

improvement goal is easier to reach than the first improvement goal.

[0019] According to one embodiment, the system is further configured to choose a pair of
the multitude of logic circuits, and iteratively repeat the to choose, the to calculate, and the
to assign in accordance with the improvement goal. According to one embodiment, the
system is further configured to choose a pair of the multitude of logic circuits. The pair
dictates a highest frequency of the hardware when the hardware is configured with the first

data and run.
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[0020] According to one embodiment of the present invention, a non-transitory computer-
readable storage medium comprising instructions, which when executed by a computer,
cause the computer to provide a first data representative of a first assignment of a multitude
of wires to a multitude of physical connections between a multitude of logic circuits of a
hardware system. The instructions further cause the computer to transform the first data into
a second data representative of a second assignment of the multitude of wires to the
multitude of physical connections. During the transformation the instructions further cause
the computer to calculate a multitude of latencies each associated with a selected one of the
multitude of wires, and assign a first subset of the multitude of wires to at least one of the
multitude of physical connections in accordance with a first improvement goal. The
transformation causes the value of each one of the multitude of latencies that are associated
with the first subset to be less than or equal to the first improvement goal, when the second

data is used to configure the hardware system.

[0021] According to one embodiment, the instructions further cause the computer to sort
the multitude of wires in accordance with the multitude of latencies to generate a latency
sorted order. The instructions cause the computer to assign in accordance with the latency
sorted order. According to one embodiment, the instructions further cause the computer to
assign each one of an unassigned multitude of wires to a different one of a multitude of
vacant connections when a number of the unassigned multitude of wires is less than or equal
to a number of the multitude of vacant connections. According to one embodiment, the
instructions further cause the computer to assign each one of the first subset to the at least
one of the multitude of physical connections until it is determined that to further assign an

additional one of the multitude of wires causes the first improvement goal to be violated.

[0022] According to one embodiment, the instructions further cause the computer to assign
in accordance with a second improvement goal when the first improvement goal is reached.

The second improvement goal is harder to reach than the first improvement goal. According
to one embodiment, the instructions further cause the computer to assign in accordance with
a second improvement goal when the first improvement goal cannot be reached. The second

improvement goal is easier to reach than the first improvement goal.

[0023] According to one embodiment, the instructions further cause the computer to
choose a pair of the multitude of logic circuits, and iteratively repeat the to choose, the to
calculate, and the to assign in accordance with the improvement goal. According to one
embodiment, the instructions further cause the computer to choose a pair of the multitude of
logic circuits. The pair dictates a highest frequency of the hardware system when the

hardware system is configured with the first data and run.

5
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[0024] A better understanding of the nature and advantages of the embodiments of the
present invention may be gained with reference to the following detailed description and the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] To easily identify the discussion of any particular element or act, the most
significant digit or digits in a reference number refer to the figure number in which that

element is first introduced.

[0026] Figure 1 depicts an exemplary high-level block diagram of a hardware system, in

accordance with one embodiment of the present invention.

[0027] Figure 2A depicts a simplified exemplary schematic representing the circuit design
depicted in Figure 1 mapped onto a matrix of four CHLs with an initial wiring assignment,

in accordance with one embodiment of the present invention.

[0028] Figure 2B depicts a simplified exemplary schematic representing an improved
reassignment of the wires of the mapped circuit design depicted in Figure 2A, in accordance

with one embodiment of the present invention.

[0029] Figure 3 depicts a simplified exemplary flowchart for configuring a hardware
emulator or prototype system to transform a data representing an initial wiring assignment,

in accordance with one embodiment of the present invention.

[0030] Figure 4 depicts a simplified exemplary flowchart for the step of transforming the
initial wiring assignment data into a data representing an improved wiring assignment

depicted in Figure 3, in accordance with one embodiment of the present invention.

[0031] Figure 5 depicts a simplified exemplary flowchart for the step of assigning a subset
of a multitude of wires depicted in Figure 4, in accordance with one embodiment of the
present invention.

[0032] Figure 6A depicts a simplified exemplary flowchart for the step of sorting depicted
in Figure 5 using an ascending sort order, in accordance with one embodiment of the present
invention.

[0033] Figure 6B depicts a simplified exemplary flowchart for the step of sorting depicted
in Figure 5 using a descending sort order, in accordance with one embodiment of the present
invention.

[0034] Figure 7 depicts a simplified exemplary timing diagram of a multi-clock domain, in

accordance with one embodiment of the present invention.
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[0035] Figure 8 is an example block diagram of a computer system that may incorporate

embodiments of the present invention.

DETAILED DESCRIPTION

[0036] “CHL” in this context refers to “configurable hardware logic”, electronic hardware
having physical interconnections that can be re-configured over and over for particular

purposes. Circuit boards including multiple FPGAs are one example of CHL.

[0037] “FPGA” in this context refers to “field programmable gate array”, a type of CHL
including logic blocks that can be re-wired in the field (after hardware manufacturing). An
FPGA configuration is generally specified using a hardware description language (HDL).
FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable
interconnects that allow the blocks to be electrically interconnected into different
configurations. Logic blocks can be interconnected to perform complex combinational
functions. In many FPGAs, logic blocks also include memory elements, which may be

simple flip-flops or more complex blocks of memory.

[0038] “HDL” in this context refers to “hardware description language”, a specialized
computer language used to describe the structure and behavior of electronic circuits. HDL
enables a precise, formal description of an electronic circuit that allows for the automated
analysis and simulation of an electronic circuit. It also allows for the synthesis of a HDL
description into a netlist, which is a data specification representing the physical electronic
components and how they are connected together), and which can then be placed and routed

to define an integrated circuit.

[0039] “Net, or path” in this context refer to a connection in the netlist from one electrical
component or terminal to another. The terms net, or path are used interchangeably herein.
Further, it is understood that when referring to net, or path it is the computer data
representing a physical conductive trace and not the physical conductive trace itself that is
being described unless a physical connection is specifically called out. For example, a
socket (defined below) is a physical connection that may use metal conductors such as
traces, pads, or pins to electrically connect between a pair of CHLs. Further, one or more
paths, represented as data in a netlist, may be mapped by software in the compiler to
physical wire traces in the pair of CHLs and the socket connecting the pair of CHLs in order

to conduct electrical signals when the hardware system containing the pair of CHLs is run.
[0040] “Wire” in this context refers to data representing a subset or segment of a path.

[0041] “Hop” in this context refers to a direct communication path between an

immediately adjacent, hereinafter also referred to as “neighboring,” CHL pair that does not

7
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pass through one or more intermediate CHLs. A select single path can be routed between an

FPGA pair multiple times, e.g. back and forth, back and forth using a multitude of hops.

[0042] “LVDS” in this context refers to “low-voltage differential signaling”, a technical
standard that specifies electrical characteristics of a low-voltage differential serial

communications protocol.

[0043] “Programmable device or programmable hardware” in this context refers to an
integrated circuit designed to be configured and/or reconfigured after manufacturing.
Programmable devices may include programmable processors, such as field programmable
gate arrays (FPGAs) and/or any other type programmable devices. Configuration of the
programmable device is specified using computer code, such as a hardware description
language (HDL), for example Verilog, VHDL, or the like. A programmable device may
include an array of programmable logic blocks and a hierarchy of re-configurable
interconnects that enable the programmable logic blocks to be coupled to each other
according to the descriptions in the HDL code. Each of the programmable logic blocks can
be configured to perform complex combinational functions, or simple logic gates, such as
for example AND and XOR logic blocks. In most FPGAs, logic blocks also include memory
elements, which may be simple latches, flip-flops, i.e. “flops,” or more complex blocks of
memory. Depending on the length of the interconnections or the data representing their
associated paths between different logic blocks, signals may arrive at input terminals of the
logic blocks at different times. Hardware emulation and/or prototyping systems may utilize

one or more programmable devices.

[0044] “Slack” in this context refers to the difference between an allocated completion
time for a signal, and the required time for completion of the signal provided in a circuit
design for a signal to complete (an inverse of the circuit design clock frequency). It is often
the case in simulation of a circuit design that signals are allocated more time than they
require to reach their destination over an assigned path. The difference between the
allocated time of a signal and its required time is called its slack. Accordingly, critical paths
may have less or zero slack compared to non-critical paths that have more slack than critical

paths.

[0045] “Socket” in this context refers to a physical electrical connection or communication
port on a pair of CHL. A socket may include communication and control circuitry on each
of the CHL in the pair that are connected by a physical wire in the hardware system. When
data representing a wire is assigned to a socket, then the path associated with that wire is

implicitly assigned the same socket since the wire is a segment of the associated path.
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[0046] “TDM” in this context refers to allocating the data representing or the physical

utilization of a wiring or circuit resource into different distinct time slots.

[0047] ““Virtual wire” in this context refers to a utilization of a physical communication
path segment (wire) during a distinct TDM time slot. For example, three “virtual wires” are
created when a socket or single physical wire between a CHL pair is utilized during three

distinct TDM time slots.

[0048] “VLSI” in this context refers to “very large scale integration”, a single circuit chip
package including, typically, hundreds of thousands, millions, or even billions of individual

circuits.

[0049] “XDR value” in this context refers to a number of virtual wires assigned to a

socket.

[0050] Embodiments of the present invention describe a system and process to address pin
assignment in the emulation of circuit designs. Given a set of physical socket connections
and a multitude of wires with different delay priorities, the system and processes involve
assigning wires to available sockets in an advantageous manner. In the disclosed
embodiments, an improvement goal is determined, iterative determination is performed for
assignment to improve on previous assignment, and the wires associated with the least
critical paths, hereinafter also referred to as “least critical wires,” are assigned first.
Although this is counterintuitive, a result of this approach is that the least critical wires are
“stuffed” to a reduced (ideally, minimal) number of sockets, leaving as many as possible
empty sockets for wires associated with the more critical paths, hereinafter also referred to

as “more critical wires,” to be assigned after the less critical wires have been assigned.

[0051] Briefly, a pin assignment software module first assigns less critical wires to sockets
of the CHL pairs, leaving more empty or lightly loaded sockets for later assignment of

critical path wires.

[0052] More specifically, given a CHL pair and an improvement goal, embodiments of a

software module are disclosed that:
[0053] 1. First disconnects all the virtual wires connecting the two CHLs of the CHL pair.

[0054] 2. Begins reassigning virtual wires to sockets of the CHL pair, trying to first “stuff”
the wires with the highest slack, e.g. less critical wires, to the least possible number of
sockets, while respecting the improvement goal. In other words, the software module will
not reduce the slacks of the non-critical paths to an extent that violates the improvement

goal.
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[0055] 3. As a consequence of steps (1) and (2) above, as many sockets as possible are left
available for the wires with low or zero slacks, i.e. critical path wires, which enables
substantial reduction in critical path delay by leaving open more socket assignment

candidates for these critical path wires.

[0056] The disclosed embodiments may improve critical path delay, hereinafter also
referred to as “latency,” over emulation systems that use prior methodologies. A result is

improved performance for circuit design emulation.

[0057] One approach to pin assignment is to locally improve the assignment on a single
CHL pair (consecutively or iteratively for all pairs). Another approach is a global software
module to solve the pin assignment challenge globally on all assignments. An advantage of
the first approach is that it may be faster to implement and can be parallelized. The second
approach may yield improved results in terms of assignment cost, but the computer runtime

may be greater than what is tolerable.

[0058] The first (local) approach may be implemented using a general software module as
follows. Given a set of paths (P), and routing paths associated with each wire, and set of
sockets, and an initial timing analysis, re-assign wires to sockets in a way that improves a

maximal delay of the path as described below.

[0059] Consider an embodiment in which connections between two flip flops are
controlled by a same clock edge. The challenge of pin assignment may be formulated as

follows.
[0060] Let pi be a path. The set of sockets that this path passes through is hops;.
[0061] Let sj be a socket. A number of wires that pass through this socket is xdr;.

[0062] A delay of a path p; is termed Delay(pi ) , defined as a sum of xdrjover the set of
physical sockets that the path passes through.

Dehzy(@) =3 dhops, TV

[0063] A pin assignment is defined as a mapping of all paths to sockets on each of the
path’s hops. Given a particular pin assignment, a cost of the pin assignment is defined to be

the maximum delay of any of the paths for that assignment.

[0064] For a pin assignment let P be the set of all the paths assigned:

10
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[0065] The pin assignment challenge may then be formulated as follows. For a particular
set of paths, a set of path routing constraints and a set of sockets, find an assignment such

that its cost will be “minimal”.

[0066] A cost of a pin assignment may be determined by a delay incurred by its slowest
(most critical) path. That delay determines a time to provide for a path to complete (an
inverse of the circuit design clock frequency). This is a time set for all the paths in the
design, not just critical ones. Therefore, all paths other than the critical paths have more
time than they require for the signal they drive to reach its destination. The difference

between the allocated time of a path and its required time is called its slack.

[0067] The higher the slack for a path (recall, the critical path may have a slack of zero),
the more extra time the path has. Therefore, it may be possible to utilize the slack from one
path and slow that path down in order to speed up another path. That is a factor influencing
the change of wire assignments on sockets that connect CHL pairs. By re-assigning virtual
wires from one socket to a different socket it may be possible to increase the xdr of a virtual
wire comprising a path with a high slack, e.g. first path, and as a result decrease the xdr of a
wire whose path has a small slack, e.g. second path. This slows the first path, but as long as
the slack of the first path remains lower than the slack of the second path, the total
assignment cost will not increase. Furthermore, the total assignment cost will decrease if the

second path is the critical one, because the second path becomes faster.

[0068] Initially there already exists some initial assignment of wires in the paths, and

delays for all paths are pre-computed. Given this start condition, the software module may:
[0069] 1. Select an FPGA pair fi;.

[0070] 2. From the current assignment find the assignment’s current cost (defined above)
and attempt to improve it iteratively. This is done by choosing a cost goal (improvement
goal) that is a factor of the current cost (e.g., multiplying the current cost by 0.8) and
computing toward this goal by reassigning the wires between the two FPGAs to the sockets

that connect the pair.

[0071] 3. If the improvement goal is reached, repeat step 2 with a harder improvement
goal. Alternatively, if the improvement goal is not reached, repeat step 2 with an easier

improvement goal. Continue to repeat step 2 until a heuristic condition is satisfied.
[0072] 4. Repeat steps 1-3 for other FPGA pairs in the assignment.

[0073] Further improvements to the pin assignment software module may include one or

more of the following:
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[0074] 1. Incorporate the pin assignment software module completely within the routing

module 102.

[0075] 2. Perform pin assignment globally over the set of all FPGAs (i.e., CHLs) in the
emulator hardware, instead of solving iteratively pair-by-pair. Run time of the software

module may be higher, but the solution may be more optimal.
[0076] 3. Modify the firmware to support one or more of these enhancements.

[0077] Figure 1 depicts an exemplary high-level block diagram of a hardware verification
system 100, in accordance with one embodiment of the present invention. Hardware
verification system 100 may be used to verify, test or debug a circuit design 102. Hardware
verification system 100 may include a hardware emulator or prototype system 106 and a
computer system 800 that is described in reference to Figure 8. As depicted in Figure 1,
hardware emulator or prototype system 106 may be coupled to computer system 800, which
may include a compiler 104 module that may receive a hardware description language

representation of circuit design 102.

[0078] Compiler 104 may include a multitude of various software modules that may or
may not include a dedicated compiler module. Compiler 104 may transform, change,
reconfigure, add new functions to, and/or control the timing of circuit design 102 to
facilitate verification, emulation, or prototyping of circuit design 102. Further, compiler 104
may compile circuit design 102 and any associated changes into a binary image used to

program hardware emulator or prototype system 106.

[0079] Thereby, the logical functions and timing of circuit design 102 that may ultimately
be implemented by hardware in an integrated circuit chip may instead be first implemented
in hardware emulator or prototype system 106. Among other advantages, verification of

circuit design 102 in hardware may be accomplished at much higher speed than by software

verification alone.

[0080] Hardware emulator or prototype system 106 may include a multitude of emulator
units, e.g., unit 120, unit 122 - unit 124, each comprising one or more circuit boards, e.g.,
board 114, board 116 - board 118. Each board may comprise one or more programmable
processors 108, such as Field Programmable Gate Arrays (FPGAs), and other blocks (not
shown), such as memories, input/output devices, other processors, and the like. Hardware
emulator or prototype system 106 receives a compiled circuit design 102 from compiler 104,
and programs programmable processors 108 to verify behavior of circuit design 102.
Hardware emulator or prototype system 106 may include a primary or master system clock

from which a number of other clock signals may be generated. Hardware emulator or
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prototype system 106 may further include a multitude of sockets S, which may be direct
electrical connections or a bus providing a multitude of interconnections between

programmable processors 108.

[0081] Pin assignment involves assigning logical wires to physical low-voltage differential
signaling (LVDS) pairs, i.e., sockets S, of programmable processors 108 in such a way that
the run frequency of the circuit design as mapped onto hardware emulator or prototype
system 106 is maximized. Ideally, a circuit design is mapped for emulation on a single
FPGA. When the circuit design is too large to be mapped into a single FPGA, the circuit
design is split and mapped onto several FPGAs. Thus a VLSI design is typically mapped
into a set or multitude of CHLs, e.g. FPGAs 108, which collectively exhibit the behavior of
that VLSI design.

[0082] Figure 2A depicts a simplified exemplary schematic 200A representing circuit
design 102 depicted in Figure 1 mapped onto a matrix of four CHLs; CHL1A, CHL2A,
CHL3, CHL4 with an initial wiring assignment, in accordance with one embodiment of the
present invention. As depicted in Figure 2A, the initial wiring assignment represents the
path and wiring constraints between the various CHLs. A path p is defined to start from a
register output and end at a register input. Paths may extend from one CHL to a neighboring
CHL, e.g. plA, p2. Further, some of the paths may cross intermediate CHLs to reach their
destination (p3, p4A).

[0083] The routing of a path between two neighboring CHLs is called a hop. For example,
paths plA, p2 have one hop, p3 has two hops and p4A, depicted in dashed line, has three
hops. Schematic 200A further includes sockets s1, s2, s3 that connect between neighboring
CHL1A, CHL2A. Each socket may have more than one virtual wire passing through it,
which requires those wires to be virtual wires using TDM. For example, socket s1 has two
virtual wires passing through it that are associated with p2, p4A. Having two paths assigned
the same socket causes that socket to be two times slower because the transfer of wire data

is time multiplexed between the wire associated with p2 and the wire associated with p4A.

[0084] The assignment of virtual wires to socket determines how much delay time will be
on the paths associated with the assigned virtual wires. The path with the biggest delay is
referred to as the critical path and dictates how fast the mapped design will execute in
emulation. Therefore reducing the delay time of the critical path may dominate the

performance of the implementation.

[0085] For the example wire assignments between CHL1A and CHL2A, p4A is routed to

share socket s1 with p2, while p1 A does not share socket s3 with any other wire. However,
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p4A is a longer path than pl A and sharing a socket slows p4A down further. It therefore is
an improvement for hardware system speed to switch the wire-to-socket assignments
between p4A and plA because the latency of p4A is more critical than the latency of plA.
That is, the wire to socket assignments should be transformed such that p1 A should share
socket s1 with p2, and p4A should be unshared to improve hardware speed because in this
example p4 A is the critical path and dictates a highest speed of the hardware system
represented by schematic 200A.

[0086] Figure 2B depicts a simplified exemplary schematic 200B representing an improved
reassignment of wires associated with paths p of mapped circuit design 102 depicted in
Figure 2A, in accordance with one embodiment of the present invention. Schematic 200B
includes the same elements and functions as schematic 200A depicted in Figure 2A with the
following exceptions. The data representing the example wire assignments between CHL1A
and CHL2A in schematic 200A have been transformed by the embodiments described herein
into data representing the wire assignments between CHL1B and CHL2B in schematic
200B. For the reasons described above, the transformation has switched the wire-to-socket
assignments between example wires associated with paths p4A and p1A resulting in the
reassigned pin-assignments such that the wire associated with p1B is routed to share socket
s1 with the wire associated with path p2, and the wire associated with p4B is reassigned to

socket s3 without sharing socket s3 with any other wire.

[0087] Paths p4A and p4B represent a net having the same signal driver and ending
receiver circuits but are mapped into the CHLs differently by having different associated
wire-to-socket assignments. In other words, p4A and p4B perform the same circuit function
but p4B does not use TDM as p4A requires, which in-turn makes p4B an improved faster

path compared to p4A. The transformation is described in greater detail below.

[0088] Figure 3 depicts a simplified exemplary flowchart 300 for configuring hardware
emulator or prototype system 106 to transform a data representing an initial wiring
assignment, e.g. example schematic 200A as depicted in Figure 2A, in accordance with one
embodiment of the present invention. Referring simultaneously to Figures 1-3, flowchart
300 depicts receiving 305, in compiler 104 executing in computer 800, an untransformed
data, e.g. example schematic 200A representative of circuit design 102 including a multitude
of wires each associated with a different one of a multitude of paths P, e.g. nets that will
become pl A, p2, p3, p4A after partition and initial routing, when computer 800 is invoked
to configure hardware emulator or prototype system 106. Then compiler 104 synthesizes

310 a netlist, such as for example in EDIF or other netlist formats, and partitions the
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untransformed design according to CHL or FPGA hardware constraints of hardware

emulator or prototype system 106.

[0089] An initial routing by compiler 104 provides 315, in computer 800, an initial
assignment data representative of an initial assignment of a multitude of wires each
associated with a different one of a multitude of paths P, e.g. plA, p2, p3, p4A, toa
multitude of physical socket connections S, e.g. s1, s2, s3, between a multitude of FPGA

circuits 108 of hardware emulator or prototype system 106, e.g. CHL1A, CHL2A.

[0090] Next, compiler 104 transforms 320, using computer 800, the initial assignment data,
e.g. example schematic 200A into an improved data, e.g. example schematic 200B. Example
schematic 200B is representative of a re-assignment of the multitude of wires each
associated with a different one of a multitude of paths P, e.g. p1B, p2, p3, p4B to the
multitude of physical socket connections S to enable a higher frequency emulator or
prototype system 106 than provided by the initial assignment data of example schematic

200A.

[0091] Then compiler 104 compiles 325 the netlist of the improved data, e.g. example
schematic 200B, to generate a binary image compatible with the hardware of CHL or FPGA
circuits 108. Next, compiler 104 uses computer 800 to program 330 CHL or FPGA circuits
108 with the binary image corresponding to the improved data, e.g. example schematic
200B. After programming, hardware emulator or prototype system 106 may be run 335
under the guidance of computer 800 to verify or emulate circuit design 102 at higher speed
than the initial routing with the wire associated with path p4A by using the transformed
hardware configuration provided by the wire associated with path p4B. Alternatively,
hardware emulator or prototype system 106 may be run 335 decoupled from computer 800
as a stand-alone hardware prototype system operating at improved higher prototype system

speed using the improved wire and associated path routing.

[0092] Figure 4 depicts a simplified exemplary flowchart 320 for step 320 depicted in
Figure 3 of transforming the initial wiring assignment data, e.g. example schematic 200A,
into a data representing an improved wiring assignment, e.g. example schematic 200B,
depicted in Figures 2A-2B, in accordance with one embodiment of the present invention.
Locally improving the assignment of a wire that is part of the critical path will globally
improve the critical path because that wire is a segment of the critical path. Referring
simultaneously to Figures 2-4, flowchart 320 depicts compiler 104 calculating 405 a
multitude of latencies or path delays each associated with a selected one of the multitude of

wires each associated with a different one of a multitude of paths P. Compiler 104 chooses
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410 a pair, e.g. CHL1A, CHL2A, of the multitude of FPGA circuits 108 such that the pair
dictates a highest frequency of emulator or prototype system 106 as predicted by compiler
104 when emulator or prototype system 106 is configured with the initial assignment data
and run as simulated by compiler 104 without running the emulator or prototype system 106

in real-time.

[0093] Recall that the pair CHL1A, CHL2A dictate a highest frequency of emulator or
prototype system 106 because the wire associated with p4A runs through socket s1 that
connects between CHL1A and CHL2A. Also recall that the wire associated with p4A is a
critical path delay, at least when the wire associated with p4A shares s1 with the wire
associated with p2 in the initial assignment. It is understood that after the upcoming
reassignment to improve the speed of emulator or prototype system 106, p4A may or may
not continue to be a critical path once the wire associated with p4A is reassigned to a

dedicated socket.

[0094] Compiler 104 calculates 415 a first improvement goal in accordance with at least
one of the multitude of latencies that is a latency or delay of a critical path associate with a
wire, hereinafter also referred to as a “critical wire”, e.g. p4A, that dictates the highest
frequency of emulator or prototype system 106 in the initial wire assignment, e.g. example
schematic 200A. Then compiler 104 assigns 420 a subset of the multitude of wires each
associated with a different one of the multitude of paths P associated with the chosen CHL
pair, e.g. CHLTA, CHL2A to at least one of the multitude of physical socket connections S
associated with the pair in accordance with the first improvement goal. The transforming
causes the value of each one of the multitude of latencies or delays that are associated with
the subset to be less than or equal to the first improvement goal, when the improved data is

used to configure emulator or prototype system 106.

[0095] After assigning 420, compiler 104 determines 425 whether or not the first
improvement goal is reached. If the first improvement goal is reached, then compiler 104
determines if the compiler will try 430 a harder goal than the first improvement goal for the
next wire assignment iteration. If compiler 104 determines it will try a harder goal, then
compiler 104 heuristically changes 435 the first improvement goal into a second
improvement goal that is harder to reach than the first improvement goal and the compiler
loops back to step 420 again, thus ensuring the wire assignment solution tries to improve the

speed of emulator or prototype system 106 when run in real-time.

[0096] If the first improvement goal is not reached at step 425, then compiler 104

determines if the compiler will try 440 an easier goal than the first improvement goal for the
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next wire assignment iteration. If compiler 104 determines it will try an easier goal, then
compiler 104 heuristically changes 445 the first improvement goal into a second
improvement goal that is easier to reach than the first improvement goal and the compiler

loops back to step 420 again, thus ensuring convergence to a solution.

[0097] If compiler 104 determines not to try either a harder or easier improvement goal at
steps 430, 440 respectively, then compiler 104 determines whether to try 450 to select
another CHL pair. If compiler 104 does try to select another CHL pair, then the flow iterates
back to step 410. If compiler 104 does not try to select another CHL pair, then compiler 104
returns to step 325 referenced in Figure 3 to compile the netlist in preparation to program

the FPGA circuits with the improved wire to socket assignment data.

[0098] Figure 5 depicts a simplified exemplary flowchart for the step 420 of assigning a
subset of a multitude of wires depicted in Figure 4, in accordance with one embodiment of
the present invention. Compiler 104 sorts 505 the multitude of wires each associated with a
different one of the multitude of paths P in accordance with the multitude of path latencies
to generate a latency sorted order. Compiler 104 may perform 510 the assigning in

accordance with the latency sorted order.

[0099] Compiler 104 then assigns 515 each one of the first subset of the multitude of wires
each associated with a different one of the multitude of paths P to the at least one of the
multitude of physical socket connections S until it is determined that further assigning an
additional one of the multitude of wires each associated with a different one of the multitude
of paths P causes the first improvement goal to be violated. In performing the assignment of
the subset, compiler 104 uses data predicting the TDM circuit resources available on the
pair of CHL to assign as many non-critical wires to the same socket S as possible to ensure
other more critical wires are assigned to sockets without the use of TDM as described

elsewhere.

[00100] When the end of the wiring assignments is near, compiler 104 may assign 520 each
one of an unassigned multitude of wires each associated with a different one of the
multitude of paths P to a different one of a multitude of vacant socket connections when a
number of the unassigned multitude of wires P is less than or equal to a number of the
multitude of vacant socket connections. Step 520 thus takes advantage of any remaining
surplus of unassigned sockets by assigning the remaining unassigned wires on a single wire

to single socket basis.

[00101] Figure 6A depicts a simplified exemplary flowchart for the step 505 of sorting

depicted in Figure 5 using an ascending sort order, in accordance with one embodiment of
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the present invention. Figure 6A depicts that compiler 104 generates 605A the latency
sorted order in an ascending order from a lowest latency being a first latency in the latency
sorted order to a highest latency being a last latency in the latency sorted order. Notice that
the slack of the path with the highest latency is 0. Further, sorting the paths according to
latencies in ascending sort order is equivalent to sorting the paths according to slacks in
descending sort order. Accordingly, in one embodiment, the multitude of wires may be
sorted in accordance with a multitude of slacks to generate a slack sorted order. Then the

assigning may be performed in accordance with the slack sorted order.

[00102] Figure 6B depicts a simplified exemplary flowchart for the step 505 of sorting
depicted in Figure 5 using a descending sort order, in accordance with one embodiment of
the present invention. In an alternative embodiment to that depicted in Figure 6A, Figure 6B
depicts that compiler 104 generates 605B the latency sorted order in an descending order
from a highest latency being a first latency in the latency sorted order to a lowest latency
being a last latency in the latency sorted order.

[00103] In one embodiment, given a CHL pair and an improvement goal, an improved pin
assignment software module process may include the following steps.

[00104] 1. Disconnect all virtual wires connecting the two CHLs.

[00105] 2. Begin reassigning virtual wires to sockets, trying to first “stuff” the wires with
the biggest slack to the fewest sockets, to achieve a configured improvement goal. In other
words, do not reduce the slack of the wires below the improvement goal.

[00106] The above pin assignment process increases the number of sockets available for
wires with low or zero slack, enabling a reduction in the delay time of those low slack wires
or paths.

[00107] In one embodiment, a pin assignment process may include the following steps.

[00108] 1. Start with an initial pin assignment.

[00109] 2. Select a CHL pair between which a critical path is passing. If there exists more
than one such CHL pair, choose a pair that has more critical paths. Consider how many

iterations have been performed on this CHL pair, the xdr of the pair, etc.

[00110] 3. Set an improvement goal, i.e. improvement setting, as a percentage improvement
of the cost of the critical path, e.g. to improve the critical path by 20%.

[00111] 4. Execute against the improvement setting by reassigning the wires among the
sockets. If the improvement goal is not reached by the wiring re-assignment, reduce the
improvement setting or select a next CHL pair. If the improvement goal is reached, increase

the improvement setting or select a next CHL pair.
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[00112] 5. Re-compute timing of the circuit design if the improvement goal is reached.

[00113] 6. Conclude the process when further iteration will yield no or negligible

improvement, e.g. below a predefined incremental improvement.

[00114] The software module in compiler 104 assumes an initial state in which routing is
done, i.e., all wires have predetermined initial xdr values (based on uniform distribution),

and timing analysis is done, i.e.
max Delay {pf}
Bu b v

[00115] is computed and Slack(p;) is computed for each path.

[00116] In one embodiment, improvements may be achieved locally. The pin assignment
routine 300 need not examine the entire circuit design to identify improvements.
Improvements may be performed on a CHL pair basis. Results may be suboptimal, however
the pin assignment routine 300 may operate iteratively, e.g. by successive improvements on
the same CHL pair, one CHL pair at a time. This enables tradeoff between computation time

and desired improvement.

[00117] In more detail, a software module for one embodiment of a pin assignment routine

is as follows:

[00118] Let fj; be an FPGA pair (f, fj). Define the set Sij to be the set of sockets that connect
the pair.

[00119] Let seSjj be a socket that belongs to the set. Define xdr(s) to be the count of the

number of wires that are assigned to socket s.
[00120] Define Wj; to be the set of wires that go between the pair fj;.

[00121] Define the required time of a path p;, denoted as required (p;), as the time allowed
for a signal to travel from source to destination. The required time may be in accordance
with the time allocated to the most critical path in the current allocation solution, which
influences the required time of the rest of the paths. The solution has to allow the signal on
this critical path to reach its destination on time. Thereby, the rest of the paths will have

some slack.

[00122] Define a function time(int) to accept an integer xdr value, and return a real time
delay. This function is used to compute xdr delays according to some step function. For
example, for xdr of 1, time will return 10ns and for xdr values between 2-8, time will return

20ns, etc.

[00123] Define a function time(pi) which computes the real time delay of a path p; as:
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time () = 3 jcnops, Hime(zdr;)

[00124] For a path p; define Slack(pi) as the slack of path p;, computed as required(p;) -
time(pi). The slack provides a measure of how critical the path is in the current solution, i.e.
the slack of the most critical path is usually zero. The bigger the slack, the less critical the

associated path is.

[00125] Let fj; be a CHL pair. Let G be a goal cost improvement or improvement goal,
which is an amount by which to reduce the cost. Let Wjj be a set of virtual wires assigned on

the sockets between fj;.
[00126] In one embodiment, the main routine may include the following steps.
[00127] 1. Start incremental timing framework

[00128] 2. For-each (fjj € F) do

NewGoalDelay = a * ‘J}é‘? time (Pj)’

[P L]

where “a” is equal to the improvement goal, such for example 0.1, 0.2, 0.3, and the

like.
b. Do
i. GoalDelay = NewGoalDelay;
ii. Status = SplitLVDSPairs(GoalDelay, fjj);
iii. If (status == “Failed”) NewGoalDelay = GoalDelay /2;
iv. If (status == “Passed”) NewGoalDelay = GoalDelay * 1.5;

c. While ( | GoalDelay — NewGoalDelay | > 5ns ).

[00129] Note: between iterations, incremental timing calculates changes in the delays and

slacks of the paths.

[00130] In one embodiment, the SplitLVDSPairs(GoalDelay, fi;) routine may include the

following steps.
[00131] 1. Save the current assignment of virtual wires Wj;.

[00132] 2. Sort wires Wj;j by the descending slack of the path that each wire belongs to;

meaning the less critical first.
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[00133] 3. Save the slacks of all the paths in an array startSlacks.

[00134] 4. Save the xdr times for all path hops between pair fj; in an array prevTime.

prevTimel[i] holds the part of time(p;) that it takes to cross between the pair fj;.
[00135] 5. Remove all the wire assignments for Wj; but remember the path slacks.
[00136] 6. Let M = number of sockets available between pair fj;.

[00137] 7. Set m = 0.

[00138] 8. For(i = 0; i < size(Wij); i++)

L. If size(Wjj))-i <= M-m // can allocate all remaining wires to their own non-

multiplexed socket.
a. Assign all remaining wires to remaining sockets.
b. Return SUCCESS.
II. While w; not assigned,
a. Test assign w; to socket sm
b. Set j such that:

start;?iacks[ ;'] mam it ep  startSlacks (i

o

d. If
A+ G > startSlack{f)
do // cannot assign to this socket.
i m++
ii. If ( m >= M) // no more sockets left
I. Restore the current solution.

II. Return FAILURE.
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e. Else commit assignment of w; to socket s,
[00139] 9. Return SUCCESS.
[00140] Figure 7 depicts a simplified exemplary timing diagram 700 of a multi-clock
domain, in accordance with one embodiment of the present invention. One difference
between a single clock domain environment and a multi-clock domain environment is that
time allocated for a signal to reach from source to destination is different for each path. In a
single clock domain environment, signals have one clock cycle to reach from source to
destination. In a multi clock domain, the time allocated for each signal may be in accordance

with the following.

[00141] 1. The clock and edge driving the source.

[00142] 2. The clock and edge driving the destination.

[00143] Given a clock set, each element in a clock pair may be:
[00144] 1. A clock denoted as clkX.

[00145] 2. A clock negated denoted as !clkX.

[00146] The number of possible clock pairs is therefore the square of twice the number of
clocks (although not all pairs may exist in actuality in the circuit emulator). Each such clock

pair has a count number.

[00147] The mapped circuit design is assumed to have a fast driving or master clock that

drives the rest of the clocks. The other clocks are driven at some ratio of the driving clock.
[00148] The following five rules may determine the count of each clock pair:

[00149] 1. The count of (clkX, clkX) is determined to be the ratio of clkX from the driving

clock.

[00150] 2. The count of (clkX, !clkX), and also (!clkX, clkX) is determined to be half the

ratio of clkX from the driving clock.

[00151] 3. The count of (clkX, clkY) is determined to be 1, where clkX and clkY are

derived from different edges of the master clock.

[00152] 4. The count of (clkX, clkY) where clkX and clkY are synchronized is determined

to be the ratio of the fastest clock of the pair.
[00153] 5. Counts are symmetrical (e.g. see rule 2 above).

[00154] Figure 7 depicts a driving clock and two derived clocks (clkA and clkB) with ratios
8 and 4 respectively. Then the counts of some of the clock pair combinations is given by

Table 1.
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Table 1

Clock Pair Count
(CIkA, CIkA) 8
(CIkA, ICIKA) 4
(CIkB, CIkB) 4
(CIkB, !CIkB) 2
(CIkA, CIkB) 1
(ICIkA, CIkB) 1

Etc. Etc.

[00155] A signal on a path with a pair that has a higher count has more allocated time to
complete its traversal. This factor is introduced into the computation of all path delays. In
other words in one embodiment, at least one of the multitude of latencies may be further
associated with a count of the multitude of clock signals. This may be done by dividing the
delay of a path by its count. Let C; be the count of path p;, then:

Belaye

Foactored Delay (p) = —

[00156] The assignment cost is calculated according the factored delays:

cost ( assgénmem‘.} = max Factored Delay(p;)

wEE
and the pin assignment problem formulation is as previously described for the single clock

domain environment (but with a different cost computation).

[00157] Some implementations may allow only particular values for xdr’s. For example,
only values of 2, 4, 6, 8 may be allowed, with increments thereafter by 8: 16, 24, etc. This
may be taken into account when updating the delays (or factored delays) of paths after an

assignment to a particular socket.

[00158] Figure 8 is an example block diagram of a computer system 800 that may
incorporate embodiments of the present invention. Figure 8 is merely illustrative of a

machine system to carry out aspects of the technical processes described herein, and does

23



WO 2017/176786 PCT/US2017/025985

not limit the scope of the claims. One of ordinary skill in the art would recognize other
variations, modifications, and alternatives. In one embodiment, computer system 800
typically includes a monitor or graphical user interface 802, a computer 816, a
communication network interface 812, input device(s) 808, output device(s) 806, and the

like.

[00159] As depicted in Figure 8, the computer 816 may include one or more processor(s)
804 that communicate with a number of peripheral devices via a bus subsystem 820. These
peripheral devices may include input device(s) 808, output device(s) 806, communication
network interface 812, and a storage subsystem, such as a random access memory 810 and a

disk drive or nonvolatile memory 814.

[00160] The input device(s) 808 include devices and mechanisms for inputting information
to the computer 816. These may include a keyboard, a keypad, a touch screen incorporated
into monitor or graphical user interface 802, audio input devices such as voice recognition
systems, microphones, and other types of input devices. In various embodiments, input
device(s) 808 are typically embodied as a computer mouse, a trackball, a track pad, a
joystick, wireless remote, drawing tablet, voice command system, eye tracking system, and
the like. Input device(s) 808 typically allow a user to select objects, icons, text and the like
that appear on monitor or graphical user interface 802 via a command such as a click of a

button or the like.

[00161] Output device(s) 806 include all possible types of devices and mechanisms for
outputting information from computer 816. These may include a display (e.g., monitor or

graphical user interface 802), non-visual displays such as audio output devices, etc.

[00162] Communication network interface 812 provides an interface to communication
networks (e.g., communication network 818) and devices external to computer 816.
Communication network interface 812 may serve as an interface for receiving data from and
transmitting data to other systems. Embodiments of communication network interface 812
typically include an Ethernet card, a modem (telephone, satellite, cable, ISDN),
(asynchronous) digital subscriber line (DSL) unit, FireWire interface, USB interface, and
the like. For example, communication network interface 812 may be coupled to
communication network 818 via a FireWire bus, or the like. In other embodiments,
communication network interface 812 may be physically integrated on the motherboard of

computer 816, and may be a software program, such as soft DSL, or the like.

[00163] In various embodiments, the computer system 800 may also include software that

enables communications over a network such as the HTTP, TCP/IP, RTP/RTSP protocols,
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and the like. In alternative embodiments, other communications software and transfer
protocols may also be used, for example IPX, UDP or the like. In some embodiments,
computer 816 in the processor(s) 804 may include one or more microprocessors from

Intel®. Further, one embodiment, computer 816 includes a UNIX-based operating system.

[00164] Random access memory 810 and disk drive or nonvolatile memory 814 are
examples of tangible media configured to store data and instructions to implement various
embodiments of the processes described herein, including executable computer code, human
readable code, or the like. Other types of tangible media include floppy disks, removable
hard disks, optical storage media such as CD-ROMS, DVDs and bar codes, semiconductor
memories such as flash memories, non-transitory read-only-memories (ROMS), battery-
backed volatile memories, networked storage devices, and the like. Random access memory
810 and disk drive or nonvolatile memory 814 may be configured to store the basic
programming and data constructs that provide the functionality of the disclosed processes

and other embodiments thereof that fall within the scope of the present invention.

[00165] Software code modules and instructions that implement embodiments of the present
invention may be stored in random access memory 810 and/or disk drive or nonvolatile
memory 814. These software modules may be executed by processor(s) 804. Random access
memory 810 and disk drive or nonvolatile memory 814 may also provide a repository for

storing data used by the software modules.

[00166] Random access memory 810 and disk drive or nonvolatile memory 814 may include
a number of memories including a main random access memory (RAM) for storage of
instructions and data during program execution and a read only memory (ROM) in which
fixed non-transitory instructions are stored. Random access memory 810 and disk drive or
nonvolatile memory 814 may include a file storage subsystem providing persistent (non-
volatile) storage for program and data files. Random access memory 810 and disk drive or
nonvolatile memory 814 may include removable storage systems, such as removable flash

memory.

[00167] Bus subsystem 820 provides a mechanism for letting the various components and
subsystems of computer 816 communicate with each other as intended. Although
communication network interface 812 is depicted schematically as a single bus, alternative

embodiments of bus subsystem 820 may utilize multiple busses.

[00168] Figure 8 is representative of a computer system capable of implementing
embodiments of the present invention. It will be readily apparent to one of ordinary skill in

the art that many other hardware and software configurations are suitable for use with

25



WO 2017/176786 PCT/US2017/025985

embodiments of the present invention. For example, the computer may be a desktop,
portable, rack-mounted or tablet configuration. Additionally, the computer may be a series
of networked computers. Further, the use of other microprocessors are contemplated, such
as Pentium™ or [tanium™ microprocessors; Opteron™ or AthlonXP™ microprocessors
from Advanced Micro Devices, Inc; and the like. Further, other types of operating systems
are contemplated, such as Windows®, WindowsXP®, WindowsNT®, or the like from
Microsoft Corporation, Solaris from Sun Microsystems, LINUX, UNIX, and the like. In still
other embodiments, the techniques described above may be implemented upon a chip or an

auxiliary processing board.

[00169] Various embodiments of the present invention may be implemented in the form of
logic in software or hardware or a combination of both. The logic may be stored in a
computer readable or machine-readable non-transitory storage medium as a set of
instructions adapted to direct a processor of a computer system to perform a set of steps
disclosed in embodiments of the present invention. The logic may form part of a computer
program product adapted to direct an information-processing device to perform a set of steps
disclosed in embodiments of the present invention. Based on the disclosure and teachings
provided herein, a person of ordinary skill in the art will appreciate other ways and/or

methods to implement the present invention.

[00170] The data structures and code described herein may be partially or fully stored on a
computer-readable storage medium and/or a hardware module and/or hardware apparatus. A
computer-readable storage medium includes, but is not limited to, volatile memory, non-
volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media,
now known or later developed, that are capable of storing code and/or data. Hardware
modules or apparatuses described herein include, but are not limited to, application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), dedicated or shared

processors, and/or other hardware modules or apparatuses now known or later developed.

[00171] The methods and processes described herein may be partially or fully embodied as
code and/or data stored in a computer-readable storage medium or device, so that when a
computer system reads and executes the code and/or data, the computer system performs the
associated methods and processes. The methods and processes may also be partially or fully
embodied in hardware modules or apparatuses, so that when the hardware modules or
apparatuses are activated, they perform the associated methods and processes. The methods
and processes disclosed herein may be embodied using a combination of code, data, and

hardware modules or apparatuses.
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[00172] The above descriptions of embodiments of the present invention are illustrative and
not limitative. In addition, similar principles as described corresponding to latches and/or
flops can be applied to other sequential logic circuit elements. Other modifications and
variations will be apparent to those skilled in the art and are intended to fall within the scope

of the appended claims.
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CLAIMS

What is claimed is:

1. A computer-implemented method for configuring a hardware system, the method
comprising:
providing, in the computer, a first data representative of a first assignment of a
plurality of wires to a plurality of physical connections between a plurality of logic circuits
of the hardware system; and
transforming, using the computer, the first data into a second data representative of a
second assignment of the plurality of wires to the plurality of physical connections, wherein
the transforming includes:
calculating a plurality of latencies each associated with a selected one of the
plurality of wires; and
assigning a first subset of the plurality of wires to at least one of the plurality
of physical connections in accordance with a first improvement goal, wherein transforming
causes the value of each one of the plurality of latencies that are associated with the first
subset to be less than or equal to the first improvement goal, when the second data is used to

configure the hardware system.

2. The method of claim 1 further comprising:
sorting the plurality of wires in accordance with the plurality of latencies to generate
a latency sorted order, wherein the assigning is performed in accordance with the latency

sorted order.

3. The method of claim 2, wherein the latency sorted order is in an ascending order
from a lowest latency being a first latency in the latency sorted order to a highest latency

being a last latency in the latency sorted order.

4. The method of claim 2, wherein the latency sorted order is in a descending order
from a highest latency being a first latency in the latency sorted order to a lowest latency

being a last latency in the latency sorted order.

5. The method of claim 2 further comprising:
assigning each one of an unassigned plurality of wires to a different one of a plurality
of vacant connections when a number of the unassigned plurality of wires is less than or

equal to a number of the plurality of vacant connections.
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6. The method of claim 1 further comprising:
assigning each one of the first subset to the at least one of the plurality of physical
connections until it is determined that further assigning an additional one of the plurality of

wires causes the first improvement goal to be violated.

7. The method of claim 1 further comprising:
assigning in accordance with a second improvement goal when the first improvement
goal is reached, wherein the second improvement goal is harder to reach than the first

improvement goal.

8. The method of claim 1 further comprising:
assigning in accordance with a second improvement goal when the first improvement
goal cannot be reached, wherein the second improvement goal is easier to reach than the

first improvement goal.

9. The method of claim 1, wherein the first improvement goal is calculated in

accordance with at least one of the plurality of latencies.

10.  The method of claim 1, wherein the plurality of logic circuits is selected from the

group consisting of programmable gate arrays (FPGA), and configurable hardware logic

(CHL).

11.  The method of claim 1, wherein at least one of the plurality of physical connections

use time domain multiplexing (TDM).

12.  The method of claim 1 further comprising:
choosing a pair of the plurality of logic circuits; and
iteratively repeating the choosing, the calculating, and the assigning in accordance

with the improvement goal.

13.  The method of claim 1 further comprising:
choosing a pair of the plurality of logic circuits, wherein the pair dictates a highest
frequency of the hardware system when the hardware system is configured with the first

data and run.

14.  The method of claim 1, wherein at least one of the plurality of latencies is further

associated with a count of a plurality of clock signals.

15. A system for configuring a hardware of the system, the system configured to:
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provide a first data representative of a first assignment of a plurality of wires to a
plurality of physical connections between a plurality of logic circuits of the hardware; and
transform the first data into a second data representative of a second assignment of
the plurality of wires to the plurality of physical connections, wherein during the
transformation the system is further configured to:
calculate a plurality of latencies each associated with a selected one of the
plurality of wires; and
assign a first subset of the plurality of wires to at least one of the plurality of
physical connections in accordance with a first improvement goal, wherein the
transformation causes the value of each one of the plurality of latencies that are associated
with the first subset to be less than or equal to the first improvement goal, when the second

data is used to configure the hardware.

16.  The system of claim 15 further configured to:
sort the plurality of wires in accordance with the plurality of latencies to generate a
latency sorted order, wherein the system is configured to assign in accordance with the

latency sorted order.

17.  The system of claim 16, wherein the latency sorted order is in an ascending order
from a lowest latency being a first latency in the latency sorted order to a highest latency

being a last latency in the latency sorted order.

18.  The system of claim 16, wherein the latency sorted order is in a descending order
from a highest latency being a first latency in the latency sorted order to a lowest latency

being a last latency in the latency sorted order.

19.  The system of claim 16 further configured to:
assign each one of an unassigned plurality of wires to a different one of a plurality of
vacant connections when a number of the unassigned plurality of wires is less than or equal

to a number of the plurality of vacant connections.

20.  The system of claim 15 further configured to:
assign each one of the first subset to the at least one of the plurality of physical
connections until it is determined that to further assign an additional one of the plurality of

wires causes the first improvement goal to be violated.

21.  The system of claim 15 further configured to:
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assign in accordance with a second improvement goal when the first improvement
goal is reached, wherein the second improvement goal is harder to reach than the first

improvement goal.

22.  The system of claim 15 further configured to:
assign in accordance with a second improvement goal when the first improvement
goal cannot be reached, wherein the second improvement goal is easier to reach than the

first improvement goal.

23.  The system of claim 15, wherein the first improvement goal is calculated in

accordance with at least one of the plurality of latencies.

24.  The system of claim 15, wherein the plurality of logic circuits is selected from the
group consisting of programmable gate arrays (FPGA), and configurable hardware logic

(CHL).

25.  The system of claim 15, wherein at least one of the plurality of physical connections

use time domain multiplexing (TDM).

26.  The system of claim 15 further configured to:
choose a pair of the plurality of logic circuits; and
iteratively repeat the to choose, the to calculate, and the to assign in accordance with

the improvement goal.

27.  The system of claim 15 further configured to:
choose a pair of the plurality of logic circuits, wherein the pair dictates a highest

frequency of the hardware when the hardware is configured with the first data and run.

28.  The system of claim 15, wherein at least one of the plurality of latencies is further

associated with a count of a plurality of clock signals.
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