woO 20207169106 A1 | NI 0000 KPP0 0 0 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
o amisaton " > A
International Bureau = (10) International Publication Number
(43) International Publication Date ——’/ WO 2020/169106 A1

27 August 2020 (27.08.2020) WIPOIPCT

(51) International Patent Classification: 29 July 2019 (29.07.2019) CN

HO4N 197103 2014.01) HO4N 19/70 2014.01) (71) Applicants: BEIJING BYTEDANCE NETWORK

(21) International Application Number: TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035, 2/

PCT/CN2020/076370 F, No.3 Building, No.30, Shixing Road, Shijingshan Dis-
trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US];
12655 West Jefferson Boulevard, Sixth Floor, Suite No.137,
Los Angeles, California 90066 (US).

(22) International Filing Date:

24 February 2020 (24.02.2020)
(25) Filing Language: English (72) Inventors: ZHU, Weijia, 12655 West Jefferson Boule-
(26) Publication Language: English vard, Sixth Floor, Suite No.137, Los Angeles, California
90066 (US). ZHANG, Li; 12655 West Jefferson Boule-

(30) Priority Data: vard, Sixth Floor, Suite No.137, Los Angeles, California

PCT/CN2019/075994 90066 (US). XU, Jizheng; 12655 West Jefferson Boule-
24 February 2019 (24.02.2019)  CN vard, Sixth Floor, Suite No.137, Los Angeles, California

PCT/CN2019/077454 90066 (US). ZHANG, Kai; 12655 West Jefferson Boule-
08 March 2019 (08.03.2019) CN vard, Sixth Floor, Suite No.137, Los Angeles, California

PCT/CN2019/081863 90066 (US). LIU, Hongbin; Jinritoutiao Post Office, Chi-
09 April 2019 (09.04.2019) CN na Satellite Communications Tower, No.63, Zhichun Road,

PCT/CN2019/096933 Haidian District, Beijing 100080 (CN). WANG, Yue; Jin-
20 July 2019 (20.07.2019) CN ritoutiao Post Office, China Satellite Communications Tow-

PCT/CN2019/097288 er, No.63, Zhichun Road, Haidian District, Beijing 100080
23 July 2019 (23.07.2019) CN (CN).

PCT/CN2019/098204

(54) Title: DETERMINING CONDITIONS OF SCREEN CONTENT CODING

3000

determining, for a conversion between a
block of a video and a bitstream
representation of the video, whethera [~ 3010
palette mode is allowed for the block
based on a second indication of a video
region containing the block

performing the conversion based on the

determining | 3020

FIG. 30

(57) Abstract: Devices, systems and methods for palette mode coding are described. An exemplary method for video processing
includes determining, for a conversion between a block of a video and a bitstream representation of the video, whether a palette mode
is allowed for the block based on a second indication of a video region containing the block. The method also includes performing
the conversion based on the determining,.

[Continued on next page]



WO 2020/169106 A1 |10} 00 00000 0 A

(74) Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build-
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080
(CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW,BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of'inventorship (Rule 4.17(iv))

Published:
—  with international search report (Art. 21(3))



WO 2020/169106 PCT/CN2020/076370

DETERMINING CONDITIONS OF SCREEN CONTENT CODING

CROSS REFERENCE TO RELATED APPLICATIONS
[001] Under the applicable patent law and/or rules pursuant to the Paris Convention, this
application is made to timely claim the priority to and benefits of International Patent
Application No. PCT/CN2019/075994, filed on February 24, 2019; International Patent
Application No. PCT/CN2019/077454, filed on March 8, 2019; International Patent Application
No. PCT/CN2019/081863, filed on April 9, 2019; International Patent Application No.
PCT/CN2019/096933, filed on July 20, 2019; International Patent Application No.
PCT/CN2019/097288, filed on July 23, 2019; and International Patent Application No.
PCT/CN2019/098204, filed on July 29, 2019. For all purposes under the U.S. law, the entire
disclosure of the aforementioned applications is incorporated by reference as part of the

disclosure of this application.

TECHNICAL FIELD

[002] This document is related to video and image coding technologies.

BACKGROUND
[003] Digital video accounts for the largest bandwidth use on the internet and other digital
communication networks. As the number of connected user devices capable of receiving and
displaying video increases, it is expected that the bandwidth demand for digital video usage will

continue to grow.

SUMMARY
[004] The disclosed techniques may be used by video or image decoder or encoder
embodiments for in which palette mode coding is used.
[005] In one example aspect, a method of video processing is disclosed. The method includes
performing a conversion between a block of a video region of a video and a bitstream
representation of the video. The bitstream representation is processed according to a first format

rule that specifies whether a first indication of usage of a palette mode is signaled for the block



WO 2020/169106 PCT/CN2020/076370

and a second format rule that specifies a position of the first indication relative to a second
indication of usage of a prediction mode for the block.

[006] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a conversion between a block of a video region in a video and a
bitstream representation of the video, a prediction mode based on one or more allowed prediction
modes that include at least a palette mode of the block. An indication of usage of the palette
mode is determined according to the prediction mode. The method also includes performing the
conversion based on the one or more allowed prediction modes.

[007] In another example aspect, a method of video processing is disclosed. The method
includes performing a conversion between a block of a video and a bitstream representation of
the video. The bitstream representation is processed according to a format rule that specifies a
first indication of usage of a palette mode and a second indication of usage of an intra block copy
(IBC) mode are signaled dependent of each other.

[008] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a conversion between a block of a video and a bitstream representation
of the video, a presence of an indication of usage of a palette mode in the bitstream
representation based on a dimension of the block; and performing the conversion based on the
determining.

[009] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a conversion between a block of a video and a bitstream representation
of the video, a presence of an indication of usage of an intra block copy (IBC) mode in the
bitstream representation based on a dimension of the block; and performing the conversion based
on the determining.

[0010] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a conversion between a block of a video and a bitstream representation
of the video, whether a palette mode is allowed for the block based on a second indication of a
video region containing the block; and performing the conversion based on the determining.
[0011] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a conversion between a block of a video and a bitstream representation

of the video, whether an intra block copy (IBC) mode is allowed for the block based on a second



WO 2020/169106 PCT/CN2020/076370

indication of a video region containing the block; and performing the conversion based on the
determining.

[0012] In another example aspect, a method of video processing is disclosed. The method
includes determining that palette mode is to be used for processing a transform unit, a coding
block, or a region, usage of palette mode being coded separately from a prediction mode, and
performing further processing of the transform unit, the coding block, or the region using the
palette mode.

[0013] In another example aspect, a method of video processing is disclosed. The method
includes determining, for a current video block, that a sample associated with one palette entry of
a palette mode has a first bit depth that is different from a second bit depth associated with the
current video block, and performing, based on at least the one palette entry, further processing of
the current video block.

[0014] In another example aspect, another method of video processing is disclosed. The method
includes performing a conversion between a current video block of a picture of a video and a
bitstream representation of the video in which information about whether or not an intra block
copy mode is used in the conversion is signaled in the bitstream representation or derived based
on a coding condition of the current video block; wherein the intra block copy mode comprises
coding the current video block from another video block in the picture.

[0015] In yet another example aspect, another method of video processing is disclosed. The
method includes determining whether or not a deblocking filter is to be applied during a
conversion of a current video block of a picture of video, wherein the current video block is
coded using a palette mode coding in which the current video block is represented using
representative sample values that are fewer than total pixels of the current video block and
performing the conversion such that the deblocking filter is applied in case the determining is
that the deblocking filter is to be applied.

[0016] In yet another example aspect, another method of video processing is disclosed. The
method includes determining a quantization or an inverse quantization process for use during a
conversion between a current video block of a picture of a video and a bitstream representation
of the video, wherein the current video block is coded using a palette mode coding in which the

current video block is represented using representative sample values that are fewer than total



WO 2020/169106 PCT/CN2020/076370

pixels of the current video block and performing the conversion based on the determining the
quantization or the inverse quantization process.

[0017] In yet another example aspect, another method of video processing is disclosed. The
method includes determining, for a conversion between a current video block of a video
comprising multiple video blocks and a bitstream representation of the video, that the current
video block is a palette-coded block; based on the determining, performing a list construction
process of most probable mode by considering the current video block to be an intra coded
block, and performing the conversion based on a result of the list construction process; wherein
the palette-coded block is coded or decoded using a palette or representation sample values.
[0018] In yet another example aspect, another method of video processing is disclosed. The
method includes

[0019] In yet another example aspect, another method of video processing is disclosed. The
method includes determining, for a conversion between a current video block of a video
comprising multiple video blocks and a bitstream representation of the video, that the current
video block is a palette-coded block; based on the determining, performing a list construction
process of most probable mode by considering the current video block to be a non-intra coded
block, and performing the conversion based on a result of the list construction process; wherein
the palette-coded block is coded or decoded using a palette or representation sample values.
[0020] In yet another example aspect, another method of video processing is disclosed. The
method includes determining, for a conversion between a current video block of a video
comprising multiple video blocks and a bitstream representation of the video, that the current
video block is a palette-coded block; based on the determining, performing a list construction
process by considering the current video block to be an unavailable block, and performing the
conversion based on a result of the list construction process; wherein the palette-coded block 1s
coded or decoded using a palette or representation sample values.

[0021] In yet another example aspect, another method of video processing is disclosed. The
method includes determining, during a conversion between a current video block and a bitstream
representation of the current video block, that the current video block is a palette coded block,
determining, based on the current video block being the palette coded block, a range of context
coded bins used for the conversion; and performing the conversion based on the range of context

coded bins.



WO 2020/169106 PCT/CN2020/076370

[0022] In

yet another example aspect, the above-described method may be implemented by a

video encoder apparatus that comprises a processor.

[0023] In

processor-¢

yet another example aspect, these methods may be embodied in the form of

xecutable instructions and stored on a computer-readable program medium.

[0024] These, and other, aspects are further described in the present document.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 shows an example of intra block copy.

[0026] FIG. 2 shows an example of a block coded in palette mode.

[0027] FIG. 3 shows an example of use of a palette predictor to signal palette entries.

[0028] FIG. 4 shows an example of horizontal and vertical traverse scans.

[0029] FIG. 5 shows an example of coding of palette indices.

[0030] FIG. 6 is a block diagram of an example of a video processing apparatus.

[0031] FIG. 7 shows a block diagram of an example implementation of a video encoder.

[0032] FIG. 8 is a flowchart for an example of a video processing method.

[0033] FIG

. 9 shows an example of pixels involved in filter on/off decision and strong/weak

filter selection.

[0034] FIG
[0035] FIG
[0036] FIG
[0037] FIG
[0038] FIG
diamond).
[0039] FIG
[0040] FIG
gradient.
[0041] FIG
gradient.
[0042] FIG

gradient.

. 10 shows an example of binarization of four modes.

. 11 shows an example of binarization of four modes.

. 12 shows examples of 67 intra mode prediction directions.
. 13 shows examples of neighboring video blocks.

. 14 shows examples of ALF filter shapes (chroma: 5x5 diamond, luma: 7x7

. 15 (a) shows an examples of subsampled Laplacian calculation for vertical gradient.

. 15 (b) shows an examples of subsampled Laplacian calculation for horizontal

. 15 (c) shows an examples of subsampled Laplacian calculation for diagonal

. 15 (d) shows an examples of subsampled Laplacian calculation for diagonal



WO 2020/169106 PCT/CN2020/076370

[0043] FIG. 16 shows an examples of modified block classification at virtual boundaries.

[0044] FIG. 17 shows an examples of modified ALF filtering for luma component at virtual
boundaries.

[0045] FIG. 18 shows an example of four 1-D 3-pixel patterns for the pixel classification in EO.
[0046] FIG. 19 shows an example of four bands are grouped together and represented by its
starting band position.

[0047] FIG. 20 shows an example of top and left neighboring blocks used in CIIP weight
derivation.

[0048] FIG. 21 shows an example of luma mapping with chroma scaling architecture.

[0049] FIG. 22 shows an examples of scanning order for a 4x4 block.

[0050] FIG. 23 shows another example of scanning order for a 4x4 block.

[0051] FIG. 24 is a block diagram of an example video processing system in which disclosed
techniques may be implemented.

[0052] FIG. 25 is a flowchart representation of a method for video processing in accordance with
the present technology.

[0053] FIG. 26 is another flowchart representation of another method for video processing in
accordance with the present technology.

[0054] FIG. 27 is another flowchart representation of another method for video processing in
accordance with the present technology.

[0055] FIG. 28 is another flowchart representation of another method for video processing in
accordance with the present technology.

[0056] FIG. 29 is another flowchart representation of another method for video processing in
accordance with the present technology.

[0057] FIG. 30 is another flowchart representation of another method for video processing in
accordance with the present technology.

[0058] FIG. 31 is yet another flowchart representation of another method for video processing in

accordance with the present technology.

DETAILED DESCRIPTION
[0059] The present document provides various techniques that can be used by a decoder of

image or video bitstreams to improve the quality of decompressed or decoded digital video or



WO 2020/169106 PCT/CN2020/076370

images. For brevity, the term “video” is used herein to include both a sequence of pictures
(traditionally called video) and individual images. Furthermore, a video encoder may also
implement these techniques during the process of encoding in order to reconstruct decoded
frames used for further encoding.

[0060] Section headings are used in the present document for ease of understanding and do not
limit the embodiments and techniques to the corresponding sections. As such, embodiments from
one section can be combined with embodiments from other sections.

[0061] 1. Summary

[0062] This document is related to video coding technologies. Specifically, it is related to palette
coding with employing base colors based representation in video coding. It may be applied to the
existing video coding standard like HEVC, or the standard (Versatile Video Coding) to be
finalized. It may be also applicable to future video coding standards or video codec.

[0063] 2. Initial Discussion

[0064] Video coding standards have evolved primarily through the development of the well-
known ITU-T and ISO/IEC standards. The ITU-T produced H.261 and H.263, ISO/IEC
produced MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the
H.262/MPEG-2 Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC
standards. Since H.262, the video coding standards are based on the hybrid video coding
structure wherein temporal prediction plus transform coding are utilized. To explore the future
video coding technologies beyond HEVC, Joint Video Exploration Team (JVET) was founded
by VCEG and MPEG jointly in 2015. Since then, many new methods have been adopted by
JVET and put into the reference software named Joint Exploration Model (JEM). In April 2018,
the Joint Video Expert Team (JVET) between VCEG (Q6/16) and ISO/IEC JTC1 SC29/WG11
(MPEG) was created to work on the VVC standard targeting at 50% bitrate reduction compared
to HEVC.

[0065] Fig. 7 is a block diagram of an example implementation of a video encoder. Fig 7 shows
that the encoder implementation has a feedback path built in in which the video encoder also
performs video decoding functionality (reconstructing compressed representation of video data
for use in encoding of next video data).

[0066] 2.1 Intra block copy



WO 2020/169106 PCT/CN2020/076370

[0067] Intra block copy (IBC), a k.a. current picture referencing, has been adopted in HEVC
Screen Content Coding extensions (HEVC-SCC) and the current VVC test model (VTM-4.0).
IBC extends the concept of motion compensation from inter-frame coding to intra-frame coding.
As demonstrated in FIG. 1, the current block is predicted by a reference block in the same
picture when IBC 1s applied. The samples in the reference block must have been already
reconstructed before the current block 1s coded or decoded. Although IBC is not so efficient for
most camera-captured sequences, it shows significant coding gains for screen content. The
reason is that there are lots of repeating patterns, such as icons and text characters in a screen
content picture. IBC can remove the redundancy between these repeating patterns effectively. In
HEVC-SCC, an inter-coded coding unit (CU) can apply IBC if it chooses the current picture as
its reference picture. The MV is renamed as block vector (BV) in this case, and a BV always has
an integer-pixel precision. To be compatible with main profile HEVC, the current picture is
marked as a “long-term” reference picture in the Decoded Picture Buffer (DPB). It should be
noted that similarly, in multiple view/3D video coding standards, the inter-view reference picture
1s also marked as a “long-term” reference picture.

[0068] Following a BV to find its reference block, the prediction can be generated by copying
the reference block. The residual can be got by subtracting the reference pixels from the original
signals. Then transform and quantization can be applied as in other coding modes.

[0069] However, when a reference block is outside of the picture, or overlaps with the current
block, or outside of the reconstructed area, or outside of the valid area restricted by some
constrains, part or all pixel values are not defined. Basically, there are two solutions to handle
such a problem. One is to disallow such a situation, e.g. in bitstream conformance. The other is
to apply padding for those undefined pixel values. The following sub-sessions describe the
solutions in detail.

[0070] 2.2 IBC in HEVC Screen Content Coding extensions

[0071] In the screen content coding extensions of HEVC, when a block uses current picture as
reference, it should guarantee that the whole reference block is within the available reconstructed
area, as indicated in the following spec text (bold):

[0072] The variables offsetX and offsetY are derived as follows:

[0073] offsetX =( ChromaArrayType==0)?0:(mvCLX[0] & 0x7?22:0) (8-106)
[0074] offsetY =( ChromaArrayType==0)?0:(mvCLX[1] & 0x722:0) (8-107)

8



WO 2020/169106 PCT/CN2020/076370

[0075] It is a requirement of bitstream conformance that when the reference picture is the
current picture, the luma motion vector mvLX shall obey the following constraints:

[0076] - When the derivation process for z-scan order block availability as specified in
clause 6.4.1 is invoked with ( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring
luma location ( xXNbY, yNbY ) set equal to ( xPb + (mvLX[ 0] >> 2) — offsetX, yPb +
(mvLX[ 1] >> 2 ) — offsetY ) as inputs, the output shall be equal to TRUE.

[0077] - When the derivation process for z-scan order block availability as specified in
clause 6.4.1 is invoked with ( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring
luma location ( xXNbY, yNbY ) set equal to ( xPb + (mvLX[ 0] >> 2) + nPbW — 1 + offsetX,
yPb + (mvLX|[ 1] >> 2) + nPbH — 1 + offsetY) as inputs, the output shall be equal to
TRUE.

[0078] - One or both the following conditions shall be true:

[0079] - The value of (mvLX[ 0] >> 2 )+ nPbW + xB1 + offsetX is less than or equal to
0.

[0080] - The value of (mvLX[ 1] >> 2 )+ nPbH + yB1 + offsetY is less than or equal to
0.

[0081] - The following condition shall be true:

[0082] (xPb+ (mvLX][0] >> 2)+ nPbSw — 1 + offsetX) / CtbSizeY — xCurr / CtbSizeY
<= yCurr/CtbSizeY — (yPb+ (mvLX[ 1] >> 2 )+ nPbSh — 1 + offsetY ) / CtbSizeY (8-
108)

[0083] Thus, the case that the reference block overlaps with the current block or the
reference block is outside of the picture will not happen. There is no need to pad the
reference or prediction block.

[0084] Thus, the case that the reference block overlaps with the current block or the reference
block is outside of the picture will not happen. There is no need to pad the reference or
prediction block.

[0085] 2.3 IBC in VVC Test Model

[0086] In the current VVC test model, e.g., VIM-4.0 design, the whole reference block should
be with the current coding tree unit (CTU) and does not overlap with the current block. Thus,

there 1s no need to pad the reference or prediction block. The IBC flag is coded as a prediction



WO 2020/169106 PCT/CN2020/076370

mode of the current CU. Thus, there are totally three prediction modes, MODE INTRA,
MODE INTER and MODE IBC for each CU.

[0087] 2.3.1 IBC Merge mode

[0088] In IBC merge mode, an index pointing to an entry in the IBC merge candidates list is
parsed from the bitstream. The construction of the IBC merge list can be summarized according
to the following sequence of steps:

[0089] Step 1: Derivation of spatial candidates

[0090] Step 2: Insertion of HMVP candidates

[0091] Step 3: Insertion of pairwise average candidates

[0092] In the derivation of spatial merge candidates, a maximum of four merge candidates are
selected among candidates located in the positions depicted in the figures. The order of
derivation is Al, B1, BO, AO and B2. Position B2 is considered only when any PU of position
Al, B1, BO, A0 is not available (e.g. because it belongs to another slice or tile) or is not coded
with IBC mode. After candidate at position Al is added, the insertion of the remaining
candidates is subject to a redundancy check which ensures that candidates with same motion
information are excluded from the list so that coding efficiency is improved. To reduce
computational complexity, not all possible candidate pairs are considered in the mentioned
redundancy check. Instead only the pairs linked with an arrow in depicted in the figures are
considered and a candidate is only added to the list if the corresponding candidate used for
redundancy check has not the same motion information.

[0093] After insertion of the spatial candidates, if the IBC merge list size is still smaller than the
maximum IBC merge list size, IBC candidates from HMVP table may be inserted. Redundancy
check are performed when inserting the HMVP candidates.

[0094] Finally, pairwise average candidates are inserted into the IBC merge list.

[0095] When a reference block identified by a merge candidate is outside of the picture, or
overlaps with the current block, or outside of the reconstructed area, or outside of the valid area
restricted by some constrains, the merge candidate is called invalid merge candidate.

[0096] It is noted that invalid merge candidates may be inserted into the IBC merge list.

[0097] 2.3.2 IBC AMVP mode

10



WO 2020/169106 PCT/CN2020/076370

[0098] In IBC AMVP mode, an AMVP index point to an entry in the IBC AMVP list is parsed
from the bitstream. The construction of the IBC AMVP list can be summarized according to the
following sequence of steps:

[0099] Step 1: Derivation of spatial candidates

[00100] Check AO, A1 until an available candidate is found.

[00101] Check BO, B1, B2 until an available candidate is found.

[00102] Step 2: Insertion of HMVP candidates

[00103] Step 3: Insertion of zero candidates

[00104] After insertion of the spatial candidates, if the IBC AMVP list size is still smaller than
the maximum IBC AMVP list size, IBC candidates from HMVP table may be inserted.

[00105] Finally, zero candidates are inserted into the IBC AMVP list.

[00106] 2.4 Palette Mode

[00107] The basic idea behind a palette mode is that the samples in the CU are represented by a
small set of representative color values. This set is referred to as the palette. It is also possible to
indicate a sample that is outside the palette by signaling an escape symbol followed by (possibly
quantized) component values. This is illustrated in FIG. 2.

[00108] 2.5 Palette Mode in HEVC Screen Content Coding extensions (HEVC-SCC)
[00109] In the palette mode in HEVC-SCC, a predictive way is used to code the palette and
index map.

[00110] 2.5.1 Coding of the palette entries

[00111] For coding of the palette entries, a palette predictor is maintained. The maximum size of
the palette as well as the palette predictor is signaled in the SPS. In HEVC-SCC, a
palette_predictor_initializer present flag is introduced in the PPS. When this flag is 1, entries
for initializing the palette predictor are signaled in the bitstream. The palette predictor is
initialized at the beginning of each CTU row, each slice and each tile. Depending on the value of
the palette predictor initializer present flag, the palette predictor is reset to O or initialized
using the palette predictor intializer entries signaled in the PPS. In HEVC-SCC, a palette
predictor initializer of size O was enabled to allow explicit disabling of the palette predictor
initialization at the PPS level.

[00112] For each entry in the palette predictor, a reuse flag is signaled to indicate whether it is

part of the current palette. This is illustrated in FIG. 3. The reuse flags are sent using run-length

11



WO 2020/169106 PCT/CN2020/076370

coding of zeros. After this, the number of new palette entries are signaled using exponential
Golomb code of order 0. Finally, the component values for the new palette entries are signaled.
[00113] 2.5.2 Coding of palette indices

[00114] The palette indices are coded using horizontal and vertical traverse scans as shown in
FIG. 4. The scan order is explicitly signaled in the bitstream using the palette transpose flag.
For the rest of the subsection it is assumed that the scan is horizontal.

[00115] The palette indices are coded using two main palette sample modes: TNDEX' and
'COPY_ABOVE' As explained previously, the escape symbol is also signaled as an TNDEX'
mode and assigned an index equal to the maximum palette size. The mode is signaled using a
flag except for the top row or when the previous mode was 'COPY_ABOVE' In the
'COPY_ABOVE' mode, the palette index of the sample in the row above is copied. In the
TNDEX' mode, the palette index is explicitly signaled. For both 'INDEX' and 'COPY_ABOVE'
modes, a run value 1s signaled which specifies the number of subsequent samples that are also
coded using the same mode. When escape symbol is part of the run in INDEX' or
'COPY_ABOVE' mode, the escape component values are signaled for each escape symbol. The
coding of palette indices 1s illustrated in FIG. 5.

[00116] This syntax order is accomplished as follows. First the number of index values for the
CU is signaled. This is followed by signaling of the actual index values for the entire CU using
truncated binary coding. Both the number of indices as well as the the index values are coded in
bypass mode. This groups the index-related bypass bins together. Then the palette sample mode
(if necessary) and run are signaled in an interleaved manner. Finally, the component escape
values corresponding to the escape samples for the entire CU are grouped together and coded in
bypass mode.

[00117] An additional syntax element, last run_type flag, is signaled after signaling the index
values. This syntax element, in conjunction with the number of indices, eliminates the need to
signal the run value corresponding to the last run in the block.

[00118] In HEVC-SCC, the palette mode is also enabled for 4:2:2, 4:2:0, and monochrome
chroma formats. The signaling of the palette entries and palette indices is almost identical for all
the chroma formats. In case of non-monochrome formats, each palette entry consists of 3
components. For the monochrome format, each palette entry consists of a single component. For

subsampled chroma directions, the chroma samples are associated with luma sample indices that

12



WO 2020/169106 PCT/CN2020/076370

are divisible by 2. After reconstructing the palette indices for the CU, if a sample has only a
single component associated with it, only the first component of the palette entry is used. The
only difference in signaling is for the escape component values. For each escape sample, the
number of escape component values signaled may be different depending on the number of
components associated with that sample.

[00119] In VVC, the dual tree coding structure is used on coding the intra slices, so the luma
component and two chroma components may have different palette and palette indices. In
addition, the two chroma component shares same palette and palette indices.

[00120] 2.6 Deblocking scheme in VVC

[00121] Note that, in the following descriptions, pNm denotes the left-side N-th sample in the M-
th row relative to the vertical edge or the top-side N-th sample in the M-th column relative to the
horizontal edge, qNm denotes the right-side N-th sample in the M-th row relative to the vertical
edge or the bottom-side N-th sample in the M-th column relative to the horizontal edge. An
example of pNm and qNwm is depicted in FIG. 9.

[00122] Note that, in the following descriptions, px denotes the left-side N-th sample in a row
relative to the vertical edge or the top-side N-th sample in a column relative to the horizontal
edge, qn denotes the right-side N-th sample in a row relative to the vertical edge or the bottom-
side N-th sample in a column relative to the horizontal edge.

[00123] Filter on/off decision is done for four lines as a unit. FIG. 9 illustrates the pixels
involving in filter on/off decision. The 6 pixels in the two red boxes for the first four lines are
used to determine filter on/off for 4 lines. The 6 pixels in two red boxes for the second 4 lines are
used to determine filter on/off for the second four lines.

[00124] In some embodiments, the vertical edges in a picture are filtered first. Then the
horizontal edges in a picture are filtered with samples modified by the vertical edge filtering
process as input. The vertical and horizontal edges in the CTBs of each CTU are processed
separately on a coding unit basis. The vertical edges of the coding blocks in a coding unit are
filtered starting with the edge on the left-hand side of the coding blocks proceeding through the
edges towards the right-hand side of the coding blocks in their geometrical order. The horizontal
edges of the coding blocks in a coding unit are filtered starting with the edge on the top of the
coding blocks proceeding through the edges towards the bottom of the coding blocks in their

geometrical order.

13



WO 2020/169106 PCT/CN2020/076370

[00125] 2.6.1 Boundary decision

[00126] Filtering 1s applied to 8x8 block boundaries. In addition, it must be a transform block

boundary or a coding subblock boundary (e.g., due to usage of Affine motion prediction,

ATMVP). For those which are not such boundaries, filter 1s disabled.

[00127] 2.6.2 Boundary strength calculation

[00128] For a transform block boundary/coding subblock boundary, if it is located in the 8x8

grid, it may be filterd and the setting of bS[ xDi ][ yDj ] (wherein [ xDi ][ yDj ] denotes the

coordinate) for this edge is defined as follows:

If the sample po or qo is in the coding block of a coding unit coded with intra prediction
mode, bS[ xDi ][ yDj ] is set equal to 2.

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a
transform block which contains one or more non-zero transform coefficient levels,
bS[ xDi ][ yDj ] is set equal to 1.

Otherwise, if the prediction mode of the coding subblock containing the sample po is
different from the prediction mode of the coding subblock containing the sample qo,
bS[ xDi ][ yDj ] is set equal to 1.

Otherwise, if one or more of the following conditions are true, bS[ xDi ][ yDj ] is set equal

— The coding subblock containing the sample po and the coding subblock containing the
sample qo are both coded in IBC prediction mode, and the absolute difference between
the horizontal or vertical component of the motion vectors used in the prediction of
the two coding subblocks is greater than or equal to 4 in units of quarter luma samples.

— For the prediction of the coding subblock containing the sample po different reference
pictures or a different number of motion vectors are used than for the prediction of
the coding subblock containing the sample qo.

NOTE 1 — The determination of whether the reference pictures used for the two
coding sublocks are the same or different is based only on which pictures are
referenced, without regard to whether a prediction is formed using an index into
reference picture list O or an index into reference picture list 1, and also without
regard to whether the index position within a reference picture list is different.

NOTE 2 — The number of motion vectors that are used for the prediction of a
codull:% subblock with top-left sample covering ( xSb, ySb ), is equal to
PredFTagLO[ xSb ][ ySin + PredFlagL1[ xSb ][ ySb |.

— One motion vector is used to predict the coding subblock containing the sample po and
one motion vector is used to predict the coding subblock containing the sample qp,
and the absolute difference between the horizontal or vertical component of the
motion vectors used is greater than or equal to 4 in units of quarter luma samples.

— Two motion vectors and two different reference pictures are used to predict the coding
subblock containing the sample po, two motion vectors for the same two reference
pictures are used to predict the coding subblock containing the sample qo and the

14



WO 2020/169106 PCT/CN2020/076370

absolute difference between the horizontal or vertical component of the two motion
vectors used in the prediction of the two coding subblocks for the same reference
picture is greater than or equal to 4 in units of quarter luma samples.

— Two motion vectors for the same reference picture are used to predict the coding
subblock containing the sample po, two motion vectors for the same reference picture
are used to predict the coding subblock containing the sample qo and both of the
following conditions are true:

— The absolute difference between the horizontal or vertical component of list O
motion vectors used in the prediction of the two coding subblocks is greater than
or equal to 4 in quarter luma samples, or the absolute difference between the
horizontal or vertical component of the list 1 motion vectors used in the prediction
of the two coding subblocks is greater than or equal to 4 in units of quarter luma
samples.

— The absolute difference between the horizontal or vertical component of list O
motion vector used in the prediction of the coding subblock containing the sample
po and the list 1 motion vector used in the prediction of the coding subblock
containing the sample qo is greater than or equal to 4 in units of quarter luma
samples, or the absolute difference between the horizontal or vertical component
of the list 1 motion vector used in the prediction of the coding subblock containing
the sample po and list 0 motion vector used in the prediction of the coding subblock
containing the sample qo is greater than or equal to 4 in units of quarter luma
samples.

— Otherwise, the variable bS[ xDi ][ yDj ] is set equal to O.

Table 2-

1 and 2-2 summarize the BS calculation rules.

Table 2-1. Boundary strength (when SPS IBC is disabled)

Priority Conditions Y U A%
5 At least one of the adjacent blocks is intra 2 2 2
4 TU boundary and at least one of the adjacent blocks has non- 1 1 1
zero transform coefficients
3 Reference pictures or number of MVs (1 for uni-prediction, 2 1 N/A | N/A
for bi-prediction) of the adjacent blocks are different
Absolute difference between the motion vectors of same
2 reference picture that belong to the adjacent blocks is greater 1 N/A | N/A
than or equal to one integer luma sample
1 Otherwise 0 0 0

15



WO 2020/169106 PCT/CN2020/076370

Table 2-2. Boundary strength (when SPS IBC is enabled)

Priority Conditions Y U A%

8 At least one of the adjacent blocks is intra 2 2 2

TU boundary and at least one of the adjacent blocks has non-
zero transform coefficients

Prediction mode of adjacent blocks is different (e.g., one is
IBC, one is inter)

Both IBC and absolute difference between the motion vectors
5 that belong to the adjacent blocks is greater than or equal to 1 N/A | N/A
one integer luma sample

Reference pictures or number of MVs (1 for uni-prediction, 2

for bi-prediction) of the adjacent blocks are different 1 N/A | N/A

Absolute difference between the motion vectors of same
3 reference picture that belong to the adjacent blocks is greater 1 N/A | N/A
than or equal to one integer luma sample

1 Otherwise 0 0 0

[00129] 2.6.3 Deblocking decision for luma component
[00130] The deblocking decision process is described in this sub-section.
[00131] Wider-stronger luma filter is filters are used only if all of the Condition1, Condition2
and Condition 3 are TRUE.
[00132] The condition 1 is the “large block condition”. This condition detects whether the
samples at P-side and Q-side belong to large blocks, which are represented by the variable
bSidePisLargeBlk and bSideQisLargeBlk respectively. The bSidePisLargeBlk and
bSideQisLargeBlk are defined as follows.
bSidePisLargeBlk = ((edge type 1s vertical and po belongs to CU with width >= 32) | | (edge
type 1s horizontal and po belongs to CU with height >= 32))? TRUE: FALSE

bSideQisLargeBlk = ((edge type is vertical and qo belongs to CU with width >=32) | | (edge
type 1s horizontal and qo belongs to CU with height >= 32))? TRUE: FALSE

16



WO 2020/169106 PCT/CN2020/076370

[00133] Based on bSidePisLargeBlk and bSideQisLargeBIk, the condition 1 is defined as

follows.

Condition1 = (bSidePisLargeBlk || bSidePisLargeBlk) ? TRUE: FALSE

Next, if Condition 1 is true, the condition 2 will be further checked. First, the following variables
are derived:

— dpO, dp3, dqO, dqg3 are first derived as in HEVC
— 1f (p side is greater than or equal to 32)
dpO=(dp0+ Abs(pSo—2*pdo+p30)+1)>>1

dp3=(dp3 +Abs(pSs—2*pds+p33)+1)>>1

— 1f (q side is greater than or equal to 32)
dq0=(dq0+Abs(qSo—2*qdo+q30)+1)>>1

dg3=(dgq3 +Abs(q5:—2*qds+q33)+1)>>1

Condition2 = (d < B) ? TRUE: FALSE
where d= dp0 + dq0 + dp3 + dq3, as shown in section 2.2 4.

If Conditionl and Condition2 are valid, whether any of the blocks uses sub-blocks is further
checked:

If (bSidePisLargeBlk)
If (mode block P == SUBBLOCKMODE)
Sp =5
else
Sp =7
else
Sp=3
If (bSideQisLargeBlk)
If (mode block Q == SUBBLOCKMODE)
Sq =5
else
Sq=7
else
Sq=3
Finally, if both the Condition 1 and Condition 2 are valid, the proposed deblocking method will

check the condition 3 (the large block strong filter condition), which is defined as follows.

17



WO 2020/169106 PCT/CN2020/076370

In the Condition3 StrongFilterCondition, the following variables are derived:
dpq 1s derived as in HEVC.
sp3 = Abs( p3 — po ), derived as in HEVC
if (p side 1s greater than or equal to 32)
if(Sp==5)
sp3=(sp3+ Abs(ps—p3)+1)>>1
else
sp3=(sp3t+ Abs(p7—p3)+1)>>1
sq3 = Abs( qo — q3 ), derived as in HEVC
if (q side 1s greater than or equal to 32)
If(Sq==5)
sq3=(sq+Abs(qs—q3)+1)>>1
else

sq3=(sq+Abs(q7—qz)+1)>>1

[00134] As in HEVC, StrongFilterCondition = (dpq is less than ( B >> 2), sp3 + sq3 1s less than
(3*B >> 5),and Abs(po—qo ) 1slessthan (5 *tc+1) >> 1) ? TRUE : FALSE.

[00135] 2.6.4 Stronger deblocking filter for luma (designed for larger blocks)

[00136] Bilinear filter is used when samples at either one side of a boundary belong to a large
block. A sample belonging to a large block is defined as when the width >= 32 for a vertical
edge, and when height >= 32 for a horizontal edge.

[00137] The bilinear filter is listed below.

[00138] Block boundary samples pi for i=0 to Sp-1 and qi for j=0 to Sq-1 (p1 and qi are the i-th
sample within a row for filtering vertical edge, or the i-th sample within a column for filtering
horizontal edge) in HEVC deblocking described above) are then replaced by linear interpolation

as follows:

— p;" = (f; * Middleg, + (64 — f;) * P, + 32) > 6), clipped to p; + tcPD;
— q;" = (gj *Middle,, + (64 — gj) * Qs +32) » 6), clipped to q; £ tcPD;

where tcPD; and tcPD; term is a position dependent clipping described in Section 2.3.6 and g,
fi, Middleg,, P; and Qg are given in Table 2-3:

Table 2-3. Long tap deblocking filters

18



WO 2020/169106 PCT/CN2020/076370

fi =59 —1i%9, canalso be described as f = {59,50,41,32,23,14,5}

Sp, Sq
79 gj =59 —j*9, canalso be described as g = {59,50,41,32,23,14,5}
(p side: 7 Middle; ; = (2% (po + qo) + D1 + @1 + D2 + G2+P3 + q3+Ps + Qu+Ds
- + gs+pe +q¢ + 8) > 4
q side: 7)
P =(pg+p;, +1) D1, Q;,=(qs+q; +1)>1
fi =59 —1i%9, canalso be described as f = {59,50,41,32,23,14,5}
7,3 gj =53 —j* 21, canalso be described as g = {53,32,11}
(pside: 7 Middle; 5 = (2 x(py + qo) + qo + 2 * (g1 + q2) + P1 + @1 + P2+P3+P4+Ds +
qside: 3) | Pe +8) > 4
Pr=pg+p;,+ D1, Qz3=(qp+qg+1)>1
gj =59 —j*9, canalso be described as g = {59,50,41,32,23,14,5}
3,7 fi =53 —ix21, canalso be described as f = {53,32,11}
(p side: 3 Middles; = (2% (qy + Do) +Po +2* (1 +D2) + @1 +P1 + G2 +qd3+qs+qs +
qside: 7) | 96 +8) »> 4
Q;=(qe+tg;+H)D>1, Pa=(p,+ps+1)>1
gj =58 —j*13, canalso be described as g = {58,45,32,19,6}
7,5 fi =59 —1i%9, canalso be described as f = {59,50,41,32,23,14,5}
(pside:7 | Middle7,5 = (2 (Do + G + P1 + q1) + qz + Py + q3 + D3 + 44 + Py + 45
q side: 5) +ps+8) >4
Qs =(qa+tgs+H)>1, P,={pe+p, +1)>1
gj =59 —j*9, canalso be described as g = {59,50,41,32,23,14,5}
5,7 fi =58 —i*13, canalso be described as f = {58,45,32,19,6}
(pside:S | Middle57 = (2 (qo +Po + D1+ q1) + q2 + P2 + g3 + D3 + 44 +Ps + g5
q side: 7) +ps+8) >4
Q;=(qe+tq;+DH)»1, P-=(pu+ps+1)>1
gj =58 —j*13, canalso be described as g = {58,45,32,19,6}
5,5 fi =58 —i*13, canalso be described as f = {58,45,32,19,6}
(pside:S | Middle5,5 = (2% (qo + po + D1 + G1 + Gz + P2) + G5 + D3 + Gy + Py + 8)
q side: 5) > 4
Qs=(qu+tgs+DH»1, P-=((pu+ps+1H)>1
53 gj =53 —j*21, canalso be described as g = {53,32,11}

19




WO 2020/169106 PCT/CN2020/076370

(p side: 5 fi =58 —i*13, canalso be described as f = {58,45,32,19,6}
q side: 3) Middle53 =(q, +po + D1+ g1+ g2 + P2 +q3 +p3 +4) > 3
Q=+t +H>1,  Pi={@E+ps+1)>1
gj =58 —j*13, canalso be described as g = {58,45,32,19,6}

3.5
(b side: 3 fi =53 —i=*21, canalso be described as f = {53,32,11}

p side:

¢ side: 5) Middle3,5=(q, +pot 01+ @1+ Q2 + D2 +q3 + 3 +4) >3

Qs =(qu+gs+1)>1,  Pa=(p,+p3+1)>1

[00139] 2.6.5 Deblocking control for chroma

[00140] The chroma strong filters are used on both sides of the block boundary. Here, the
chroma filter is selected when both sides of the chroma edge are greater than or equal to 8
(chroma position), and the following decision with three conditions are satisfied: the first one 1s
for decision of boundary strength as well as large block. The proposed filter can be applied when
the block width or height which orthogonally crosses the block edge 1s equal to or larger than 8
in chroma sample domain. The second and third one is basically the same as for HEVC luma
deblocking decision, which are on/off decision and strong filter decision, respectively.

[00141] In the first decision, boundary strength (bS) 1s modified for chroma filtering as shown in
Table 2-2. The conditions in Table 2-2 are checked sequentially. If a condition is satisfied, then
the remaining conditions with lower priorities are skipped.

[00142] Chroma deblocking is performed when bS is equal to 2, or bS is equal to 1 when a large
block boundary is detected.

[00143] The second and third condition is basically the same as HEVC luma strong filter
decision as follows.

[00144] In the second condition:

d is then derived as in HEVC luma deblocking.
The second condition will be TRUE when d is less than .
[00145] In the third condition StrongFilterCondition is derived as follows:
dpq 1s derived as in HEVC.
sp3 = Abs( p3 — po ), derived as in HEVC
sq3 = Abs( qo — q3 ), derived as in HEVC

20




WO 2020/169106 PCT/CN2020/076370

[00146] As in HEVC design, StrongFilterCondition = (dpq is less than (B >> 2), sp3 + sqs 1s
less than (B >> 3),and Abs(po—qo)islessthan (5 *tc+1) >> 1)
[00147] 2.6.6 Strong deblocking filter for chroma
[00148] The following strong deblocking filter for chroma is defined:
p2'= (3*ps+2*patpit+potqotd) >> 3
p1'= (2*p3tp2t2*pitpotqotqit4) >> 3

po'= (p3tp2tp1+2*potqotqitqet4) >> 3
[00149] The proposed chroma filter performs deblocking on a 4x4 chroma sample grid.

[00150] 2.6.7 Position dependent clipping
[00151] The position dependent clipping tcPD is applied to the output samples of the luma
filtering process involving strong and long filters that are modifying 7, 5 and 3 samples at the
boundary. Assuming quantization error distribution, it is proposed to increase clipping value for
samples which are expected to have higher quantization noise, thus expected to have higher
deviation of the reconstructed sample value from the true sample value.
[00152] For each P or Q boundary filtered with asymmetrical filter, depending on the result of
decision-making process in section 2.3.3, position dependent threshold table is selected from two
tables (i.e., Tc7 and Tc3 tabulated below) that are provided to decoder as a side information:
Te7=46,5 4321, 1}
Te3 =16 4,2}
tcPD = (Sp==3)?1c3:1Tc7;

tcOD = (Sq == 3) ? Tc3 : Tc7;
[00153] For the P or Q boundaries being filtered with a short symmetrical filter, position

dependent threshold of lower magnitude is applied:

Te3=¢3 21}
[00154] Following defining the threshold, filtered p’; and ¢ s sample values are clipped according

to tcP and tcQ clipping values:

pi=Clip3(p’i + tcPi, p'i—tcPi, p’i );
q’; = Clip3(qj + 1cQ), q’—1cQj, q7);

21



WO 2020/169106 PCT/CN2020/076370

[00155] where p’i and ¢ i are filtered sample values, p’’7and g’ are output sample value after
the clipping and fcP; tcP; are clipping thresholds that are derived from the VVC tc parameter and
tcPD and rcQOD. The function Clip3 is a clipping function as it is specified in VVC.

[00156] 2.6.8 Sub-block deblocking adjustment

[00157] To enable parallel friendly deblocking using both long filters and sub-block deblocking
the long filters is restricted to modify at most 5 samples on a side that uses sub-block deblocking
(AFFINE or ATMVP or DMVR) as shown in the luma control for long filters. Additionally, the
sub-block deblocking is adjusted such that that sub-block boundaries on an 8x8 grid that are
close to a CU or an implicit TU boundary is restricted to modify at most two samples on each
side.

[00158] Following applies to sub-block boundaries that not are aligned with the CU boundary.

If (mode block Q == SUBBLOCKMODE && edge '=0) {
if (!(implicitTU && (edge == (64 / 4))))
if (edge == 2 || edge == (orthogonalLength - 2) || edge == (56 / 4) || edge == (72 / 4))
Sp=Sq=2;

else
Sp=Sq=3;
else
Sp =Sq = bSideQisLargeBlk ? 5:3

j
[00159] Where edge equal to O corresponds to CU boundary, edge equal to 2 or equal to

orthogonalLength-2 corresponds to sub-block boundary 8 samples from a CU boundary etc.
Where implicit TU is true if implicit split of TU is used.

[00160] 2.6.9 Restriction to 4CTU/2CTU line buffers for luma/chroma

[00161] Filtering of horizontal edges is limiting Sp = 3 for luma, Sp=1 and Sq=1 for chroma,
when the horizontal edge is aligned with the CTU boundary.

[00162] 2.7 Intra mode coding in VVC

[00163] To capture the arbitrary edge directions presented in natural video, the number of
directional intra modes in VTMS is extended from 33, as used in HEVC, to 65. The new
directional modes not in HEVC are depicted as red dotted arrows in FIG. 12, and the planar and

22



WO 2020/169106 PCT/CN2020/076370

DC modes remain the same. These denser directional intra prediction modes apply for all block
sizes and for both luma and chroma intra predictions.

[00164] In VTMS5, several conventional angular intra prediction modes are adaptively replaced
with wide-angle intra prediction modes for the non-square blocks. Wide angle intra prediction is
described in Section 3.3.1.2.

[00165] In HEVC, every intra-coded block has a square shape and the length of each of its side
is a power of 2. Thus, no division operations are required to generate an intra-predictor using DC
mode. In VTMS, blocks can have a rectangular shape that necessitates the use of a division
operation per block in the general case. To avoid division operations for DC prediction, only the
longer side 1s used to compute the average for non-square blocks.

[00166] To keep the complexity of the most probable mode (MPM) list generation low, an intra
mode coding method with 6 MPMs is used by considering two available neighboring intra

modes. The following three aspects are considered to construct the MPM list:

1. Default intra modes
ii. Neighbouring intra modes
iii.  Derived intra modes
[00167] A unified 6-MPM list is used for intra blocks irrespective of whether MRL and ISP

coding tools are applied or not. The MPM list is constructed based on intra modes of the left and
above neighboring block. Suppose the mode of the left block is denoted as Leff and the mode of
the above block is denoted as Above, the unified MPM list 1s constructed as follows (The left and

above blocks are shown 1n FIG. 13.

— When a neighboring block is not available, its intra mode is set to Planar by default.
— If both modes Left and Above are non-angular modes:
o MPM list > {Planar, DC, V, H, V-4, V+4}
— If one of modes Left and Above is angular mode, and the other is non-angular:
o Set a mode Max as the larger mode in Left and Above
o MPM list 2 {Planar, Max, DC, Max -1, Max +1, Max -2}
— If Left and Above are both angular and they are different:
o Set a mode Max as the larger mode in Left and Above
o if the difference of mode Leff and Above is in the range of 2 to 62, inclusive
* MPM list & {Planar, Left, Above, DC, Max -1, Max +1}
o Otherwise
* MPM list & {Planar, Left, Above, DC, Max -2, Max +2}
— If Left and Above are both angular and they are the same:
o MPM list > {Planar, Left, Left -1, Left +1, DC, Left -2}

23



WO 2020/169106 PCT/CN2020/076370

[00168] Besides, the first bin of the mpm index codeword is CABAC context coded. In total
three contexts are used, corresponding to whether the current intra block is MRL enabled, ISP
enabled, or a normal intra block.

[00169] During 6 MPM list generation process, pruning is used to remove duplicated modes so
that only unique modes can be included into the MPM list. For entropy coding of the 61 non-
MPM modes, a Truncated Binary Code (TBC) is used.

[00170] For chroma intra mode coding, a total of 8 intra modes are allowed for chroma intra
mode coding. Those modes include five traditional intra modes and three cross-component linear
model modes (CCLM, LM_A, and LM _L). Chroma mode signalling and derivation process are
shown in Table 2-4. Chroma mode coding directly depends on the intra prediction mode of the
corresponding luma block. Since separate block partitioning structure for luma and chroma
components is enabled in I slices, one chroma block may correspond to multiple luma blocks.
Therefore, for Chroma DM mode, the intra prediction mode of the corresponding luma block

covering the center position of the current chroma block is directly inherited.

Table 2-4 — Derivation of chroma prediction mode from luma mode when cclm is enabled

Corresponding luma intra prediction mode

Chroma predictionmode [ o |50 |18 |1 |X
(0 <= X <=66)

0 66 |0 0 0 |0
1 50 [66 |50 |50 |50
2 18 |18 |66 |18 |18
3 1 1 1 66 |1
4 81 (81 |81 |81 |81
5 82 (82 |82 |82 |82
6 83 (83 |83 |83 |83
7 0 50 |18 |1 X

24



WO 2020/169106 PCT/CN2020/076370

[00171] 2.8 Quantized residual Block Differential Pulse-code Modulation(QR-BDPCM)
[00172] In JVET-MO0413, a quantized residual block differential pulse-code modulation (QR-
BDPCM) is proposed to code screen contents efficiently.

[00173] The prediction directions used in QR-BDPCM can be vertical and horizontal
prediction modes. The intra prediction is done on the entire block by sample copying in
prediction direction (horizontal or vertical prediction) similar to intra prediction. The residual is
quantized and the delta between the quantized residual and its predictor (horizontal or vertical)
quantized value is coded. This can be described by the following: For a block of size M (rows) x
N (cols), letr;;, 0 <i<M —1, 0 <j <N — 1 be the prediction residual after performing
intra prediction horizontally (copying left neighbor pixel value across the the predicted block line
by line) or vertically (copying top neighbor line to each line in the predicted block) using
unfiltered samples from above or left block boundary samples. Let Q(r;;), 0<i<M -1, 0 <
j < N — 1 denote the quantized version of the residual r; ;, where residual is difference between
original block and the predicted block values. Then the block DPCM is applied to the quantized
residual samples, resulting in modified M x N array R with elements ; ;- When vertical BDPCM

is signaled:

f‘i,j :{ Q(ri,j)J i = 0, 0 S] < (N - 1) (2_7_1)

Q(ryj) —QUu-p) 1<isM-1), 0<j<(N—-1)
[00174] For horizontal prediction, similar rules apply, and the residual quantized samples are

obtained by

- { Q1)) 0<i<(M-1),j=0 (27.2)

Q) —Qryg-p) 0=si=sM-1), 1<j<s(N-1)

[00175] The residual quantized samples 7; ; are sent to the decoder.
[00176] On the decoder side, the above calculations are reversed to produce Q(7;;), 0 < <

M—1, 0 <j <N -1 For vertical prediction case,
Q(rj) = Yk=oTijy 0Si<S(M—1), 0<j<(N-1) (2-7-3)

[00177] For horizontal case,

25



WO 2020/169106 PCT/CN2020/076370

Qi) =Yh_ofipp 0Si<(M-1), 0Sj<(N-1) (2-7-4)

[00178] The inverse quantized residuals, Q1 (Q(ri, 1)) are added to the intra block prediction

values to produce the reconstructed sample values.

[00179] The main benefit of this scheme is that the inverse DPCM can be done on the fly during
coefficient parsing simply adding the predictor as the coefficients are parsed or it can be
performed after parsing.

[00180] 2.9 Adaptive Loop Filter

[00181] In the VTMS, an Adaptive Loop Filter (ALF) with block-based filter adaption is
applied. For the luma component, one among 25 filters is selected for each 4x4 block, based on
the direction and activity of local gradients.

[00182] 2.9.1 Filter Shape

[00183] In the VIMS, two diamond filter shapes (as shown in FIG. 14) are used. The 7x7 diamond shape
1s applied for luma component and the 5x5 diamond shape is applied for chroma components.
[00184] 2.9.2 Block classification

[00185] For luma component, each 4 X 4 block is categorized into one out of 25 classes. The
classification index C is derived based on its directionality D and a quantized value of activity A,

as follows:
C=5D+A4A (2-9-1)

[00186] To calculate D and A, gradients of the horizontal, vertical and two diagonal direction are

first calculated using 1-D Laplacian:

o = ZE3 3 Viy, Vi = 12R(k, D) = R(k, 1 = 1) = R(k, L+ D] (2:9-2)

gn = SK5 o070 S Hy, Hig = 12R(k, D) — R(k — 1,1) —R(k + 1,1)|  (2:9-3)

Gar = TES 2020 D1y, D1y = 12R(k, D) —R(k = 1,1 = 1) =R(k + L1 + )| (2-9-4)

Gaz = TES o223 D2y, D2y = [2R(k, 1)) = R(k— 1,1+ 1) — R(k + 1,1 — 1)| (2-9-5)

[00187] Where indices i and j refer to the coordinates of the upper left sample within the 4 X 4

block and R(i, j) indicates a reconstructed sample at coordinate (i, j).

26



WO 2020/169106 PCT/CN2020/076370

[00188] To reduce the complexity of block classification, the subsampled 1-D Laplacian
calculation is applied. As shown in FIG. 15 (a)-(d), the same subsampled positions are used for
gradient calculation of all directions.

[00189] Then D maximum and minimum values of the gradients of horizontal and vertical

directions are set as:

max min

I = max(gn, gv), gEL" = min(gy, gy) (2-9-6)

[00190] The maximum and minimum values of the gradient of two diagonal directions are set as:

.93(%61 = max(gq0, Ga1). g%i,g1 = min(ga0, 9a1) (2-9-7)

[00191] To derive the value of the directionality D, these values are compared against each other

and with two thresholds t; and t,:

Step 1. If both gi'®* < t, - gi™ and giy%, < t; - gliun, are true, D is set to 0.

Step 2. If g/'9* /gt > gy, /gis™. , continue from Step 3; otherwise continue from Step 4.
Step 3. If gp')* > t, - gfrl’,‘én, D is set to 2; otherwise D is set to 1.

Step 4. If gIb%, > t, - gy, D is set to 4; otherwise D is set to 3.

[00192] The activity value A is calculated as:
] j+3
A=25, Z{Ij—z(vk,l + Hyy) (2-9-8)

[00193] A 1s further quantized to the range of O to 4, inclusively, and the quantized value is
denoted as A.

[00194] For chroma components in a picture, no classification method is applied, 1.e. a single set
of ALF coefficients is applied for each chroma component.

[00195] 2.9.3. Geometric transformations of filter coefficients and clipping values

[00196] Before filtering each 4x4 luma block, geometric transformations such as rotation or
diagonal and vertical flipping are applied to the filter coefficients f(k, ) and to the
corresponding filter clipping values c(k, [) depending on gradient values calculated for that
block. This is equivalent to applying these transformations to the samples in the filter support
region. The idea is to make different blocks to which ALF is applied more similar by aligning

their directionality.

27



WO 2020/169106 PCT/CN2020/076370

[00197] Three geometric transformations, including diagonal, vertical flip and rotation are

introduced:
Diagonal: f(k, 1) = f(L, k), cp(k, 1) = c(l, k), (2-9-9)
Vertical flip: f,(k, 1) = f(k, K —1—-1), ¢y (k,)) =c(k,K—-1—1) (2-9-10)
Rotation: fr(k, 1) = f(K -1l —1,k), cg(k, 1) =c(K—-1—-1,k) (2-9-11)
[00198] where K i1s the size of the filter and 0 < k, [ < K — 1 are coefficients coordinates, such
that location (0,0) is at the upper left corner and location (K — 1, K — 1) is at the lower right
corner. The transformations are applied to the filter coefficients f (k, 1) and to the clipping values
c(k, 1) depending on gradient values calculated for that block. The relationship between the

transformation and the four gradients of the four directions are summarized in the following

table.

Table 2-5 - Mapping of the gradient calculated for one block and the transformations

Gradient values Transformation
g2 < gd1 and gn< gv No transformation
g2 < gd1 and gv< gn Diagonal
gd1< gd2 and gn< gv Vertical flip
gd1 < gd2 and gv< gn Rotation

[00199] 2.9.4 Filter parameters signalling

[00200] In the VTMS, ALF filter parameters are signaled in Adaptation Parameter Set (APS). In
one APS, up to 25 sets of luma filter coefficients and clipping value indexes, and up to one set of
chroma filter coefficients nd clipping value indexes could be signaled. To reduce bits overhead,
filter coefficients of different classification can be merged. In slice header, the indices of the
APSs used for the current slice are signaled.

[00201] Clipping value indexes, which are decoded from the APS, allow determining clipping
values using a Luma table of clipping values and a Chroma table of clipping values. These
clipping values are dependent of the internal bitdepth. More precisely, the Luma table of clipping

values and Chroma table of clipping values are obtained by the following formulas:

28



WO 2020/169106 PCT/CN2020/076370

N-n+1
AlfClipL= {round (ZB N ) forn € [1. .N]}, (2-9-12)
(N—n)
AlfClipc= {round (2(3_8)+8 N—1 ) forn € [1.. N]} (2-9-13)

with B equal to the internal bitdepth and N equal to 4 which is the number of allowed clipping
values in VTMS.0.

[00202] The filtering process can be controlled at CTB level. A flag is always signaled to
indicate whether ALF is applied to a luma CTB. A luma CTB can choose a filter set among 16
fixed filter sets and the filter sets from APSs. A filter set index is signaled for a luma CTB to
indicate which filter set is applied. The 16 fixed filter sets are pre-defined and hard-coded in both
the encoder and the decoder.

[00203] The filter coefficients are quantized with norm equal to 128. In order to restrict the
multiplication complexity, a bitstream conformance is applied so that the coefficient value of the
non-central position shall be in the range of —27 to 27 — 1, inclusive. The central position
coefficient is not signaled in the bitstream and 1s considered as equal to 128.

[00204] 2.9.5 Filtering process

[00205] At decoder side, when ALF is enabled for a CTB, each sample R (i, j) within the CU is

filtered, resulting in sample value R'(i, j) as shown below,
R =RGHD+((ZreoBizo f DX KRG+ kK, j+ 1) — RGN clk, D)) +64) »>7) (2-
9-14)

where f(k, 1) denotes the decoded filter coefficients, K(x, y) is the clipping function and c(k, [)
denotes the decoded clipping parameters. The variable k and 1 varies between — % and % where L
denotes the filter length. The clipping function K (x, y) = min(y, max(—y, x)) which

corresponds to the function Clip3 (—y, y, x).

[00206] 2.9.6 Virtual boundary filtering process for line buffer reduction

In VTMS, to reduce the line buffer requirement of ALF, modified block classification and
filtering are employed for the samples near horizontal CTU boundaries. For this purpose, a

virtual boundary is defined as a line by shifting the horizontal CTU boundary with “N” samples

29



WO 2020/169106 PCT/CN2020/076370

as shown in FIG. 16, with N equal to 4 for the Luma component and 2 for the Chroma
component.

[00207] Modified block classification is applied for the Luma component as depicted in FIG. 2-
11. For the 1D Laplacian gradient calculation of the 4x4 block above the virtual boundary, only
the samples above the virtual boundary are used. Similarly for the 1D Laplacian gradient
calculation of the 4x4 block below the virtual boundary, only the samples below the virtual
boundary are used. The quantization of activity value A is accordingly scaled by taking into
account the reduced number of samples used in 1D Laplacian gradient calculation.

[00208] For filtering processing, symmetric padding operation at the virtual boundaries are used
for both Luma and Chroma components. As shown in FIG. 17, when the sample being filtered is
located below the virtual boundary, the neighboring samples that are located above the virtual
boundary are padded. Meanwhile, the corresponding samples at the other sides are also padded,
symmetrically.

[00209] 2.10 Sample Adaptive Offset (SAO)

[00210] Sample adaptive offset (SAQ) is applied to the reconstructed signal after the deblocking
filter by using offsets specified for each CTB by the encoder. The HM encoder first makes the
decision on whether or not the SAO process is to be applied for current slice. If SAO is applied
for the slice, each CTB is classified as one of five SAO types as shown in Table 2-6. The concept
of SAO is to classify pixels into categories and reduces the distortion by adding an offset to
pixels of each category. SAO operation includes Edge Offset (EO) which uses edge properties
for pixel classification in SAO type 1-4 and Band Offset (BO) which uses pixel intensity for
pixel classification in SAO type 5. Each applicable CTB has SAQO parameters including
sao_merge left flag, sao merge up flag, SAO type and four offsets. If sao_merge left flag is
equal to 1, the current CTB will reuse the SAO type and offsets of the CTB to the left. If
sao_merge up flag is equal to 1, the current CTB will reuse SAO type and offsets of the CTB

above.

Table 2-6 — Specification of SAO type

30



WO 2020/169106

PCT/CN2020/076370

SAO type |sample adaptive offset type to | Number of

be used categories

0 None 0

1 1-D O-degree pattern edge offset |4

2 1-D 90-degree pattern edge offset | 4

3 1-D 135-degree pattern edge 4
offset

4 1-D 45-degree pattern edge offset | 4

5 band offset 4

[00211] 2.10.1. Operation of each SAO type

[00212] Edge offset uses four 1-D 3-pixel patterns for classification of the current pixel p by

consideration of edge directional information, as shown in FIG. 18. From left to right these are:

0-degree, 90-degree, 135-degree and 45-degree.

[00213] Each CTB is classified into one of five categories according to Table 2-7.

Table 2-7 — Pixel classification rule for EO

Category Condition Meaning

0 None of the below Largely monotonic

1 p < 2 neighbours Local minimum

2 p <1 neighbour && p==1 Edge
neighbour

3 p > 1 neighbour && p == Edge
neighbour

4 p > 2 neighbours Local maximum

[00214] Band offset (BO) classifies all pixels in one CTB region into 32 uniform bands by using

the five most significant bits of the pixel value as the band index. In other words, the pixel

intensity range 1s divided into 32 equal segments from zero to the maximum intensity value (e.g.

255 for 8-bit pixels). Four adjacent bands are grouped together and each group is indicated by its

31



WO 2020/169106 PCT/CN2020/076370

most left-hand position as shown in FIG. 19. The encoder searches all position to get the group
with the maximum distortion reduction by compensating offset of each band.

[00215] 2.11 Combined inter and intra prediction (CIIP)

[00216] In VTMS, when a CU is coded in merge mode, if the CU contains at least 64 luma
samples (that 1s, CU width times CU height is equal to or larger than 64), and if both CU width
and CU height are less than 128 luma samples, an additional flag is signaled to indicate if the
combined inter/intra prediction (CIIP) mode is applied to the current CU. As its name indicates,
the CIIP prediction combines an inter prediction signal with an intra prediction signal. The inter
prediction signal in the CIIP mode P;,;., 1s derived using the same inter prediction process
applied to regular merge mode; and the intra prediction signal P;y;,., 1s derived following the
regular intra prediction process with the planar mode. Then, the intra and inter prediction signals
are combined using weighted averaging, where the weight value is calculated depending on the
coding modes of the top and left neighbouring blocks (depicted in FIG. 20) as follows:

— If the top neighbor is available and intra coded, then set isIntraTop to 1, otherwise set
isIntraTop to O;

— If the left neighbor is available and intra coded, then set isIntralLeft to 1, otherwise set
isIntralLeft to O;

— If (isIntraLeft + isIntraleft) is equal to 2, then wt is set to 3;

— Otherwise, if (isIntraLeft + isIntralLeft) 1s equal to 1, then wt is set to 2;
Otherwise, set wt to 1.

The CIIP prediction 1s formed as follows:

PCI[P = ((4’ - Wt) * Finter + wt * Pintra + 2) > 2 (3'1)

[00217] 2.12 Luma mapping with chroma scaling (LMCS)

[00218] In VTMS, a coding tool called the luma mapping with chroma scaling (LMCS) is added
as a new processing block before the loop filters. LMCS has two main components: 1) in-loop
mapping of the luma component based on adaptive piecewise linear models; 2) for the chroma
components, luma-dependent chroma residual scaling is applied. FIG. 21 shows the LMCS
architecture from decoder’s perspective. The light-blue shaded blocks in FIG. 21 indicate where
the processing is applied in the mapped domain; and these include the inverse quantization,
inverse transform, luma intra prediction and adding of the luma prediction together with the luma
residual. The unshaded blocks in FIG. 21 indicate where the processing is applied in the original
(i.e., non-mapped) domain; and these include loop filters such as deblocking, ALF, and SAO,

32



WO 2020/169106 PCT/CN2020/076370

motion compensated prediction, chroma intra prediction, adding of the chroma prediction
together with the chroma residual, and storage of decoded pictures as reference pictures. The
light-yellow shaded blocks in FIG. 21 are the new LMCS functional blocks, including forward
and inverse mapping of the luma signal and a luma-dependent chroma scaling process. Like most
other tools in VVC, LMCS can be enabled/disabled at the sequence level using an SPS flag.
[00219] 3. Examples of Problems Solved by Embodiments

[00220] One palette flag is usually used to indicate whether the palette mode is employed on the
current CU, which can have different limitations and variances on its entropy coding. However,
how to better code the palette flag has not been fully studied in the previous video coding
standards.

[00221] The palette samples may have visual artifact if they are processed by post loop filtering
process.

[00222] The palette scanning order could be improved for non-square blocks.

[00223] 4. Examples of Embodiments

[00224] The detailed inventions below should be considered as examples to explain general
concepts. These inventions should not be interpreted in a narrow way. Furthermore, these

inventions can be combined in any manner.

1. Indication of usage of palette mode for a transform unit/prediction unit/coding block/region
may be coded separately from the prediction mode.
a. In one example, the prediction mode may be coded before the indication of usage
of palette.
1. Alternatively, furthermore, the indication of usage of palette may be
conditionally signaled based on the prediction mode.

1. In one example, when the prediction mode is the intra block copy
mode (i.e., MODE IBC), the signalling of the indication of usage of
palette mode may be skipped. Alternatively, furthermore, the
indication of usage of palette may be inferred to false when the
current prediction mode is MODE IBC.

2. In one example, when the prediction mode is the inter mode (i.e.,
MODE INTER), the signalling of the indication of usage of palette
mode may be skipped. Alternatively, furthermore, the indication of
usage of palette mode may be inferred to false when the current
prediction mode is MODE INTER.

3. In one example, when the prediction mode is the intra mode (i.e.,
MODE INTRA), the signalling of the indication of usage of palette
mode may be skipped. Alternatively, furthermore, the indication of
usage of palette mode may be inferred to false when the current
prediction mode is MODE_INTRA.

33



WO 2020/169106

1.

PCT/CN2020/076370

In one example, when the prediction mode is the skip mode (i.e., the
skip flag equal to 1), the signalling of the indication of usage of
palette mode may be skipped. Alternatively, furthermore, the
indication of usage of palette mode may be inferred to false when
the skip mode is employed on the current CU.

In one example, when the prediction mode is the intra mode (e.g.,
MODE INTRA), the indication of usage of palette mode may be
signaled. Alternatively, furthermore, when the prediction mode is
the inter mode or intra block copy mode, the signalling of the
indication of usage of palette mode may be skipped.

a) Alternatively, furthermore, when the prediction mode 1s the
intra mode and not the Pulse-code modulation (PCM) mode,
the indication of usage of palette mode may be signaled.

b) Alternatively, furthermore, when the prediction mode 1s the
intra mode, the indication of usage of palette mode may be
signaled before the indication of usage of the PCM mode. In
one example, when palette mode is applied, the signalling of
usage of PCM mode may be skipped.

c) Alternatively, furthermore, when the prediction mode is the
inter mode or intra block copy mode, the signalling of the
indication of usage of palette mode may be skipped.

In one example, when the prediction mode is the inter mode (e.g
MODE INTER), the indication of usage of palette mode may be
signaled.
a) Alternatively, when the prediction mode is the intra mode,
the signalling of the indication of usage of palette mode may
be skipped.

In one example, when the prediction mode is the intra block copy
mode, the indication of usage of palette mode may be signaled.
Alternatively, furthermore, when the prediction mode is the inter
mode or intra mode, the signalling of the indication of usage of
palette mode may be skipped.

Alternatively, furthermore, the indication of usage of palette mode may be
conditionally signaled based on the picture/slice/tile group type.

b. In one example, the prediction mode may be coded after the indication of usage of

palette mode.

c. Inone example, indication of usage of palette mode may be signaled when the

prediction mode is INTRA mode or INTER_ MODE.

1.

1.

In one example, the indication of usage of palette mode may be coded after
the skip flag, prediction mode and the flag of PCM mode.

In one example, the indication of usage of palette mode may be coded after
the skip flag, prediction mode, before the flag of PCM mode

34



WO 2020/169106 PCT/CN2020/076370

iii. In one example, when the current block is coded with intra mode, the
indications of palette and IBC modes may be further signaled.

1. In one example, one bit flag may be signaled to indicate whether
palette or IBC mode is signaled.

2. In one example, signalling of the bit flag may be skipped under
certain conditions, such as block dimension, whether IBC or palette
mode is enabled for one tile/tile group/slice/picture/sequence.

d. In one example, the prediction mode (such as whether it is intra or inter mode) may
be coded firstly, followed by the conditional signalling of whether it is palette mode
or not.

1. In one example, when the prediction mode is the intra mode, another flag
may be further signaled to indicate whether it is palette mode or not.

1. In one example, the ‘another flag” may be signaled when the palette
mode is enabled for one video data unit (e.g., sequence/picture/tile
group/tile).

2. In one example, the ‘another flag’ may be signaled under the
condition of block dimension.

3. Alternatively, furthermore, if it is not palette mode, one flag may be
further signaled to indicate whether it is PCM mode or not.

4. In one example, the ‘another flag’ may be context coded according
to information of neighboring blocks. Alternatively, the ‘another
flag” may be context coded with only one context. Alternatively, the
‘another flag” may be bypass coded, 1.e., without context.

ii. Alternatively, when the prediction mode is the inter mode, another flag may
be further signaled to indicate whether it is IBC mode or not.

1. In one example, the ‘another flag” may be signaled when the IBC
mode is enabled for one video data unit (e.g., sequence/picture/tile
group/tile).

2. In one example, the ‘another flag’ may be signaled under the
condition of block dimension

2. Ttis proposed to add the palette mode as an additional candidate for prediction mode. The
indication of usage of palette mode can be determined/signaled based on the prediction
mode, e.g., as discussed in example embodiment 1 above. In some embodiments, there is
no need to signal the indication of usage of palette mode separately from the prediction
mode.

a. In one example, the prediction modes may include intra, intra block copy and
palette modes for intra slices/I pictures/intra tile groups.

b. Alternatively, the prediction modes may include intra, palette modes for intra
slices/I pictures/intra tile groups.

c. In one example, the prediction modes may include intra, intra block copy and
palette modes for 4x4 blocks.

d. Inone example, the prediction modes may include intra, inter, intra block copy and
palette modes for inter slices/P and/or B pictures/inter tile groups.

e. In one example, the prediction modes may include intra, inter, intra block copy
modes for inter slices/P and/or B pictures/inter tile groups.

35



WO 2020/169106

PCT/CN2020/076370

f Alternatively, the prediction modes may include at least two of intra, inter, intra
block copy and palette mode.

g. In one example, the inter mode may be not included in the prediction modes for
4x4 blocks.

h. In one example, when the block is not coded as the skip mode (which is a special
case for the inter mode), the prediction mode index may be contextually coded
using different bins. In some embodiments, signaling of one or more bins can be
skipped due to a condition, such as the block dimension (e.g., 4x4) or a prediction
mode is disabled (e.g., the IBC mode is disabled so the corresponding bin is
skipped).

1.

1.

11l

1v.

V1.

Vil

Viil.

In one example, the binarization of the four modes is defined as: intra (1),
inter (00), IBC (010) and Palette (011). Here, three bins are used, with each
bit corresponding to a bin value.

In one example, the binarization of the four modes is defined as: intra (10),
inter (00), IBC (01) and Palette (11), as shown in FIG. 10. Here, two bins
are used, with each bit corresponding to a bin value.

In one example, if the current slice is an intra slice and IBC is not enabled
in the SPS, the binarization of the Palette and intra modes is defined as:
Palette (1) and intra (0). Here, one bin is used.

In one example, if the current slice is not an intra slice and IBC is not
enabled in the SPS, the binarization of the Palette, inter and intra modes is
defined as: intra (1), inter (00), and Palette (01). Here, two bins are used,
with each bit corresponding to a bin value.

In one example, if the current slice is an intra slice and IBC is enabled in
the SPS, the binarization of the Palette and intra modes is defined as: IBC
(1), Palette (01), and intra (00). Here, two bins are used, with each bit
corresponding to a bin value.

In one example, the binarization of the four modes is defined as: inter (1),
intra(01), IBC (001) and Palette (000). Here, three bins are used, with each
bit corresponding to a bin value.

In one example, the binarization of the four modes is defined as: intra (1),
inter (01), IBC (001) and Palette (000). Here, three bins are used, with each
bit corresponding to a bin value.

In one example, the binarization of the four modes is defined as: inter (0),
intra (10), IBC (111) and Palette (110), as shown in FIG. 11. Here, three
bins are used, with each bit corresponding to a bin value.

3. The signaling of the indication of usage of palette/IBC mode may depend on the
information of other mode.
a. In one example, the indication of usage of palette mode may be signaled when the
current prediction mode is an intra mode and not a IBC mode.
b. In one example, the indication of usage of IBC mode may be signaled when the
current prediction mode is an intra mode and not a palette mode.
4. How to signal the mode information may depend on the slice/picture/tile group type.

36



WO 2020/169106 PCT/CN2020/076370

a. In one example, when it is I-slice/Intra tile group, one flag may be signaled to
indicate whether it is IBC mode. If it is not the IBC mode, another flag may be
further signaled to indicate whether it is palette or intra mode.

b. In one example, when it is I-slice/Intra tile group, one flag may be signaled to
indicate whether it is intra mode. If it is not the intra mode, another flag may be
further signaled to indicate whether it is palette or IBC mode.

5. The indication of usage of palette mode may be signaled and/or derived based on the
following conditions.
a. block dimension of current block

1. In one example, the indication of usage of palette mode may be signaled
only for blocks with width * height smaller than or equal to a threshold,
such as 64*64.

i1. In one example, the indication of usage of palette mode may be signaled
only for blocks with both width and height larger than or equal to a
threshold, such as 64

i1, In one example, the indication of usage of palette mode may be signaled
only for blocks with all below conditions are true:
1. width and/or height larger than or equal to a threshold, such as 16;
2. width and/or height smaller than or equal to a threshold, such as 32
or 64

iv. In one example, the indication of usage of palette mode may be signaled
only for blocks with width equal to height (i.e., square blocks)
prediction mode of current block
Current quantization parameter of current block
The palette flag of neighboring blocks
The intra block copy flags of neighboring blocks
Indication of the color format (such as 4:2:0, 4:4:4)
Separate/dual coding tree structure
Slice/tile group type and/or picture type

S moe o o

6. The indication of usage of IBC mode may be signaled and/or derived based on the
following conditions.
a. block dimension of current block
1. In one example, the indication of usage of IBC mode may be signaled only
for blocks with both width or height smaller than 128
prediction mode of current block
Current quantization parameter of current block
The palette flag of neighboring blocks
The intra block copy flags of neighboring blocks
Indication of the color format (such as 4:2:0, 4:4:4)
Separate/dual coding tree structure
Slice/tile group type and/or picture type
7. The palette mode may be treated as intra mode (e.g MODE INTRA) in the deblocking
decision process.

R N

37



WO 2020/169106 PCT/CN2020/076370

a. In one example, if the samples at p side or q side are coded with palette mode, the
boundary strength is set to 2.
b. Inoneexample, if the samples both at p side and q side are coded with palette mode,
the boundary strength is set to 2
c. Alternatively, the palette mode may be treated as inter mode (e.g MODE INTER)
in the deblocking decision process.
8. The palette mode may be treated as a separate mode (e.g MODE PLT) in the deblocking
decision process.
a. Inoneexample, if the samples at p side and q side are coded with palette mode, the
boundary strength is set to O.
1. Alternatively, if samples at one side are coded with palette mode, the
boundary strength is set to O.
b. In one example, if the samples at p side are coded with IBC mode and the samples
at q side are coded with palette mode, the boundary strength is set to 1, vice versa.
c. Inone example, if the samples at p side are coded with intra mode and the samples
at q side are coded with palette mode, the boundary strength is set to 2, vice versa.
9. The palette mode may be treated as a transform-skip block in the deblocking process
a. Alternatively, the palette mode may be treated as a BDPCM block in the deblocking
process.

10. The indication of usage of palette mode for a block may be signaled and/or derived based
on the slice/tile group/picture level flag

a. In one example, the flag indicates whether fractional motion vector difference
(MVD) is allowed in the merge with motion vector difference (MMVD, ak.a.,
UMVE) and/or adaptive motion vector resolution (AMVR) mode, (e.g.
slice_fracmmvd_flag). Alternatively, furthermore, if the slice fracmmvd flag
indicates fractional MVD is enabled, the signalling of indication of usage of palette
mode is skipped and palette mode is inferred to be disabled.

b. Inone example, the flag indicates whether palette mode is enabled for the slice/tile
group/picture. Alternatively, furthermore, when such a flag indicates palette mode
1s disabled, the signaling of usage of palette mode for a block is skipped and palette
mode is inferred to be disabled.

11. The indication of usage of intra block copy mode (IBC) for a block may be signaled and/or
derived based on the slice/tile group/picture level flag.

a. In one example, the flag indicates whether fractional motion vector difference
(MVD) is allowed in the merge with motion vector difference (MMVD, ak.a.,
UMVE) and/or adaptive motion vector resolution (AMVR) mode, (e.g.
slice_fracmmvd_flag). Alternatively, furthermore, if the slice fracmmvd flag
indicates fractional MVD is enabled, the signalling of indication of usage of IBC
mode is skipped and IBC mode is inferred to be disabled.

b. In one example, the flag indicates whether IBC mode is enabled for the slice/tile
group/picture. Alternatively, furthermore, when such a flag indicates IBC mode is
disabled, the signaling of usage of IBC mode for a block is skipped and IBC mode
is inferred to be disabled.

12. The sample associated with one palette entry may have different bit depths from the
internal bit depth and/or the bit depth of original/reconstructed samples.

38



WO 2020/169106 PCT/CN2020/076370

a. Inoneexample, denote the sample associated with one may have the bit depth equal
to N, the following may apply:

1. In one example, N may be a integer number (e.g. 8).

ii. In one example, N may be larger than the internal bit depth and/or the bit
depth of original/reconstructed samples.

iii. In one example, N may be smaller than the internal bit depth and/or the bit
depth of original/reconstructed samples.

iv. In one example, N may depend on

1. Block dimension of current block
Current quantization parameter of current block
Indication of the color format (such as 4:2:0, 4:4:4)
Separate/dual coding tree structure
Slice/tile group type and/or picture type
Number of palette entries
Number of prediction palette entries
8. Index of color component
b. In one example, the sample associated with multiple palette entries may have
different bit depths.

1. In one example, let CO, C1 be two palette entries in the current palette, and
they may have bit depth equal to b0 and b1, respectively. bO may be unequal
to bl

1. In one example, bO may be larger/smaller than the internal bit depth
and/or the bit depth of original/reconstructed samples and/or bl may
be larger/smaller than the internal bit depth and/or the bit depth of
original/reconstructed samples.

c. In one example, in the palette mode, the samples may be reconstructed according
to the shifted values of samples associated with palette entries.

1. In one example, the samples may be reconstructed by left shifting the
samples in the palette entries by M bits.

ii. In one example, the reconstructed value may be (C<<M) + (1<<(M-1)),
wherein C is the palette entry.

ii1. In one example, the samples may be reconstructed by right shifting the
samples in the palette entries by M bits.

iv. In one example, the reconstructed value may be clip((C+(1<<(M-1)))>>M,
0, (1<<N)-1), wherein C i1s the palette entry and N i1s the bit-depth of
reconstruction.

v. Alternatively, furthermore, in one example, the M may depend on the bit
depth difference between samples associated with palette entries and the
internal bit depth of reconstructed samples/original samples.

1. In one example, M may be equal to the internal bit depth minus the
bit depth of samples in the palette entries

2. In one example, M may be equal to the bit depth of samples in the
palette entries minus the internal bit depth

3. In one example, M may be equal to the bit depth of the original
samples minus the bit depth of samples in the palette entries

NNk WD

39



WO 2020/169106 PCT/CN2020/076370

4. In one example, M may be equal to the bit depth of samples in the
palette entries minus the bit depth of the original samples.
5. Inone example, M may be equal to the bit depth of the reconstructed
samples minus the bit depth of samples in the palette entries
6. In one example, M may be equal to the bit depth of samples in the
palette entries minus the bit depth of the reconstructed samples
vi. In one example, M may be an integer number (e.g. 2).
vii. Alternatively, furthermore, in one example, the M may depend on
1. Block dimension of current block
Current quantization parameter of current block
Indication of the color format (such as 4:2:0, 4:4:4)
Separate/dual coding tree structure
Slice/tile group type and/or picture type
Number of palette entries
Number of prediction palette entries
Sample position in a block/picture/slice/tile
9. Index of color component
viil. In one example, a look up operation based on the samples in the palette
entries may be used during the sample’s reconstruction.

1. In one example, the values in the look up table may be signaled in
the SPS/VPS/PPS/picture  header/slice  header/tile  group
header/LCU row/group of LCUs.

2. In one example, the values in the look up table may be inferred in
the SPS/VPS/PPS/picture  header/slice  header/tile  group
header/LCU row/group of LCUs.

PN N

13. The signaled/derived quantization parameter (QP) for palette coded blocks may be firstly
modified before being used to derive escape pixel/samples, such as being clipped.

a. In one example, the applied QP range for palette coded blocks may be treated in
the same way as transform skip mode, and/or BDPCM mode.

b. In one example, the applied QP for palette coded blocks may be revised to be
max(Qp, 4 + T), where T is an integer value and Qp is the signaled or derived
quantization parameter for the block.

1. In one example, T may be a predefined threshold.
ii. In one example, T may be equal to (4 + min_qp_prime ts minus4)
wherein min_qp_prime_ts _minus4 may be signaled.
14. How to code escape samples/symbols may be unified regardless whether transquant bypass
is enabled or not.
a. Inone example, escape sample may be signaled with fixed length.
b. In one example, an escape sample may be signaled in fixed length using N bits.
1. In one example, N may be an integer number (e.g. 8 or 10) and may depend
on
1. A message signaled in the SPS/VPS/PPS/picture header/slice
header/tile group header/LCU row/group of LCUs.
2. Internal bit depth
3. Input bit depth

40



WO 2020/169106 PCT/CN2020/076370

4. Block dimension of current block

5. Current quantization parameter of current block

6. Indication of the color format (such as 4:2:0, 4:4:4)
7. Separate/dual coding tree structure

8. Slice/tile group type and/or picture type

c. In one example, the code length to signal an escape pixel/sample may depend on
internal bit depth.

1. Alternatively, the code length to signal an escape pixel/sample may depend
on input bit depth.

d. In one example, the code length to signal an escape pixel/sample may depend on
the quantization parameter.

1. In one example, the code length for signalling an escape pixel/sample may
be f(Qp)
1. In one example, the function f may be defined as (internal bitdepth
- (Qp - 4)/6).
15. The quantization and/or inverse quantization process for palette coded blocks and non-
palette coded blocks may be defined in different ways.

a. Inone example, right bit-shifting may be used for quantizing escape sample instead
of using the quantization process for transform coefficients or residuals.

b. In one example, left bit-shifting may be used for inverse quantizing escape sample
instead of using the inverse quantization process for transform coefficients or
residuals.

c. At the encoder side, the following may apply:

1. In one example, the escape pixel/sample value may be signaled as f(p, Qp),
where p is the pixel/sample value.
ii. In one example, the function f may be defined as p>>((Qp-4)/6), where p is
the pixel/sample value and Qp is the quantization parameter.
ii1.  In one example, the escape pixel/sample value may be signaled as p>>N,
where p is the pixel/sample value.
1. In one example, N may be an integer number (e.g. 2) and may
depend on
a) A message signaled in the SPS/VPS/PPS/picture
header/slice header/tile group header/LCU row/group of
LCUs.
b) Internal bit depth
c) Input bit depth
d) Block dimension of current block
e) Current quantization parameter of current block
f) Indication of the color format (such as 4:2:0, 4:4:4)
g) Separate/dual coding tree structure
h) Slice/tile group type and/or picture type

d. At the decoder side, the following may apply:

1. In one example, the escape pixel/sample value may be signaled as

f(bd,p,Qp)
1. In one example, the function f may be defined as clip(0, (1<<(bd-

(Qp-4)/6))-1, (p + (1<<(bd-1)))>>((Qp-4)/6)).

41



WO 2020/169106 PCT/CN2020/076370

ii. In one example, the escape pixel/sample value may be reconstructed as
f(p,Qp), where p is the decoded escape pixel/sample value.
1. In one example, f may be defined as p<<((Qp-4)/6)
i1, In one example, the escape pixel/sample value may be reconstructed as
f(bd,p,Qp), where p is the decoded escape pixel/sample value.
1. In one example, the function clip may be defined as clip(0, (1<<bd)-
1, p<<((Qp-4)/6))
iv. In the above examples, the clip function clip(a,i,b) may be defined as (1 <
a?a:(1>b?b:1)).
v. In the above examples, the clip function clip(a,i,b) may be defined as (1 <=
a?a:(1>=b?b:1)).
vi. In the above examples, p may be the pixel/sample value, bd may be the
internal bit depth or input bit depth, and Qp is the quantization parameter.

16. A palette-coded block may be treated as an intra block (e.g. MODE INTRA) during the
list construction process of most probable modes (MPM).

a. In one example, when fetching the intra modes of neighboring (adjacent or non-
adjacent) blocks during the construction of the MPM list, if a neighboring block
(e.g., left and/or above) is coded with palette mode, it may be treated as
conventional intra-coded block (e.g. MODE INTRA) with a default mode.

1. In one example. the default mode may be DC/PLANAR/VER/HOR mode.
1. In one example, the default mode may be any one intra prediction mode.
1. In one example, the default mode may be signaled in the
DPS/SPS/VPS/PPS/APS/picture header/slice header/tile group header/
Largest coding unit (LCU)/Coding unit (CU)/LCU row/group of
LCUs/TU/PU block/Video coding unit.

17. A palette-coded block may be treated as a non-intra block (e.g. treated as a block with
prediction mode equal to MODE PLT) during the list construction process of most
probable modes (MPM).

a. In one example, when fetching the intra modes of neighboring blocks during the
construction of the MPM list, if a neighboring block (e.g., left and/or above) is
coded with palette mode, it may be treated in the same way or a similar way as
those coded with inter mode.

b. In one example, when fetching the intra modes of neighboring blocks during the
construction of the MPM list, if a neighboring block (e.g., left and/or above) is
coded with palette mode, it may be treated in the same way or a similar way as
those coded with IBC mode.

18. The luma block coded with palette mode corresponding to a chroma block coded with the
DM mode may be interpreted as having a default intra prediction mode.

a. In one example, the corresponding luma block coded with palette mode may be
treated as an intra block (e.g. MODE INTRA) or a palette block (e.g. MODE PLT)
when a chroma block is coded with the DM mode.

b. In one example, the default prediction mode may be DC/PLANAR/VER/HOR
mode.

c. Inone example, the default prediction mode may be any one intra prediction mode.

d. In one example, the default prediction mode may be signaled in the
DPS/SPS/VPS/PPS/APS/picture header/slice header/tile group header/Largest

42



WO 2020/169106 PCT/CN2020/076370

coding unit (LCU)/Coding unit (CU)/LCU row/group of LCUs/TU/PU
block/Video coding unit.

19. A palette-coded block may be treated as an unavailable block during the list construction
of history-based motion vector prediction (HMVP), the merge (MERGE) and/or the
advanced motion vector prediction (AMVP) modes.

a. In one example, an unavailable block may denote a block which does not have any
motion information or its motion information could not be used as a prediction for
other blocks.

b. In one example, a block coded with palette mode may be treated as an intra block
(e.g. MODE INTRA) or a palette block (e.g. MODE PLT) in the process of list
construction in HMVP, MERGE and/or AMVP modes.

1. Alternatively, in one example, when fetching the motion information of
neighboring blocks during the construction of the HMVP, MERGE and/or
AMVP list, a neighboring block coded with palette mode may be treated as
a block with an invalid reference index.

ii. Alternatively, in one example, when fetching the motion information of
neighboring blocks during the construction of the HMVP, MERGE and/or
AMVP list, a neighboring block coded with palette mode may be treated as
a inter block with a reference index equal to O.

i, Alternatively, in one example, when fetching the motion information of
neighboring blocks during the list construction of the HMVP, MERGE
and/or AMVP modes, a neighboring block coded with palette mode may be
treated as a inter block with a zero-motion vector.

20. How to treat a block coded with palette mode (e.g. whether to and/or how to apply above
methods) may be based on:

a. Video contents (e.g. screen contents or natural contents)

b. A message signaled in the DPS/SPS/VPS/PPS/APS/picture header/slice header/tile
group header/ Largest coding unit (LCU)/Coding unit (CU)/LCU row/group of
LCUs/TU/PU block/Video coding unit
Position of CU/PU/TU/block/Video coding unit
Block dimension of current block and/or its neighboring blocks
Block shape of current block and/or its neighboring blocks
Indication of the color format (such as 4:2:0, 4:4:4, RGB or YUV)

Coding tree structure (such as dual tree or single tree)

Slice/tile group type and/or picture type

Color component (e.g. may be only applied on luma component and/or chroma

component)

J.  Temporal layer ID

k. Profiles/Levels/Tiers of a standard
21. Context coded bins for palette coded blocks may be restricted to be within a certain range.

a. Inoneexample, a counter is assigned to a block to record how many bins have been
context coded. When the counter exceeds a threshold, bypass coding is applied
instead of using context coding.

1. Alternatively, NumColorComp counters may be assigned to record how
many bins have been context coded for each color component.

F R Mmoo ae

43



WO 2020/169106 PCT/CN2020/076370

b.

d.

€.

NumColorComp is the number of color components to be coded in one
block (e.g., for one CU in YUV format, NumColorComp is set to 3).

1. Alternatively, a counter may be initialized to be zero, and after coding one
bin with context, the counter is increased by one.

Alternatively, a counter may be initialized with some value greater than zero (e.g.,
W*H*K) and after coding one bin with context, the counter is decreased by one.
When the counter is smaller than or equal to T, bypass coding is applied instead of
using context coding.

1. In one example, T is setto O or 1.

ii. In one example, T is set according to decoded information or number of
coding passes, etc. al.

In one example, the palette coded blocks may have a same or different threshold
compared with TS coded blocks or non-TS coded blocks in terms of context coded
bins.

1. Inone example, number of context coded bins for a palette coded block may
be set to (W*H*T) wherein W and H are the width and height of one block,
respectively and T is an integer. In one example, T is set to be the same as
that used for TS coded blocks, such as 1.75 or 2.

1. Inone example, number of context coded bins for a palette coded block may
be set to (W*H*NumColorComp*T) wherein W and H are the width and
height of one block, respectively; NumColorComp is the number of color
components to be coded in one block (e.g., for one CU in YUV format,
NumColorComp is set to 3). and T is an integer. In one example, T is set to
be the same as that used for TS coded blocks, such as 1.75 or 2.

In one example, the threshold of palette-coded blocks may be smaller than TS
coded blocks or non-TS coded blocks in terms of context coded bins.

In one example, the threshold of palette-coded blocks may be larger than TS coded
blocks or non-TS coded blocks in terms of context coded bins.

22. A palette-coded block may be treated as a non-intra block (e.g. treated as a block with
prediction mode equal to MODE PLT) during the process of counting neighboring intra
blocks in CIIP mode.

a.

C.

In one example, when fetching the intra modes of neighboring blocks during
counting neighboring intra blocks in CIIP mode, if a neighboring block (e.g., left
and/or above) is coded with palette mode, it may be treated in the same way or a
similar way as those coded with inter mode.

In one example, when fetching the intra modes of neighboring blocks during
counting neighboring intra blocks in CIIP mode, if a neighboring block (e.g., left
and/or above) is coded with palette mode, it may be treated in the same way or a
similar way as those coded with IBC mode.

Alternatively, a palette-coded block may be treated as an intra block during the
process of counting neighboring intra blocks in CITP mode.

23. Tt is proposed to skip the pre- and/or post- filtering processes for palette coded samples.

a.

b.

C.

In one example, the palette coded samples may be not deblocked.

In one example, the palette coded samples may be not compensated an offset in the
SAQ process.

In one example, the palette coded samples may be not filtered in the ALF process.

44



WO 2020/169106 PCT/CN2020/076370

1. Inoneexample, the classification in the ALF process may skip palette coded
samples.
d. Inone example, the LMCS may be disabled for palette coded samples.
24 Tt 1s proposed to add more scanning orders in the palette mode.
a. In one example, reverse horizontal transverse scanning order defined as follows
may be used.
1. In one example, the scanning direction for the odd rows may be from left to

right.
ii. In one example, the scanning direction for the even rows may be from right
to left.
iii. In one example, the scanning order for a 4x4 block may be as shown in Fig.
22,
b. In one example, reverse vertical transverse scanning order defined as follows may
be used.
1. In one example, the scanning direction for the odd rows may be from top to
bottom.
ii. In one example, the scanning direction for the even rows may be from
bottom to top.
iii. In one example, the scanning order for a 4x4 block may be as shown in Fig.
23,

25. The combination of allowed scanning orders may depend on block shape.
a. In one example, when the ratio between width and height of a block is larger than
a threshold, only horizontal traverse and reverse horizontal traverse scanning orders
may be applied.
1. In one example, the threshold is equal to 1.
ii. In one example, the threshold is equal to 4.
b. In one example, when the ratio between height and width of a block is larger than
a threshold, only vertical traverse and reverse vertical traverse scanning orders may
be applied.
1. In one example, the threshold is equal to 1.
ii. In one example, the threshold is equal to 4.
26. It is proposed to only allow one intra prediction direction and/or one scanning direction in

the QR-BDPCM process.
a. Inone example, only vertical direction is allowed on a block with width larger than
height.
b. In one example, only horizontal direction is allowed on a block with width smaller
than height.

c. In one example, the indication of direction of QR-BDPCM may be inferred for a
non-square block.

1. In one example, furthermore, the indication of direction of QR-BDPCM
may be inferred to vertical direction for a block with width larger than
height.

ii. In one example, furthermore, the indication of direction of QR-BDPCM
may be inferred to horizontal direction for a block with width smaller than
height.

45



WO 2020/169106 PCT/CN2020/076370

27. The methods in bullet 24,25 and 26 may be only applied on a block with w*Th >=h or
h*Th >= w, where the w and h are the block width and height respectively, and Th is a
threshold.

a. Inone example, Th is an integer number (e.g. 4 or 8) and may be based on
1. Video contents (e.g. screen contents or natural contents)

1. A message signaled in the DPS/SPS/VPS/PPS/APS/picture header/slice
header/tile group header/ Largest coding unit (LCU)/Coding unit
(CU)/LCU row/group of LCUs/TU/PU block/Video coding unit

i1, Position of CU/PU/TU/block/Video coding unit

iv. Block dimension of current block and/or its neighboring blocks

v. Block shape of current block and/or its neighboring blocks

vi. Indication of the color format (such as 4:2:0, 4:4:4, RGB or YUV)
vii. Coding tree structure (such as dual tree or single tree)
viil.  Slice/tile group type and/or picture type

ix. Color component (e.g. may be only applied on luma component and/or
chroma component)

x. Temporal layer ID

xi. Profiles/Levels/Tiers of a standard
[00225] S. Additional Embodiments

[00226] 5.1 Embodiment 1
[00227] This section shows an example embodiment in which the bitstream representation of
video may be changed as compared to the baseline bitstream syntax. The changes are highlighted

using bold italicized text entries.

seq_parameter_set rbsp( ) { Descriptor
sps_max_sub _layers minusl u(3)
sps_gbi_enabled flag u(l)
sps_ibc_enabled flag u(l)
sps_plt enabled flag u(l)

j

sps_plt_enabled flag equal to 1 specifies that palette mode may be used in decoding of pictures
in the CVS. sps_plt _enabled flag equal to 0 specifies that palette mode is not used in the CVS.
When sps_plt_enabled flag is not present, it is inferred to be equal to 0.

coding_unit( x0, y0, cbWidth, cbHeight, treeType ) { Descriptor
if( tile_group type !=1 || sps_ibc_enabled flag|| sps plt enabled flag)

{

46



WO 2020/169106 PCT/CN2020/076370

if( treeType '=DUAL TREE CHROMA )

cu_skip flag[ x0 ][ yO ] ae(v)
if( cu_skip flag[ x0][y0]==0 && tile group type !=1)
pred_mode flag ae(v)

if( ( (tile_group type ==1 && cu_skip flag[x0][y0] ==0) ||
(tile_group_type'!=1 && CuPredMode[ x0 ][ yO ] '=MODE _ INTRA)

) &&
(sps_ibc_enabled flag || sps_plt enabled flag)

pred_mode scc flag ae(v)
if(scc_mode_flag){
if(sps_ibc_enabled flag) { ae(v)
pred_mode _ibc flag
/
if(sps_plt _enabled flag) {
pred_mode plt flag ae(v)
/
/

}

pred_mode _scc_flag equal to 1 specifies that the current coding unit is coded by a screen contnet
coding mode. pred_mode_scc_flag equal to 0 specifies that the current coding unit is not coded
by a screen content coding mode

When pred_mode_scc_flag is not present, it is inferred to be equal to 0.

pred_mode plt flag equal to 1 specifies that the current coding unit is coded in the palette mode.
pred_mode plt flag equal to 0 specifies that the current coding unit is not coded in the palette
mode.

When pred mode plt flag is not present, it is inferred to be equal to the value of
sps_plt_enabled flag when decoding an 1 tile group, and 0 when decoding a P or B tile group,
respectively.

When pred mode scc flag is equal to 1 and sps_ibc enabled flag is euqal to 0, the
pred_mode plt flag is inferred to be equal to 1.

When pred_mode_ibc _flag is equal to 1, the variable CuPredMode[x [[ y | is set to be equal to
MODE_PLT for x =x0..x0 + cbWidth — 1 and y =y0..y0 + cbHeight — 1.

47



WO 2020/169106 PCT/CN2020/076370

coding_unit( x0, y0, cbWidth, cbHeight, treeType ) { Descriptor
if( tile_group type != 1 || sps_ibc enabled flag || sps plt enabled flag)
{
if( treeType '=DUAL TREE CHROMA )
cu_skip flag[ x0 ][ yO ] ae(v)
if( cu_skip flag[ x0][y0]==0 && tile group type !=1)
pred_mode flag ae(v)
if( ( ( tile group type ==1 && cu skip flag[ x0][y0] ==0) ||
(tile_group type !=1 && CuPredMode[ x0 ][ yO ] !'=MODE INTRA )
) &&
(sps_ibc_enabled flag)
pred mode ibc flag ae(v)
if( ( ( tile group type == 1 && cu_skip flag[x0][y0] ==0 ) ||
(tile_group type!=1 & & CuPredMode[x0][y0]!= MODE INTRA
) ) &&
sps_plt_enabled flag &&
CuPredMode[ x0 [[ y0 ] = MODE IBC
pred_mode plt flag ae(v)
j
j
coding_unit( x0, y0, cbWidth, cbHeight, treeType ) { Descriptor
if( tile_group type !=1 || sps_ibc_enabled flag || sps_plt enabled flag)
{
if( treeType '=DUAL TREE CHROMA )
cu_skip flag[ x0 ][ yO ] ae(v)
if( cu_skip flag[ x0][y0]==0 && tile group type !=1)
pred_mode flag ae(v)
if( ( (tile_group type ==1 && cu_skip flag[x0][y0] ==0) ||
(tile_group_type'!=1 && CuPredMode[ x0 ][ yO ] '=MODE _ INTRA)
) &&
(sps_ibc_enabled flag)
pred mode ibc flag ae(v)
if( CuPredMode[ x0 || y0 | == MODE _INTRA &&
sps_plt enabled flag)
pred_mode plt flag ae(v)

48




WO 2020/169106 PCT/CN2020/076370

}

pred_mode plt flag equal to 1 specifies that the current coding unit is coded in the palette mode.
pred_mode plt flag equal to 0 specifies that the current coding unit is not coded in the palette

mode.

When pred mode plt flag is not present, it is inferred to be equal to the value of
sps_plt_enabled flag when decoding an 1 tile group, and 0 when decoding a P or B tile group,

respectively.

When pred_mode_ibc _flag is equal to 1, the variable CuPredMode[x [[ y | is set to be equal to

MODE_PLT for x =x0..x0 + cbWidth — 1 and y =y0..y0 + cbHeight — 1.

coding_unit( x0, y0, cbWidth, cbHeight, treeType ) { Descriptor
if( tile_group type !=1 || sps_ibc_enabled flag || sps_plt enabled flag)
{
if( treeType '=DUAL TREE CHROMA )
cu_skip flag[ x0 ][ yO ] ae(v)
if( cu_skip flag[ x0][y0]==0 && tile group type !=1)
pred_mode flag ae(v)
if( ( ( tile group type ==1 && cu skip flag[x0][y0] ==0) ||
(tile_group type!=1 && CuPredMode[ x0 [[y0 ] == MODE INTRA
) ) &&
(sps_ibc_enabled flag)
pred mode ibc flag ae(v)
if( ( ( tile group type == 1 && cu_skip flag[x0][y0] ==0 ) ||
(tile_group type!=1 && CuPredMode[ x0 [[y0 ] == MODE INTRA
&& (sps_ibc_enabled flag? CuPredMode[ x0][y0] != MODE IBC :
TRUE) ) ) &&
sps_plt_enabled flag
)
pred_mode plt flag ae(v)
j
j

pred_mode plt flag equal to 1 specifies that the current coding unit is coded in the palette mode.
pred_mode plt flag equal to 0 specifies that the current coding unit is not coded in the palette

mode.

49




WO 2020/169106 PCT/CN2020/076370

When pred mode plt flag is not present, it is inferred to be equal to the value of

sps_plt_enabled flag when decoding an 1 tile group, and 0 when decoding a P or B tile group,

respectively.

When pred_mode_ibc _flag is equal to 1, the variable CuPredMode[x [[ y | is set to be equal to

MODE_PLT for x =x0..x0 + cbWidth — 1 and y =y0..y0 + cbHeight — 1.

coding_unit( x0, y0, cbWidth, cbHeight, treeType ) {

Descriptor

if( tile_group type !=1 || sps_ibc_enabled flag || sps_plt enabled flag)
{

if( treeType '=DUAL TREE CHROMA )

cu_skip flag[ x0 ][ yO ]

ae(v)

if( cu_skip_flag[ x0 [[y0]==0)

pred_modes(x0, y0, cbWidth, cbHeight)

pred_modes (x0, y0, cbWidth, cbHeight) {

Descripto
r

if(tile_group type == 1) {

if(sps_ibc_enabled flag)

pred_mode _ibc flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] I= MODE IBC){

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)

plt mode flag

ae(v)

/

elsef

pred_mode_flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] == MODE _INTRA
(CuPredMode[ x0 ][ y0 ] != MODE INTRA && ! sps_ibc_enabled flag)){

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)

plt mode_flag

ae(v)

/

elsef

if(sps_ibc_enabled flag)

pred_mode _ibc flag

ae(v)

50




WO 2020/169106 PCT/CN2020/076370

pred_modes (x0, y0, cbWidth, cbHeight) {

Descriptor

if(tile_group type == 1) {

if(sps_ibc_enabled flag || sps_plt _enabled flag)

pred_mode_flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] I= MODE INTRA){

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)

plt mode flag

ae(v)

/

elsef

pred_mode_flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] == MODE INTRA [|
(CuPredMode[ x0 ][ y0 ] != MODE INTRA && ! sps_ibc_enabled flag)){

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)

plt mode_flag

ae(v)

/

elsef

if(sps_ibc_enabled flag)

pred_mode _ibc flag

ae(v)

pred_modes (x0, y0, cbWidth, cbHeight) {

Descriptor

if(tile_group type == 1) {

if(sps_ibc_enabled flag || sps_plt _enabled flag)

pred_mode_flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] I= MODE INTRA){

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)

plt mode flag

ae(v)

/

elsef

pred_mode_flag

ae(v)

if(CuPredMode[ x0 [[ y0 ] == MODE INTRA [|
(CuPredMode[ x0 ][ y0 ] != MODE INTRA && ! sps_ibc_enabled flag)){

51




WO 2020/169106 PCT/CN2020/076370

if(sps_plt_enabled flag & & cbWidth <=64 & & cbHeight <= 64)
plt_ mode_flag ae(v)

/
else{

if(sps_ibc_enabled flag)
pred_mode _ibc flag ae(v)
/

pred_modes (x0, y0, cbWidth, cbHeight) { Descriptor
if(tile_group type == 1) {

if(sps_ibc_enabled flag || sps_plt _enabled flag)
pred_mode_flag ae(v)
if(CuPredMode[ x0 [[ y0 ] I= MODE INTRA){
if(sps_plt _enabled flag)
plt mode flag

ae(v)
/
elsef
pred_mode_flag ae(v)
if(CuPredMode[ x0 [[ y0 ] =

== MODE _INTRA |
(CuPredMode[ x0 ][ y0 ] != MODE INTRA && ! sps_ibc_enabled flag)){

if(sps_plt _enabled flag)
plt_ mode_flag ae(v)

/
elsef

if(sps_ibc_enabled flag) ae(v)
pred_mode _ibc flag

plt mode _flag equal to 1 specifies that the current coding unit is coded in palette mode.

intra_mode plt flag equal to 0 specifies that the current coding unit is coded in the palette
mode.

When plt mode_flag is not present, it is inferred to be equal to false.

52



WO 2020/169106 PCT/CN2020/076370

When pred_mode_scc flag is equal to 1, the variable CuPredMode[ x [[ y | is set to be equal to
MODE_PLT for x =x0..x0 + cbWidth — 1 and y =y0..y0 + chHeight — 1

pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction
mode or IBC prediction mode. pred_mode_flag equal to 1 specifies that the current coding unit
is coded in intra prediction mode or PLT mode. The variable CuPredMode[ x [[ y | is derived as
follows for x =x0..x0 + cbWidth — 1 and y =y0..y0 + cbHeight — 1:

— If pred_mode_flag is equal to 0, CuPredMode[ x [[ y | is set equal to MODE INTER.

— Otherwise (pred mode flag is equal to 1), CuPredMode[x][[y] is set equal to
MODE INTRA.

When pred _mode_flag is not present, it is inferred to be equal to 1 when decoding an I tile
group, and equal to 0 when decoding a P or B tile group, respectively.

Table 9-4 Syntax elements and associated binarization.

S;yntt;x Binarization
structure
Syntax element
roce
{v) s Input parameter
é’ f;:d_mode PLT mode flag FL cMax =1
Table 9-10 — Assignment of ctxInc to syntax elements with context coded bins
binldx
Syntax element
0 1 2 3 4 >=35
PLT mode flag 0 na na na na na

[00228] 5.2 Embodiment #2

[00229] This embodiment decribes the modeType. The newly added texts are bold italicized.
[00230] A variable modeType specifying whether Intra, IBC, Palette and Inter coding modes can
be used (MODE _TYPE ALL), or whether only Intra, Palette and IBC coding modes can be
used (MODE _TYPE INTRA), or whether only Inter coding modes can be used

(MODE_TYPE _INTER) for coding units inside the coding tree node.

[00231] 5.3 Embodiment #3

[00232] This embodiment decribes the coding unit syntax. In this embodiment, the

pred_mode plt flag is signaled after the pred mode ibc flag. The newly added texts are bold
italicized and the deleted texts are marked by “[[ ]]”.

53



WO 2020/169106 PCT/CN2020/076370

7.3.7.5 Coding unit syntax

coding_unit( X0, y0, cbWidth, cbHeight, treeType, modeType ) { Descriptor
if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {
if( treeType I= DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE _TYPE INTRA )
&<& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if(  cu_skip flag[ x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)
pred mode flag ae(v)
[[if( ( ( slice type == 1 && cu skip flag[xO][y0O] ==0 ) ||
(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||
( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==
0 ) ) ) &&
sps 1bc enabled flag && (cbWidth !=128 || cbHeight !=128))[[=]]
if( (( slicetype ==1 && cu skip flag[x0][y0] ==0 ) ||
( slice type =1 && ( CuPredMode[x0][y0] != MODE INTRA ||
(cbWidth ==4 && cbHeight ==4 && cu skip flag[x0][y0] ==
0 ) ) ) ) &&
cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {
if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )
pred_mode _ibc flag ae(v)
/
if( CuPredMode[x0][y0] == MODE INTRA || (slice type != 1
&& !(cbWidth = =
&& cbHeight == 4 ) && !Isps ibc enabled flag &<&
CuPredMode[ x0 [[ y0 ] !=
MODE _INTRA )) && cbWidth <= 64 && cbHeight <= 64 &&
sps_plt _enabled flag
&& cu skip flag| x0 ][ y0] == 0 && modeType != MODE INTER)
pred mode plt flag ae(v)

[00233] 5.4 Embodiment #4

[00234] This embodiment decribes the coding unit syntax. In this embodiment, the

pred mode plt flag is signaled after the pred mode ibc flag and the pred mode plt flag is

54




WO 2020/169106 PCT/CN2020/076370

signaled only when the current prediction mode is MODE_INTRA. The newly added texts are
bold italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding_unit( x0, yO, cbWidth, cbHeight, treeType, modeType) { Descriptor
if( slice type != I || sps ibc enabled flag|| sps plt enabled flag) {

if( treeType I= DUAL TREE CHROMA &&

'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]

( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE_TYPE_INTRA )

&<& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if(  cu_skip flag[ x0][y0] == 0 && slice_type I=

I —

&& !( cbWidth == 4 && cbHeight == 4 ) && modeType =
MODE TYPE ALL)

pred mode flag ae(v)

[[ f( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||
(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||
( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==

0 ) ) ) ) &&
sps ibc enabled flag && (cbWidth !=128 || cbHeight !=128))]]

if( (( slicetype ==1 && cu skip flag[x0][y0] ==0 ) ||

( slice type =1 && ( CuPredMode[x0][y0] != MODE INTRA ||

(cbWidth ==4 && cbHeight ==4 && cu skip flag[x0][y0] ==

0 ) ) ) ) &&

cbWidth <= 64 && cbHeight <=64) && modeType != MODE _
TYPE INTER ) {

if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )

pred mode ibc flag ae(v)

/

if(cu_skip flag[x0][y0] == 0 && CuPredMode[x0][y0] ==
MODE _INTRA &&
cbWidth <= 64 && cbHeight <= 64 && sps_plt enabled flag & &

modeType !=
MODE TYPE INTER)
pred _mode plt flag ae(v)
}
}

[00235] 5.5 Embodiment #5

55



WO 2020/169106 PCT/CN2020/076370

[00236] This embodiment decribes the coding unit syntax. In this embodiment, the

pred_mode ibc flag is signaled after the pred mode plt flag. The newly added texts are bold

italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding_unit( X0, y0, cbWidth, cbHeight, treeType, modeType ) { | Descriptor

if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {

if( treeType = DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE _TYPE INTRA )
&<& !sps ibc enabled flag))

cu_skip flag[ x0 ][ yO ]

ae(v)

if(  cu skip flag[ xO][y0O] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)

pred mode flag

ae(v)

[[if( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||

( slice type '=1 && ( CuPredMode[ xO ][ yO] !'= MODE INTRA ||
(cbWidth==4 && cbHeight ==4 && cu_skip flag[x0][y0]==0))

) ) &&

sps 1bc enabled flag && (cbWidth !=128 || cbHeight |=128))]]

if( CuPredMode[ x0 [][y0] == MODE INTRA || (slice type != 1
&& !(cbWidth ==

&& cbHeight == 4 ) && !sps ibc enabled flag &&
CuPredMode[ x0 [[ y0 ] !=

MODE _INTRA )) && cbWidth <= 64 &<& cbHeight <= 64 &&
sps_plt _enabled flag

&& cu skip flag| x0 ][ y0] == 0 && modeType != MODE INTER)

pred mode plt flag

ae(v)

if( ( ( slicetype == 1 && cu_skip flag[x0][y0] ==0 ) ||

( slice type I=1 && ( CuPredMode[x0][y0] != MODE INTRA ||

(cbWidth ==4 && cbHeight ==4 &<& cu_skip flag[x0[[y0]==0))

) ) &&

cbWidth <= 64 && cbHeight <=64) && modeType != MODE_
TYPE INTER ) {

if( sps ibc enabled flag && treeType != DUAL TREE CHROMA)

pred mode ibc flag

ae(v)

/

}

56




WO 2020/169106 PCT/CN2020/076370

[00237] 5.6 Embodiment #6

[00238] This embodiment decribes the coding unit syntax. In this embodiment, the

pred mode ibc flag is signaled after the pred mode plt flag and the pred mode plt flag is

signaled only when the current prediction mode is MODE_INTRA. The newly added texts are

bold italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding unit( x0, yO, cbWidth, cbHeight, treeType, modeType) {

Descriptor

if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {

if( treeType I= DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE _TYPE INTRA )
&<& !sps ibc enabled flag))

cu_skip flag[ x0 ][ yO ]

ae(v)

if( cu_skip flag[x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)

pred mode flag

ae(v)

if cu_skip flag[x0][y0] == 0 && (CuPredMode[x0][y0] ==
MODE INTRA & &

cbWidth <= 64 && cbHeight <= 64 && sps_plt enabled flag &&
modeType !=

MODE TYPE INTER)

pred mode plt flag

ae(v)

}

if( ( ( slice type == && cu_skip flag[x0][y0] ==0 ) ||
( slice type =1 && ( CuPredMode[ x0 ][ y0] !'= MODE INTRA ||
(cbWidth==4 && cbHeight==4 && cu_skip flag[ x0 ][y0]==0))
) ) &&
sps_ibc_enabled flag && (cbWidth !=128 || cbHeight !=128))]]

if( ( ( slicetype == 1 && cu skip flag[x0][y0] ==0 ) ||
( slice type !=1 && ( CuPredMode[x0][y0] != MODE INTRA ||
(cbWidth==4 & & cbHeight==4 && cu_skip flag[x0][y0]==0))
) ) &
cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {

if( sps ibc enabled flag && treeType != DUAL TREE CHROMA)

pred mode ibc flag

ae(v)

/

}

57




WO 2020/169106 PCT/CN2020/076370

[00239] 5.7 Embodiment #7

[00240] This embodiment decribes the coding unit syntax. In this embodiment, the

pred mode plt flag and pred mode_ibc flag are signaled when the prediction mode is
MODE INTRA. The newly added texts are bold italicized and the deleted texts are marked by

i

7.3.7.5 Coding unit syntax

coding unit( x0, yO, cbWidth, cbHeight, treeType, modeType ) {

Descriptor

if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {

if( treeType I= DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE _TYPE INTRA )
&<& !sps ibc enabled flag))

cu_skip flag[ x0 ][ yO ]

ae(v)

if( cu_skip flag[x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)

pred mode flag

ae(v)

if( ( ( slice type == 1 && cu_skip flag[x0][y0] ==0 ) ||
( slice type =1 && ( CuPredMode[ x0 ][ yO] !'= MODE _ N RA ||
(cbWidth==4 && cbHeight==4 && cu_skip flag[ x0 ][y0]==0))
) ) &&
sps_ibc enabled flag && (cbWidth |=128 || cbHeight !=128))]]

if( ( ( slicetype == 1 && cu skip flag[x0][y0] ==0 ) ||
( slice type !I=1 && ( CuPredMode[x0][y0] == MODE INTRA ||
(cbWidth==4 & & cbHeight==4 && cu_skip flag[x0][y0]==0))
) )
cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {

if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )

pred mode ibc flag

ae(v)

/

if( CuPredMode[ x0 |[ y0 | == MODE INTRA & & cbWidth <= 64 & &
chHeight <= 64
&& sps plt enabled flag && cu skip flag[x0][y0] == 0 &&
modeType !=
MODE _INTER)

pred mode plt flag

ae(v)

58




WO 2020/169106 PCT/CN2020/076370

L

[00241] 5.8 Embodiment #8
[00242] This embodiment decribes the coding unit syntax. In this embodiment, the
pred_mode plt flag and pred mode ibc flag are signaled when the prediction mode is not

MODE INTRA. The newly added texts are bold italicized and the deleted texts are marked by
(‘[[ ]]”.

7.3.7.5 Coding unit syntax

coding_unit( X0, y0, cbWidth, cbHeight, treeType, modeType ) { Descriptor
if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {

if( treeType I= DUAL TREE CHROMA &&

'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]

( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE_TYPE INTRA )

&& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)

if( cu_skip flag[x0][y0] == 0 && slice_type I=
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType =
MODE TYPE ALL)

I —

pred mode flag ae(v)

[[ if( ( ( slice type == 1 && cu_skip flag[x0][y0] ==0 ) ||
( slice type =1 && ( CuPredMode[ x0 ][ y0] !'= MODE INTRA ||
(cbWidth==4 && cbHeight==4 && cu_skip flag[ x0 ][y0]==0))

) ) &&
sps_ibc _enabled flag && (cbWidth !=128 || cbHeight !=128))]]

if( ( ( slicetype == 1 && cu skip flag[x0][y0] ==0 ) ||

( slice type !=1 && ( CuPredMode[x0][y0] != MODE INTRA ||

(cbWidth==4 & & cbHeight==4 && cu_skip flag[x0][y0]==0))

) ) &&

cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {

if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )

pred mode ibc flag ae(v)

/

if( CuPredMode[ x0 [[y0] != MODE INTRA && cbWidth <= 64 &&
cbHeight <= 64
&& sps plt enabled flag && cu skip flag[x0][y0] == 0 &&
modeType !=
MODE _INTER)

pred mode plt flag ae(v)

59



WO 2020/169106 PCT/CN2020/076370

[00243] 5.9 Embodiment #9
[00244] This embodiment decribes the coding unit syntax. In this embodiment, the
pred_mode plt flag and pred mode ibc flag are signaled when the prediction mode is

MODE INTER. The newly added texts are bold italicized and the deleted texts are marked by
(‘[[ ]]”.

7.3.7.5 Coding unit syntax

coding_unit( X0, y0, cbWidth, cbHeight, treeType, modeType ) { Descriptor
if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {

if( treeType I= DUAL TREE CHROMA &&

'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]

( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE_TYPE INTRA )

&<& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if(  cu_skip flag[ x0][y0] == 0 && slice_type I=

I —

&& !( cbWidth == 4 && cbHeight == 4 ) && modeType =
MODE TYPE ALL)

pred mode flag ae(v)

[[ f( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||
(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||
( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==

0 ) ) ) ) &&
sps ibc enabled flag && (cbWidth !=128 || cbHeight !=128))]]

if( (( slicetype ==1 && cu skip flag[x0][y0] ==0 ) ||

( slice type !I=1 && ( CuPredMode[x0 [[y0] == MODE INTER ||

(cbWidth ==4 && cbHeight ==4 && cu skip flag[x0][y0] ==

0 ) ) ) ) &&

cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {

if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )

pred mode ibc flag ae(v)

/

if( CuPredMode[ x0 [[ y0 | == MODE_INTER & & cbWidth <= 64 &&
chHeight <= 64
&& sps plt enabled flag && cu _skip flag[x0][y0] == 0 &&
modeType !=
MODE _INTER)

pred mode plt flag ae(v)

60



WO 2020/169106 PCT/CN2020/076370

[00245] 5.10 Embodiment #10

[00246] This embodiment describes the semantic of the pred mode plt flag. The newly added
texts are bold italicized.

pred_mode plt flag specifies the use of palette mode in the current coding unit.
pred_mode plt flag = = 1 indicates that palette mode is applied in the current coding unit.

pred_mode plt flag == 0 indicates that palette mode is not applied for the current coding unit.
When pred_mode_plt flag is not present, it is inferred to be equal to 0.

[00247] 5.11 Embodiment #11

[00248] This embodiment describes the semantic of the pred mode plt flag. The newly added
texts are bold italicized.

pred_mode plt flag specifies the use of palette mode in the current coding unit.
pred_mode plt flag = = 1 indicates that palette mode is applied in the current coding unit.

pred_mode plt flag == 0 indicates that palette mode is not applied for the current coding unit.
When pred_mode_plt flag is not present, it is inferred to be equal to 0.

When pred _mode plt flag is equal to 1, the variable CuPredMode[ x [[ y | is set to be equal to
MODE_PLT for x =x0..x0 + cbWidth — 1 and y =y0..y0 + cbHeight — 1.

[00249] 5.12 Embodiment #12
[00250] This embodiment describes the boundary strength derivation. The newly added texts are
bold italicized.

8.8.3.5 Derivation process of boundary filtering strength
Inputs to this process are:
a picture sample array recPicture,

a location ( xCb, yCb ) specifying the top-left sample of the current coding block relative to the
top-left sample of the current picture,

a variable nCbW specifying the width of the current coding block,
a variable nCbH specifying the height of the current coding block,

a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR)
edge is filtered,

61



WO 2020/169106 PCT/CN2020/076370

a variable cIdx specifying the colour component of the current coding block,
a two-dimensional (nCbW)x(nCbH) array edgeFlags.

Output of this process is a two-dimensional (nCbW)x(nCbH) array bS specifying the boundary
filtering strength.

The variable bS[ xDi ][ yDj ] is derived as follows:

If cldx is equal to O and both samples po and qo are in a coding block with intra_bdpcm_flag equal
to 1, bS[ xDi ][ yDj ] is set equal to O.

Otherwise, if the sample po or qo 1s in the coding block of a coding unit coded with intra prediction
mode, bS[ xDi ][ yDj ] is set equal to 2.

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a coding
block with ciip_flag equal to 1, bS[ xDi ][ yDj ] is set equal to 2.

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a transform
block which contains one or more non-zero transform coefficient levels, bS[ xDi ][ yDj ] is set
equal to 1.

Otherwise, if the block edge is also a transform block edge and the sample py and qy are in two
coding blocks with pred_mode _plt flag equal to 1, bS{ xD; |[ yD; ] is set equal to 0.

Otherwise, if the prediction mode of the coding subblock containing the sample po is different
from the prediction mode of the coding subblock containing the sample qo, bS[ xDi ][ yDj | is set
equal to 1.

Otherwise, if cldx is equal to O and one or more of the following conditions are true,
bS[ xDi ][ yDj ] is set equal to 1:

The coding subblock containing the sample po and the coding subblock containing the sample qo
are both coded in IBC prediction mode, and the absolute difference between the horizontal or
vertical component of the motion vectors used in the prediction of the two coding subblocks is
greater than or equal to 4 in units of quarter luma samples.

For the prediction of the coding subblock containing the sample po different reference pictures or
a different number of motion vectors are used than for the prediction of the coding subblock
containing the sample qo.

NOTE 1 — The determination of whether the reference pictures used for the two coding sublocks
are the same or different is based only on which pictures are referenced, without regard to whether
a prediction is formed using an index into reference picture list O or an index into reference picture
list 1, and also without regard to whether the index position within a reference picture list is
different.

NOTE 2 — The number of motion vectors that are used for the prediction of a coding subblock
with top-left sample covering (xSb,ySb), is equal to PredFlaglLO[ xSb][ySb] +
PredFlagl.1[ xSb ][ ySb ].

62



WO 2020/169106 PCT/CN2020/076370

One motion vector is used to predict the coding subblock containing the sample po and one motion
vector is used to predict the coding subblock containing the sample qo, and the absolute difference
between the horizontal or vertical component of the motion vectors used is greater than or equal
to 4 in units of quarter luma samples.

Two motion vectors and two different reference pictures are used to predict the coding subblock
containing the sample po, two motion vectors for the same two reference pictures are used to
predict the coding subblock containing the sample qo and the absolute difference between the
horizontal or vertical component of the two motion vectors used in the prediction of the two coding
subblocks for the same reference picture is greater than or equal to 4 in units of quarter luma
samples.

Two motion vectors for the same reference picture are used to predict the coding subblock
containing the sample po, two motion vectors for the same reference picture are used to predict the
coding subblock containing the sample qo and both of the following conditions are true:

The absolute difference between the horizontal or vertical component of list 0 motion vectors used
in the prediction of the two coding subblocks is greater than or equal to 4 in quarter luma samples,
or the absolute difference between the horizontal or vertical component of the list 1 motion vectors
used in the prediction of the two coding subblocks is greater than or equal to 4 in units of quarter
luma samples.

The absolute difference between the horizontal or vertical component of list 0 motion vector used
in the prediction of the coding subblock containing the sample po and the list 1 motion vector used
in the prediction of the coding subblock containing the sample qo is greater than or equal to 4 in
units of quarter luma samples, or the absolute difference between the horizontal or vertical
component of the list 1 motion vector used in the prediction of the coding subblock containing the
sample po and list O motion vector used in the prediction of the coding subblock containing the
sample qo 1s greater than or equal to 4 in units of quarter luma samples.

Otherwise, the variable bS[ xDi ][ yDj ] is set equal to O.

[00251] 5.13a Embodiment #13a
[00252] This embodiment describes the boundary strength derivation. The newly added texts are
bold italicized.

8.8.3.5 Derivation process of boundary filtering strength
Inputs to this process are:
a picture sample array recPicture,

a location ( xCb, yCb ) specifying the top-left sample of the current coding block relative to the
top-left sample of the current picture,

a variable nCbW specifying the width of the current coding block,
a variable nCbH specifying the height of the current coding block,

63



WO 2020/169106 PCT/CN2020/076370

a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR)
edge is filtered,

a variable cIdx specifying the colour component of the current coding block,
a two-dimensional (nCbW)x(nCbH) array edgeFlags.

Output of this process is a two-dimensional (nCbW)x(nCbH) array bS specifying the boundary
filtering strength.

The variable bS[ xDi ][ yDj ] is derived as follows:

If cldx is equal to O and both samples po and qo are in a coding block with intra_bdpcm_flag equal
to 1, bS[ xDi ][ yDj ] is set equal to O.

Otherwise, if the sample po or qo 1s in the coding block of a coding unit coded with intra prediction
mode, bS[ xDi ][ yDj ] is set equal to 2.

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a coding
block with ciip_flag equal to 1, bS[ xDi ][ yDj ] is set equal to 2.

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a transform
block which contains one or more non-zero transform coefficient levels, bS[ xDi ][ yDj ] is set
equal to 1.

Otherwise, if the block edge is also a transform block edge and the sample py or g is in a coding
blocks with pred_mode _plt flag equal to 1, bS| xD; [[ yD; | is set equal to 0.

Otherwise, if the prediction mode of the coding subblock containing the sample po is different
from the prediction mode of the coding subblock containing the sample qo, bS[ xDi ][ yDj | is set
equal to 1.

Otherwise, if cldx is equal to O and one or more of the following conditions are true,
bS[ xDi ][ yDj ] is set equal to 1:

The coding subblock containing the sample po and the coding subblock containing the sample qo
are both coded in IBC prediction mode, and the absolute difference between the horizontal or
vertical component of the motion vectors used in the prediction of the two coding subblocks is
greater than or equal to 4 in units of quarter luma samples.

For the prediction of the coding subblock containing the sample po different reference pictures or
a different number of motion vectors are used than for the prediction of the coding subblock
containing the sample qo.

NOTE 1 — The determination of whether the reference pictures used for the two coding sublocks
are the same or different is based only on which pictures are referenced, without regard to whether
a prediction is formed using an index into reference picture list O or an index into reference picture
list 1, and also without regard to whether the index position within a reference picture list is
different.

64



WO 2020/169106 PCT/CN2020/076370

NOTE 2 — The number of motion vectors that are used for the prediction of a coding subblock
with top-left sample covering (xSb,ySb), is equal to PredFlaglLO[ xSb][ySb] +
PredFlagl.1[ xSb ][ ySb ].

One motion vector is used to predict the coding subblock containing the sample po and one motion
vector is used to predict the coding subblock containing the sample qo, and the absolute difference
between the horizontal or vertical component of the motion vectors used is greater than or equal
to 4 in units of quarter luma samples.

Two motion vectors and two different reference pictures are used to predict the coding subblock
containing the sample po, two motion vectors for the same two reference pictures are used to
predict the coding subblock containing the sample qo and the absolute difference between the
horizontal or vertical component of the two motion vectors used in the prediction of the two coding
subblocks for the same reference picture is greater than or equal to 4 in units of quarter luma
samples.

Two motion vectors for the same reference picture are used to predict the coding subblock
containing the sample po, two motion vectors for the same reference picture are used to predict the
coding subblock containing the sample qo and both of the following conditions are true:

The absolute difference between the horizontal or vertical component of list 0 motion vectors used
in the prediction of the two coding subblocks is greater than or equal to 4 in quarter luma samples,
or the absolute difference between the horizontal or vertical component of the list 1 motion vectors
used in the prediction of the two coding subblocks is greater than or equal to 4 in units of quarter
luma samples.

The absolute difference between the horizontal or vertical component of list 0 motion vector used
in the prediction of the coding subblock containing the sample po and the list 1 motion vector used
in the prediction of the coding subblock containing the sample qo is greater than or equal to 4 in
units of quarter luma samples, or the absolute difference between the horizontal or vertical
component of the list 1 motion vector used in the prediction of the coding subblock containing the
sample po and list O motion vector used in the prediction of the coding subblock containing the
sample qo 1s greater than or equal to 4 in units of quarter luma samples.

Otherwise, the variable bS[ xDi ][ yDj ] is set equal to O.

[00253] 5.13b Embodiment #13b
[00254] This embodiment describes escape samples coding and reconstruction. The newly added

texts are bold italicized and the deleted texts are marked by “[[ ]]”.

palette _coding(x0, y0, cbWidth, chHeight, startComp, numComps ) { Descriptor

/* Parsing escape values */

if( palette escape val present flag) {

65



WO 2020/169106 PCT/CN2020/076370

for( cldx = startComp; cldx < ( startComp + numComps ); cldx++)
for( sPos = 0; sPos < cbWidth* cbHeight,; sPos++ ) {
xC = TraverseScanOrder| cbWidth][ cbHeight ][ sPos |[ 0]

yC = TraverseScanOrder| cbWidth][ chHeight || sPos |[ 1 |

if ( PaletteIndexMap| cldx | [xCJ][yC] ==
( MaxPalettelndex—1) ) {

palette escape val [[ae(v)

1]u(v)

PaletteEscapeVall cldx || xC ]| yC ] = palette escape val

Decoding process for palette mode
Inputs to this process are:

a location (xCb, yCb ) specifying the top-left luma sample of the current block relative to the
top-left luma sample of the current picture,

a variable startComp specifies the first colour component in the palette table,
a variable cldx specifying the colour component of the current block,

two variables nCbW and nCbH specifving the width and height of the current block,
respectively.

Output of this process is an array recSamples[x [[y |, withx =0.. nCbW — 1, y=0.. nChH — 1
specifying reconstructed sample values for the block.

Depending on the value of cldx, the variables nSubWidth and nSubHeight are derived as
follows:

If cldx is equal to 0, nSubWidth is set to 1 and nSubHeight is set to 1.
Otherwise, nSubWidth is set to SubWidthC and nSubHeight is set to SubHeightC.

The (nCbW xnCbH ) block of the reconstructed sample array recSamples at location
(xCb, yCb ) is represented by recSamples[ x [[ y | with x = 0.nCTbW — 1 and y = 0..nCbH — 1,
and the value of recSamples| x [[ y | for each x in the range of 0 to nCbW — 1, inclusive, and
each y in the range of 0 to nChbH — 1, inclusive, is derived as follows:

The variables xL and yL are derived as follows:

66



WO 2020/169106 PCT/CN2020/076370

xL = palette _transpose flag ? x * nSubHeight : x * nSubWidth (8-69)
YL = palette transpose flag ? y * nSubWidth : y * nSubHeight (8-70)
The variable bIsEscapeSample is derived as follows:

If  PalettelndexMap[ xCh +xL [[yCb+yL ] is equal to MaxPalettelndex
palette_escape val present flag is equal to 1, bIsEscapeSample is set equal to 1.

Otherwise, bIsEscapeSample is set equal to 0.
If bIsEscapeSample is equal to 0, the following applies:

recSamples[x [[y ]
CurrentPaletteEntries[ cldx [[ PaletteIndexMap[ xCb + xL [[yCb+yL ] ] (8-71)

Otherwise, if cu_transquant_bypass_flag is equal to 1, the following applies:
recSamples[ x [[ y | = PaletteEscapeVal[ cldx [[ xCb + xL [[yCb +yL ] (8-72)

and

Otherwise (bIsEscapeSample is equal to 1 and cu_transquant bypass_flag is equal to 0), the

following ordered steps apply:

The derivation process for quantization parameters as specified in clause 8.7.1 is invoked with
the location (xCb, yCb ) specifying the top-left sample of the current block relative to the top-

left sample of the current picture.

The quantization parameter qP is derived as follows:

If cldx is equal to 0,

qP =Max( 0, Qp'Y) (8-73)

Otherwise, if cldx is equal to 1,

qP=Max( 0, Qp'Cb) (8-74)

Otherwise (cldx is equal to 2),

qP=Max( 0, Qp'Cr) (8-75)

The variables bitDepth is derived as follows:

bitDepth = (cldx == 0) ? BitDepthy : BitDepthc (8-76)

[[The list levelScale[ ] is specified as levelScale[ k | = { 40, 45, 51, 57, 64, 72 } with k =0..5.]]

The following applies:

[[tmpVal = ( PaletteEscapeVal[ cldx ][ xCb + xL ][ yCb + yL ]
levelScale[ qP%6 1) << (qP/6)+32) >> 6 (8-77)

recSamples[ x ][ y ] =Clip3( 0, (1 << bitDepth ) — 1, tmpVal ) (8-78)]]

recSamples[x [[y | = Clip3( 0, (1 << bitDepth ) — 1, PaletteEscapeVal[ cldx |[[ xCb +xL |[ yCb

+yL]) (8-78)

When one of the following conditions is true:

67



WO 2020/169106 PCT/CN2020/076370

cldx is equal to 0 and numComps is equal to 1;
cldx is equal to 3;

the variable PredictorPaletteSize[startComp| and the array PredictorPaletteEntries are derived
or maodified as follows:

for( i = 0; i < CurrentPaletteSize[ startComp [; i++ )
for( cldx = startComp; cldx < (startComp + numComps); cldx++ )
newPredictor PaletteEntries| cldx |[ i | = CurrentPaletteEntries[ cldx [[ i |
newPredictorPaletteSize = CurrentPaletteSize[ startComp |
for(i=0; i < PredictorPaletteSize && newPredictorPaletteSize < PaletteMaxPredictorSize;
i++ )
if( ! PalettePredictorEntryReuseFlags[ i | ) {

for( cldx = startComp; cldx < (startComp + numComps); cldx++) (8-79)
newPredictor PaletteEntries[ cldx |[ newPredictorPaletteSize | =
PredictorPaletteEntries| cldx [[ i ]
newPredictorPaletteSize++

/
for( cldx = startComp; cldx < ( startComp + numComps ); cldxt+ )
for( i = 0; i < newPredictorPaletteSize; i++ )
PredictorPaletteEntries| cldx [[ i | = newPredictor PaletteEntriesf cldx [[ i |

PredictorPaletteSize[ startComp | = newPredictorPaletteSize

It is a requirement of bitstream conformance that the value of PredictorPaletteSize[ startComp |
shall be in the range of 0 to PaletteMaxPredictorSize, inclusive.

[00255] 5.14 Embodiment #14
[00256] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

8.4.5.3 Decoding process for palette mode
Inputs to this process are:

— alocation ( xCb, yCb ) specifying the top-left luma sample of the current block relative to the
top-left luma sample of the current picture,

— avvariable startComp specifies the first colour component in the palette table,
— avariable cldx specifying the colour component of the current block,

— two variables nCbW and nCbH specifying the width and height of the current block,
respectively.

Output of this process is an array recSamples[ x ][ y ], with x =0.. nCbW — 1, y=0.. nCbH — 1
specifying reconstructed sample values for the block.

Depending on the value of cldx, the variables nSubWidth and nSubHeight are derived as follows:
— If cldx is equal to O, nSubWidth is set to 1 and nSubHeight is set to 1.

68



WO 2020/169106 PCT/CN2020/076370

— Otherwise, nSubWidth is set to SubWidthC and nSubHeight is set to SubHeightC.

The ( nCbW x nCbH ) block of the reconstructed sample array recSamples at location ( xCb, yCb )
is represented by recSamples[ x ][ y ] with x = 0..nCTbW — 1 and y = 0..nCbH — 1, and the value
of recSamples| x ][ y ] for each x in the range of 0 to nCbW — 1, inclusive, and each y in the range
of 0 to nCbH — 1, inclusive, is derived as follows:

— The variables xLL and yL are derived as follows:
xL = palette transpose flag ? x * nSubHeight : x * nSubWidth (8-234)
yL = palette transpose flag ? y * nSubWidth : y * nSubHeight (8-235)

— The variable bIsEscapeSample is derived as follows:

— If PalettelndexMap[ xCb+xL ][ yCb+yL] 1is equal to MaxPalettelndex and
palette escape val present flag is equal to 1, blsEscapeSample is set equal to 1.

— Otherwise, bIsEscapeSample is set equal to O.

— If bIsEscapeSample is equal to 0, the following applies:

recSamples[ x ][ v ] =
CurrentPaletteEntries[ cldx ][ PaletteIndexMap[ xCb + xL ][ yCb + yL ]| (8-236)

— Otherwise, if cu_transquant_bypass_flag is equal to 1, the following applies:
recSamples| x ][ y | = PaletteEscapeVal[ cldx ][ xCb + xL ][ yCb + yL ] (8-237)

— Otherwise (bIsEscapeSample is equal to 1 and cu_transquant_bypass flag is equal to 0), the
following ordered steps apply:

1. The derivation process for quantization parameters as specified in clause 8.7.1 is invoked
with the location ( xCb, yCb ) specifying the top-left sample of the current block relative
to the top-left sample of the current picture.

[Ed. (BB): QPs are already derived at the beginning of the intra CU decoding process so
there is no need to derive them again within this subclause. Althought it is like that in
HEVC v4 SCC, I think this redundancy can be removed. Please confirm. ]

2. The quantization parameter qP is derived as follows:

— If cldx is equal to 0,

qP = Max( QpPrimeTsMin, Op'Y ) (8-238)
— Otherwise, if cldx is equal to 1,

qP = Max( QpPrimeTsMin, Op'Cb ) (8-239)

— Otherwise (cldx is equal to 2),

69



WO 2020/169106 PCT/CN2020/076370

qP = Max( QpPrimeTsMin, Op'Cr ) (8-240)

Where min_qp prime_ts _minus4 specifies the minimum allowed quantization parameter for
transform skip mode as follows:

QpPrimeTsMin =4 + min_qp_prime ts_minus4
3. The variables bitDepth is derived as follows:
bitDepth = (cldx == 0) ? BitDepthy : BitDepthc (8-241)

4. The list levelScale[ | is specified as levelScale[ k | = { 40, 45, 51, 57, 64, 72 } withk=0..5.

[Ed. (BB): For non-palette CUs, levelScale depends on rectNonTsFlag, should that be
applied here t00?]

5. The following applies:

tmpVal = (PaletteEscapeVal[ cldx ][ xCb + xL][yCb + yL] *
levelScale[ qP%6 1) << (qP/6)+32) >> 6 (8-242)

recSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1, tmpVal ) (8-243)
When one of the following conditions is true:

— cldx is equal to 0 and numComps is equal to 1;

— cldx is equal to 3;

the variable PredictorPaletteSize[startComp] and the array PredictorPaletteEntries are derived or
modified as follows:

for( 1= 0; 1< CurrentPaletteSize[ startComp ]; i++)

for( cldx = startComp; cldx < (startComp + numComps); cldx++)

newPredictorPaletteEntries[ cldx ][ 1 ] = CurrentPaletteEntries[ cldx ][ 1]
newPredictorPaletteSize = CurrentPaletteSize[ startComp |
for(1=0; 1 <PredictorPaletteSize && newPredictorPaletteSize <
PaletteMaxPredictorSize; 1++)

if( !PalettePredictorEntryReuseFlags[ 1] ) {

for( cldx = startComp; cldx < (startComp + numComps); cldx++) (8-244)

newPredictorPaletteEntries[ cldx ][ newPredictorPaletteSize | =
PredictorPaletteEntries[ cldx ][ 1]

newPredictorPaletteSize++

b
for( cldx = startComp; cldx < ( startComp + numComps ); cldx++)

for( 1= 0; 1 < newPredictorPaletteSize; 1++)

PredictorPaletteEntries[ cldx ][ 1 ] = newPredictorPaletteEntries[ cldx ][ 1]
PredictorPaletteSize[ startComp | = newPredictorPaletteSize

70



WO 2020/169106

PCT/CN2020/076370

It is a requirement of bitstream conformance that the value of PredictorPaletteSize[ startComp |

shall be in the range of 0 to PaletteMaxPredictorSize, inclusive.
[00257] 5.15 Embodiment # 15
[00258] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

8.4.2 Derivation process for luma intra prediction mode

- Otherwise (skip_intra_flag[ xPb ][ yPb | and DimFlag[ xPb ][ yPb ] are both equal to 0),
IntraPredModeY[ xPb ][ yPb ] is derived by the following ordered steps:
1. The neighbouring locations ( xXNbA, yNbA ) and ( xNbB, yNbB ) are set equal to ( xPb
— 1, yPb) and ( xPb, yPb — 1), respectively.
2. For X being replaced by either A or B, the variables candIntraPredModeX are derived

as follows:

= — The availability derivation process for a block in z-scan order as specified in
clause 6.4.1 1s invoked with the location ( xCurr, yCurr ) set equal to ( xPb,
yPb ) and the neighbouring location ( XNbY, yNbY ) set equal to ( xNbX,
yNbX) as inputs, and the output is assigned to availableX.

» — The candidate intra prediction mode candIntraPredModeX is derived as
follows:

— IfavailableX is equal to FALSE, candIntraPredModeX is set equal to
INTRA_DC.

[[- Otherwise, if CuPredMode[ xNbX ][ yNbX ] is not equal to
MODE INTRA or pcm_ flag] xXNbX ][ yNbX ] is equal to 1 or ,
candIntraPredModeX is set equal to INTRA DC, ]]

— Otherwise, if CuPredMode][ xNbX || yNbX | is not equal to
MODE _INTRA, pcm flag[ xNbX ][ yNbX | is equal to 1 or
palette_mode_flag is equal to 1, candIntraPredModeX is set equal to
INTRA _DC,

— Otherwise, if X is equal to B and yPb — 1 is less than ( ( yPb >>
CtbLog2SizeY ) << CtbLog2SizeY ), candIntraPredModeB is set equal
to INTRA DC.

— Otherwise, if IntraPredModeY[ xNbX ][ yNbX ] is greater than 34,
candIntraPredModeX is set equal to INTRA DC.

[00259] 5.16 Embodiment #16
[00260] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

8.4.2 Derivation process for luma intra prediction mode

Input to this process are:

71



WO 2020/169106 PCT/CN2020/076370

— a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture,

— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.

1. For X being replaced by either A or B, the variables candIntraPredModeX are derived as
follows:

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process thd] is invoked with the location
( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring location ( xNbY, yNbY )
set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to availableX.

— The candidate intra prediction mode candIntraPredModeX is derived as follows:

— If one or more of the following conditions are true, candIntraPredModeX is set equal
to INTRA PLANAR.

The variable availableX is equal to FALSE.
CuPredMode[ xNbX ][ yNbX ] is not equal to MODE INTRA.

pred_mode plt flag is equal to 1.

intra_mip_flag[ xNbX ][ yNbX ] is equal to 1.

- X is equal to B and yCb—1 is less than
((yCb >> CtbLog2SizeY ) << CtbLog2SizeY ).

— Otherwise, candIntraPredModeX is set equal to IntraPredMode Y[ xNbX ][ yNbX |.

The  variable IntraPredModeY[x][y]  with x =xCb..xCb + cbWidth—1  and
y =yCb..yCb + cbHeight — 1 is set to be equal to IntraPredModeY[ xCb ][ yCb ].

[00261] 5.17 Embodiment #17
[00262] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

8.4.3 Derivation process for luma intra prediction mode
Input to this process are:

— a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture,

— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.

72



WO 2020/169106 PCT/CN2020/076370

2. For X being replaced by either A or B, the variables candIntraPredModeX are derived as
follows:

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the location
( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring location ( xNbY, yNbY )
set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to availableX.

— The candidate intra prediction mode candIntraPredModeX is derived as follows:

— If one or more of the following conditions are true, candIntraPredModeX is set equal
to [[INTRA PLANAR]] INTRA_DC.

The variable availableX is equal to FALSE.
CuPredMode[ xNbX ][ yNbX ] is not equal to MODE INTRA.
intra_mip_flag[ xNbX ][ yNbX ] is equal to 1.

- X is equal to B and yCb—1 is less than
((yCb >> CtbLog2SizeY ) << CtbLog2SizeY ).

— Otherwise, candIntraPredModeX is set equal to IntraPredMode Y[ xNbX ][ yNbX |.

The  variable IntraPredModeY[x][y]  with x =xCb..xCb + cbWidth—1  and
y =yCb..yCb + cbHeight — 1 is set to be equal to IntraPredModeY[ xCb ][ yCb ].

[00263] 5.18 Embodiment #18
[00264] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

8.4.3 Derivation process for luma intra prediction mode
Input to this process are:

— a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture,

— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.

3. For X being replaced by either A or B, the variables candIntraPredModeX are derived as
follows:

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process thd] is invoked with the location
( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring location ( xNbY, yNbY )
set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to availableX.

— The candidate intra prediction mode candIntraPredModeX is derived as follows:

73



WO 2020/169106 PCT/CN2020/076370

— If one or more of the following conditions are true, candIntraPredModeX is set equal

to [[INTRA PLANAR]] INTRA_DC.

— The variable availableX 1s equal to FALSE.

CuPredMode[ xNbX ][ yNbX ] is not equal to MODE INTRA.
intra_mip_flag[ xNbX ][ yNbX ] is equal to 1.

pred_mode plt flag is equal to 1.

- X is equal to B and yCb—1 is
((yCb >> CtbLog2SizeY ) << CtbLog2SizeY ).

less than

— Otherwise, candIntraPredModeX is set equal to IntraPredMode Y[ xNbX ][ yNbX |.

The  variable IntraPredModeY[x][y]  with x =xCb..xCb + cbWidth—1  and

y =yCb..yCb + cbHeight — 1 is set to be equal to IntraPredModeY[ xCb ][ yCb ].

[00265] 5.19 Embodiment #19

[00266] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

Coding_unit( x0, y0, cbWidth, cbHeight, treeTypeCurr,  isInSCIPURegion, | Descriptor
SCIPUConsMode ) { ]
if(slice type != I || sps_ibc enabled flag || sps plt enabled flag ) {

if( treeTypeCurr I= DUAL TREE CHROMA &&

'( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode ==
MODE _NON INTER) && !sps ibc enabled flag))

cu_skip flag[ x0 ][ yO ] ae(v)

if(  cu_skip flag[ x0][y0] == 0 && slice_type I= I

&& !( cbWidth == 4 && cbHeight ==4 ) && SCIPUConsMode =
MODE_ALL)

pred mode flag ae(v)

if( ( ( slice type == && cu skip flag[ xO][y0O] ==0 ) ||

(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||

( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==
0 ) ) ) ) &&

sps_ibc_enabled flag && (cbWidth !=128 || cbHeight |=128 ) &&
SCIPUConsMode !'= MODE INTER)

pred mode ibc flag ae(v)

if( CuPredMode[x0][y0] == MODE INTRA || (slice type != 1
&& !(cbWidth = =

&& cbHeight == 4 ) && !Isps ibc enabled flag &<&

CuPredMode[ x0 ][ y0 ] !=

74



WO 2020/169106 PCT/CN2020/076370

MODE INTRA )) && cbWidth <= 64 &<& cbHeight <= 64 &&
sps_plt _enabled flag

&& cu skip flag[x0][y0] == 0 && SCIPUConsMode!=
MODE INTER)
pred mode plt flag ae(v)
}
if(1sInSCIPURegion && SCIPUConsMode == MODE ALL &&

CuPredMode[ x0 ][ yO | '=MODE INTER){

treeType = DUAL TREE LUMA

} else {

treeType = treeTypeCurr

}

[00267] 5.20 Embodiment #20
[00268] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

Coding_unit( x0, y0, cbWidth, cbHeight, treeTypeCurr,  isInSCIPURegion, | Descriptor
SCIPUConsMode ) {

if( slice type != 1 || sps_ibc_enabled flag || sps pilt enabled flag) {

if( treeTypeCurr I= DUAL TREE CHROMA &&
'( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode ==
MODE NON INTER) && !sps ibc enabled flag))

cu skip flag[ x0 ][ yO ] ae(v)

if(  cu_skip flag[ x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight ==4 ) && SCIPUConsMode =
MODE_ALL)

pred mode flag ae(v)

if( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||

(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||

( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==
0 ) ) ) ) &&

sps_ibc_enabled flag && (cbWidth !=128 || cbHeight |=128 ) &&
SCIPUConsMode != MODE INTER)

pred mode ibc flag ae(v)

if( CuPredMode[ x0 |[ y0 ] == MODE _INTRA & & cbWidth <= 64 &&
cbHeight <= 64

&& sps _plt enabled flag && cu_skip flag[x0[[y0] == 0 &&
SCIPUConsMode!=

MODE_INTER)

pred mode plt flag ae(v)

75



WO 2020/169106 PCT/CN2020/076370

if(1sInSCIPURegion && SCIPUConsMode == MODE ALL &&
CuPredMode[ x0 ][ yO | '=MODE INTER){

treeType = DUAL. TREE LUMA

} else {

treeType = treeTypeCurr

}

[00269] 5.21 Embodiment #21
[00270] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

Coding_unit( x0, y0, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, | Descriptor
SCIPUConsMode ) {

if(slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag ) {

if( treeTypeCurr I= DUAL TREE CHROMA &&
'( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode ==
MODE NON INTER) && !sps ibc enabled flag))

cu skip flag[ x0 ][ yO ] ae(v)

if( cu skip flag[ x0O][y0O] == 0 && slice type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && SCIPUConsMode =
MODE ALL)

pred mode flag ae(v)

if( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||
(slice type '=1 && ( CuPredMode[ x0 ][ yO ] !'= MODE INTRA ||
(cbWidth==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==

) &

Il

0 ) ) )

sps_ibc_enabled flag && (cbWidth !=128 || cbHeight |=128 ) &&
SCIPUConsMode != MODE INTER)

pred_mode ibc flag ae(v)

if( (( (slice type == 1 || (cbWidth = =4 && cbHeight ==4) | |
sps_ibc_enabled flag ) && CuPredMode[ x0 [[ y0 ] == MODE _INTRA) ||
(slice type = I && !(cbWidth ==
&& cbHeight == 4 ) && Isps ibc enabled flag &<&
CuPredMode[ x0 [[ y0 ] !=
MODE _INTRA ) ) && cbWidth <= 64 && cbHeight <= 64 &&

sps_plt

_enabled flag &&  cu_skip flag[x0][y0] == 0 &&
SCIPUConsMode != MODE INTER)
pred mode plt flag ae(v)
}
if(1sInSCIPURegion & & SCIPUConsMode == MODE ALL &&

CuPredMode[ x0 ][ yO | '=MODE INTER){

76



WO 2020/169106 PCT/CN2020/076370

treeType = DUAL. TREE LUMA

} else {

treeType = treeTypeCurr

}

[00271] 5.22 Embodiment #22

[00272] This embodiment decribes the coding unit syntax. In this embodiment, the
pred_mode plt flag is signaled after the pred mode ibc flag. The newly added texts are bold
italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding_unit( X0, y0, cbWidth, cbHeight, treeType, modeType ) { Descriptor
if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {
if( treeType I= DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE_TYPE INTRA )
&<& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if(  cu_skip flag[ x0][y0] == 0 && slice_type I= I

&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)

pred mode flag ae(v)

[[ f( ( ( slice type == && cu skip flag[ xO][y0O] ==0 ) ||
(slice type =1 && ( CuPredMode[ x0 ][ yO]'!= MODE INTRA ||
( cbWidth ==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==

0 ) ) ) ) &&
sps ibc enabled flag && (cbWidth !=128 || cbHeight !=128))]]

if( (( slicetype ==1 && cu skip flag[x0][y0] ==0 ) ||

( slice type =1 && ( CuPredMode[x0][y0] != MODE INTRA ||

(cbWidth ==4 && cbHeight ==4 && cu skip flag[x0][y0] ==

0 ) ) ) ) &&

cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {

if(sps _ibc enabled flag & & treeType != DUAL TREE CHROMA )

pred mode ibc flag ae(v)

/

77



WO 2020/169106 PCT/CN2020/076370

if( ( ((slice type == 1 || (cbWidth = =4 && cbHeight ==4) | |
sps_ibc_enabled flag ) && CuPredMode[ x0 [[ y0 ] == MODE INTRA ) ||
(slice type = I && !(cbWidth ==
&& cbHeight == 4 ) && !Isps ibc enabled flag &<&
CuPredMode[ x0 [[ y0 ] !=
MODE _INTRA ) ) && cbWidth <= 64 && cbHeight <= 64 &&
sps_plt
_enabled flag && cu_skip flag[x0][[y0] == 0 && modeType !=
MODE INTER)

pred mode plt flag ae(v)

}

[00273] 5.23 Embodiment #23
[00274] The newly added texts are bold italicized and the deleted texts are marked by “[[ ]]”.

Coding_unit( x0, y0, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, | Descriptor
SCIPUConsMode) {

if( treeTypeCurr = DUAL TREE CHROMA &&
'( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode ==
MODE NON INTER) && !sps ibc enabled flag))

cu skip flag[ x0 ][ yO ] ae(v)

if( cu_skip flag[x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && SCIPUConsMode ==
MODE_ALL)

pred mode flag ae(v)

if( ( ( slice_type == && cu skip flag[ x0][y0] ==0 ) ||

( slice type =1 && ( CuPredMode[ x0 ][ y0] !'= MODE INTRA ||

(cbWidth==4 && cbHeight==4 && cu_skip flag[ x0 ][y0]==0))
) ) &&

sps_ibc_enabled flag && (cbWidth !=128 || cbHeight |=128 ) &&
SCIPUConsMode != MODE INTER)

pred mode ibc flag ae(v)

if( ( ((slicetype == 1 || (cbWidth = =4 && cbHeight = =4 ) | |
pred_mode ibc flag ) && CuPredMode[x0 ][ y0 ] == MODE INTRA ) ||
(slice type = I && !(cbWidth ==

&& cbHeight == 4 ) && !Ipred mode ibc flag &&
CuPredMode[ x0 [[ y0 ] !=

MODE INTRA ) ) && cbWidth <= 64 && cbHeight <= 64 &&
sps_plt enabled flag &&  cu_skip flag[x0][y0] == 0 &&

SCIPUConsMode !|= MODE INTER)

78




WO 2020/169106 PCT/CN2020/076370

pred mode plt flag

ae(v)

}

CuPredMode[ x0 ][ yO | '=MODE INTER){

if(1sInSCIPURegion && SCIPUConsMode == MODE ALL &&

treeType = DUAL. TREE LUMA

} else {

treeType = treeTypeCurr

}

[00275] 5.24 Embodiment #24

[00276] This embodiment decribes the coding unit syntax. In this embodiment, the

pred_mode plt flag is signaled after the pred mode ibc flag. The newly added texts are bold

italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding unit( x0, y0, cbWidth, cbHeight, treeType, modeType ) { Descriptor
if( slice type != 1 || sps_ibc _enabled flag || sps plt enabled flag) {
if( treeType I= DUAL TREE CHROMA &&
'( [[cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag ) ]
( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE _TYPE INTRA )
&<& !sps ibc enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if( cu skip flag[ x0O][y0O] == 0 && slice type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)
pred mode flag ae(v)
[[ f( ( ( slice type == 1 && cu skip flag[x0][y0] ==0 ) ||
(slice type '=1 && ( CuPredMode[ x0 ][ yO ] !'= MODE INTRA ||
(cbWidth==4 && cbHeight ==4 && cu skip flag[ x0][y0] ==
0 ) ) ) ) &&
sps ibc enabled flag && (cbWidth !=128 || cbHeight !=128))]]
if( (( slicetype ==1 && cu skip flag[x0][y0] ==0 ) ||
(slice type I=1 && (CuPredMode[x0][y0]!=MODE INTRA ||
(cbWidth ==4 && cbHeight ==4 && cu_skip flag[x0][y0] ==
0 ) ) ) ) &&
cbWidth <= 64 & & cbHeight <=64) && modeType I=
MODE TYPE INTER ) {
if( sps_ibc_enabled flag && treeType != DUAL TREE CHROMA
)
pred_mode ibc flag ae(v)

79




WO 2020/169106 PCT/CN2020/076370

/

if( (( (slice type == 1 || (cbWidth = =4 && cbHeight ==4) | |
pred_mode _ibc flag) && CuPredMode[ x0 [[y0] == MODE INTRA ) ||
(slice type = I && !(cbWidth ==
&& cbHeight == 4 ) && ! pred mode ibc flag &&
CuPredMode[ x0 [[ y0 ] !=
MODE INTRA ) ) && cbWidth <= 64 && cbHeight <= 64 &&
sps_plt
_enabled flag && cu_skip flag[x0][y0] == 0 && modeType !=
MODE INTER)

pred mode plt flag

ae(v)

}

[00277] 5.25 Embodiment #25

[00278] This embodiment decribes the coding unit syntax. In this embodiment, the palette syntax

is signaled if the current prediction mode is MODE PLT. The newly added texts are bold

italicized and the deleted texts are marked by “[[ ]]”.

7.3.7.5 Coding unit syntax

coding unit( x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType ) { Descriptor
chType = treeType == DUAL TREE CHROMA?1:0
if( slice type '= 1 || sps ibc enabled flag || sps palette enabled flag) {
if( treeType I= DUAL TREE CHROMA &&
'( ( ( cbWidth == 4 && cbHeight == 4 ) || modeType ==
MODE_TYPE INTRA )
&& !sps ibc _enabled flag))
cu_skip flag[ x0 ][ yO ] ae(v)
if( cu skip flag[x0][y0] == 0 && slice_type I= I
&& !( cbWidth == 4 && cbHeight == 4 ) && modeType ==
MODE TYPE ALL)
pred mode flag ae(v)
if( ((slice type == 1 && cu_skip flag[x0][y0] ==0) N
(slice_type'!=1 && ( CuPredMode[ chType ][ x0 ][ yO ] '=MODE_ INTRA
[
(cbWidth == 4 && cbHeight == 4 && cu skip flag[ x0][y0] ==
0)))) &&
cbWidth <= 64 && cbHeight <= 64 && modeType !=
MODE TYPE INTER &&
sps ibc enabled flag && treeType != DUAL TREE CHROMA )
pred mode ibc flag ae(v)

80




WO 2020/169106 PCT/CN2020/076370

if( ((( slice type == 1 ]|| ( cbWidth == 4 && cbHeight == 4 ) ||
sps_ibc_enabled flag ) &&
CuPredMode[ x0 ][ yO ] == MODE INTRA) N

(slice type '= 1 && !(cbWidth == 4 && cbHeight == 4) &&
Isps_ibc_enabled flag

&& CuPredMode[ xO[[y0O] !'= MODE INTRA)) &&
sps_palette enabled flag &&
cbWidth <= 64 && cbHeight <= 64 && && cu skip flag[x0][y0]==
&&
modeType != MODE INTER )
pred mode plt flag ae(v)
}
}
if([[CuPredMode[ chType ][ x0 ][ yO ] == MODE INTRA 1]
CuPredMode[ chType ][ x0 ][ y0] == MODE PLT) {

if( treeType == SINGLE TREE || treeType ==DUAL TREE LUMA ) {

if( pred _mode plt flag) {

if( treeType ==DUAL TREE LUMA )

palette coding( x0, yO, cbWidth, cbHeight, O, 1)

else /* SINGLE TREE */

palette coding( x0, y0, cbWidth, cbHeight, 0, 3)

} else {

}

[00279] 5.26 Embodiment #26
[00280] This embodiment decribes the derivation process of chroma intra prediction mode. The

newly added texts are bold italicized.

Derivation process for chroma intra prediction mode
Input to this process are:

— a luma location ( xCb, yCb ) specifying the top-left sample of the current chroma coding block
relative to the top-left luma sample of the current picture,

— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
In this process, the chroma intra prediction mode IntraPredModeC[ xCb ][ yCb ] is derived.

The corresponding luma intra prediction mode lumalntraPredMode is derived as follows:

81




WO 2020/169106 PCT/CN2020/076370

— If intra mip flag] xCb][yCb] 1s equal to 1, lumalntraPredMode is set equal to
INTRA PLANAR.

— Otherwise, if CuPredMode[ 0 ][ xCb ][ yCb] is equal to MODE IBC or MODE PLT,
lumalntraPredMode is set equal to INTRA DC.

— Otherwise, lumalntraPredMode is set equal to
IntraPredModeY[ xCb + cbWidth / 2 ][ yCb + cbHeight / 2 .

[00.2“81] 5.27 Embodiment #27

[00282] This embodiment decribes the picture reconstruction process with mapping process for
luma samples. The newly added texts are bold italicized.

[00283] Picture reconstruction with mapping process for luma samples. Inputs to this process are:

— a location ( xCurr, yCurr ) of the top-left sample of the current block relative to the top-left
sample of the current picture,

— avariable nCurrSw specifying the block width,
— avariable nCurrSh specifying the block height,

— an (nCurrSw)x(nCurrSh) array predSamples specifying the luma predicted samples of the
current block,

— an (nCurrSw)x(nCurrSh) array resSamples specifying the luma residual samples of the current
block.

Outputs of this process is a reconstructed luma picture sample array recSamples.

The (nCurrSw)x(nCurrSh) array of mapped predicted luma samples predMapSamples is derived
as follows:

— If one of the following conditions is true, predMapSamples[i][j] is set equal to
predSamples[ 1 ][ j ] for 1 =0..nCurrSw — 1, j = 0..nCurrSh — 1:

— CuPredMode[ O ][ xCurr ][ yCurr ] 1s equal to MODE INTRA.
— CuPredMode[ O ][ xCurr ][ yCurr ] is equal to MODE IBC.
— CuPredMode[ 0 |[[ xCurr [[ yCurr | is equal to MODE PLT.

— CuPredMode[ O ][ xCurr ][ yCurr ] is equal to MODE_INTER and
ciip_flag[ xCurr ][ yCurr ] 1s equal to 1.

— Otherwise (CuPredMode[ O ][ xCurr ][ yCurr] 1s equal to MODE INTER and
ciip_flag[ xCurr ][ yCurr ] is equal to 0), the following applies:

[00284] 5.28 Embodiment #28
[00285] This embodiment decribes example scanning orders correponding to the Example 24 in

Section 4.

82



WO 2020/169106 PCT/CN2020/076370

Input to this process is a block width blkWidth and a block height blkHeight.

Output of this process are the arrays hReverScan[ sPos ][ sComp] and
vReverScan[ sPos ][ sComp ]. The array hReverScan represents the horizontal reverse scan order
and the array vReverScan represents the vertical traverse scan order. The array index sPos specifies
the scan position ranging from O to ( blkWidth * blkHeight ) — 1, inclusive. The array index
sComp equal to O specifies the horizontal component and the array index sComp equal to 1
specifies the vertical component. Depending on the value of blkWidth and blkHeight, the array
hTravScan anfd vTravScan are derived as follows:

1=0

for(y =0; y <blkHeight; y++)

if(y%2!'=0){
for( x = 0; x <blkWidth; x++) {
hReverScan[1][ 0] =x
hReverScan[1][ 1] =y
1++
}
}
else
{
for( x =blkWidth—1; x >= 0; x——) {
hReverScan [1][ 0] =x
hReverScan[1][1] =y
1++

}
}
j
1=0
for( x = 0; x < blkWidth; x++)

if(x%2 1= 0)
{
for(y = 0; y < blkHeight; y++) {
vReverScan[1][ 0] =x
vReverScan[i][1]=y
1+t
}
}
else
{
for(y = blkHeight — 1,y >= 0;y——) {
vReverScan[1][ 0] =x
vReverScan[i][1]=y
1+t

}

83



WO 2020/169106 PCT/CN2020/076370

;
;

[00286] FIG. 6 is a block diagram of a video processing apparatus 600. The apparatus 600 may
be used to implement one or more of the methods described herein. The apparatus 600 may be
embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The
apparatus 600 may include one or more processors 602, one or more memories 604 and video
processing hardware 606. The processor(s) 602 may be configured to implement one or more
methods described in the present document. The memory (memories) 604 may be used for
storing data and code used for implementing the methods and techniques described herein. The
video processing hardware 606 may be used to implement, in hardware circuitry, some
techniques described in the present document.

[00287] FIG. 8 is a flowchart for a method 800 of processing a video. The method 800 includes
determining (805) that palette mode is to be used for processing a transform unit, a coding block,
or a region, usage of palette mode being coded separately from a prediction mode, and performing
(810) further processing of the transform unit, the coding block, or the region using the palette
mode.

[00288] With reference to method 800, some examples of palette mode coding and its use are
described in Section 4 of the present document.

[00289] With reference to method 800, a video block may be encoded in the video bitstream in
which bit efficiency may be achieved by using a bitstream generation rule related to palette mode
coding.

[00290] The methods can include wherein the prediction mode is coded before indication of the
usage of the palette mode.

[00291] The methods can include wherein the usage of palette mode is conditionally signaled
based on the prediction mode.

[00292] The methods can include wherein the prediction mode is intra block copy mode, and
signaling of the indication of the usage of palette mode is skipped.

[00293] The methods can include wherein the indication of the usage of palette mode is
determined to be false based on a current prediction mode being intra block copy mode.

[00294] The methods can include wherein the prediction mode is inter mode, and signaling of the

indication of the usage of palette mode is skipped.

84



WO 2020/169106 PCT/CN2020/076370

[00295] The methods can include wherein the indication of the usage of palette mode is
determined to be false based on a current prediction mode being inter mode.

[00296] The methods can include wherein the prediction mode is intra mode, and signaling of the
indication of the usage of palette mode is skipped.

[00297] The methods can include wherein the indication of the usage of palette mode is
determined to be false based on a current prediction mode being intra mode.

[00298] The methods can include wherein the prediction mode is intra mode, and signaling of the
indication of the usage of palette mode is skipped.

[00299] The methods can include wherein the prediction mode is intra block copy mode, and
signaling of the indication of the usage of palette mode is performed.

[00300] The methods can include wherein the indication of the usage of palette mode is signaled
based on a picture, a slice, or a tile group type.

[00301] The methods can include wherein the palette mode is added as a candidate for the
prediction mode.

[00302] The methods can include wherein the prediction mode includes one or more of: intra
mode, intra block copy mode, or palette modes for intra slices, inter slices, I pictures, P pictures,
B pictures, or intra tile groups.

[00303] The methods can include wherein the prediction mode includes two or more of: intra
mode, inter mode, intra block copy mode, or palette mode.

[00304] The methods can include wherein the usage of palette mode is indicated via signaling or
derived based on a condition.

[00305] The methods can include wherein the condition includes one or more of: a block
dimension of a current block, a prediction mode of the current block, a quantization parameter
(QP) of the current block, a palette flag of neighboring blocks, an intra block copy flag of
neighboring blocks, an indication of a color format, a separate or a dual coding tree structure, or a
slice type or a group type or a picture type.

[00306] The methods can include wherein the usage of palette mode is signaled or derived based
on a slice level flag, a tile group level flag, or a picture level flag.

[00307] The methods can include wherein indication of usage of intra block copy mode is signaled

or derived based on a slice level flag, a tile group level flag, or a picture level flag.

85



WO 2020/169106 PCT/CN2020/076370

[00308] With reference to items 6 to 9 disclosed in the previous section, some embodiments may
preferably use the following solutions.

[00309] One solution may include a method of video processing, comprising performing a
conversion between a current video block of a picture of a video and a bitstream representation of
the video in which information about whether or not an intra block copy mode is used in the
conversion 1is signaled in the bitstream representation or derived based on a coding condition of
the current video block; wherein the intra block copy mode comprises coding the current video
block from another video block in the picture. The following features may be implemented in
various embodiments

[00310] - wherein the coding condition includes block dimensions of the current video block.
[00311] - wherein the coding condition includes a prediction mode of the current video block or
a quantization parameter used in the conversion for the current video block.

[00312] With reference to items 13-15 disclosed in the previous section, some embodiments may
preferably implement the following solutions.

[00313] A solution may include a method for determining whether or not a deblocking filter is to
be applied during a conversion of a current video block of a picture of video, wherein the current
video block is coded using a palette mode coding in which the current video block is represented
using representative sample values that are fewer than total pixels of the current video block; and
performing the conversion such that the deblocking filter is applied in case the determining is that
the deblocking filter is to be applied.

[00314] Another solution may include a method of video processing, comprising determining a
quantization or an inverse quantization process for use during a conversion between a current video
block of a picture of a video and a bitstream representation of the video, wherein the current video
block is coded using a palette mode coding in which the current video block is represented using
representative sample values that are fewer than total pixels of the current video block; and
performing the conversion based on the determining the quantization or the inverse quantization
process. Additional features may include:

[00315] - wherein the quantization or the inverse quantization process determined for the current
video block is different from another quantization or another inverse quantization process applied

to another video block that is coded differently from the palette coding mode.

86



WO 2020/169106 PCT/CN2020/076370

[00316] - wherein the conversion includes encoding the current video block into the bitstream
representation.

[00317] - wherein the conversion includes decoding the bitstream representation to generate the
current video block of the video.

[00318] - wherein the determining uses a decision process that is identical to another decision
process used for conversion of another video block that is intra coded.

[00319] It will be appreciated that the disclosed techniques may be embodied in video encoders
or decoders to improve compression efficiency using enhanced coding tree structures.

[00320] With reference to items 16 to 21 in the previous section, some solutions may be as follows:
[00321] A method of video processing, comprising: determining, for a conversion between a
current video block of a video comprising multiple video blocks and a bitstream representation of
the video, that the current video block is a palette-coded block; based on the determining,
performing a list construction process of most probable mode by considering the current video
block to be an intra coded block, and performing the conversion based on a result of the list
construction process; wherein the palette-coded block is coded or decoded using a palette or
representation sample values.

[00322] The above method, wherein the list construction process treats a neighboring palette-
coded block as an intra block with a default mode.

[00323] A method of video processing, comprising: determining, for a conversion between a
current video block of a video comprising multiple video blocks and a bitstream representation of
the video, that the current video block is a palette-coded block; based on the determining,
performing a list construction process of most probable mode by considering the current video
block to be a non-intra coded block, and performing the conversion based on a result of the list
construction process; wherein the palette-coded block is coded or decoded using a palette or
representation sample values.

[00324] The above method, wherein the list construction process treats a neighboring palette-
coded block as an inter-coded block when fetching an intra mode of the neighboring palette coded
block.

[00325] A method of video processing, comprising: determining, for a conversion between a
current video block of a video comprising multiple video blocks and a bitstream representation of

the video, that the current video block is a palette-coded block; based on the determining,

87



WO 2020/169106 PCT/CN2020/076370

performing a list construction process by considering the current video block to be an unavailable
block, and performing the conversion based on a result of the list construction process; wherein
the palette-coded block is coded or decoded using a palette or representation sample values.
[00326] The above method, wherein the list construction process is for a history based motion
vector prediction.

[00327] The above method, wherein the list construction process is for a MERGE or an advanced
motion vector prediction mode.

[00328] The above methods, wherein the determining further includes determining based on
content of the video.

[00329] The above methods, wherein the determining corresponds to a filed in the bitstream
representation.

[00330] A method of video processing, comprising: determining, during a conversion between a
current video block and a bitstream representation of the current video block, that the current video
block is a palette coded block, determining, based on the current video block being the palette
coded block, a range of context coded bins used for the conversion; and performing the conversion
based on the range of context coded bins.

[00331] The above method, wherein bins of the current video block that fall outside the range are
coded using bypass coding technique or decoded using a bypass decoding technique during the
conversion.

[00332] The above methods, wherein the conversion comprises encoding the video into the
bitstream representation.

[00333] The above methods, wherein the conversion comprises decoding the bitstream
representation to generate the video.

[00334] FIG. 24 is a block diagram showing an example video processing system 2400 in which
various techniques disclosed herein may be implemented. Various implementations may include
some or all of the components of the system 2400. The system 2400 may include input 2402 for
receiving video content. The video content may be received in a raw or uncompressed format,
e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.

The input 1902 may represent a network interface, a peripheral bus interface, or a storage
interface. Examples of network interface include wired interfaces such as Ethernet, passive

optical network (PON), etc. and wireless interfaces such as Wi-Fi or cellular interfaces.

88



WO 2020/169106 PCT/CN2020/076370

[00335] The system 2400 may include a coding component 2404 that may implement the various
coding or encoding methods described in the present document. The coding component 2404
may reduce the average bitrate of video from the input 2402 to the output of the coding
component 2404 to produce a coded representation of the video. The coding techniques are
therefore sometimes called video compression or video transcoding techniques. The output of the
coding component 2404 may be either stored, or transmitted via a communication connected, as
represented by the component 2406. The stored or communicated bitstream (or coded)
representation of the video received at the input 2402 may be used by the component 2408 for
generating pixel values or displayable video that is sent to a display interface 2410. The process
of generating user-viewable video from the bitstream representation is sometimes called video
decompression. Furthermore, while certain video processing operations are referred to as
“coding” operations or tools, it will be appreciated that the coding tools or operations are used at
an encoder and corresponding decoding tools or operations that reverse the results of the coding
will be performed by a decoder.

[00336] Examples of a peripheral bus interface or a display interface may include universal

serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.
Examples of storage interfaces include SATA (serial advanced technology attachment), PCI,
IDE interface, and the like. The techniques described in the present document may be embodied
in various electronic devices such as mobile phones, laptops, smartphones or other devices that
are capable of performing digital data processing and/or video display.

[00337] FIG. 25 is a flowchart representation of a method 2500 for video processing in accordance
with the present technology. The method 2500 includes, at operation 2510, performing a
conversion between a block of a video region of a video and a bitstream representation of the video.
The bitstream representation is processed according to a first format rule that specifies whether a
first indication of usage of a palette mode is signaled for the block and a second format rule that
specifies a position of the first indication relative to a second indication of usage of a prediction
mode for the block.

[00338] In some embodiments, the video region comprises a transform unit, a coding unit, a
prediction unit, or a region of the video. In some embodiments, the second indication of usage of
the prediction mode is positioned prior to the first indication of usage of the palette mode in the

bitstream representation.

89



WO 2020/169106 PCT/CN2020/076370

[00339] In some embodiments, the first indication of usage of the palette mode is conditionally
included in the bitstream representation based on the second indication of usage of the prediction
mode. In some embodiments, the first indication of usage of the palette mode is skipped in the
bitstream representation in case the second indication of usage of the prediction mode indicates an
intra block copy (IBC) prediction mode. In some embodiments, the first indication of usage of the
palette mode is skipped in the bitstream representation in case the second indication of usage of
the prediction mode indicates an inter prediction mode. In some embodiments, the first indication
of usage of the palette mode is skipped in the bitstream representation in case the second indication
of usage of prediction mode indicates an intra prediction mode. In some embodiments, the first
indication of usage of the palette mode is skipped in the bitstream representation in case the second
indication of usage of prediction mode indicates a skip mode. In some embodiments, skipping the
first indication of usage of the palette mode in the bitstream representation indicates that the palette
mode is not used.

[00340] In some embodiments, the first indication of usage of the palette mode is coded in the
bitstream 1in case the second indication of usage of prediction mode indicates an IBC prediction
mode. In some embodiments, the first indication of usage of the palette mode is coded in the
bitstream in case the second indication of usage of prediction mode indicates an intra prediction
mode. In some embodiments, the prediction mode is not a Pulse-Code Modulation (PCM) mode.
In some embodiments, the first indication of usage of the palette mode is coded prior to an
indication of usage of a PCM mode in the bitstream representation. In some embodiments, an
indication of usage of a PCM mode is skipped in the bitstream representation. In some
embodiments, an indication of the IBC mode is coded in the bitstream representation. In some
embodiments, in case an intra prediction mode is used, a flag in the bitstream representations
indicates whether the palette mode or the IBC mode is signaled in the bitstream representation. In
some embodiments, the flag is skipped based on a condition of the block, the condition comprising
a dimension of the block, whether the IBC mode is enabled for a region associated with the block,
or whether the palette mode is enabled for the region associated with the block.

[00341] In some embodiments, the first indication of usage of the palette mode is coded in the
bitstream in case the second indication of usage of prediction mode indicates an inter prediction
mode. In some embodiments, the first indication of usage of the palette mode is coded after at least

one of: an indication of a skip mode, the prediction mode, or an indication of usage of a PCM

90



WO 2020/169106 PCT/CN2020/076370

mode. In some embodiments, the first indication of usage of the palette mode is coded after an
indication of a skip mode or the prediction mode and is coded before an indication of usage of a
PCM mode.

[00342] In some embodiments, the first indication of usage of the palette mode is positioned prior
to the second indication of usage of the prediction mode in the bitstream representation. In some
embodiments, the first indication of usage of the palette mode is positioned after the second
indication of usage of the prediction mode, the second indication of usage of the prediction mode
indicating an intra or an inter prediction mode in the bitstream representation. In some
embodiments, the first indication of usage of the palette mode is signaled based on a picture, a
slice, or a tile group type. In some embodiments, the first indication of usage of the palette mode
comprises a first flag indicating that the palette mode is enabled for the block. In some
embodiments, the first indication of usage of the palette mode is conditionally included in the
bitstream representation based on a first flag indicating that the palette mode is enabled in a
sequence level, a picture level, a tile group level, or a tile level. In some embodiments, another
flag indicating a PCM mode of the block is included in the bitstream representation in case the
palette mode is disabled for the block. In some embodiments, the first flag is context coded based
on information of one or more neighboring blocks of the current block. In some embodiments, the
first flag is coded without context information from one or more neighboring blocks of the current
block.

[00343] In some embodiments, the second indication of usage of a prediction mode comprises a
second flag indicating the prediction mode. In some embodiments, in case the second flag in the
bitstream representation indicates that the prediction mode is an inter mode, the bitstream
representation further comprising a third flag indicating whether an intra block copy mode is
enabled. In some embodiments, in case the second flag in the bitstream representation indicates
that the prediction mode is an intra mode, the bitstream representation further comprising a third
flag indicating whether an intra block copy mode is enabled. In some embodiments, the third flag
is conditionally included in the bitstream representation based on a dimension of the block.
[00344] In some embodiments, the block is a coding unit, and the second flag in the bitstream
representation indicates that the prediction mode is an intra mode. In some embodiments, the first

flag 1s conditionally included in the bitstream representation based on a dimension of the block.

91



WO 2020/169106 PCT/CN2020/076370

[00345] FIG. 26 is a flowchart representation of a method 2600 for video processing in accordance
with the present technology. The method 2600 includes, at operation 2610, determining, for a
conversion between a block of a video region in a video and a bitstream representation of the video,
a prediction mode based on one or more allowed prediction modes that include at least a palette
mode of the block. An indication of usage of the palette mode is determined according to the
prediction mode. The method 2600 includes, at operation 2620, performing the conversion based
on the determining.

[00346] In some embodiments, the one or more allowed prediction modes comprise an intra mode.
In some embodiments, the one or more allowed prediction modes comprise an intra block copy
(IBC) mode. In some embodiments, the one or more allowed prediction modes comprise an inter
mode.

[00347] In some embodiments, the video region includes an intra slice, an intra picture, or an intra
tile group. In some embodiments, the one or more allowed prediction modes comprise the intra
mode, the intra block copy mode, and the palette mode.

[00348] In some embodiments, the video region includes an inter slice, an inter picture, an inter
tile group, a P slice, a B slice, a P picture, or a B picture. In some embodiments, the one or more
allowed prediction modes comprise the intra mode, the intra block copy mode, the palette mode,
and the inter mode.

[00349] In some embodiments, the block has a dimension of 4x4. In some embodiments, the one
or more allowed prediction modes exclude the inter mode in case the block has a dimension of
4x4.

[00350] In some embodiments, the bitstream representation includes at least a prediction mode
index representing the one or more allowed prediction modes in case the block is not coded in a
skip mode, wherein the prediction mode index is represented using one or more binary bins.
[00351] In some embodiments, the prediction mode index is represented using three binary bins,
wherein a first bin value of ‘1’ indicates an intra mode, wherein the first bin value of ‘O’ and a
second bin value of ‘0’ indicate an inter mode, wherein the first bin value of ‘0’, the second bin
value of ‘1°, and a third bin value of ‘0’ indicate an IBC mode, and wherein the first bin value of
‘0’, the second value of 1, and the third bin value of ‘1’ indicate a palette mode.

[00352] In some embodiments, the prediction mode index is represented using two binary bins,

wherein a first bin value of ‘1” and a second bin value of ‘0’ indicate an intra mode, wherein the

92



WO 2020/169106 PCT/CN2020/076370

first bin value of ‘0’ and the second bin value of ‘0’ indicate an inter mode, wherein the first bin
value of ‘0’ and the second bin value of ‘1” indicate an IBC mode, and wherein the first bin value
of ‘1’ and the second bin value of ‘1’ indicate a palette mode.

[00353] In some embodiments, the prediction mode index is represented using one binary bin in
case a current slice of the video is an intra slice and an IBC mode is disabled, a first bin value of
‘0’ indicating an intra mode, and a second bin value of ‘1’ indicating a palette mode.

[00354] In some embodiments, the prediction mode index is represented using two binary bins in
case a current slice of the video is not an intra slice and an IBC mode is disabled, wherein a first
bin value of ‘1’ indicates an intra mode, wherein the first bin value of ‘0’ and a second bin value
of ‘0’ indicate an inter mode, and wherein the first bin value of ‘0’ and the second bin value of ‘1°
indicate a palette mode. In some embodiments, the prediction mode index is represented using two
binary bins in case a current slice of the video is an intra slice and an IBC mode 1s enabled, wherein
a first bin value of ‘1’ indicates the IBC mode, wherein the first bin value of ‘0’ and a second bin
value of ‘1’ indicate a palette mode, and wherein the first bin value of ‘0 and the second bin value
of ‘0’ indicate an intra mode. In some embodiments, the indication of the usage of the IBC mode
signaled in a Sequence Parameter Set (SPS) of the bitstream representation.

[00355] In some embodiments, the prediction mode index is represented using three binary bins,
[00356] wherein a first bin value of ‘1” indicates an inter mode, wherein the first bin value of 0’
and a second bin value of ‘1’ indicate an intra mode, wherein the first bin value of ‘0, the second
bin value of ‘0, and a third bin value of ‘1’ indicate an IBC mode, and wherein the first bin value
of ‘0’, the second bin value of ‘0’, and the third bin value of ‘0’ indicate a palette mode.

[00357] In some embodiments, the prediction mode index is represented using three binary bins,
[00358] wherein a first bin value of ‘1” indicates an intra mode, wherein the first bin value of ‘0’
and a second bin value of ‘1’ indicate an inter mode, wherein the first bin value of ‘0, the second
bin value of ‘0, and a third bin value of ‘1’ indicate an IBC mode, and wherein the first bin value
of ‘0’, the second bin value of ‘0’, and the third bin value of ‘0’ indicate a palette mode.

[00359] In some embodiments, the prediction mode index is represented using three binary bins,
wherein a first bin value of ‘0’ indicates an inter mode, wherein the first bin value of ‘1’ and a
second bin value of ‘0’ indicate an intra mode, wherein the first bin value of ‘1’, the second bin
value of ‘1°, and a third bin value of ‘1’ indicate an IBC mode, and wherein the first bin value of

‘1’, the second bin value of ‘1°, and the third bin value of ‘0’ indicate a palette mode.

93



WO 2020/169106 PCT/CN2020/076370

[00360] In some embodiments, signaling of one of the one or more binary bins is skipped in the
bitstream representation in case a condition is satisfied. In some embodiments, the condition
comprises a dimension of the block. In some embodiments, the condition comprises a prediction
mode being disabled, and wherein a binary bin corresponding to the prediction mode is skipped in
the bitstream representation.

[00361] FIG. 27 is a flowchart representation of a method 2700 for video processing in accordance
with the present technology. The method 2700 includes, at operation 2710, performing a
conversion between a block of a video and a bitstream representation of the video. The bitstream
representation is processed according to a format rule that specifies a first indication of usage of a
palette mode and a second indication of usage of an intra block copy (IBC) mode are signaled
dependent of each other.

[00362] In some embodiments, the format rule specifies that the first indication is signaled in the
bitstream representation in case a prediction mode of the block is equal to a first prediction mode
that is not the IBC mode. In some embodiments, the format rule specifies that the second indication
is signaled in the bitstream representation in case a prediction mode of the block is equal to a first
prediction mode that is not the palette mode. In some embodiments, the first prediction mode is an
intra mode.

[00363] FIG. 28 is a flowchart representation of a method 2800 for video processing in accordance
with the present technology. The method 2800 includes, at operation 2810, determining, for a
conversion between a block of a video and a bitstream representation of the video, a presence of
an indication of usage of a palette mode in the bitstream representation based on a dimension of
the block. The method 2800 includes, at operation 2820, performing the conversion based on the
determining.

[00364] FIG. 29 is a flowchart representation of a method 2900 for video processing in accordance
with the present technology. The method 2900 includes, at operation 2910, determining, for a
conversion between a block of a video and a bitstream representation of the video, a presence of
an indication of usage of an intra block copy (IBC) mode in the bitstream representation based on
a dimension of the block. The method 2900 includes, at operation 2920, performing the conversion
based on the determining. In some embodiments, the dimension of the block comprises at least

one of: a number of samples in the block, a width of the block, or a height of the block.

94



WO 2020/169106 PCT/CN2020/076370

[00365] In some embodiments, the indication is signaled in the bitstream representation in case
the width of the block is equal to or smaller than a threshold. In some embodiments, the indication
is signaled in the bitstream representation in case the height of the block is equal to or smaller than
a threshold. In some embodiments, the threshold is 64.

[00366] In some embodiments, the indication is signaled in the bitstream representation in case
the width and the height of the block is larger than a threshold. In some embodiments, the threshold
is 4. In some embodiments, the indication is signaled in the bitstream representation in case the
number of samples in the block is larger than a threshold. In some embodiments, the threshold is
16. In some embodiments, the indication is signaled in the bitstream representation in case a width
of the block is equal to a height of the block.

[00367] In some embodiments, the indication is not present in the bitstream representation in case
(1) the width of the block is greater than a first threshold, (2) the height of the block is greater than
a second threshold, or (3) the number of samples in the block is equal to or smaller than a third
threshold. In some embodiments, the first threshold and the second threshold are 64. In some
embodiments, the third threshold 1s 16.

[00368] In some embodiments, the determining is further based on a characteristic associated with
the block. In some embodiments, the characteristic comprises a prediction mode of the block. In
some embodiments, the characteristic comprises a quantization parameter of the block. In some
embodiments, the characteristic comprises a palette flag of a neighboring block of the block. In
some embodiments, the characteristic comprises an IBC flag of a neighboring block of the block.
In some embodiments, the characteristic comprises an indication of a color format of the block. In
some embodiments, the characteristic comprises a coding tree structure of the block. In some
embodiments, the characteristic comprises a slice group type, a tile group type, or a picture type
of the block.

[00369] FIG. 30 is a flowchart representation of a method 3000 for video processing in accordance
with the present technology. The method 3000 includes, at operation 3010, determining, for a
conversion between a block of a video and a bitstream representation of the video, whether a
palette mode is allowed for the block based on a second indication of a video region containing
the block. The method 3000 also includes, at operation 3020, performing the conversion based on

the determining,

95



WO 2020/169106 PCT/CN2020/076370

[00370] In some embodiments, the video region comprises a slice, a tile group, or a picture. In
some embodiments, the bitstream representation excludes an explicit indication of whether the
palette mode is allowed in case the second indication indicates that a fractional motion vector
difference is enabled. In some embodiments, the second indication is represented as a flag that is
present in the bitstream representation. In some embodiments, the second indication indicates
whether the palette mode is enabled for the video region. In some embodiments, the bitstream
representation excludes an explicit indication of whether the palette mode is allowed in case the
second indication indicates the palette mode is disabled for the video region. In some embodiments,
the palette mode is disallowed for the block in case the bitstream representation excludes an
explicit indication of whether the palette mode is allowed.

[00371] FIG. 31 is a flowchart representation of a method 3100 for video processing in accordance
with the present technology. The method 3100 includes, at operation 3110, determining, for a
conversion between a block of a video and a bitstream representation of the video, whether an intra
block copy (IBC) mode i1s allowed for the block based on a second indication of a video region
containing the block. The method 3100 also includes, at operation 3120, performing the conversion
based on the determining.

[00372] In some embodiments, the video region comprises a slice, a tile group, or a picture. In
some embodiments, the bitstream representation excludes an explicit indication of whether the
IBC mode is allowed in case the second indication indicates that a fractional motion vector
difference is enabled. In some embodiments, the second indication is represented as a flag that is
present in the bitstream representation. In some embodiments, the second indication indicates
whether the IBC mode is enabled for the video region. In some embodiments, the bitstream
representation excludes an explicit indication of whether the IBC mode is allowed in case the
second indication indicates the IBC mode is disabled for the video region. In some embodiments,
the IBC mode is disallowed for the block in case the bitstream representation excludes an explicit
indication of whether the IBC mode is allowed.

[00373] In some embodiments, the conversion generates the current block from the bitstream
representation. In some embodiments, the conversion generates the bitstream representation from
the current block.

[00374] Some embodiments of the disclosed technology include making a decision or

determination to enable a video processing tool or mode. In an example, when the video processing

96



WO 2020/169106 PCT/CN2020/076370

tool or mode is enabled, the encoder will use or implement the tool or mode in the processing of a
block of video, but may not necessarily modify the resulting bitstream based on the usage of the
tool or mode. That is, a conversion from the block of video to the bitstream representation of the
video will use the video processing tool or mode when it is enabled based on the decision or
determination. In another example, when the video processing tool or mode is enabled, the decoder
will process the bitstream with the knowledge that the bitstream has been modified based on the
video processing tool or mode. That is, a conversion from the bitstream representation of the video
to the block of video will be performed using the video processing tool or mode that was enabled
based on the decision or determination.

[00375] Some embodiments of the disclosed technology include making a decision or
determination to disable a video processing tool or mode. In an example, when the video
processing tool or mode is disabled, the encoder will not use the tool or mode in the conversion of
the block of video to the bitstream representation of the video. In another example, when the video
processing tool or mode is disabled, the decoder will process the bitstream with the knowledge
that the bitstream has not been modified using the video processing tool or mode that was enabled
based on the decision or determination.

[00376] The disclosed and other solutions, examples, embodiments, modules and the functional
operations described in this document can be implemented in digital electronic circuitry, or in
computer software, firmware, or hardware, including the structures disclosed in this document
and their structural equivalents, or in combinations of one or more of them. The disclosed and
other embodiments can be implemented as one or more computer program products, i.€., one or
more modules of computer program instructions encoded on a computer readable medium for
execution by, or to control the operation of, data processing apparatus. The computer readable
medium can be a machine-readable storage device, a machine-readable storage substrate, a
memory device, a composition of matter effecting a machine-readable propagated signal, or a
combination of one or more them. The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor firmware, a protocol stack, a database

management system, an operating system, or a combination of one or more of them. A

97



WO 2020/169106 PCT/CN2020/076370

propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical,
or electromagnetic signal, that is generated to encode information for transmission to suitable
receiver apparatus.

[00377] A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form, including as a stand-alone program or
as a module, component, subroutine, or other unit suitable for use in a computing environment.
A computer program does not necessarily correspond to a file in a file system. A program can be
stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
A computer program can be deployed to be executed on one computer or on multiple computers
that are located at one site or distributed across multiple sites and interconnected by a
communication network.

[00378] The processes and logic flows described in this document can be performed by one or
more programmable processors executing one or more computer programs to perform functions
by operating on input data and generating output. The processes and logic flows can also be
performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
[00379] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will receive instructions and data from a
read only memory or a random-access memory or both. The essential elements of a computer
are a processor for performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more mass storage devices for storing data,
e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing computer program instructions and data
include all forms of non-volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices;

magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD

98



WO 2020/169106 PCT/CN2020/076370

ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[00380]  While this patent document contains many specifics, these should not be construed
as limitations on the scope of any subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular embodiments of particular techniques.
Certain features that are described in this patent document in the context of separate
embodiments can also be implemented in combination in a single embodiment. Conversely,
various features that are described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any suitable subcombination. Moreover,
although features may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in some cases be excised
from the combination, and the claimed combination may be directed to a subcombination or
variation of a subcombination.

[00381] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations be performed, to achieve desirable
results. Moreover, the separation of various system components in the embodiments described
in this patent document should not be understood as requiring such separation in all
embodiments.

[00382] Only a few implementations and examples are described and other implementations,
enhancements and variations can be made based on what is described and illustrated in this

patent document.

99



WO 2020/169106 PCT/CN2020/076370

CLAIMS
1. A method for video processing, comprising:
determining, for a conversion between a block of a video and a bitstream representation
of the video, whether a palette mode is allowed for the block based on a second indication of a
video region containing the block; and

performing the conversion based on the determining.

2. The method of claim 1, wherein the video region comprises a slice, a tile group, or a
picture.
3. The method of claim 1 or 2, wherein the bitstream representation excludes an explicit

indication of whether the palette mode is allowed in case the second indication indicates that a

fractional motion vector difference is enabled.

4. The method of any one or more of claims 1 to 3, wherein the second indication is

represented as a flag that is present in the bitstream representation.

5. The method of any one or more of claims 1 to 4, wherein the second indication indicates

whether the palette mode is enabled for the video region.

6. The method of any one or more of claims 1 to 5, wherein the bitstream representation
excludes an explicit indication of whether the palette mode is allowed in case the second
indication indicates the palette mode is disabled for the video region.

7. The method of any one or more of claims 1 to 6, wherein the palette mode is disallowed
for the block in case the bitstream representation excludes an explicit indication of whether the

palette mode is allowed.

8. A method for video processing, comprising:

100



WO 2020/169106 PCT/CN2020/076370

determining, for a conversion between a block of a video and a bitstream representation
of the video, whether an intra block copy (IBC) mode is allowed for the block based on a second
indication of a video region containing the block; and

performing the conversion based on the determining.

9. The method of claim 8, wherein the video region comprises a slice, a tile group, or a
picture.
10. The method of claim 8 or 9, wherein the bitstream representation excludes an explicit

indication of whether the IBC mode is allowed 1n case the second indication indicates that a

fractional motion vector difference is enabled.

11. The method of any one or more of claims 8 to 10, wherein the second indication is

represented as a flag that is present in the bitstream representation.

12. The method of any one or more of claims 8 to 11, wherein the second indication indicates

whether the IBC mode is enabled for the video region.

13. The method of any one or more of claims 8 to 12, wherein the bitstream representation
excludes an explicit indication of whether the IBC mode is allowed in case the second indication

indicates the IBC mode is disabled for the video region.

14. The method of any one or more of claims 8 to 13, wherein the IBC mode is disallowed
for the block in case the bitstream representation excludes an explicit indication of whether the

IBC mode 1s allowed.

15. The method of any one or more of claims 1 to 14, wherein the conversion generates the

current block from the bitstream representation.

16. The method of any one or more of claims 1 to 14, wherein the conversion generates the

bitstream representation from the current block.

101



WO 2020/169106 PCT/CN2020/076370

17. A video processing apparatus comprising a processor configured to implement a method

recited in any one or more of claims 1 to 16.

18. A computer-readable medium having code stored thereon, the code, when executed,

causing a processor to implement a method recited in any one or more of claims 1 to 16.

102



PCT/CN2020/076370

WO 2020/169106

I E

alnoid ueimn

300i JUALND

Ag

%00I( 90UBIBOY

1/31



PCT/CN2020/076370

WO 2020/169106

£ Xapu|
7 xapu
1 %8pu

0 Xapul

adeass

DG a43/D A

anejed

¢ Old

apow a9|ed
Ut papoo yoolg

2/31



PCT/CN2020/076370

WO 2020/169106

€ "Old

papeufs (7) sauiua alajed man

{€) sapus a139jed pasn-ay

....... NGY  NvE | NYD b
NEY | NE§ | NED €
0
0
Z T
1 T
0
0 T
D/ a3/8 1 A/D | xepuy) | Beypaud

ayysied BN

oY 58 59 S
Y ve 142 14
€y £g €9 €
4 4 €9 4
Y 14 19 T
oY 0g 09 0
DY W/ MO Xepyl

anajed snonsid

3/31



PCT/CN2020/076370

WO 2020/169106

oo
Serd

§
.\\\E o :“E”@

R

e
ot

T RO

OiIQiOiIOiIQ|OI0 O

OIQILICIOQICIQIQ
Oiet i QIO IQIOIQ
Oietivtivdtietied | DI

O led et o o et | D

3

UBDS 2SISARL] [BDI1IBA

¥ "Old

dioioio oo

&
-
Ly
[4:¢) \-<~i s
H
o

@
P
G

o

UBIS B5i8ARIY {BIUCZIIOY

4/31



PCT/CN2020/076370

WO 2020/169106

7
apowd ¥spuyy, rededss @

{IBUBE- UM + SPOW P,

Pramarn

7 = Yidua uru

YiBua-uns + apows Isoqe Adog,

G "Old

@OOOO

~HiIQIOIoiIQiQ

il i OO

*a
o

edirdiediediem i QIO

SiICIOIQI0IQIQIQ

TSIC|IQIVIQIL IO

<

b

<

M,
oioio

O~ -HIOIOICIOIO
QIO OO0

(1 1. 10 1}

QIO

T Ei0 T

N
\OOOO

<

B R o
7 = yiBu und

]

QIDIQIQIOIOI0I0

QIQIQIQIOIOIDIC

[ RN Rl BB R B E Rl e

Ol iiti |~ OO

QiITEO

CIQIQICIQIOITIO

adedss
O 9xe A9
o119|ed
$301y savpur onsped 10 wdm
0:0:0:0:0:0:010
0:0i0:0:0:0/010
0i0i0 T T:i0i00
0i0i0 T T:0i00
7

6:0:0 11722010
G ot ITiITi0T0
i0iTiITiITIOIT]0
gi0i0i0i0i0I0I0

5/31



PCT/CN2020/076370

WO 2020/169106

9 "Old

909 Aowap
Anoain
Buissaooid 0spIA ¥09
10888001
c09

LE/9

6/31



WO 2020/169106 PCT/CN2020/076370

N

oy
B3
R

e

N AR R AN T R A NN R

7/31

FIG. 7



PCT/CN2020/076370

WO 2020/169106

8 'OId

08 —

apow anored ay)
Buisn uoibal ay) 1o “¥20|q Bulpod ayl ‘Jun
wiojsuel) ayj Jo Buissasoud Jayling wiouad

G08 —

apow

uonoipaid e wouy Ajoreredas papoo buiag
apow anofed Jo abesn ‘uoibal e 10 H420|q
Buipod e ‘Uun wiojsues e Buissaooid 1o)
pasn aq 0] S| apow anajed eyl suiwiseqg

008

8/31



PCT/CN2020/076370

WO 2020/169106

6 "Old

Nmum tzh b tob | fod 44 MNQW ted

saUll ¥ pUooas

saul] i 1541

9/31




PCT/CN2020/076370

WO 2020/169106

Ol "Old

i ] W1 |

A

YHLINT 00K VaINI mQOE

0=dnyg

10/31



PCT/CN2020/076370

WO 2020/169106

o

L "OId

ondped

01

el

Bhuf

11/31



WO 2020/169106

N

AR

O
g

L

B0
'\13\“

12/31

PCT/CN2020/076370

FIG. 12



000000000000

00000000000000000

FIG. 13



WO 2020/169106

14/31

PCT/CN2020/076370

FIG. 14



WO 2020/169106

o

X

T

v

T

b & X
= - ™

N

N =

FIG. 15 (b)

FIG. 15 (a)

15/31

PCT/CN2020/076370

o2

1 o S
N
[
N
I
ry
<
.y
A
<
<
2 3 B
~ w e o
&) Q S &
w 2 ~ I
o o &) S
3
3
&
a 8§ & A

FIG. 15 (d)

FIG. 15 (c)



PCT/CN2020/076370

WO 2020/169106

Asepunog 1110

91 "Old

;ii{'l -

)
[+
O ¢ Asepunog 10
,.,. * UG a5 Bl g
P AERUODG BITAR

R R e L

‘ AEPUNGE 1110

(P

16/31



PCT/CN2020/076370

WO 2020/169106

ASEEGE

oy peg

B peg

AR E

BUi Petey

LS DL,
S5 P

17/31



WO 2020/169106

18/31

PCT/CN2020/076370

FIG. 18



PCT/CN2020/076370

WO 2020/169106

61 "Old

anfeAjaxid winwixen uioy ﬁmm%%w%owm”mwm anjeA [axid wnuiuy
RERERRRRRRRRERERER R RERE RN D
Loﬁmog pueq bunpelg

19/31



WO 2020/169106

top

20/31

feft

PCT/CN2020/076370

FIG. 20



PCT/CN2020/076370

WO 2020/169106

L¢ "OId

B UDHESUESRIOT BOBOR}

SN ATHY

B BAIE

W S Jsdey G, Apde  Eo .\Sw.
Gedld s gt ; e T w »
R 00T UCRINBULTAY i
BULLS %

Py

B SESEGLEBCRIOT HOBRY

ISP 530S

PEIUE BT

L ey
- P

yoseseceorssssres

B3 ot e

21/31



WO 2020/169106

\ §
Y. \\\\ \} \\\\\\

22/31

PCT/CN2020/076370

FIG. 22



WO 2020/169106

& N
A 8
S N

N TRy

23/31

PCT/CN2020/076370

FIG. 23



WO 2020/169106

2400

2410

2408

2406

2404

2402

24/31

PCT/CN2020/076370

FIG. 24



PCT/CN2020/076370

WO 2020/169106

Ge¢ "Old

0lG¢ —

9|nJ JeW.O} pUOIIS B pue
9|nJ Jew. oy 1s41} e 0} Suipiodde passadso.d
S| uoljeluasasdal weallsyiq ayl uldJaym
‘09pIA 3Y3 JO uolleluasaldal weauslq
B pue O3PIA € JO UOoI33J O3PIA e JO
)70|q B U3aM1ag UOISIaAUO0I e Suiwioyiad

00G¢

25/31



PCT/CN2020/076370

WO 2020/169106

9¢ "Old

0¢9¢ ——.

guiuiwiep
3y} Uo paseq UoISI9AUOD 3y3 Sujwioyiad

0l9¢ —

320|q 3y3 Jo apow 2139jed e ised|
1B apn|oul Jeyl sapow uoiipald pamojje
2JOW JO U0 U0 paseq apow uolipald
B ‘O9pPIA 33 Jo uonejuasaldal wealisiiq
B pUB 03PIA B Ul UoISal 03PIA e 4O YI0|q
B U99M]3( UOISIIAUOD B 40} ‘Sululwialap

009¢

26/31



PCT/CN2020/076370

WO 2020/169106

L¢ "Old

0Ll —

1930 Yoes jo juapuadap
pajeusis aie apow (Jg|) Adod yoo|q
eJjul ue Jo a8esn JO UOIled|pU]l PUOISS B
pue spow 3139|ed e jo d3esn Jo uolledipul
1541} e s314109ds 1eyy a|nJ jew.oy e
03 8uip1odoe passadoad s| uoljjejuasasdal
weaJlsliq 2y} ulaiaym ‘0apiA ay} Jo
uolleluasasdal weallsyiq e pue O3pIA e Jo
320|q B UBAMIDQ UOISISAUOD e Sujw.oiad

004¢

27/31



PCT/CN2020/076370

WO 2020/169106

8¢ "'Old

0¢8¢ ——

duiuiwiep
3y} Uo paseq UoISI9AUOD Y3 Sujwioyiad

08¢ —]

¥90|q 3y3 JO UOISUBWIP B U0 paseq
uollejuasaldal weallsliq ayl ul apowl
a19|ed e jo adesn Jo uolleJIpUl UE JO
3ouasald e ‘03apIA ay} Jo uoljejuasaidal
WeaJ1s}iq B pUe O3PIA B JO }20|q
B UD2M13( UOISIDAUOD B IO} ‘Sululwialap

008¢

28/31



PCT/CN2020/076370

WO 2020/169106

6¢ "Old

068 ——

duiuiwiep
3y} Uo paseq UoISI9AUOD 3y3 Sujwioyiad

0l6¢ —]

90[q 3y1
JO uoIsuUaWIp e uo paseq uollejuasaidau
weaJsisiqg ay3 ul sapow (Dg|) Adod
320|q eJjul ue jo agesn JO uojjedIpul ue Jo
aouasaud e ‘0apIA ay3 Jo uoljeluasaldal
weaJlsig e pue 03pIA e JO )0|q
B U99M]3(Q UOISIBAUO)D B 10} ‘Suiuiwialap

006¢

29/31



PCT/CN2020/076370

WO 2020/169106

0€ "Old

008 ——

duiuiwiep
3y} Uo paseq UoISI9AUOD Y3 Sujwioyiad

0108 —]

320|q 9Y3 8ujuleluod uoidal
OSPIA B JO UOI1BIIpUl PUOIDS B UO paseq
320|q 3Yy1 104 pamoj|e S| apow anajed
B 194laym ‘03pIA 9y} Jo uoljejuasaidal
weaJlsliq e pue 03pIA e JO )20|q
B UD9M]3Q UOISIBAUOD e 10} ‘BuluiwidlDp

000¢

30/31



PCT/CN2020/076370

WO 2020/169106

L€ "OId

0Cle —

duiuiwiep
3y} Uo paseq UoISI9AUOD Y3 Sujwioyiad

OHE —nuo

320|q 9Y3 8ujuleluod uoidal
OSPIA B JO UOI1BIIpUl PUOIDS B UO paseq
320|q 3Yy1 104 pamoj|e S| apow anajed
B 194laym ‘03pIA 9y} Jo uoljejuasaidal
weaJlsliq e pue 03pIA e JO )20|q
B UD9M]3Q UOISIBAUOD e 10} ‘BuluiwidlDp

001€

31/31



INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2020/076370

A. CLASSIFICATION OF SUBJECT MATTER
HO4N 19/103(2014.01)i; HO4N 19/70(2014.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS, CNTXT, CNKI, VEN: palette, IBC, intra block copy, SCC, screen content coding, enable, allow, flag, indication,
fractional, MV, motion vector

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Rajan Joshi et al. "High Efficiency Video Coding (HEVC) Screen Content Coding: Draft 1" 1,2,4-9,11-18
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/8C 29/WG 11, 27 September 2014 (2014-09-27),

pages 1,33 and 77

X Yung-Hsuan Chao et al. "CE15-2: Palette mode of HEVC SCC" 1,2,4-7
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
12 October 2018 (2018-10-12),

page 1

A CN 106534846 A (UNIV. TIANJIN) 22 March 2017 (2017-03-22) 1-18
the whole document

A CN 107646195 A (VID SCALE INC.) 30 January 2018 (2018-01-30) 1-18
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

*  Special categories of cited documents: “T” later document published after the international filing date or priority
«A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
«g” earlier application or patent but published on or after the international «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«1» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

«p>» document published prior to the international filing date but later than . &

e ] document member of the same patent famil;
the priority date claimed P Y

Date of the actual completion of the international search Date of mailing of the international search report
08 May 2020 14 May 2020
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing LUO,Xinyao
100088
China
Facsimile No. (86-10)62019451 Telephone No. 86-010-62411071

Form PCT/ISA/210 (second sheet) (January 2015)



INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2020/076370

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
CN 106534846 A 22 March 2017 CN 106534846 B 29 January 2019
CN 107646195 A 30 January 2018 ™ 201709738 A 01 March 2017
Jp 2018524872 A 30 August 2018
EP 3304907 Al 11 April 2018
uUsS 2016360210 Al 08 December 2016
KR 20180026396 A 12 March 2018
WO 2016200984 A8 22 June 2017
us 2019238864 Al 01 August 2019
us 10306240 B2 28 May 2019
WO 2016200984 Al 15 December 2016

Form PCT/ISA/210 (patent family annex) (January 2015)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - claims
	Page 103 - claims
	Page 104 - claims
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - wo-search-report
	Page 137 - wo-search-report

